
 Open access Journal Article DOI:10.1109/TPDS.2004.60

A Scalable Asynchronous Cache Consistency Scheme (SACCS) for mobile
environments — Source link

Zhenhua Wang, Sajal K. Das, Hao Che, Mohan Kumar

Published on: 01 Nov 2004 - IEEE Transactions on Parallel and Distributed Systems (IEEE Computer Society)

Topics: Cache algorithms, Cache invalidation, Cache, Cache pollution and Page cache

Related papers:

 Sleepers and workaholics: caching strategies in mobile environments

 A strategy to manage cache consistency in a disconnected distributed environment

 A scalable low-latency cache invalidation strategy for mobile environments

 Bit-sequences: an adaptive cache invalidation method in mobile client/server environments

 Energy-efficient caching for wireless mobile computing

Share this paper:

View more about this paper here: https://typeset.io/papers/a-scalable-asynchronous-cache-consistency-scheme-saccs-for-
1onjok0u99

https://typeset.io/
https://www.doi.org/10.1109/TPDS.2004.60
https://typeset.io/papers/a-scalable-asynchronous-cache-consistency-scheme-saccs-for-1onjok0u99
https://typeset.io/authors/zhenhua-wang-29j8ihhncf
https://typeset.io/authors/sajal-k-das-49v67y2j4b
https://typeset.io/authors/hao-che-2rlnhja0di
https://typeset.io/authors/mohan-kumar-hf0vmvyhm9
https://typeset.io/journals/ieee-transactions-on-parallel-and-distributed-systems-1rg5f5po
https://typeset.io/topics/cache-algorithms-u99b01nk
https://typeset.io/topics/cache-invalidation-1fzr21ij
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/topics/cache-pollution-ntf1qyqg
https://typeset.io/topics/page-cache-3cntsvg6
https://typeset.io/papers/sleepers-and-workaholics-caching-strategies-in-mobile-2nsv696m74
https://typeset.io/papers/a-strategy-to-manage-cache-consistency-in-a-disconnected-30g7unc7f3
https://typeset.io/papers/a-scalable-low-latency-cache-invalidation-strategy-for-56gzch4alp
https://typeset.io/papers/bit-sequences-an-adaptive-cache-invalidation-method-in-315063bwbs
https://typeset.io/papers/energy-efficient-caching-for-wireless-mobile-computing-24ho3s4fkk
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-scalable-asynchronous-cache-consistency-scheme-saccs-for-1onjok0u99
https://twitter.com/intent/tweet?text=A%20Scalable%20Asynchronous%20Cache%20Consistency%20Scheme%20(SACCS)%20for%20mobile%20environments&url=https://typeset.io/papers/a-scalable-asynchronous-cache-consistency-scheme-saccs-for-1onjok0u99
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-scalable-asynchronous-cache-consistency-scheme-saccs-for-1onjok0u99
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-scalable-asynchronous-cache-consistency-scheme-saccs-for-1onjok0u99
https://typeset.io/papers/a-scalable-asynchronous-cache-consistency-scheme-saccs-for-1onjok0u99

1

SACCS: Scalable Asynchronous Cache Consistency

Scheme for Mobile Environments
Zhijun Wang, Sajal Das, Hao Che and Mohan Kumar

Center for Research in Wireless Mobility and Networking
Department of Computer Science and Engineering

The University of Texas at Arlington, Arlington, TX 76019, USA

Abstract

In this paper, we propose a novel cache consistency main-

tenance scheme, called ������� ���	
��	�� ��
�
��	�����	� �
��� (SACCS), for mobile environments. It

relies on the following three key features: (1) Use of flag bits

at server and MU’s cache to maintain cache consistency; (2)

Use of an identifier (ID) for each entry in MU’s cache after

its invalidation in order to maximize the broadcast bandwidth

efficiency; (3) Rendering all valid entries of MU’s cache to

	�����	 ����� when it wakes up. These three features

make the SACCS a highly scalable algorithm with minimum

database management overhead. Comprehensive simulation

results show that the performance of SACCS is superior to

those of existing algorithms.

I. Introduction
Wireless communication has increasingly become an im-

portant means for people to access various kinds of dynami-

cally changing data objects, such as news, stock price, and

traffic information. However, wireless mobile computing

environments are limited by communication bandwidth and

battery power [1], and have to live with mobile user’s (MU)

disconnectedness and mobility. Thus, data communication

in wireless mobile networks is more challenging than that in

wired networks.
��
�	� frequently accessed data objects at the lo-

cal buffer of an MU is an efficient way to reduce query

delay, save bandwidth and improve system performance.

