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Summary. The bootstrap provides a simple and powerful means of assessing the quality of
estimators. However, in settings involving large data sets—which are increasingly prevalent—
the calculation of bootstrap-based quantities can be prohibitively demanding computationally.
Although variants such as subsampling and the m out of n bootstrap can be used in principle
to reduce the cost of bootstrap computations, these methods are generally not robust to speci-
fication of tuning parameters (such as the number of subsampled data points), and they often
require knowledge of the estimator’s convergence rate, in contrast with the bootstrap. As an
alternative, we introduce the ‘bag of little bootstraps’ (BLB), which is a new procedure which
incorporates features of both the bootstrap and subsampling to yield a robust, computationally
efficient means of assessing the quality of estimators.The BLB is well suited to modern parallel
and distributed computing architectures and furthermore retains the generic applicability and
statistical efficiency of the bootstrap. We demonstrate the BLB’s favourable statistical perfor-
mance via a theoretical analysis elucidating the procedure’s properties, as well as a simulation
study comparing the BLB with the bootstrap, the m out of n bootstrap and subsampling. In addi-
tion, we present results from a large-scale distributed implementation of the BLB demonstrating
its computational superiority on massive data, a method for adaptively selecting the BLB’s tun-
ing parameters, an empirical study applying the BLB to several real data sets and an extension
of the BLB to time series data.

Keywords: Bootstrap; Computational efficiency; Estimator quality assessment; Massive data;
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1. Introduction

The development of the bootstrap and related resampling-based methods in the 1960s and 1970s

heralded an era in statistics in which inference and computation became increasingly intertwined

(Efron, 1979; Diaconis and Efron, 1983). By exploiting the basic abilities of the von Neumann

computer to simulate and iterate, the bootstrap made it possible to use computers not only to

compute estimates but also to assess the quality of estimators, yielding results that are generally

consistent (Bickel and Freedman, 1981; Giné and Zinn, 1990; Putter and van Zwet, 1996; van

der Vaart and Wellner, 1996) and often more accurate than those based on asymptotic approxi-

mations (Hall, 1992). Moreover, the bootstrap aligned statistics to computing technology, such

that advances in speed and storage capacity of computers could immediately allow statistical

methods to scale to larger data sets.

Two recent trends are worthy of attention in this regard. First, the growth in size of data sets is

accelerating, with ‘massive’ data sets becoming increasingly prevalent. Second, computational

resources are shifting towards parallel and distributed architectures, with multicore and cloud

computing platforms providing access to hundreds or thousands of processors. The second
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trend is seen as a mitigating factor with respect to the first, in that parallel and distributed

architectures present new capabilities for storage and manipulation of data. However, from an

inferential point of view, it is not yet clear how statistical methodology will transport to a world

involving massive data on parallel and distributed computing platforms.

Although massive data bring many statistical issues to the fore, there remains the core

inferential need to assess the quality of estimators. Indeed, massive data may often motivate

the consideration of a wide range of models and estimators, enhancing the need for control

over biases and variance. Furthermore, the ability to assess estimator quality efficiently remains

essential to allow efficient use of available resources by processing only as much data as is

necessary to achieve a desired accuracy or confidence.

The bootstrap brings to bear various desirable features in the massive data setting, notably

its relatively automatic nature and its applicability to a wide variety of inferential problems.

Indeed, at first glance, the bootstrap would seem ideally suited to exploiting the trend towards

parallel and distributed computing: one might imagine using different processors or compute

nodes to process different bootstrap resamples independently in parallel. One must recall, how-

ever, that bootstrap-based quantities typically must be computed via a form of Monte Carlo

approximation in which the estimator in question is repeatedly applied to resamples of the

entire original observed data set. These resamples have size of the order of that of the original

data, with approximately 63% of data points appearing at least once in each resample, and the

need to process hundreds of such resamples may overwhelm computational resources for the

large data sets that are increasingly encountered in practice. Indeed, in the massive data setting,

computation of even a single point estimate on the full data set can be quite computation-

ally demanding, and repeated computation of estimates on comparably sized resamples can be

prohibitively costly.

