
A Scalable Architecture
for Montgomery Multiplication ?

Alexandre F. Tenca and Çetin K. Koç

Electrical & Computer Engineering
Oregon State University, Corvallis, Oregon 97331

{tenca,koc}@ece.orst.edu

Abstract. This paper describes the methodology and design of a scala-
ble Montgomery multiplication module. There is no limitation on the
maximum number of bits manipulated by the multiplier, and the sel-
ection of the word-size is made according to the available area and/or
desired performance. We describe the general view of the new architec-
ture, analyze hardware organization for its parallel computation, and
discuss design tradeoffs which are useful to identify the best hardware
configuration.

1 Introduction

The Montgomery multiplication algorithm [10] is an efficient method for modular
multiplication with an arbitrary modulus, particularly suitable for implementa-
tion on general-purpose computers (signal processors or microprocessors). The
method is based on an ingenious representation of the residue class modulo M ,
and replaces division by M operation with division by a power of 2. This opera-
tion is easily accomplished on a computer since the numbers are represented in
binary form. Various algorithms [11,7,1] attempt to modify the original method
in order to obtain more efficient software implementations on specific processors
or arithmetic coprocessors, or direct hardware implementations. In this paper we
are interested in hardware implementations of the Montgomery multiplication
operation.

Several algorithms and hardware implementations of the Montgomery multi-
plication for a limited precision of the operands were proposed [1,11,3]. In order
to get improved performance, high-radix algorithms have also been proposed [11,
8]. However, these high-radix algorithms usually are more complex and consume
significant amounts of chip area, and it is not so evident whether the complex
circuits derived from them provide the desired speed increase. A theoretical in-
vestigation of the design tradeoffs for high-radix modular multipliers is given in
[15]. An example of a design in radix-4 is shown in [13]. The increase in the radix
forces the use of digit multipliers, and therefore more complex designs and longer
? Readers should note that Oregon State University has filed or will file a patent

application containing this work to the US Patent and Trademark Office.

Ç.K. Koç and C. Paar (Eds.): CHES’99, LNCS 1717, pp. 94–108, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Scalable Architecture for Montgomery Multiplication 95

clock cycle times. For this reason, low-radix designs are usually more attractive
for hardware implementation.

The Montgomery multiplication is the basic building block for the modular
exponentiation operation [4,5] which is required in the Diffie-Hellman and RSA
public-key cryptosystems [2,12]. Currently, most modular exponentiation chips
perform the exponentiation as a series of modular multiplications, which is the
most compelling reason for the research of fast and inexpensive modular mul-
tipliers for long integers. Recent implementations of the Montgomery multipli-
cations are focused on elliptic key cryptography [9] over the finite field GF (p).
The introduction [6] of the Montgomery multiplication in GF (2k) opened up
new possibilities, most notably in elliptic key cryptography over the finite field
GF (2k) and discrete exponentiation over GF (2k) [5].

In this paper, we propose a scalable Montgomery multiplication architecture,
which allows us to investigate different areas of the design space, and thus,
analyze the design tradeoffs for the best performance in a limited chip area. We
start with a short discussion of the scalability requirement which we impose in
our design, and then give a presentation of the general theoretical issues related
to the Montgomery multiplication. We then propose a word-based algorithm,
and show the parallel evaluation of its steps in detail. Using this analysis, we
derive an architecture for the modular multiplier and present the design of the
module. We also perform simulations in order to provide area/time tradeoffs and
give a first order evaluation of the multiplier performance for various operand
precision.

2 Scalability

We consider an arithmetic unit as scalable if

the unit can be reused or replicated in order to generate long-precision
results independently of the data path precision for which the unit was
originally designed.

For example, a multiplier designed for 768 bits [13] cannot be immediately used
in a system which needs 1,024 bits. The functions performed by such designs
are not consistent with the ones required in the larger precision system, and
the multiplier must be redesigned. In order to make the hardware scalable, the
usual solution is to use software and standard digit multipliers. The algorithms
for software computation of Montgomery’s multiplication are presented in [6,7].
The complexity of software-oriented algorithms is much higher than the comple-
xity of the radix-2 hardware implementation [1], making a direct hardware im-
plementation not attractive. In the following, we propose a hardware algorithm
and design approach for the Montgomery multiplication that are attractive in
terms of performance and scalability.

