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Abstract. QoS-based service selection aims at finding the best com-
ponent services that satisfy the end-to-end quality requirements. The
problem can be modeled as a multi-dimension multi-choice 0-1 knap-
sack problem, which is known as NP-hard. Recently published solutions
propose using linear programming techniques to solve the problem. How-
ever, the poor scalability of linear program solving methods restricts their
applicability to small-size problems and renders them inappropriate for
dynamic applications with run-time requirements. In this paper, we ad-
dress this problem and propose a scalable QoS computation approach
based on a heuristic algorithm, which decomposes the optimization prob-
lem into small sub-problems that can be solved more efficiently than the
original problem. Experimental evaluations show that near-to-optimal
solutions can be found using our algorithm much faster than using linear
programming methods.

1 Introduction

Industrial practice witnesses a growing interest in the ad-hoc model for ser-
vice composition in the areas of supply chain management, accounting, finances,
eScience as well as in multimedia applications. With the growing number of
available services the composition problem becomes a decision problem on the
selection of component services from a set of alternative services that provide
the same functionality but differ in quality parameters.

Given an abstract representation of a composition request (e.g. in a workflow
language like BPEL [1]), and given a list of functionally-equivalent web service
candidates for each task in the composition request, the goal of service selec-
tion algorithms is to find one web service from each list such that the overall
QoS is optimized and user’s end-to-end QoS requirements are satisfied. This
problem can be modeled as Multi-Choice Multidimensional Knapsack problem
(MMKP), which is known to be NP-hard in the strong sense [2]. Therefore it can
be expected that any exact solution to MMKP has an exponential cost. In the
dynamic environment of web services, where deviations from the QoS estimates
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occur and decisions upon replacing some services has to be taken at run-time
(e.g. in multimedia applications), the efficiency of the applied service selection
algorithm becomes crucial.

Due to the poor scalability of (Mixed) Integer Linear programming (MILP)
methods [3], recently proposed solutions like [4,5] fail short in addressing run-
time requirements. In this paper we propose an efficient and scalable heuristic
approach for the QoS-based service selection problem. The contribution of this
paper can be stated as follows:

– We map the global QoS optimization problem into sub-problems that can
be solved more efficiently by local QoS optimization.

– We show how the results of the problem decomposition can be applied in a
distributed architecture that includes a service composer and a set of dis-
tributed service brokers.

Our heuristic approach to QoS-based service selection does not necessarily result
in “the” optimal set of services. Nevertheless, since the business requirements
(such as response times or throughput) are only approximate, we need to find
a reasonable set of services that covers the requirements approximately at ac-
ceptable costs and avoids obvious violations of constraints. The experimental
evaluation we present in this paper show that our approach outperforms all pre-
vious solutions in terms of computational complexity but still gives qualitative
comparable results.

The rest of the paper is organized as follows. In the next section we discuss
related solutions. Section 3 introduces the system model and gives a problem
statement. Our approach for a scalable QoS computation for web service se-
lection is presented in section 4. In section 5 we discuss the results from our
experimental evaluation. Finally, section 6 gives conclusions and an outlook on
possible continuations of our work.

2 Related Work

Recently, the QoS-based web service selection and composition in service-oriented
applications has gained the attention of many researchers [4,6,5,7]. In [6] the au-
thors propose an extensible QoS computation model that supports open and fair
management of QoS data. The problem of QoS-based composition is not addressed
by this work. The work of Zeng at al. [4] focuses on dynamic and quality-driven se-
lection of services. The authors use global planning to find the best service compo-
nents for the composition. They use (mixed) linear programming techniques [3] to
find the optimal selection of component services. Similar to this approachArdagna
et al. [5] extends the linear programming model to include local constraints. Lin-
ear programming methods are very effective when the size of the problem is small.
However, these methods suffer from poor scalability due to the exponential time
complexity of the applied search algorithms [8]. In [7] the authors propose heuristic
algorithms to find a near-to-optimal solution more efficiently than exact solutions.
The time complexity of the heuristic algorithm (WS HEU) is polynomial. Despite
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the significant improvement of this algorithm compared to exact solutions, it dose
not scale with respect to an increasing number of web services and remain out of
the real-time requirements.

3 System Model and Problem Statement

In our model we assume that we have a universe of web services S which is defined
as a union of abstract service classes. Each abstract service class Sj ∈ S is used to
describe a set of functionally-equivalent web services (e.g. Lufthansa and Qantas
flight booking web services). In this paper we assume that information about ser-
vice classes is managedby a set of service brokers as described in [6,9]. Web services
can join and leave service classes at any timebymeans of a subscriptionmechanism.