Although the literature does contain some discussion of techniques for improving the com-

putational efficiency of the bootstrap, that work is largely devoted to reducing the number of

resamples that are required (Efron, 1988; Efron and Tibshirani, 1993). These techniques in

general introduce significant additional complexity of implementation and do not eliminate the

crippling need for repeated computation of estimates on resamples having size that is comparable

with that of the original data set.

Another landmark in the development of simulation-based inference is subsampling (Politis

et al., 1999) and the closely related m out of n bootstrap (Bickel et al., 1997). These methods

initially appear to remedy the bootstrap’s key computational shortcoming, as they only require

repeated computation of estimates on resamples (or subsamples) that can be significantly smaller

than the original data set. However, these procedures also have drawbacks. Though they are more

generally consistent than the bootstrap, their finite sample behaviour can be worse, and their

success is sensitive to the choice of resample (or subsample) size (Samworth, 2003). Additionally,

because the variability of an estimator on a subsample differs from its variability on the full

data set, these procedures must perform a rescaling of their output, and this rescaling requires

knowledge and explicit use of the rate of convergence of the estimator in question; these methods

are thus less automatic and easily deployable than the bootstrap. Although schemes have been

proposed for data-driven selection of an optimal resample size (Bickel and Sakov, 2008), they

require significantly greater computation which may eliminate any computational gains. Also,

there has been work on the m out of n bootstrap that has sought to reduce computational

costs by using two different values of m in conjunction with extrapolation (Bickel and Yahav,

1988; Bickel and Sakov, 2002). However, these approaches explicitly utilize series expansions of

the estimator’s sampling distribution and hence are less automatically usable; they also require

execution of the m out of n bootstrap for multiple values of m.
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Motivated by the need for an automatic, accurate means of assessing estimator quality that

is scalable to large data sets, we introduce a new procedure, the ‘bag of little bootstraps’ (BLB),

which functions by combining the results of bootstrapping multiple small subsets of a larger

original data set. Instead of applying the estimator directly to each small subset, as in the m

out of n bootstrap and subsampling, the BLB applies the bootstrap to each small subset. This

is done by forming weighted resamples based on the small subset in such a way that the effect

is that of sampling from the small subset n times with replacement, but the computational

cost is that associated with the size of the small subset. The result is that, despite operating

only on subsets of the original data set, the BLB does not require analytical rescaling of its

output. Overall, the BLB has a significantly more favourable computational profile than the

bootstrap, as it only requires repeated computation of estimates on quantities of data that can

be much smaller than the original data set. As a result, the BLB is well suited to implementation

on modern distributed and parallel computing architectures which are often used to process

large data sets. Our procedure also maintains the bootstrap’s generic applicability, favourable

statistical properties and simplicity of implementation. Moreover, as we show in experiments,

the BLB is consistently more robust than alternatives such as the m out of n bootstrap and

subsampling.

Of course, none of these procedures should be viewed as a black box solution to inferential

problems, particularly in the setting of massive data, where data will often be heterogeneous,

non-stationary and subject to non-random errors. Nonetheless, we expect resampling and sub-

sampling methods to play an increasingly important role in inferential activities as data sets

grow in size, and we view it as essential to consider jointly the computational and statistical

aspects of this growth.

The remainder of our presentation is organized as follows. In Section 2, we formalize our

statistical setting and notation, present the BLB in detail and discuss the procedure’s computa-

tional characteristics. Subsequently, we elucidate the BLB’s statistical properties via a theoretical

analysis (Section 3) showing that it shares the bootstrap’s consistency and higher order correct-

ness, as well as a simulation study (Section 4) which compares the BLB with the bootstrap, the

m out of n bootstrap, and subsampling. Section 5 discusses a large-scale implementation of the

BLB on a distributed computing system and presents results illustrating the procedure’s supe-

rior computational performance in the massive data setting. We present a method for adaptively

selecting the BLB’s tuning parameters in Section 6. Finally, we apply the BLB (as well as the

bootstrap and the m out of n bootstrap, for comparison) to several real data sets in Section 7,

we present an extension of the BLB to time series data in Section 8 and we conclude with a

discussion of the BLB’s limitations in Section 9.