But frequent disconnection and roaming of an MU make

�
� �	�����	� a difficult issue in wireless mobile com-

puting environments. A successful strategy must efficiently

handle both dissconnectedness and mobility. Broadcast has

the advantage of being able to serve an arbitrary number of

MUs with minimum bandwidth consumption. Thus, an effi-

cient mobile data transmission architecture should carefully

design its broadcast and cache management schemes to max-

imize ��	�����
 ���������	 and minimize ������� ����
�����. A good mobile data transmission architecture should

also be �������, in the sense that it works efficiently for large

database systems and supports a large number of MUs.

Acknowledgement: This work is supported by a grant from Texas Ad-
vanced Research Program, TXARP Grant Number: 14-771032.

In the literature, there are two types of cache consistency

maintenance algorithms for wireless mobile computing envi-

ronments: stateless and stateful. In the ��������� approach,

the server is unaware of client’s cache content. The client

needs to check the validity of cached entries from the server

before each query. Even though stateless approaches em-

ploy simple database management, their scalability and abil-

ity to support disconnectedness are poor. On the other hand,

������� approaches are scalable, but incur significant over-

head due to server database management. Therefore, there

is a need for developing scalable and efficient algorithms for

maintaining cache consistency in mobile environments.

Motivated by the need for a scalable and efficient

cache consistency maintenance mechanism, we propose a

novel algorithm, called ������� ���	
��	�� ��
�
��	�����	� �
��� (SACCS) that maintains cache con-

sistency between the mobile support station (MSS) and MU’s

caches. SACCS is a highly scalable, efficient, and low com-

plexity algorithm due to the following three key features:

(1) Use of flag bits at server and MU’s cache to maintain

cache consistency; (2) Use of an ID for each entry in MU’s

cache after its invalidation in order to maximize the broadcast

bandwidth efficiency; (3) Rendering all valid entries of MU’s

cache to 	�����	 ����� when it wakes up.

Comprehensive simulation results show that SACCS offers

superior performance over existing algorithms. For example,

in a system with � types of MU access patterns and � types

of data object update frequencies, SACCS can support about

��� and ���� more MUs than AS and Timestamp (TS)

schemes, respectively. It also guarantees that the average ac-

cess delay is no larger than � seconds.

The rest of the paper is organized as follows. Section II

gives a brief overview of the related work. In Section III,

a detailed description of the SACCS algorithm is presented.

Section IV presents comprehensive simulation results of our

algorithm and compares with those of existing approaches.

The conclusions are drawn in Section V.

II. Related Work

We summarize existing stateless and stateful approaches in

this section. In the ��������� approach [2]-[7], an MSS as-

sumes no knowledge of MU’s cache contents. An MSS sim-

2

ply sends IRs to its MUs periodically. At an MU, a data ob-

ject request cannot be serviced until the next IR from the MSS

is received. In the ������� approach [8], an MSS maintains

object state for each MU’s cache and only broadcasts IRs for

those objects.

Barbara and Imielinksi [2] proposed three stateless algo-

rithms: Timestamps (��), Amnesic Terminals (��) and Sig-

nature (���). In these algorithms, the MSS broadcasts IRs,

which include all data object IDs updated during the past

�� seconds (where � is a positive integer), every � seconds.

The advantage of these algorithms is that an MSS does not

maintain any state information about its MU’s caches, which

makes the MSS database easy to manage. However, there

are several drawbacks with these algorithms. First, they do

not scale well to large databases and/or fast updating data

systems, due to increased number of IR messages. Second,

the average access lantency is always longer than half of

the broadcast period, simply because all requests can be an-

swered only after the next IR. Finally all cached data objects

are dropped if the sleep time is longer than ��.

In order to handle the long sleep-wakeup patterns, several

algorithms have been proposed. For example, in the bit-

sequence (��) algorithm due to Jing, et al. [3], all cache

entries are deleted only when half or more of data entries in

the cache have been invalidated. However, the model requires

the broadcast of a larger number of IR messages than TS and

AT schemes. Wu et al. [5] proposed an uplink validation

check scheme that can deal with long sleep-wakeup patterns

better than TS and AT. But this approach requires more up-

link bandwidth and cannot deal with ���� long sleep-wakeup

patterns.