96 A.F. Tenca and Ç.K. Koç

3 Montgomery Multiplication

Given two integers X and Y , the application of the radix-2 Montgomery multi-
plication (MM) algorithm with required parameters for n bits of precision will
result in the number

Z = MM(X, Y) = XY r−1 mod M , (1)

where r = 2n and M is an integer in the range 2n−1 < M < 2n such that
gcd(r, M) = 1. Since r = 2n, it is sufficient that the modulus M is an odd integer.
For cryptographic applications, M is usually a prime number or the product of
two primes, and thus, the relative primality condition is always satisfied. The
Montgomery algorithm transforms an integer in the range [0, M − 1] to another
integer in the same range, which is called the image or the M -residue of the
integer. The image or the M -residue of a is defined as a = ar mod M . It is easy
to show that the Montgomery multiplication over the images a and b computes
the image c = MM(a, b) which corresponds to the integer c = ab mod M [7]. The
transformation between the image and the integer set is accomplished using the
MM as follows.

– From the integer value to the M -residue: a = MM(a, r2) = ar2r−1 mod M =
ar mod M .

– From the M -residue to the integer value: a = MM(a, 1) = arr−1 mod M =
a mod M .

Provided that r (mod M) and r2 (mod M) are precomputed and saved, we
need only a single MM to perform either of these transformations. The tradeoff
is the lower complexity of the MM algorithm when compared to the conventional
modular multiplication which requires a division operation. Another important
aspect of the advantage of the MM over the conventional multiplication is ex-
posed in modular exponentiation, when multiple MMs are computed over the
M -residues before the result is translated back to the original integer set.

The radix-2 Montgomery multiplication algorithm for m-bit operands X =
(xm−1, ..., x1, x0), Y , and M is given as:

The Radix-2 Algorithm
S0 = 0
for i = 0 to m − 1

if (Si + xiY) is even
then Si+1 := (Si + xiY)/2
else Si+1 := (Si + xiY + M)/2

if Sm ≥ M then Sm := Sm − M — the final correction step

This algorithm is adequate for hardware implementation because it is composed
of simple operations: word-by-bit multiplication, bit-shift (division by 2), and
addition. The test of the even condition is also very simple to implement, consi-
sting on checking the least significant bit of the partial sum Si to decide if the

A Scalable Architecture for Montgomery Multiplication 97

addition of M is required. However, the operations are performed on full preci-
sion of the operands, and in this sense, they will have an intrinsic limitation on
the operands’ precision. Once a hardware is defined for m bits, it cannot work
with more bits.

4 A Multiple-Word Radix-2 Montgomery Multiplication
Algorithm

The use of short precision words reduces the broadcast problem in the circuit
implementation. The broadcast problem corresponds to the increase in the pro-
pagation delay of high-fanout signals. Also, a word-oriented algorithm provides
the support we need to develop scalable hardware units for the MM. Therefore,
an algorithm which performs bit-level computations and produces word-level ou-
tputs would be the best choice. Let us consider w-bit words. For operands with
m bits of precision, e = d(m + 1)/we words are required. The extra bit used in
the calculation of e is required since it is known that S (internal varible of the
radix 2 algorithm) is in the range [0, 2M −1], where M is the modulus. Thus the
computations must be done with an extra bit of precision. The input operands
will need an extra 0 bit value at the leftmost bit position in order to have the
precision extended to the correct value.

We propose an algorithm in which the operand Y (multiplicand) is scan-
ned word-by-word, and the operand X (multiplier) is scanned bit-by-bit. This
decision enables us to obtain an efficient hardware implementation. We call it
Multiple Word Radix-2 Montgomery Multiplication algorithm (MWR2MM). We
make use of the following vectors:

M = (M (e−1), ..., M (1), M (0)) ,

Y = (Y (e−1), ..., Y (1), Y (0)) ,

X = (xm−1, ..., x1, x0) ,

where the words are marked with superscripts and the bits are marked with sub-
scripts. The concatenation of vectors a and b is represented as (a, b). A particular
range of bits in a vector a from position i to position j, j > i is represented as
aj..i. The bit position i of the kth word of a is represented as a

(k)
i . The details

of the MWR2MM algorithm are given below.