2. Bag of little bootstraps

2.1. Setting and notation

We assume that we observe a sample X1, : : : , Xn drawn independently and identically distributed

(IID) from some unknown distribution P ; we denote by Pn = n−1
Σ

n
i=1 δXi the corresponding

empirical distribution. On the basis of the observed data, we form an estimate θ̂n = θ̂n.Pn/ of

some (unknown) population value θ.P/. Our end goal is to obtain an assessment ξ{Qn.P/}
of the quality of the estimate θ̂n.Pn/, which consists of a summary of the distribution Qn.P/ of

some quantity u.Pn, P/, where ξ ranges over a vector space Ξ. The choice of u depends on one’s

inferential goals: for instance, ξ{Qn.P/} might be the variance of u.Pn, P/= θ̂n.Pn/, the expec-

tation of u.Pn, P/= θ̂n.Pn/−θ.P/ (i.e. the bias) or a confidence region based on the distribution

of u.Pn, P/=n1=2{θ̂n.Pn/− θ.P/}. In practice, we cannot compute ξ{Qn.P/} directly because
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P and Qn.P/ are unknown, and so we must estimate ξ{Qn.P/} on the basis of a single observed

data set.

Under this notation, the bootstrap simply computes the plug-in approximation ξ{Qn.Pn/}≈
ξ{Qn.P/}. Although ξ{Qn.Pn/} cannot be computed exactly in most cases, it is generally

amenable to straightforward Monte Carlo approximation via the following algorithm (Efron and

Tibshirani, 1993): repeatedly resample n points IID from Pn, denote the empirical distribution

of the resampled points as P
Å
n , compute u.PÅ

n , Pn/ for each resample, let Q
Å
n denote the empirical

distribution of the computed values of u, and finally compute ξ.QÅ
n /≈ξ{Qn.P/}. Note that the

vast majority of the bootstrap’s computational cost lies in the repeated computation of values

of u, which in turn requires costly repeated computation of estimates θ̂n.PÅ
n / on resamples.

Similarly, using our notation, the m out of n bootstrap (and subsampling) functions as follows,

for m < n (Bickel et al., 1997; Politis et al., 1999), repeatedly resample m points IID from Pn

(subsample m points without replacement from X1, : : : , Xn), form the empirical distribution P
Å
m

and compute u.PÅ
m, Pn/ for each resample (subsample), form the empirical distribution Q

Å
m of

the computed u-values, compute ξ.QÅ
m/≈ ξ{Qm.P/} and apply an analytical correction in turn

to approximate ξ{Qn.P/}.

We use 1d to denote the d-dimensional vector of 1s, and we let Id denote the d × d identity

matrix.

2.2. Bag of little bootstraps method

The BLB functions by averaging the results of bootstrapping multiple small subsets of X1, : : : , Xn.

More formally, given a subset size b < n, the BLB samples s subsets of size b without replace-

ment from the original n data points, uniformly at random (one can also impose the constraint

that the subsets are disjoint). Let I1, : : : , Is ⊂ {1, : : : , n} be the corresponding index sets (note

that |Ij|= b, ∀j), and let P
.j/
n,b = b−1

Σi∈Ij
δXi denote the empirical distribution corresponding

to subset j. The BLB’s estimate of ξ{Qn.P/} is then given by

s−1
s

∑

j=1

ξ{Qn.P
.j/
n,b/}, .1/

where the key is the use of Qn even though the object P
.j/
n,b has its support on only b points.