Very few stateful cache consistency maintenance algo-

rithms have been proposed for wireless mobile computing

environments. Kahol, et al. [8] proposed an asynchronous

stateful (AS) algorithm to maintain cache consistency. In AS,

an MSS records all retrieved data object for each MU. When

an MU first retrieves a data object after it wakes up, the MSS

sends an IR, based on the MU’s cache content record and

sleep-wakeup time, to that particular MU. Whenever an MSS

receives an update from the original server for each recorded

data object, it immediately broadcasts that data object’s IR

to MUs. The advantage of the AS scheme is that the MSS

avoids unnecessary broadcast of IRs to MUs and can deal

with any sleep-wakeup pattern without losing valid data ob-

jects. However, in order to maintain each MU’s cache state

in the MSS, the MSS must record all cached data objects

for each MU. Hence an MU can only download data objects

which it requested through the uplink. This makes the chan-

nel utility inefficient and sensitive to the number of MUs.

III. Scalable Asynchronous Cache
Consistency Scheme (SACCS)

In this paper, we propose a novel scalable asynchronous

cache consistency scheme (SACCS) to maintain MU’s cache

consistency for a read-only system. Strictly speaking,

SACCS is a hybrid of stateless and stateful approaches in the

sense that it maintains minimum state information. However,

unlike the stateful algorithm [8] which requires the MSS to

remember all data objects for each and every MU’s cache,

SACCS only requires the MSS to identify which data objects

in its database might be valid in MU’s caches. This makes

the management of the MSS database much simpler. On the

other hand, unlike existing synchronous stateless approaches,

SACCS does not require periodic broadcast of IRs, thus

greatly reducing IR messages that need to be sent through

the downlink broadcast channel. Moreover, by adding uncer-

tain and ID-only states in MU’s caches, SACCS allows easy

handling of arbitrary sleep-wakeup patterns and mobility, and

strong cooperation among all MUs, which greatly improves

broadcast channel efficiency. The following subsections de-

scribe the proposed algorithm in detail.

A. Data Structures and Message Formats

For every data object with unique identifier �, the data

structure for MSS and MU’s cache are as follows:

� ��� 	�
� �: data entry format for each data object in

MSS. Here �� is the data object, 	� is the last update

time for the data object and
� is a flag bit.

� ��� 	�� �� �: data entry format in an MU’s cache. Here

�� is defined above, 	�� is the time stamp indicating the

last updated time for the cached data object �� , and ��
is a two-bit flag identifying four data entry states: �����
��, 	�����	 ��, 	�����	 �� with a �����	� ����
and �! � �	��, respectively.

The communication messages are as defined in Table I.

B. MU Cache Management

As the focus on this paper is the cache consistency mainte-

nance design, we simply use the LRU (Least Recently Used)

based replacement algorithm for the management of MU’s

caches. The impact of the cache replacement algorithms on

SACCS is a subject of future study.
In our LRU based replacement scheme, a newly cached

data object or a cached data object which receives a hit, is

moved to the head of the cache list. When a data object needs

to be cached while the cache is full, data entries with �� �� �

from the tail are deleted to make enough space to accommo-

date this new data object (the data object with �� � � must be

kept because some requests are waiting for its confirmation).
Any refreshed data objects from uncertain state or ID-only

state are placed in their original location and again, if neces-

sary, enough data entries from the tail are removed.

C. Algorithm Description

We present two procedures, i.e., MSSMain() and MU-

Main(), for the SACCS. The MSS continuously executes the

MSSMain() and each MU continuously executes the MU-

Main() procedure during its awake period.
The psudocodes MSSMain() and MUMain() are shown in

Figures 1 and 2.

3

TABLE I

COMMUNICATION MESSAGES IN SACCS

Name Sender Receiver comments

"#������ �
�

� �
�

�� original

servers

MSS indicating �� has been updated to �
�

� at time �
�

�

$ ������ �� ��� MSS MUs broadcast valid data object �� with update time at ��
�%��� MSS MUs indicating cached �� is invalid

��	��������	�� ��� MSS MUs indicating �� is valid if ��� � ��
&������ MUs MSS query for data object ��

"	�����	�� ���� MUs MSS verifying if �� in unertain state with update time ��� is valid

broadcast

x

x

Vdata(x, d , t)

to all MUsConfirmation(x, t)

x

IF (MSS

IF (MSS

IF (MSS

MSSMain() {

IF (

ELSE

xIF (

broadcast

broadcast

x

Uncertain(x, ts) message)

