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ABSTRACT

Audio fingerprint techniques should be robust to a variety

of distortions due to noisy transmission channels or specific

sound processing. Although most of nowadays techniques

are robust to the majority of them, the quasi-systematic use

of a spectral representation makes them possibly sensitive

to pitch-shifting. This distortion indeed induces a modifi-

cation of the spectral content of the signal. In this paper,

we propose a novel fingerprint technique, relying on a hash-

ing technique coupled with a CQT-based fingerprint, with

a strong robustness to pitch-shifting. Furthermore, we have

associated this method with an efficient post-processing for

the removal of false alarms. We also present the adaptation

of a database pruning technique to our specific context. We

have evaluated our approach on a real-life broadcast moni-

toring scenario. The analyzed data consisted of 120 hours

of real radio broadcast (thus containing all the distortions

that would be found in an industrial context). The reference

database consisted of 30.000 songs. Our method, thanks to

its increased robustness to pitch-shifting, shows an excellent

detection score.

1. INTRODUCTION

Audio identification consists of retrieving the meta data as-

sociated with an unknown audio excerpt. The typical use

case is the music identification service which is nowadays

available on numerous mobile phones. The user captures

an audio excerpt with his mobile phone microphone and

the service returns metadata such as the title of the song,
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the artist, the album... Other applications include jingle de-

tection, broadcast monitoring for statistical purposes or for

copyright control (see [1] for more details).

Audio fingerprint is the most common way of performing

audio identification when no meta data has been embedded

in the unknown audio excerpt. It consists of extracting from

each audio reference a compact representation (the finger-

print) which is then stored in a database. When identifying

an unknown excerpt, its fingerprint is calculated. Then the

best match with the unknown fingerprint is looked for in

the database. The difficulty is dual. First, the captured sig-

nal has undergone a series of distortions (equalization, con-

version, time-stretching, pitch-shifting, reverberation, ...).

Second, the algorithm has to manage a database containing

huge amounts of audio references.

Audio fingerprint has been dealt with in many previous

works. Two main trends can be observed: exact-hashing

and approximate-search. Exact hashing algorithms [2, 3]

state that there are features in the signal which are preserved

against the distortions. They extract these features and use

a hash table to do the matching. Approximate search al-

gorithms [4, 5] decode the unknown excerpt on a given al-

phabet and look for the closest transcription in the database.

A variant is proposed in [6] where the unknown excerpt is

decoded on different alphabets according to the references.

The best-suited (with respect to the unknown excerpt) al-

phabet gives the closest reference.

In this work, we propose a novel audio fingerprint method

based on hashing with a particular focus on robustness to

pitch-shifting. Indeed, this distortion appears to be quite

common in radio broadcasts and taking it into account al-

lows us to show excellent results on a radio-monitoring ori-

ented evaluation.

The paper is organized as follows. In the first section, we

describe the broadcast monitoring use case. It is a typical

application for fingerprinting that constitutes a demanding

evaluation framework for the algorithms. It includes a wide

variety of distortions that are actually performed by the ra-

dio stations. The whole methodology described in this paper

can however be easily transposed to any other use case. In
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the second section, we describe in detail our method for fin-

gerprinting. This includes the fingerprint model, the search

strategy and the post-processing designed to prevent false

alarms. We also describe an optional step of database prun-

ing allowing a lower computation time while keeping a high

ratio of identification. In the last section we show the results

of experiments performed on real broadcast data.

2. BROADCAST MONITORING

2.1 Use case description

The task consists of detecting the broadcasting of any audio

reference of a given database in an audio stream. Practically

the database will be a set of songs and the stream will be the

one of a radio station. We have to note that the broadcast

stream not only contains references but also non-referenced

items (such as advertisements, speech, unreferenced songs).