3.1 Abstract vs. Concrete Composite Services

We also distinguish between the following two concepts:

– An abstract composite service, which can be defined as an abstract represen-
tation of a composition request CSabstract = {S1, . . . , Sn}. CSabstract refers
to the required service classes without referring to any concrete web service.

– A concrete composite service, which can be defined as an instantiation of an
abstract composite service. This can be obtained by binding each abstract
service class (e.g. flight booking) in CSabstract to a concrete web service sj ,
sj ∈ Sj (e.g. Qantas flight booking web Service).

3.2 QoS Criteria

In our study we consider quantitative non-functional properties of web services,
which can be used to describe the quality of a service s. We use the vector
Qs = {q1, q2, . . . , qr} to represent these properties. These can include generic QoS
attributes like response time, availability, price, reputation etc, as well as domain-
specific QoS attributes like bandwidth, video quality for multimedia web services.
The values of these QoS attributes can be either collected from service providers
directly (e.g. price), recorded from previous execution monitoring (e.g. response
time) or from user feedbacks (e.g. reputation) [6]. The set of QoS attributes
can be divided into two subsets: positive and negative attributes. The values of
positive attributes need to be maximized (e.g. availability), whereas the values
of negative attributes need to be minimized (e.g. response time). For the sake of
simplicity, we consider only negative attributes (positive attributes can be easily
transformed into negative attributes by multiplying their values by -1). We use
the function qi(s) to determine the i-th quality parameter of service s.

3.3 QoS Computation of Composite Services

The QoS value of a composite service is decided by the QoS values of its com-
ponent services as well as the composition model used (e.g. sequential, parallel,
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conditional and/or loops). In this paper, we focus on the service selection algo-
rithm for QoS-based service composition, and its performance on the sequential
composition model. Other models may be reduced or transformed to the sequen-
tial model. Techniques for handling multiple execution paths and unfolding loops
from [4], can be used for this purpose.

The QoS vector for a composite service CS is defined as QCS = {q′1(CS), . . . ,
q′r(CS)} where q′i(CS) represents the estimated QoS values of a composite ser-
vice CS and can be aggregated from the expected QoS values of its component
services. Table 1 shows examples of some QoS aggregation functions.

Similar to [4,6,5,7], we assume in our model that QoS aggregation functions
can be linearized and represented by the summation relation. For QoS attributes
that are typically aggregated as a product (e.g. availability) we apply a logarithm
operation to transform them into a summation relation. We extend our model
to support the following aggregation function:

q′k(CS) =
n∑

j=1

qk(sj) (1)

Table 1. Examples of QoS aggregation functions for composite services

QoS Attribute Aggregation Function

Response Time q′res(CS) =
∑n

j=1 qres(sj)

Price q′price(CS) =
∑n

j=1 qprice(sj)

Availability q′av(CS) =
∏n

j=1 qav(sj)

3.4 Utility Function

In order to evaluate the multi-dimensional quality of a given web service compo-
sition a utility function is used. In this paper we use a Multiple Attribute Deci-
sion Making approach for the utility function: i.e. the Simple Additive Weighting
(SAW) technique [10]. The utility computation involves scaling the values of QoS
attributes to allow a uniform measurement of the multi-dimensional service qual-
ities independent of their units and ranges. The scaling process is then followed
by a weighting process for representing user priorities and preferences. In the
scaling process each QoS attribute value is transformed into a value between 0
and 1, by comparing it with the minimum and maximum possible aggregated
value. These values can be easily estimated by aggregating the local minimum
(or maximum) possible value of each service class in CS. For example, the max-
imum execution price of any concrete composite service can be computed by
summing up the execution price of the most expensive service in each service
class. Formally, we compute the minimum and maximum aggregated value of
the k-th QoS attribute as follows:

Qmin′(k) =
n∑

j=1

Qmin(j, k) and Qmax′(k) =
n∑

j=1

Qmax(j, k) (2)
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where Qmin(j, k) = min∀sji∈Sj qk(sji) is the minimum value (e.g. minimum
price) and Qmax = max∀sji∈Sj qk(sji) is the maximum value (e.g. maximum
price) that can be expected for service class Sj according to the available infor-
mation about service candidates of this class.

Now the overall utility of a composite service is computed as

U ′(CS) =
r∑

k=1

Qmax′(k) − q′k(CS)
Qmax′(k) − Qmin′(k)

· wk (3)

with wk ∈ R
+
0 and

∑r
k=1 wk = 1 being the weight of q′k to represent user’s

priorities.
The utility function U ′(CS) is used to evaluate a given set of alternative ser-

vice compositions. However, finding the best composition requires enumerating
all possible combinations of service candidates. For a composition request with
n service classes and l service candidate per class, there are ln possible combi-
nations to be examined. Performing exhaustive search can be very expensive in
terms of computation time and, therefore, inappropriate for applications with
many services and dynamic needs.