The MWR2MM Algorithm
S = 0 — initialize all words of S
for i = 0 to m − 1

(C, S(0)) := xiY
(0) + S(0)

if S
(0)
0 = 1 then
(C, S(0)) := (C, S(0)) + M (0)

for j = 1 to e − 1
(C, S(j)) := C + xiY

(j) + M (j) + S(j)

S(j−1) := (S(j)
0 , S

(j−1)
w−1..1)

98 A.F. Tenca and Ç.K. Koç

S(e−1) := (C, S
(e−1)
w−1..1)

else
for j = 1 to e − 1

(C, S(j)) := C + xiY
(j) + S(j)

S(j−1) := (S(j)
0 , S

(j−1)
w−1..1)

S(e−1) := (C, S
(e−1)
w−1..1)

The MWR2MM algorithm computes a partial sum S for each bit of X, scanning
the words of Y and M . Once the precision is exhausted, another bit of X is
taken, and the scan is repeated. Thus, the algorithm imposes no constraints to
the precision of operands. The arithmetic operations are performed in precision
w bits, and they are independent of the precision of operands. What varies is
the number of loop iterations required to accomplish the modular multiplication.
The carry variable C must be in the set {0, 1, 2}. This condition is imposed by the
addition of the three vectors S, M , and xiY . To have containment in the addition
of 3 w-bit words and a maximum carry value Cmax (generated by previous word
addition), the following equation must hold:

3(2w − 1) + Cmax ≤ Cmax2w + 2w − 1

which results in Cmax ≥ 2. Thus, choosing Cmax = 2 is enough to satisfy the
containment condition. The carry variable C is represented by two bits.

5 Parallel Computation of the MWR2MM

In this section we analyze the data dependencies on the proposed algorithm
(MWR2MM) giving more information on the its potential parallelism and inve-
stigating parallel organizations suitable for its implementation.

The dependency between operations within the loop for j restricts their par-
allel execution due to dependency on the carry – C. However, parallelism is
possible among instructions in different i loops. The dependency graph for the
MWR2MM algorithm is shown in Figure 1. Each circle in the graph represents
an atomic computation and is labeled according to the type of action performed.
Task A corresponds to three steps: (1) test the least significant bit of S to de-
termine if M should be added to S during this and next steps, (2) addition of
words from S, xiY , and M (depending on the test performed), and (3) one-bit
right shift of a S word. Task B corresponds to steps (2) and (3). We observe
from this graph that the degree of parallelism and pipelining can be very high.

Each column in the graph may be computed by a separate processing element
(PE), and the data generated from one PE may be passed to another PE in a
pipelined fashion. An example of the computation executed for 5-bit operands
is shown in Figure 2 for the word size of w = 1 bit. Since the jth word of each
input operand is used to compute word j−1 of S, the last B task in each column
must receive M (e) = Y (e) = 0 as inputs. This condition is enough to guarantee
that S(e−1) will be generated based only on the internal PE information. Note
also that there is a delay of 2 clock cycles between processing a column for xi

A Scalable Architecture for Montgomery Multiplication 99

B

Y(2)

M(2)

B

Y(1)

M(1)

B

Y(1)

M(1)

B

Y(3)

M(3)

B

Y(2)

M(2)

B

Y(1)

M(1)

B

Y(4)

M(4)

B

Y(3)

M(3)

B

Y(2)

M(2)

B

Y(5)

M(5)

B

Y(4)

M(4)

B

Y(6)

M(6)

0

0

0

0

0

0

A

0

M(0)
x0 Y(0)

A

M(0)
x1 Y(0)

A

M(0)
x2 Y(0)

S(0)

S(1)

S(2)

S(3)

S(4)

S(0)

S(1)

S(2) S(0)

Fig. 1. The dependency graph for the MWR2MM Algorithm.

and a column for xi+1. The total execution time for the computation shown in
Figure 2 is 14 clock cycles.