Although the terms ξ{Qn.P
.j/
n,b/} in expression (1) cannot be computed analytically in general,

they can be computed numerically via straightforward Monte Carlo approximation in the man-

ner of the bootstrap: for each term j, repeatedly resample n points IID from P
.j/
n,b, form the

empirical distribution P
Å
n,b and compute u.PÅ

n,b, P
.j/
n,b/ for each resample, form the empirical

distribution Q
Å
n,j of the computed u-values, and compute ξ.QÅ

n,j/≈ ξ{Qn.P
.j/
n,b/}.

Now, to realize the substantial computational benefits that are afforded by the BLB, we

utilize the following crucial fact: each BLB resample, despite having nominal size n, contains

at most b distinct data points. In particular, to generate each resample, it suffices to draw a

vector of counts from an n-trial uniform multinomial distribution over b objects. We can then

represent each resample by simply maintaining its empirical distribution, consisting of the at

most b distinct points within it, accompanied by corresponding sampled counts. Therefore,

each resample requires only storage space in O.b/. In turn, if the estimator (and u) can work

directly with this weighted data representation, then the computational requirements of the

estimator (and u)—with respect to both time and storage space—scale only in b, rather than n.

Fortunately, this property does indeed hold for many if not most commonly used estimators,

such as general M-estimators. The resulting BLB algorithm, including Monte Carlo resampling

(algorithm 1), is shown in Table 1.
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Table 1. Algorithm 1: the BLB

Input: data X1, : : : , Xn; b, subset size; s, number of sampled subsets; r,
number of Monte Carlo iterations; ξ, u, estimator quality assessment ξ
summarizing the distribution of quantity u

Output: an estimate of ξ{Qn.P/}
For j ←1 to s do

// subsample the data
randomly sample a set I ={i1, : : : , ib} of b indices from {1, : : : , n} without

replacement (or, choose I to be a disjoint subset of size b from a predefined
random partition of {1, : : : , n})

P
.j/
n,b ←b−1

Σi∈I δXi

// approximate ξ{Qn.P
.j/
n,b/}

for k ←1 to r do
sample .n1, : : : , nb/∼multinomial.n, 1b=b/

P
Å
n,k ←n−1

Σ
b
a=1 naδXia

uÅ
n,k ←u.P

Å
n,k , P

.j/
n,b/

end

Q
Å
n,j ← r−1

Σ
r
k=1 δuÅ

n,k

ξÅ
n,j ← ξ.Q

Å
n,j/

end

// average values of ξ{Qn.P
.j/
n,b/} computed for different data subsets

return s−1
Σ

s
j=1 ξÅ

n,j

The BLB thus avoids the bootstrap’s problematic need for repeated computation on resam-

ples having size comparable with that of the original data set. As noted earlier, a simple and

standard calculation (Efron and Tibshirani, 1993) shows that each bootstrap resample contains

approximately 0:632n distinct points, which is large if n is large. In contrast, as discussed above,

each BLB resample contains at most b distinct points, and b can be chosen to be much smaller

than n or 0:632n. For example, we might take b=nγ where γ ∈ [0:5, 1]. More concretely, if n=1

million, then each bootstrap resample would contain approximately 632000 distinct points,

whereas with b =n0:6 each BLB subsample and resample would contain at most 3981 distinct

points. If each data point occupies 1 Mbyte of storage space, then the original data set would

occupy 1 Tbyte, a bootstrap resample would occupy approximately 632 Gbytes, and each BLB

subsample or resample would occupy at most 4 Gbytes. As a result, the cost of computing u

(which entails computing the estimate) on each BLB resample is generally substantially lower

than the cost of computing u on each bootstrap resample. Furthermore, as we show in our

simulation study and scalability experiments below, the BLB typically requires less total com-

putation (across multiple data subsets and resamples) than the bootstrap to reach comparably

high accuracy; fairly modest values of s and r suffice.

Owing to its much smaller subsample and resample sizes, the BLB is also significantly more

amenable than the bootstrap to the distributed processing of different subsamples and resamples

and their associated computations on independent compute nodes; therefore, the BLB allows for

simple distributed and parallel implementations, enabling additional large computational gains.