3.5 Problem Statement

The problem of finding the best service composition without enumerating all
possible combinations is considered as an optimization problem, in which the
overall utility value has to be maximized while satisfying all global constraints.
Formally, the optimization problem we are addressing can be stated as follows:

For a given abstract composite service CSabstract = {S1, . . . , Sn} with a set
of m global QoS constraints C′ = {c′1, . . . , c′m}, find an implementation CS =
{s1b, . . . , snb} by bounding each Sj to a concrete service sjb ∈ Sj such that:

1. The overall utility U ′(CS) is maximized, and
2. The aggregated QoS values satisfy: q′k(CS) ≤ c′k, ∀c′k ∈ C′

4 A Scalable QoS Computation

In this section we present a scalable solution to the QoS-bases web service
composition problem. We decompose the global optimization problem into sub-
problems that can be solved independently. For this purpose, we first map the
global QoS computation on the composite service level U ′(CS) into local com-
putations that can be performed on each service class independently (see Sec-
tion 4.1). Second, we propose a simple algorithm for decomposing each global
QoS constraint c′k ∈ C′ into n local constraints that can be verified locally
on the component services (see Section 4.2). Finally, we present a distributed
service selection algorithm that leverages local search for achieving global QoS
requirments (see Section 4.3)
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4.1 Decomposition of Global QoS Computation

The use of (3) on the composite service level requires enumerating all possi-
ble combinations of the service candidates to find the optimal selection. This
approach can be very inefficient for large scale problems or applications with
run-time requirements. Therefore, we derive a modified utility function U ′

local(s)
from U ′(CS) that can be applied on the component service level, without the
need for evaluating all possible combinations.

By applying (1) and (2) we get:

U ′(CS) =
r∑

k=1

∑n
j=1 Qmin(j, k) − ∑n

j=1 qk(sj)
Qmax′(k) − Qmin′(k)

· wk

=
n∑

j=1

(
r∑

k=1

Qmax(j, k) − qk(sj)
Qmax′(k) − Qmin′(k)

· wk)

︸ ︷︷ ︸
U ′

local(s)

=
n∑

j=1

U ′
local(sj) (4)

The utility function U ′
local(s) can be computed for each service class Sj inde-

pendently, provided that the global parameters Qmin′ and Qmax′ are specified.
These parameters can be easily computed beforehand by aggregating the local
maximum and minimum values of each service class. Thus, by selecting the ser-
vice candidate with the maximum U ′

local value from each class, we can ensure
that U ′(CS) is maximized (i.e. satisfying the first requirement in 3.5).

4.2 Decomposition of Global Constraints

To ensure that the outcome of the local QoS computation satisfies global QoS
constraints (i.e. the second requirement in 3.5), we need to decompose each global
constraint c′k ∈ C′, 1 ≤ k ≤ m into n local constraints. We use local statistics
about the quality values to estimate a reasonable decomposition of each global
constraint c′k as follows:

1. Initially set the local constraint value cjk of each service class to the local
maximum value of that class,

∀c′k ∈ C′ : ckj = Qmax(j, k), 1 ≤ j ≤ n (5)

2. Compute the difference between the global constraint values and the aggre-
gated value of the local constraints,

∀c′k ∈ C′ : dk =
n∑

j=1

ckj − c′k (6)

3. Adjust the current set of local constraints based on the relative distance
between the local maximum and minimum QoS value using the following
formula:

∀c′k ∈ C′ : ckj = ckj −dk ∗ Qmax(j, k) − Qmin(j, k)∑n
x=1(Qmax(x, k) − Qmin(x, k))

, 1 ≤ j ≤ n (7)
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4.3 Distributed Optimization of the QoS Computation

We assume an architecture consisting of a service composer and a number of
service brokers - either distributed or on a single machine. Each service broker
is responsible for managing QoS information of a set of web service classes.
A list of available web services is maintained by the service broker along with
registered measurements of their non-functional properties, i.e. QoS attributes,
like response time, throughput, price etc. The service composer instantiates a
composite service CS in interaction with the service brokers.