Tasks A and B are performed on the same hardware module. The local control
circuit of the module must be able to read the least significant bit of S(0) at the
beginning of the operation, and keep this value for the entire operand scanning.
Recall that the even condition of S

(0)
0 determines if the processing unit should

add M to the partial sum during the pipeline cycle. The pipeline cycle is the
sequence of steps that a PE needs to execute to process all words of the input
operands.

The maximum degree of parallelism that can be attained with this organiza-
tion is found as

pmax =
⌈

e + 1
2

⌉
. (2)

100 A.F. Tenca and Ç.K. Koç

t

- A
- B

1
2
3
4
5
6
7
8
9

10
11
12
13
14

S
(0)

S
(1)

S
(2)

S
(3)

S
(4)

Fig. 2. An example of computation for 5-bit operands, where w = 1 bit.

It is easy to see from Figure 2 that pmax = 3. When less than pmax units are
available, the total execution time will increase, but it is still possible to perform
the full precision computation with the smaller circuit. Figure 3 shows what
happens when only 2 processing modules are used for the same computation
shown in Figure 2. In this case, the computation during the last pipeline cycle
wastes one of the stages, because m is not a multiple of 2.

The total computation time T (in clock cycles) when n ≤ pmax modules
(stages) are used in the pipeline is

T =
⌈

m + 1
n

⌉
(e + 1) − 1 + 2(n − 1) (3)

where the first term corresponds to the number of pipeline cycles (d(m + 1)/ne)
times the number of clock cycles required by a pipeline stage to compute one full-
precision operand, and the last term corresponds to the latency of the pipeline
architecture. With n units, the average utilization of each unit is found as

U =
Total number of time slots per bit of X × m

Total number of time slots × n
=

m(e + 1)
Tn

. (4)

Figure 4 shows the hardware utilization U , total computation time T , and spee-
dup of 2 or 3 units over one unit, for a small range of the precision, and word size
w = 8 bits. We can see that the overhead of the pipelined organization becomes
insignificant for precision m ≥ 3w. We can attain a speedup very close to the
optimum for even small number of operand bits.

A Scalable Architecture for Montgomery Multiplication 101

t

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

data requires extra buffers

stage 1

stage 2

m=5
w=1
e =5

does not perform
useful computation

Fig. 3. An example of computation for 5-bit operands with two pipeline stages.

6 Design of the Scalable Architecture

A pipeline with 2 computational units is shown in Figure 5. One aspect of this
organization is the register file design. Since the data is received word-serially
by the kernel, the registers must work as rotators (circular shift registers) in
some cases and shifters in other cases. The registers which store Y and M work
as rotators. The processing elements itself must relay the received digits to the
next unit in the pipeline. All paths are w bits wide, except for the xi inputs
(only 1 bit). The values of xi come from a p-shift register, where p equals to the
number of processing elements in the pipeline. The register for S must be a shift
register, since its contents is not reused. The length (L) of the shift register for
S values depends on the number of words (e) and the number of stages (n) in
the pipeline. This length is determined as:

L =
{

e + 2 − 2n if (e + 2) > 2n
0 otherwise (5)

Observe that these registers will not consume more than what is normally
used in a conventional radix-2 design of the MM. These registers can be easily
implemented by connecting one memory element to another in a chain (or loop),
which will not impact the clock cycle of the whole system. Since we also need

102 A.F. Tenca and Ç.K. Koç

0 50 100
0

500

1000

1500

Operand Precision (bits)

Ti
m

e
(c

lo
ck

 c
yc

le
s)

Total Execution Time

1 PE

2 PEs

3 PEs

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Operand Precision (bits)

U
til

iz
at

io
n

Module Utilization

1 PE

2 PEs

3 PEs

0 50 100
0.5

1

1.5

2

2.5

3

Operand Precision (bits)

S
pe

ed
up

Speedup over a single PE

2 PEs

3 PEs

Fig. 4. The performance figures for multiple units with w = 8 bits.

loading capability for the rotator, multiplexers (MUXes) should be used between
certain memory elements in the chain. The delay imposed by these MUXes will
not create a critical path in the final circuit. To avoid having too many MUXes,
we may load M and Y serially, during the last pipeline cycle of the algorithm.
In this case, MUXes are required between two memory elements of the rotator
only (not between all of the memory elements).