Also the broadcast references have undergone a series of

processes applied by the radio station, such as: compression,

equalization, enhancement, stereo widening, pitch-shifting,

... (see [4] for more details about the radio stations process-

ing). If we denote by m1, m2, ...,mN the references, by

m̃1, m̃2, ..., m̃N their broadcast (and distorted) versions and

by n the rest of the broadcast (considered as noise for the

algorithm), the task can be illustrated as in Figure 1.

n m̃k1 n m̃k2
m̃k3 n time

detection

mk1

detection

mk2

detection

mk3

Figure 1: Broadcast monitoring

2.2 Focus on pitch shifting

The large majority of the methods from the state of the art

rely on a spectral representation of the signal. Therefore

these methods are possibly sensitive to modifications of the

frequency content [7].

A very common distortion in the radio broadcasts is pitch-

shifting. When this distortion occurs, all the frequencies in

the spectrum are multiplied by a factor K. Pitch-shifting

could be generated on its own by some signal processing on

the frequency content. But in the context of the radio broad-

casts, it is strongly linked with time-stretching. Indeed, the

radio stations frequently shorten the music they play. To this

end, most radio sound engineers will simply accelerate the

reading of the music (by changing the sampling rate). This

will change the duration of the music, but will also cause

pitch-shifting as a side effect. This processing allows the

stations to precisely fit their time constraints and to give the

impression that the music is more lively in their broadcasts.

3. SYSTEM OVERVIEW

3.1 Architecture

As shown in Figure 2, the system is made of four units.

First, the audio stream is cut in analysis frames of length la
with an overlap oa. The fingerprint of each analysis frame

(called frame-based fingerprint) is calculated according to

the methodology described in section 3.2. The matching

unit then finds in the database the best match to the frame-

based fingerprint. Finally, the best match is post-processed

in order to discriminate out-of-base queries (when the audio

stream corresponds to none of the references).

Stream Framing Fingerprint

Matching
Post-

processing
Identification

References

fingerprints

Figure 2: Architecture of the system

3.2 Fingerprint

Our fingerprint relies on a spectrogram calculated with ”con-

stant Q transforms (CQT)” [8] [9]. The constant Q trans-

form is well adapted to musical signals in the sense that

its frequency bins are geometrically spaced. As the notes

of the western scale are geometrically spaced as well, this

transform yields a constant number of bins per note. More-

over pitch-shifting becomes a translation in the CQT do-

main. That is, a frequency which is located in bin b will have

its pitch-shifted version located in bin b + K ′. In our imple-

mentation, we use a CQT with 3 bins per note performed on

frames of signal with a 10ms increment.

In order to compact the spectrogram, we use a 2 dimen-

sional peak-picking inspired by [2]. We tile the spectrogram

with rectangles of width ∆T seconds and height ∆B bins of

frequency (typical values for ∆T and ∆B are ∆T = 0.4s,

∆B = 12bins). In each rectangle, we set the maximum

point to 1 and all the other points to 0. The result is a binary

spectrogram containing sparse points at 1. They correspond

to the points with the highest energy in the original spectro-

gram.
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The methodology used ensures that there is one point set

to 1 per rectangle of size ∆T × ∆B (2-dimensional homo-

geneity). Thus, this representation is robust to compres-

sors (which change the dynamic of the audio with respect

to time) and equalizers (which change the dynamic of the

audio with respect to frequency). Furthermore, the fact that

we do only keep points with maximum energy makes the

representation robust to most additive noises.

3.3 Indexing the references

As we are dealing with an exact-hashing approach, the match-

ing step relies on the indexing of the references. As Wang

suggests, we use pairs of peaks (points set to 1 in the fin-

gerprint step) to index the fingerprints of the references. We

will first describe how to encode a pair of peaks. Then we

will describe the hash function.

t1 and t2 being the times of occurrence of the two peaks

involved in a pair, b1 and b2 being their frequency bins, the

encoding we suggest for a pair of peaks is the following:

[ b̂1 ; b2 − b1 ; t2 − t1 ]

with b̂1 = ⌊ b1
6
⌋, a sub-resolved version of b1. The first

component (b̂1) is a rough frequency location of the pair

of peaks. The second component (b2 − b1) is the spectral

extent of the pair in the CQT domain. The third compo-

nent (t2 − t1) is its time extent. This encoding has sev-

eral advantages. As it only takes into account relative time

information, it is robust to cropping. Also, it is robust to

pitch-shifting. Indeed the use of the constant Q transform

implies the pitch-shifting invariance for the second compo-

nent: a reference having peaks at frequency bins b1 and b2

will have them at frequencies b1 + K ′ and b2 + K ′ in its

pitch-shifted version. And we actually have:

(b2 + K ′) − (b1 + K ′) = b2 − b1 (1)

The first component (b̂1) is chosen on a sufficiently coarse

representation (bin resolution divided by 6) to make it in-

variant with the common pitch-shifting ratios (≤ 5%). It

is worth mentioning that pitch-shifting will still move some

pairs close to the border of one sub-resolved bin to the next.