The procedure of the distributed QoS-based service composition is depicted
in figure 1. The service composer requests statistical information for each service
class from the responsible service brokers, namely, Qmax(j, k) and Qmin(j, k)
and computes the global parameters: Qmax′(k), Qmin′(k), 1 ≤ k ≤ r. Each
global constraint c′k, 1 ≤ k ≤ m is decomposed as described in section 4.2 into
a set of local constraints c1k, ..., cjk. The composer sends these local constraints
along with the global parameters Qmax′(k), Qmin′(k), 1 ≤ k ≤ r to each service
broker. Each service broker performs a local search and returns the best service
candidate that satisfies the local constraints and has the maximum U ′

local value.
The service composer collects the results from the brokers and checks them for
further optimization. Further optimization is possible if the total saving in the
value of any of quality attributes is greater than zero. The total saving δk of the
k-th QoS attribute is computed as:

δk =
n∑

j=1

(cjk − qjk), 1 ≤ k ≤ m (8)

The service composer uses the total saving in the quality value to relax the
current local constraints as follows:

∀ckj ∈ C′ : ckj = qkj + δk ∗ Qmax(j, k) − qjk∑n
x=1(Qmax(x, k) − qxk)

, 1 ≤ j ≤ n (9)

The relaxed local constraints are sent back to the service brokers for improving
their local results. The procedure is repeated as long as a new solution is found.
Otherwise, the procedure stops and the final composition is constructed from
the currently select component services CS = {s1, . . . , sn}.

Unlike the heuristic algorithm WS HEU [7], the expected number of itera-
tions in our algorithm is very low as we only consider upgrading the current
solution by means of relaxing the constraints and no downgrading is required.
By only relaxing the local constraints it is guaranteed that the new solution,
if any exists, has a higher overall utility value than the current solution. Our
algorithm is guaranteed to converge as after each round the service composer
checks the new solution as well as the new total saving value δk against those
of the previous round. The composer stops the optimization process as soon as
there is no improvement in the utility value nor saving in the quality values.
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Fig. 1. Service Composer - Service Broker interactions

5 Experimental Evaluation

We have evaluated our proposed solution by means of several experiments, which
we describe in this section. We conducted the experiments on a HP ProLiant
DL380 G3 machine with 2 Intel Xeon 2.80GHz processors and 6 GB RAM. The
machine is running under Linux (CentOS release 5) and Java 1.6.

We compare the performance and the quality of the results of our solution with
those of the linear programming methods (LP) [4,5] and the heuristic algorithm
WS HEU [7]. For LP we use the open source Linear Programming system lpsolve
version 5.5 [11]. For WS HEU we use our own implementation. We implemented
it as fair as possible taking into account all possible optimizations to reduce the
computation time as much as possible. We experimented with several instances
of the QoS composition problem by varying the number of service classes n and
the number of service candidates per class l. Each unique combination of these
parameters represents one instance of the composition problem. For the QoS data
we use the QWS real dataset from [12]. This dataset includes measurements of 9
QoS attributes for 364 real web services. To evaluate the scalability of our solution,
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however, we need to run experiments with a much larger set of services. Therefore,
we duplicated the QWS dataset several times, each time multiplying the quality
values of web services by a uniformly distributed random value between 0.1 and
2.0. In this way we achieved a data set of about 100.000 services.

5.1 Performance Evaluation

We evaluate the performance of the three approaches, by measuring the required
time for finding the solution (i.e. the best combination of concrete services) by
each approach. Figure 2 shows a comparison of the performance of LP, WS HEU
and our solution, which we label with DIST HEU. In this experiment we study
the performance of the three approaches with respect to the size of the problem
in terms of the number of service classes n and the number of service candidates
per class l. The results in both graphs (varying number of classes and varying
number of candidates) show that DIST HEU has a much better scalability than
LP and WS HEU in all problem instances (always less than 100 msec).

5.2 Optimality Evaluation

To evaluate the quality of the results of our approach, we measure the closeness of
the returned results to the optimal results obtained by the LP method by
calculating the optimality ration R = Uapprox

Uopt
. Uapprox is the utility of the best

composition returned by our approach according to (3) and Uopt is the utility of

Fig. 2. Computational time with respect to the problem size

Fig. 3. Comparison of the achieved optimality with respect to the size of the problem
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the composition returned by the LP method. The results shown in figure 3 indi-
cate that DIST HEU achieves good results with 98% optimality ratio in average.
It can also be seen that result quality of our approach DIST HEU is in average
just 1% below the WS HEU results. However, the cost of WS HEU for this little
improvement in terms of computation time is very high as we see from figure 2.

6 Conclusion and Future Work

This paper describes a scalable method for the QoS-based service selection. The
problem is known to be NP-hard. Therefore heuristic solutions are commonly
used. Our proposed method allows to dramatically reduce the efforts compared
to existing heuristic solutions by a factor of 10 to 100 dependent on the complex-
ity of the service environment. We decompose the global optimization problem
into a number of sub-problems that can easily be solved by local optimization
within each service class. In addition the decomposition allows distributing the
processing to better fit to the distributed web service environment. We are cur-
rently working on extending our approach to support more complex composition
models than the sequential model. Furthermore, we plan to develop a more so-
phisticated QoS constraint decomposition algorithm to improve the optimality
of the obtained results.
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