The global control block was not included in this figure for simplicity. Its
function can be inferred from the dependency graph and the algorithm already
presented. The shaded box represent flip flops.

stage 1 stage 2

shift register SS

M

Y
rotator

rotator (digit)
w

2w
w

2w

(digit)

(digit) (digit)

1xi 1xi+1

Right 2-shifter

X

M

Y

(j)

(j)

(j) (j-)d

PE PE

kernel

Fig. 5. Pipelined organization with 2 units.

A Scalable Architecture for Montgomery Multiplication 103

6.1 Processing Element

The block diagram of the processing element is shown in Figure 6. The data
path receives the inputs from the previous stage in the pipeline, and computes
the next S(j) digits serially. The inputs are delayed one extra clock cycle before
they are sent to the next stage.

M
(j)

Y
(j)

xi

S
(j)

Data
Path

to inter-stage
latch of the

pipeline

tc

w

w

2w

1

lsbit of

local
control

2w

w

w

control
signals

control
signals

Fig. 6. The block diagram of the processing unit.

To reduce storage and arithmetic hardware complexity, we consider that M ,
X, and Y are available in non-redundant form. The internal sum S is received and
generated in the redundant Carry-Save form. In this case, 2w bits per word are
transferred between units in each clock cycle. The data path also makes available
the information on the least significant bit (t) of the computation S(j) + xiY

(j)

which is the first computation step performed by the data path in each pipeline
cycle. Only the value t obtained when the least significant digits of Y and S
come into the unit should be used to control the addition of M (control signal
c). The local control is responsible for storing the t value during the pipeline
cycle, and also relay some control signals to the downstrem modules.

The design of the data path follows the idea presented in [14] modified for
least-significant-digit-first type of computation. The basic organization of the
data path consists of two layers of carry-save adders (CSA). Assuming a full-
precision structure as in Figure 7(a), we propose the retiming process shown for
the case w = 1 to generate the serial circuit design presented in Figure 7(b).
For w > 1, larger groups of adders are considered, based on the same approach.
Notice that the cycle time may increase for larger w as a result of the broadcast
problem only; it will not depend on the arithmetic operation itself. The high-
fanout signals in the design are xi and c, and both change value only once for
each pipeline cycle. Observe that the bit-right-shift that must be performed by
the data path is already included in the CSA structure shown in the Figure.

104 A.F. Tenca and Ç.K. Koç

FA

FA

FA

FA

FA

FA

FA

FA

1

2

FA

FA

(a) full-precision adder structure (b) radix-2 serial adder structure

t

1

2

c

xi

Yk+1 MY kk MY k-1k-1 MY k-2k-2Mk+1

Sk+1 Sk Sk-1 Sk-2

Sk

Yk Mkcxi

Fig. 7. The serial computation of the MM operations.

The data path design for the case w = 3 is shown in Figure 8. It has a more
complicated shift and alignment section to generate the next S word. When
computing the bits of word j (step j), the circuit generates w − 1 bits of S(j),
and the most significant bit of S(j−1). The bits of S(j−1) computed at step j − 1
must be delayed and concatenated with the most significant bit generated at
step j (alignment).

FA

FA

FA

FA

FA

FA

c
x i

Y M(j) (j)
2 2 Y M(j) (j)

1 1 Y M(j) (j)
0 0

t

shift

alignment
and

2
(j)S 1

(j)S S(j)
0

2
(j-1)S 1

(j-1)S S(j-1)
0

Fig. 8. PE’s data path for w = 3 bits.