In the large data setting, computing a single full data point estimate often requires simultaneous

distributed computation across multiple compute nodes, among which the observed data set is

partitioned. Given the large size of each bootstrap resample, computing the estimate on even a

single such resample in turn also requires the use of a comparably large cluster of compute nodes;

the bootstrap requires repetition of this computation for multiple resamples. Each computation
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of the estimate (and hence of u) is thus quite costly, and the aggregate computational costs of this

repeated distributed computation are quite high (indeed, the computation for each bootstrap

resample requires use of an entire cluster of compute nodes and incurs the associated overhead).

In contrast, the BLB straightforwardly permits computation on multiple (or even all) sub-

samples and resamples simultaneously in parallel: because BLB subsamples and resamples can

be significantly smaller than the original data set, they can be transferred to, stored by and

processed on individual (or very small sets of) compute nodes. For example, we could naturally

leverage modern hierarchical distributed architectures by distributing subsamples to different

compute nodes and subsequently using intranode parallelism to compute across different re-

samples generated from the same subsample. Thus, relative to the bootstrap, the BLB both

decreases the total computational cost of assessing estimator quality and allows more natural

use of parallel and distributed computational resources. Moreover, even if only a single compute

node is available, the BLB allows the following somewhat counterintuitive possibility: even if

it is prohibitive to compute a point estimate for the full observed data using a single compute

node actually (because the full data set is large), it may still be possible to assess efficiently such

a point estimate’s quality using only a single compute node by processing one subsample (and

the associated resamples) at a time.

3. Consistency and higher order correctness

We now show that the BLB has statistical properties—in particular, consistency and higher order

correctness—which are identical to those of the bootstrap, under the same conditions that have

been used in prior analysis of the bootstrap. As in standard analyses of the bootstrap, we do

not explicitly account here for error that is introduced by use of Monte Carlo approximation to

compute the individual plug-in approximations ξ{Qn.P
.j/
n,b/}.

The following theorem states that (under standard assumptions) as b, n→∞, the estimates

s−1
Σ

s
j=1 ξ{Qn.P

.j/
n,b/} returned by the BLB approach the population value ξ{Qn.P/} in proba-

bility. Interestingly, the only assumption about b required for this result is that b→∞, though

in practice we would generally take b to be a slowly growing function of n.

Theorem 1. Suppose that θ̂n.Pn/=φ.Pn/ and θ.P/=φ.P/, whereφ is Hadamard differentiable

at P tangentially to some subspace, with P , Pn and P
.j/
n,b viewed as maps from some Donsker

class F to R such that Fδ is measurable for every δ > 0, where Fδ ={f − g : f , g ∈F , ρP .f −
g/ < δ} and ρP .f/ = {P.f − Pf/2}1=2. Additionally, assume that ξ{Qn.P/} is a function of

the distribution of u.Pn, P/ = n1=2{φ.Pn/ −φ.P/} which is continuous in the space of such

distributions with respect to a metric that metrizes weak convergence. Then,

s−1
s

∑

j=1

ξ{Qn.P
.j/
n,b/}− ξ{Qn.P/}

P→0

as n→∞, for any sequence b→∞ and for any fixed s.

See Appendix A for outlines of the proofs of the results that are presented in this section (and

see the on-line supplementary materials for full proofs). Note that the assumptions of theorem

1 are standard in analysis of the bootstrap and in fact hold in many cases of practical interest.

For example, M-estimators are generally Hadamard differentiable (under some regularity con-

ditions) (van der Vaart, 1998; van der Vaart and Wellner, 1996), and the assumptions on ξ are

satisfied if, for example, ξ is the value of the cumulative distribution function at a fixed point.

Theorem 1 can also be generalized to hold for sequences s→∞ and more general forms of ξ, but

such generalization appears to require stronger assumptions, such as uniform integrability of
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the ξ{Qn.P
.j/
n,b/}; the need for stronger assumptions to obtain more general consistency results

has also been noted in prior work on the bootstrap (see, for example, Hahn (1995)).