IF (
x

gets

to all MUs

message)

to all MUsVdata(x, d , t)x

x

from original server)x x

fetch data entry from the database

Query(x)

fetch data entry from the databasex

x

x

 == 0) f

 f

IF (=) t ts

 == 0) f

 f

 f
 f

IR(x)

’
 d d

x
’

}

’

x

x

set = 1x

gets

x

gets

x

set = 1

Update(x, d , t)

 == 1)

broadcast to all MUs and reset = 0

xx
x

 t ’ t xupdate the database entry with ID as: = and =

Fig. 1. MSSMain

D. Cache Consistency Maintenance

Let us explain how SACCS maintains consistency between

an MSS database and MU caches. We assume that the con-

sistency between the MSS database and original servers is

maintained through wired network consistency algorithms

[9], [10].

For each cached data object, SACCS uses a single flag bit

��, to maintain the consistency between the MSS and MU

caches. When �� is retrieved by an MU, �� is set, indicating

that a valid copy of �� may be available in an MU’s cache.

If and when the MSS receives an updated ��, it broadcasts

an �%��� and resets ��. This action implies that there are no

valid copies of �� in any MU’s caches. Furthermore, while

�� � �, subsequent updates do not entail broadcast of �%���.
The flag �� is set again when the MSS services a retrieval

(including request and confirmation) for �� by an MU.

In mobile environments, an MU’s cache is in one of two

states: (i) awake or (ii) sleep. If an MU is ����� at the time

of �%��� broadcast, the �� copy is invalidated and an ID-only

MUMain() {

IF (MU

x

move the entry into cache list head

ELSE IF

add ID x

ELSE IF

send

remove the entry in cache
add ID x

ELSE
send Query(x) to MSS

to MSS

add ID

x

ELSE

IF (

IF

ELSE IF

IF x

IF (MU

IF x

x

IF x

remove the uncertain entry if it exists in cache x
add the valid entry at cache list head x

x

send message to MSS Uncertain(x, ts)

x

x(entry is uncertain entry in cache)

(entry is ID−only entry in cache)

(the entry is ID−only entry in cache)x

to query waiting list

to query waiting list

(is in query waiting list)

to query waiting list

}

IF (MU wakes up from the sleep state)

IF (MU

IF x

IF x

IF x

x x

ELSE

(the entry is uncertain entry in cache list)

d

d

receives a request for)

 is valid in cache list)

d(is in uncertain state)

s

d

d

tts

ts

(ID is in query waiting list)

d

s

ts tx(=)

d

d(is valid or uncertain in cache)

s

d

delete and set = 3

Query(x)

x (<)

answer the request with cached data object dx

x

xset = 2 and move the entry into cache list head

x

IF (MU receives a message) Vdata(x, d , t)x x

answer the request with x

xdownload to orginal entry location in cache

dxdownload to orginal entry location in cache

x

s set the entry to valid entry (= 0) x

IR(x)receives a message)

s xdelete and set = 3

receives a

set = 0 x

xanswer the request with

Confirmation(x, t) message) x

set all valid (= 0) entry into uncertain state (= 1) s s

ELSE
xt xsset = and = 0

Fig. 2. MUMain

4

entry is maintained by the MU. The data objects of an MU in

the ����# state are unaffected until it wakes up. When an MU

wakes up, it sets all cached valid data objects (including ��)

into the uncertain state. Consequently, sleeping MUs and the

cached object are unaffected by missing �%��� broadcast.

E. Efficiency and Cooperation

As mentioned earlier, a good cache consistency mainte-

nance algorithm must be scalable and efficient in terms of the

database size and the number of MUs. SACCS can handle

large and fast updating data systems because the MSS has

some knowledge of MU’s cache. Only data entries which

have flag bits set result in the broadcast of �%s when data ob-

jects are updated. Consequently, the �% broadcast frequency

is the minimum of the uplink query/confirmation frequency

and the data object update frequency. In this way, the broad-

cast channel bandwidth consumption for IRs is minimized.

Besides IR traffic, all other traffic in SACCS is also mini-

mized due to the strong cooperation among the MU’s caches.