However, similarly to Wang’s methodology, an exact match-

ing of all pairs is not required. Indeed, the histogram step

described thereafter only requires that the majority of the

pairs are preserved.

As for the hash function, we build an index over all the

pairs of peaks of all the references. More precisely, we build

a function h1 which, for any pair of peaks p returns all the

references containing this pair with the time of occurrence

of p in the references.

h1 : p 7−→ {(mi, tp,mi
)/ p occurs in mi at tp,mi

} (2)

Let us note that in order to prevent an explosion of the

number of pairs, we only consider pairs of peaks whose

spectral extent is smaller than a threshold ∆bmax and whose

temporal extent is smaller than a threshold ∆tmax (typical

setup for this limitation is ∆tmax = 1.2s and ∆bmax =
24bins).

3.4 Matching

When identifying the fingerprint of an analysis frame, we

extract all its pairs of peaks with their times of occurrence

{(p, tp,af )}. Thanks to the hash function h1 we can effi-

ciently compute the differences {tp,mi
− tp,af} for all pairs

of the frame-based fingerprint and for each reference mi .

We store these differences in histograms (one histogram per

reference).

If the analysis frame is actually an excerpt of the refer-

ence m0 starting at time s, the m0 histogram will show a

maximum at value s. Moreover this maximum should be

higher than any other histogram maximum. Indeed if the

analysis frame corresponds to m0 its fingerprint will have

more pairs in common with m0’s fingerprint than with any

other reference fingerprint. Furthermore, the pairs should all

occur in the frame-based fingerprint s seconds earlier than in

the reference’s. Thus the histogram should show a majority

accumulation for this reference at this value.

So, in order to perform the identification we look for the

reference whose histogram has the highest maximum. This

reference is considered to match the analysis frame. The

argument of the maximum of the histogram gives the start

time of the analysis frame in the reference.

3.5 Post-processing

For any analysis frame, the matching unit returns its best

match among the references. This means that the case of an

out-of-base query is not managed.

A simple approach would consist of setting a threshold

on the common number of pairs between the frame-based

fingerprint and its best match. If the frame-based finger-

print has more than threshold pairs in common with the best

match, we deduce that the identification is correct. Other-

wise we deduce that this is an out-of-base query. Unfortu-

nately, on real data with classical distortions such a thresh-

old is virtually impossible to setup. It happens that, due to

the distortions applied to the stream, a best match has a low

number of pairs in common with the frame-based finger-

print even though it is a correct identification. Besides, such

a threshold would depend on the transmission channel and

would have to be tuned for each different use case.

This is why we propose a post-processing unit based on

a majority vote. The unit considers P successive analysis

frames {aj}j=1..P and their matching results (mj , sj). If

among these P identifications, more than Tvote of them are
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coherent the best match is considered to be a correct identifi-

cation. Otherwise, it is an out-of-base query. Two matching

results (mi,∆ti) and (mj ,∆tj) of the ith and the jth anal-

ysis frames are coherent if:

{

mi = mj

si − i.la.(1 − oa) = sj − j.la.(1 − oa)
(3)

Tvote can take any integer value between 0 and P . A small

value for Tvote will increase the risk of false alarms whereas

a high value for Tvote will increase the risk of missed detec-

tions. In practice, a reasonable value for Tvote is:

Tvote =

⌈

P

2

⌉

(4)

3.6 Database pruning

We propose an optional step meant to decrease the complex-

ity of the overall processing. First, we define a simplified

hashing function which, for each pair of spectral peaks, re-

turns only the references possessing that pair.

h2 : p 7−→ {mi/ p occurs in mi} (5)

N being the total number of references, we define the sig-

nificance of a spectral pair p by:

s(p) =
N − card(h2(p))

N
(6)

Basically a pair which appears in many references will not

bring a lot of information during the identification process

(and thus has a low significance). Furthermore, it will in-

tervene in many reference histograms and will thus involve

many calculations. On the other hand, a pair which points

to a small number of references allows to converge more

quickly towards the best match.