Moving beyond analysis of the BLB’s consistency, we now characterize its higher order cor-

rectness. Much prior work has been devoted to showing that the bootstrap is higher order

correct in many cases (see, for example, Hall (1992)), converging to the true value ξ{Qn.P/}
at a rate of OP .1=n/ or faster. As shown by the following theorem, the BLB shares the same

degree of higher order correctness as the bootstrap, assuming that s and b are chosen to be

sufficiently large. Importantly, sufficiently large values of b here can still be significantly smaller

than n, with b=n → 0 as n →∞. Following prior analyses of the bootstrap, we now make the

standard assumption that ξ can be represented via an asymptotic series expansion in powers of

1=
√

n; prior work provides such expansions in a variety of settings, for example, in the form of

Edgeworth or Cornish–Fisher expansions (Hall, 1992).

Theorem 2. Suppose that ξ{Qn.P/} admits an expansion as an asymptotic series

ξ{Qn.P/}= z+
p1√

n
+: : :+

pk

nk=2
+o

(

1

nk=2

)

, .2/

where z is a constant independent of P and the pk are polynomials in the moments of P .

Additionally, assume that the empirical version of ξ{Qn.P/} for any j admits a similar ex-

pansion

ξ{Qn.P
.j/
n,b/}= z+

p̂
.j/

1√
n

+: : :+
p̂

.j/
k

nk=2
+oP

(

1

nk=2

)

, .3/

where z is as defined above and the p̂
.j/
k are polynomials in the moments of P

.j/
n,b obtained

by replacing the moments of P in the pk with those of P
.j/
n,b. Then, assuming that b �n and

E.p̂
.1/
k /2 <∞ for k ∈{1, 2},

∣

∣

∣

∣

s−1
s

∑

j=1

ξ{Qn.P
.j/
n,b/}− ξ{Qn.P/}

∣

∣

∣

∣

=
2

∑

k=1

OP

[√
{var.p̂

.1/
k −pk|Pn/}

nk=2
√

s

]

+OP

(

1

n

)

+O

(

1

b
√

n

)

:

Therefore, taking s=Ω[max{nvar.p̂
.1/
1 −p1|Pn/, var.p̂

.1/
2 −p2|Pn/}] and b=Ω.

√
n/ yields

∣

∣

∣

∣

s−1
s

∑

j=1

ξ{Qn.P
.j/
n,b/}− ξ{Qn.P/}

∣

∣

∣

∣

=OP

(

1

n

)

,

in which case the BLB enjoys the same level of higher order correctness as the bootstrap.

It is natural to assume that ξ{Qn.P
.j/
n,b/} can be expanded in powers of 1=

√
n, rather than

1=
√

b, because Qn.P
.j/
n,b/ is the distribution of values of u computed on the basis of n points

sampled from P
.j/
n,b. The fact that only b points are represented in P

.j/
n,b enters via the p̂

.j/
k , which

are polynomials in the sample moments of those b points.

Theorem 2 indicates that, like the bootstrap, the BLB can converge at rate OP .1=n/ (assuming

that s and b grow at a sufficient rate). Additionally, because var.p̂
.1/
k −pk|Pn/ is decreasing in

probability as b and n increase, s can grow significantly more slowly than n (indeed, uncon-

ditionally, p̂
.j/
k − pk = OP .1=

√
b/). Although var.p̂

.1/
k − pk|Pn/ can in principle be computed

given an observed data set, as it depends only on Pn and the form of u and the estimator under

consideration, we can also obtain a general bound (in probability) on the rate of decrease of

this conditional variance.

Remark 1. Assuming that E.p̂
.1/
k /4 <∞, var.p̂

.1/
k −pk|Pn/=OP .1=

√
n/+O.1=b/:
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The following result, which applies to the alternative variant of the BLB that constrains the s

randomly sampled subsets to be disjoint, also highlights the fact that s can grow substantially

more slowly than n.