Specifically, due to the introduction of the uncertain state and

the ID-only state for the MU’s caches. The retrieval of a data

object, ��, from the MSS issued by any given MU brings the

� entries in the uncertain or ID-only state in all the awake

MU’s caches to a valid state. Moreover, a single uplink con-

firmation for � in the uncertain state causes the � entries in

uncertain state for all the awake MU’s caches to either valid

or ID-only state. The addition of the uncertain state also al-

lows an MU’s cache to keep all the valid data objects after it

wakes up from arbitrary duration of sleep time. In contrast,

for AS and TS algorithms, all the invalidated data objects

are completely deleted from the MU’s cache. This allows

little cooperation among the MUs, resulting in a dramatic in-

crease of traffic volume between the MSS and the MUs as

the number of MUs increases (see in Section V). Although

[6] improves the scalability of TS by retaining the invalid

data objects, it reduces the cache efficiency by having to keep

the invalid data objects, rather than IDs as is the case in our

SACCS approach, in the MU’s cache.

In contrast with the AS scheme which requires '�()�
buffer space in the MSS to keep all the MU’s cache state, our

approach only requires �	� ��� per data object in the MSS to

indicate if the �% broadcast is required when the data object

is updated. Moreover, the added management overhead is

minimal requiring only a single bit check and set/reset.

F. Mobility

Typically, sychronous stateless approaches handle MU’s

mobility by assuming that all MSSs broadcast the same IRs

[7]. However, when the number of MSSs is large, such sys-

tems are not scalable. There is no an efficient way to handle

the MU’s mobility in the literature. In our approach, an MU

roaming into a new cell is treated as if it just woke up from the

sleep state, i.e., all the valid data objects are set to the uncer-

tain state. The consistency is guaranteed with this approach

and all valid data objects are retained. Also SACCS is simple

in the sense that it is transparent to the MSSs involved. In our

approach, the roaming effect is nothing more than the addi-

tion of a new sleep-wakeup pattern and should not have any

significant impact on the overall performance. In this paper,

we emulate the roaming effect by a sleep-wakeup pattern.

IV. Performance Evaluation By
Simulation

A. Simulation Setup

We consider a single cell system with one MSS database

and multiple MUs with identical cache size. The request

process for each MU is assumed to be Poisson distributed

and the update processes for data objects are also Poisson

distributed. Also the sleep-wakeup process is modeled as

a two-state Markov chain. The following parameters are

defined:

� � : the cache size for MU.

� : the channel bandwidth (�#�).

� *: the average request arrival rate for an MU.

� �� : the average update interval for a data object (��).
� �� : the period of a sleep-wakeup cycle for an MU (��).
� � : the ratio of the sleep time to the sleep-wakeup period

for an MU.

� �� : the size (�����) of a data object.

� �� : the uplink message size (�����).

� �� : the downlink invalidation or confirm message size

(�����).

� � : the average query delay (��), i.e., the time interval

between the time request is issued and the time the result

is received by the application.

� ��� : the uplink per query.

� �: the invalidation broadcast period (for TS

scheme)(��).
� ��� : the broadcast window size (for TS scheme).

In our simulation, we use a single channel with bandwidth

 for both downlink and uplink data transmission. All mes-

sages are queued and serviced based on a first-come-first-

serve discipline. All requests are ignored when an MU is in

the sleep state. Error recovering cost and software overhead

are ignored. When a requested data object is available at an

MU’s local cache, the delay� is counted as � . A+�#������
distribution MU access pattern[11] is used in the simulation.

In the following subsections, we present a comprehensive

comparison of the proposed SACCS with AS and TS algo-

rithms in terms of metrics ! and ",& for three different

cases. The average access delay ! is an important measure-

ment of system performance, a shorter !, a better perfor-

mance. The ",& is related to cache hit ratio. When an

MU receives a query, if the queried data object is valid in the

cache, a cache hit is counted, and no uplink is needed for the

query. Hence, higher hit ratio, fewer ",&.

5

B. Case Studies

We present 	���� cases. In each case, �� � �� and

�� � �� for both SACCS and AS, and �� � �� and �� � ��

for TS.

The bandwidth is set as � ����� �#�. Cache size �
is in units of the number of data objects and the maximum

number of ID-only entries is also set to � in the first two

cases. Table II shows the parameter values for all cases.

Case 3 has different MU access patterns, data object sizes

and data object update frequencies. We will provide them

later in detail and use @ to denote them in Table II. Each

case study corresponds to a parameter effect indicated by *

in the column.