Pruning the database consists of, for a given threshold

Tprune, erasing from the database all the pairs verifying

s(p) < Tprune. When doing so, we suppose that for any

reference there will be a sufficient number of pairs kept in

order to ensure a correct identification. This, of course, de-

pends on the statistical distribution of the pairs and on the

selected threshold Tprune. We have experimentally verified

that the use of a reasonable threshold leads to a significant

complexity gain while keeping similar performances (see

section 4.3.4).

4. EVALUATION

4.1 Framework

The evaluation framework used in this work is similar to the

one developed in the European project OSEO-Quaero 1 . It

1 http://quaero.org

is defined as follows. The audio stream is the broadcast of

a radio station. As the corpus comes from real radio broad-

casts, it potentially contains all the radio sound processing

we described (see section 2). The references are 1 minute-

long excerpts of songs. The broadcast stream has been man-

ually annotated and can thus serve for direct evaluation. For

each broadcast reference, the annotation states the identifier

of the reference, its broadcast time and duration.

The task of the algorithm is to scan the broadcast and

output a detection message whenever a song among the ref-

erences occurs in the stream. The algorithm gives the iden-

tifier of the detected song as well as its occurrence time. If

the detection time is comprised between the annotated start

time and the annotated end time of one occurrence of the

same song, we make this occurrence a detected occurrence.

Let us note that multiple detection messages of the same oc-

currence will be counted only once. If the algorithm detects

a song during an empty slot, or during a slot containing an-

other song, we count one false alarm. We do not limit the

counting of false alarms.

4.2 Comparative experiment

4.2.1 Objectives

We have compared three different algorithms according to

the framework described above. The first one (“Wang”) is

our own implementation of Wang’s method [2]. The second

one (“I B&S”) is the algorithm called IRCAM Bark & Sone

in [10]. The last one (“SAF”, for Scalable Audio Fingerprint

method) is the method exposed in this article.

As far as our implementations are concerned (Wang and

SAF), they both rely on the same architecture, as described

in section 2. All the parameters which are not directly linked

to the fingerprint (framing parameters and post-processing

parameters) are the same for both algorithms. In other words,

the two systems have the same architecture with the same

parameters. Only the fingerprint model does differ.

4.2.2 Data

In this experiment, the stream is made of 7 days of the French

radio RTL. The one minute long references are extracted

from 7309 songs. The broadcast stream contains 459 occur-

rences of these references.

Let us note that it happens that a given version of a music

title is in the references, whereas another version of the same

title is broadcast. This typically happens when an artist is

invited on a radio show and performs some of his titles live.

In this case, even if the studio versions of the artist’s titles

are in the references, the algorithm is not required to match

the studio version with the live performance. Indeed, the

recognition of different interpretations of the same song is

considered to be out of the scope of this work.
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4.2.3 Parameters

We have used 5s long analysis frames with a 50% over-

lap. The post-processing parameters have been set to P =

12 and Tvote = 6. This means that the detection is per-

formed on 30s of signal, and requires that at least half of the

matching during these 30s has given a coherent identifica-

tion. Such parameters insure a very low rate of false alarms,

which is required in many use-cases for audio-fingerprint.

4.2.4 Results

Algorithm Detected occ. / Total nb False Alarms

Wang [2] 381 / 459 (=83.0%) 0

I B&S [10] 445 / 459 (=96.9%) 2

SAF (proposed) 447 / 459 (=97.4%) 0

Table 1: Results of the comparative experiment

We can see in Table 1 that the detection ratio is much

higher with our fingerprint than the original model of Wang.

As far as we can tell, this really comes from the fact that a

non-negligible number of broadcast songs are pitch-shifted.