Theorem 3. Under the assumptions of theorem 2, and assuming that the BLB uses disjoint

random subsets of the observed data (rather than simple random subsamples), we have

∣

∣

∣

∣

s−1
s

∑

j=1

ξ{Qn.P
.j/
n,b/}− ξ{Qn.P/}

∣

∣

∣

∣

=OP

{

1
√

.nbs/

}

+O

(

1

b
√

n

)

:

Therefore, if s∼n=b and b=Ω.
√

n/, then

∣

∣

∣

∣

s−1
s

∑

j=1

ξ{Qn.P
.j/
n,b/}− ξ{Qn.P/}

∣

∣

∣

∣

=OP

(

1

n

)

,

in which case the BLB enjoys the same level of higher order correctness as the bootstrap.

Finally, although the assumptions of the two preceding theorems generally require that u

Studentizes the estimator under consideration, similar results hold even if the estimator is not

Studentized. In particular, not Studentizing slows the rate of convergence of both the bootstrap

and the BLB by the same factor, generally causing the loss of a factor of OP .1=
√

n/ (van der

Vaart, 1998).

4. Simulation study

In this section we compare the statistical performance of the BLB with that of existing methods

via experiments on simulated data. The use of simulated data is necessary here because it allows

knowledge of P and Qn.P/, and hence ξ{Qn.P/}; this ground truth is required for evaluation

of statistical correctness. For different data sets and estimation tasks, we study the convergence

properties of the BLB as well as the bootstrap, the m out of n bootstrap and subsampling.

We consider two different settings: regression and classification. For both settings, the data

have the form Xi = .X̃i, Yi/∼P , IID for i=1, : : : , n, where X̃i ∈R
d ; Yi ∈R for regression, whereas

Yi ∈{0, 1} for classification. In each case, θ̂n estimates a parameter vector in R
d for a linear or

generalized linear model of the mapping between X̃i and Yi. We define ξ as a procedure that

computes a set of marginal 95% confidence intervals, one for each element of the estimated

parameter vector. In particular, given the distribution Qn.P/ of u.Pn, P/ = θ̂n.Pn/ (or an ap-

proximation thereof), ξ forms the boundaries of the relevant confidence intervals as the 2.5th

and 97.5th percentiles of the marginal componentwise distributions defined by Qn.P/; averaging

across these confidence intervals in the averaging step of the BLB simply consists in averaging

these percentile estimates.

To evaluate the various quality assessment procedures on a given estimation task and true

underlying data distribution P , we first compute the ground truth ξ{Qn.P/} by generating 2000

realizations of data sets of size n from P , computing θ̂n on each, and using this collection of

θ̂ns to form a high fidelity approximation to Qn.P/. Then, for an independent data set realiza-

tion of size n from the true underlying distribution, we run each quality assessment procedure

(without parallelization) until it converges and record the estimate of ξ{Qn.P/} produced after

each iteration (e.g. after each bootstrap resample or BLB subsample has been processed), as

well as the cumulative processing time required to produce that estimate. Every such estimate

is evaluated on the basis of the average (across dimensions) relative deviation of its compo-

nentwise confidence intervals’ widths from the corresponding true widths; given an estimated
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confidence interval width c and a true width c0, the relative deviation of c from c0 is defined

as |c − c0|=c0. We repeat this process on five independent data set realizations of size n and

average the resulting relative errors and corresponding processing times across these five data

sets to obtain a trajectory of relative error versus time for each quality assessment procedure.

The relative errors’ variances are small relative to the relevant differences between their means,

and so these variances are not shown in our plots. Note that we evaluate on the basis of con-

fidence interval widths, rather than coverage probabilities, to control the running times of our

experiments: in our experimental setting, even a single run of a quality assessment procedure

requires non-trivial time, and computing coverage probabilities would require a large number

of such runs. All experiments in this section were implemented and executed using MATLAB

(http://www.mathworks.com/) on a single processor. To maintain consistency of nota-

tion, we refer to the m out of n bootstrap as the b out of n bootstrap throughout the remainder

of this section. For the BLB, the b out of n bootstrap, and subsampling, we consider b=nγ with

γ ∈{0:5, 0:6, 0:7, 0:8, 0:9}; we use r =100 in all runs of the BLB.