A Scalable Architecture for Montgomery Multiplication 105

7 Area/Time Tradeoffs

After describing the general building block for the implementation of our scalable
MM architecture, we discuss the area/time tradeoffs that arise for different values
of operand precision m, word size w, and the pipeline organization. The area A
is given as a design constraint. In this analysis, we do not consider the wiring
area. For a first order approximation we consider that the propagation delay of
the processing element is independent of w (this hypothesis is reasonable when
w is small). This assumption implies that the clock cycle is the same for all
cases and the comparison of speed among different designs can be made based
on clock cycles. The area used by registers for the intermediate sum, operands
and modulus is the same for all designs.

It is clear that the proposed scheme has the worst execution time for the case
w = m, since some extra cycles were introduced by the computational unit in
order to allow word-serial computation, when compared to other full-precision
designs. Thus, we will consider the case when the available chip area is not
sufficient to implement a full-precision conventional design. The performance
evaluation resumes to the question:

What is the best organization for the scalable architecture for a given
area?

We used VHDL on the Mentor graphics tools to synthesize the circuit with the
1.2µm CMOS technology. The cell area for a given word size w is obtained as

Acell(w) = 47.2w ,

where the value 47.2 is the area cost provided by the tool (a 2-input NAND gate
corresponds to 0.94). When using the pipelined organization, the area of each
inter-stage latch is important, and was measured as Alatch(w) = 8.32w. The area
of a pipeline with n units is given as

Apipe(n, w) = (n − 1)Alatch(w) + nAcell(w) = 55.52nw − 8.32w . (6)

The maximum word size that can be used in the particular design (wmax) is a
function of the available area A and the number of pipeline stages n. It is found
as

Apipe(n, w) ≤ A

55.52nw − 8.32w ≤ A

w ≤ A

55.52n − 8.32

wmax(A, n) =
⌊

A

55.52n − 8.32

⌋
. (7)

Based on wmax, we obtain the total execution time (in clock cycles) for operands
with precision m from Equation 3, as follows:

T (m, A, n) =
⌈

m + 1
n

⌉ (⌈
m + 1

wmax(A, n)

⌉
+ 1

)
− 1 + 2(n − 1) . (8)

106 A.F. Tenca and Ç.K. Koç

For a given area A, we are able to try different organizations and select the
faster one. The graph given in Figure 9 shows the computation time for various
pipeline configurations for A = 20, 000. The number of stages that provides the
best performance varies with the precision required in the computation. For the
cases shown, 5 stages would provide good performance. We don’t want to have
too many stages for two reasons: (1) high utilization of the processing elements
will be possible only for very high precision and (2) the execution time may
have undesirable oscillations (as shown in the rightmost part of the curve for
m = 1024). The behavior mentioned in (2) is the result of (i) word size w is not
a good divisor for m, producing one word (most significant) with few significant
bits, and (ii) there is not a good match between the number of words e and n,
causing a sub-utilization of stages in the pipeline.

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

Number of stages

Ti
m

e
(c

lo
ck

 c
yc

le
s)

Execution time for an Area of 20,000 m= 1024,512,256

m=1024

m=512

m=256

Fig. 9. The execution time of the MM hardware for various precision and configurati-
ons.

For a fixed area, the word size becomes a function of the number of stages
only. The word size decreases as the number of stages in the pipeline increases.
The word size for some values of n is given on Table 1.

Table 1. The number of pipeline stages versus the word size, for a fixed chip area.

n (stages) 1 2 3 4 5 6 7 8 9 10
w (bits) 423 194 126 93 74 61 52 45 40 36

A Scalable Architecture for Montgomery Multiplication 107

From the synthesis tools we also obtained a minimum clock cycle time of
11 ns (clock frequency of 90MHz). For the case m = 1024 bits, n = 10 stages,
and w = 36 bits, the total execution time is 3107 ∗ 11 = 34, 177 nanoseconds.
The correction step was not included in these estimates, but it would require
another pipeline cycle to be performed.