These results therefore show that, in addition to being robust

to the same distortions as Wang’s model, our fingerprint has

an increased robustness to pitch-shifting. Besides, we can

see that the post-processing plays its role very efficiently. It

has prevented all the false alarms (in both algorithms Wang

and SAF) and still has allowed a very high detection rate.

4.2.5 Runtime

We will give here some figures about the processing times

of the algorithms. These figures are given on the basis of

our Matlab R© 64-bits implementations, running on an Intel R©

Core 2 Duo @ 3,16 GHz with 6MB of Cache and 8GB of

RAM. We are aware that these figures give no absolute truth,

since the processing times highly depend on the machines,

the programming language and the optimization of the code.

They nevertheless give an order of magnitude of the run-

times with such a configuration. Besides, they allow a com-

parison of the different algorithms since all running times

are given on the same basis.

The algorithm “Wang” has a processing time of 0.08s per

second of signal. The algorithm “SAF” has a processing

time of 0.43 seconds per second of signal. The difference

mainly comes from the extra time required for the calcula-

tion of the constant Q transform. If we apply the pruning

technique described in section 3.6 with Tprune = 0.5, we

obtain a speed-up factor of 35%. This reduces the process-

ing time of the second algorithm to 0.28 seconds per second

of signal with the exact same identification score.

4.3 Scaling experiment

4.3.1 Objectives

We have led a second experiment in order to validate the po-

tential scalability of the system we propose. The framework

is the same as in the previous experiment, but we now run

the algorithm with a much larger references database.

4.3.2 Data

In this experiment the stream is made of 5 days of radio

broadcast coming from 2 different French radio stations (RTL,

Virgin Radio). The references set is much larger as it con-

tains 30.000 songs.

4.3.3 Results

Algorithm Detected occ. / Total nb. False Alarms

SAF (proposed) 496 / 506 (=98.0%) 0

Table 2: Results of the scaling experiment

(30.000 songs)

The results clearly show that the algorithm is scalable.

It has achieved a detection performance which is compara-

ble to its performance in the first experiment. Though, the

references database is more than 4 times larger in this ex-

periment. It is particularly noticeable that in spite of the

enlargement of the database, the system has still not out-

put any false alarm. The multiplication of the songs in the

database had yet highly increased the risk of having close

fingerprints for different songs.

As far as the detection performance is concerned, the re-

sults of this experiment show that the algorithm we propose

has the ability to handle industrial sized databases.

4.3.4 Runtime

The basis for the following calculation time is the same as in

section 4.3.4. With the 30.000 songs database, the algorithm

(without pruning) runs at a speed of 1.44 seconds per sec-

ond of signal. If we compare this running time with the one

of the smaller scale experiment, we notice that the multipli-

cation of the database size by 4 has lead to a multiplication

of the processing time by 3,3. The increase of the running

time is thus sub-linear with the number of references. We

can also note that, even though the code has not been fully

optimized, the algorithm almost runs in real-time.

5. CONCLUSION

In this article, we have proposed a new fingerprint model.

We have included this fingerprint in a global architecture.
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The overall system is able to process audio streams in accor-

dance with a radio monitoring use-case. The fingerprint we

propose is inspired by Wang’s work [2] from which we have

reproduced the indexing scheme based on pairs of spectral

peaks. But our use of the constant Q transform and our

proposition of a different encoding for pairs of peaks allows

us to show a much increased robustness to pitch-shifting.

This, in turn, greatly improves our identification results on

real radio broadcasts, as it has been shown in the compar-

ative experiment presented. As far as scalability is con-

cerned, we presented a second experiment which is based

on a 30.000 songs database. This proved that our system

easily scales up, while keeping a high detection ratio and a

reasonable calculation time. In the future, we will focus on

the problem brought up in section 4.2.2. The annotations

we used indeed contain an average 7% of live versions of

titles stored in the references database in their studio ver-

sions. Matching the ones with the others is a problem that

lies somewhere between audio fingerprint and cover song

detection. It will be interesting to study an extend of the

fingerprint system which would be able to do this match-

ing. Such an extended system will probably need to inte-

grate more semantically based information.
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