���� �: Effect of MSS Database Size

Table III presents the simulation results of � and ��� for

the three algorithms with different database sizes.

From Table III, we observe that SACCS outperforms the

other two algorithms (AS and TS) on both performance met-

rics for different database sizes ()). When the database size

reaches ����� , ! for TS is over ��� ��. But for SACCS

and AS, one can see a slow increase of the performance met-

rics as) increases all the way up to � � ����� .

In summary, the performances of SACCS and AS are

not sensitive to the database size) and thus can be scaled

to large database sizes. However, the performance of TS

is sensitive to the database size, especially in terms of the

delay performance, and hence TS cannot be scaled to large

database sizes.

���� �: Effect of Data Update Rate

Table IV gives the simulation results of the effect of update

interval ��. Again, as can be seen, SACCS outperforms AS

and TS for all these performance metrics. As expected, as

�� reduces, both performance metrics increase for all the

algorithms. However, SACCS and AS exhibit slower rates

of increase than TS for all the metrics. In particular, when

�� is reduced to �� ��, the delay performance of TS is

unacceptably large (about �� ��). At this update interval,

SACCS achieves more than ��� delay performance gain

over AS. For ",&, SACCS outperforms AS and TS by ��
to ���.

���� �:Effect of the Number of MUs

In this case study, we consider a system similar to a real

situation. We assume that a cell has 5 different MU query

patterns as: * � �-��� � �� � ��, � � �.� � �.	 � � and

�� � ��� � ��� �� �� with � � 0,1,2,3 and 4.

Each query pattern group has � -� MUs in it. We assume

the query patterns for all the groups follow Zipf-like (� � �)

distribution. The access popularity ranking for the neighbor-

ing groups is shifted by �� , i.e., group � has decreasing pop-

ularity from data object � to ���� and group � from �� to

���� and then from � to �� , and so on.

We also assume that there are � types of data objects in the

MSS as: �� � ��� � �� � �� and �� � ����� �� with � �

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 A

c
c
e

s
s
 L

a
te

n
c
y
 (

s
e

c
o

n
d

)

Number of MUs (x10)

SACCS
AS
TS

Fig. 3. Average Access Delay for 5 class MUs with 5 class data

0 5 10 15 20 25 30 35
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
v
e
ra

g
e
 U

p
lin

k
 P

e
r

Q
u

e
ry

Number of MUs (x10)

COAS
AS
TS

Fig. 4. Average Uplink per query for 5 class MUs with5 class data

0,1,2,3 and 4. Each data type group has � -� data objects.

The parameter values chosen above are based on the under-

standing that a more frequent query of MU normally means

a shorter awake time and a faster updated data object usually

has smaller size. The cache size � � ��� ���	�� . The max-

imum number of data ID-only entries that can be kept in each

MU cache is set at ��� .

Figures 3 and 4 depict ! and ",& versus (for the

three algorithms, respectively. As one can see, SACCS scales

much better than TS and AS in terms of both performance

metrics. For example, at � � � ��, the number of MUs

that can be supported by TS, AS, and SACCS are about �� ,

��� , and ��� , respectively. This means that SACCS can sup-

port about ��� and ���� more MUs than AS and TS, re-

spectively. Also as (increases, ",& stays a constant for

both TS and AS, meaning that there is no cooperation among

MUs. In contrast, ",& drops almost linearly as(increases

due to the strong cooperation among MUs. Once again, this

implies SACCS is a highly scalable algorithm.

V. Conclusions and Future Work
In this paper, we proposed a Scalable Asynchronous Cache

Consistency Scheme (SACCS) for mobile environments.

Three key features of SACCS are: (i) use of flag bits at MSS

6

TABLE II

SIMULATION PARAMETER SET UP

Cases N M C * T� T� s L wsz bp

���� � � ��� ��� �-�� ���� 	��� �.� 	� � ��	

���� 	 ���� ��� ��� �-�� � ���� �.
 	� � ��	

���� � ���� � � � � � � �� �� �

TABLE III

EFFECTS OF DATABASE SIZE FOR ZIPF-LIKE (� � �) ACCESS PATTERN

N 100 200 400 800 1600 3200 6400 12800

!������� �.�� �.	�� �.
	� �.��� �.��� �.�� �.��� �.��

!���� �.��
 �.	�
 �.
�� �.��� �.��� 	.�� 	.��
 	.���
!���� �	.��
 ��.�� ��.��	 �
.
	� �
.��
 ��.
�	 �.
�� ���.��

",&������� �.		
 �.�	
 �.
�� �.
�� �.�
� �.�� �.��� �.��
",&���� �.��� �.� �.� �.��� �.�� �.�
� �.� �.��
",&���� �.
� �.�� �.�		 �.��� �.�� �.��� �.��	 �.��

TABLE IV

EFFECTS OF DATA UPDATE FREQUENCY FOR ZIPF-LIKE (� � �) ACCESS PATTERN

T� 10 40 160 640 2560 10240

!������� �.��
 �.��� �.��
 �.�� �.��� �.��
!���� �.�		 �.��� �.�� �.�
� �.	� �.���
!���� ��.��� ��.��� �.��� ��.
�� ��.��� �
.��

",&������� �.��� �.� �.��� �.��	 �.�� �.��	
",&���� �.��� �.�	 �.��	 �.��	 �.	� �.���
",&���� �.��� �.��� �.�
� �.��� �.�� �.���

and MU’s caches to maintain cache consistency; (ii) use of

an ID-only state for each entry in MU’s cache after a data

object becomes invalidated; (iii) all valid data entries are set

to the uncertain state after an MU wakes up. These key fea-

tures make the proposed algorithm highly scalable and effi-

cient. Strictly speaking, SACCS is a hybrid of stateful and

stateless algorithms. However, unlike stateful algorithms,

SACCS maintains one flag bit for each data object in MSS

to determine when to broadcast IRs. On the other hand, un-

like existing synchronous stateless approaches, SACCS does

not require periodic broadcast of IRs. Hence SACCS greatly

reduces IR messages that need to be sent through the down-

link broadcast channel. SACCS inherits the positive features

from both stateful and statless algorithms. Comprehensive

simulation results show that the proposed algorithm has sig-

nificantly better performance than TS and AS schemes.

An LRU based cache replacement is used in this paper.

Further work will include studying the impact of different

replacement algorithms on the performance of SACCS. Fu-

ture study will also investigate the MSS cache management

algorithm and the effective transfer cached data objects

among MSSs when MUs roam among different MSSs.

REFERENCES

[1] G. Forman and J. Zahorjan, “The challenge of mobile computing”,
IEEE Computer, 27(6), pp38-47, April 1994.

[2] D. Barbara and T. Imielinksi,“ Sleeper and Workaholics: caching strat-
egy in mobile environments ”, In Proceedings of the ACM SIGMOD
Conference on Management of Data, pp1-12, 1994.

[3] J. Jing, A. Elmagarmid, A. Heal, and R. Alonso. “Bit-sequences: an
adaptive cache invalidation method in mobile client/server environ-
ments”, Mobile Networks and Applications, pp 115-127, 1997.

[4] Q. Hu and D.K. Lee, “Cache algorithms based on adaptive invalidation
reports for mobile environments”, Cluster Computing, pp 39-50, 1998.

[5] K.L. Wu, P.S. Yu and M.S. Chen, “Energy-efficient caching for wire-
less mobile computing”, In 20th International Conference on Data En-
gineering, pp 336-345, 1996

[6] G. Cao, “A scalable low-latency cache invalidation strategy for mobile
environments”, ACM Intl. Conf. on Computing and Networking (Mo-
bicom), pp200-209, August, 2001

[7] K. Tan, J. Cai and B. Ooi, “An evaluation of cache invalidation strate-
gies in wireless environments”, IEEE Trans. on Parallel and Dis-
tributed System, 12(8), pp789-897, 2001

[8] A. Kahol, S. Khurana, S.K.S. Gupta and P.K. Srimani,“ A strategy
to manage cache consistency in a distributed mobile wireless environ-
ment”, IEEE Trans. on Parallel and Distributed System, 12(7), pp 686-
700, 2001.

[9] H. Yu, L. Breslau and S. Shenker, “A scalable web cache consistency
architecture”, In Proceedings of the ACM SIGCOMM, August, 1999.

[10] J. Gwertzman and M. Seltzer, “World-Wide Web cache consistency”,
In Proceedings of The USENIX Symposium on Internet Technologies
and Systems, December, 1997.

[11] L. Breslau, P. Cao, J. Fan, G. Phillips and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications, ”, Proceedings
of IEEE INFOCOM’99,pp126-134, 1999