8 Conclusions

We presented a new architecture for implementing the Montgomery multiplica-
tion. The fundamental difference of our design from other designs described in
the literature is that it is scalable to any operand size, and it can be adjusted to
any available chip area. The proposed architecture is highly flexible, and provides
the investigation of several design tradeoffs involved in the computation of the
Montgomery multiplication. Our analysis shows that a pipeline of several units
is more adequate than a single unit working with a large word length. This is an
interesting result since using more units we can reduce the word size and conse-
quently the data paths in the final circuit, reducing the required bandwidth. The
proposed data path for the multiplier was synthesized to a circuit that is able
to work with clock frequencies up to 90MHz (for the CMOS technology consi-
dered in this work). The total time to compute the Montgomery multiplication
for a given precision of the operands will depend on the available area and the
chosen pipeline configuration. The upper limit on the precision of the operands
is dictated by the memory available to store the operands and internal results.

Acknowledgements

This research is supported in part by Secured Information Technology, Inc. The
authors would like to thank Erkay Savaş (Oregon State University) for his com-
ments on the algorithm definition.

References

1. A. Bernal and A. Guyot. Design of a modular multiplier based on Montgomery’s
algorithm. In 13th Conference on Design of Circuits and Integrated Systems, pages
680–685, Madrid, Spain, November 17–20 1998.

2. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22:644–654, November 1976.

3. S. E. Eldridge and C. D. Walter. Hardware implementation of Montgomery’s
modular multiplication algorithm. IEEE Transactions on Computers, 42(6):693–
699, June 1993.

4. T. Hamano, N. Takagi, S. Yajima, and F. P Preparata. O(n)-Depth circuit algo-
rithm for modular exponentiation. In S. Knowles and W. H. McAllister, editors,
Proceedings, 12th Symposium on Computer Arithmetic, pages 188–192, Bath, Eng-
land, July 19–21 1995. Los Alamitos, CA: IEEE Computer Society Press.

108 A.F. Tenca and Ç.K. Koç

5. Ç. K. Koç and T. Acar. Fast software exponentiation in GF(2k). In T. Lang,
J.-M. Muller, and N. Takagi, editors, Proceedings, 13th Symposium on Computer
Arithmetic, pages 225–231, Asilomar, California, July 6–9, 1997. Los Alamitos,
CA: IEEE Computer Society Press.

6. Ç. K. Koç and T. Acar. Montgomery multiplication in GF(2k). Designs, Codes
and Cryptography, 14(1):57–69, April 1998.

7. Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

8. P. Kornerup. High-radix modular multiplication for cryptosystems. In E. Swartz-
lander, Jr., M. J. Irwin, and G. Jullien, editors, Proceedings, 11th Symposium on
Computer Arithmetic, pages 277–283, Windsor, Ontario, June 29 – July 2 1993.
Los Alamitos, CA: IEEE Computer Society Press.

9. A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Boston, MA: Kluwer
Academic Publishers, 1993.

10. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, April 1985.

11. H. Orup. Simplifying quotient determination in high-radix modular multiplica-
tion. In S. Knowles and W. H. McAllister, editors, Proceedings, 12th Symposium
on Computer Arithmetic, pages 193–199, Bath, England, July 19–21 1995. Los
Alamitos, CA: IEEE Computer Society Press.

12. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.

13. A. Royo, J. Moran, and J. C. Lopez. Design and implementation of a coprocessor
for cryptography applications. In European Design and Test Conference, pages
213–217, Paris, France, March 17-20 1997.

14. A. F. Tenca. Variable Long-Precision Arithmetic (VLPA) for Reconfigurable Co-
processor Architectures. PhD thesis, Department of Computer Science, University
of California at Los Angeles, March 1998.

15. C. D. Walter. Space/Time trade-offs for higher radix modular multiplication using
repeated addition. IEEE Transactions on Computers, 46(2):139–141, February
1997.

	Introduction
	Scalability
	Montgomery Multiplication
	A Multiple-Word Radix-2 Montgomery Multiplication Algorithm
	Parallel Computation of the MWR2MM
	Design of the Scalable Architecture
	Processing Element

	Area/Time Tradeoffs
	Conclusions