In the regression setting, we generate each data set from a true underlying distribution P

consisting of either a linear model Yi = X̃
T

i 1d + "i or a model Yi = X̃
T

i 1d + X̃
T

i X̃i + "i hav-

ing a quadratic term, with d = 100 and n = 20000. The X̃i and "i are drawn independently

from one of the following pairs of distributions: X̃i ∼ normal.0, Id/ with "i ∼ normal.0, 10/,

X̃i,j ∼ StudentT.3/ IID for j = 1, : : : , d with "i ∼ normal.0, 10/ or X̃i,j ∼ gamma{1 + 5.j −
1/= max.d −1, 1/, 2}−2{1+5.j −1/= max.d −1, 1/, 2} independently for j =1, : : : , d with "i ∼
gamma.1, 2/−2. All these distributions have E.X̃i/=E."i/=0, and the last X̃i-distribution has

non-zero skewness which varies among the dimensions. In the regression setting under both the

linear and the quadratic data-generating distributions, our estimator θ̂n consists of a linear least

squares regression with a small L2-penalty on the parameter vector to encourage numerical

stability (we set the weight on this penalty term to 10−5). The true average (across dimensions)

marginal confidence interval width for the estimated parameter vector is approximately 0.1

under the linear data-generating distributions (for all X̃i-distributions) and approximately 1

under the quadratic data-generating distributions.

Fig. 1 shows results for the regression setting under the linear and quadratic data-generating

distributions with the gamma and StudentT X̃i-distributions; similar results hold for the normal

X̃i-distribution. In all cases, the BLB (Figs 1(a)–1(c)) succeeds in converging to low relative error

significantly more quickly than the bootstrap, for all values of b considered. In contrast, the b

out of n bootstrap (Figs 1(d)–1(f)) fails to converge to low relative error for smaller values of b

(below n0:7). Additionally, subsampling (Figs 1(g)–1(i)) performs strictly worse than the b out

of n bootstrap, as subsampling fails to converge to low relative error for both smaller and larger

values of b (e.g. for b=n0:9). Note that fairly modest values of s suffice for convergence of the BLB

(recall that s-values are implicit in the time axes of our plots), with s at convergence ranging from

1–2 for b=n0:9 up to 10–14 for b=n0:5 in the experiments shown in Fig. 1; larger values of s are

required for smaller values of b, which accords with both intuition and our theoretical analysis.

Under the quadratic data-generating distribution with StudentT X̃i-distribution (for which

plots are not shown), none of the procedures (including the bootstrap) converge to low rela-

tive error, which is unsurprising given the StudentT(3) distribution’s lack of moments beyond

order 2.

For the classification setting, we generate each data set considered from either a linear model

Yi ∼ Bernoulli[{1 + exp.−X̃T
i 1d/}−1] or a model Yi ∼ Bernoulli[{1 + exp.−X̃T

i 1d − X̃T
i X̃i/}

−1]

having a quadratic term, with d =10. We use the same three distributions on X̃i that were used

in the regression setting. Our estimator, under both the linear and the quadratic data-generating

distributions, consists of a linear (in X̃i) logistic regression fit via Newton’s method, again
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using an L2-penalty term with weight 10−5 to encourage numerical stability. For this estimation

task with n = 20000, the true average (across dimensions) marginal confidence interval width

for the estimated parameter vector is approximately 0.1 under the linear data-generating distri-

butions (for all X̃i-distributions) and approximately 0.02 under the quadratic data-generating

distributions.

Fig. 2 shows results for the classification setting under the linear and quadratic data-generating

distributions with the gamma and StudentT X̃i-distributions, and n=20000 (as in Fig. 1); results

for the normal X̃i-distribution are qualitatively similar. Here, the performance of the various

procedures is more varied than in the regression setting. The case of the linear data-generating

distribution with gamma X̃i-distribution (Figs 2(a) and 2(d)) appears to be the most challenging.

In this setting, the BLB converges to relative error comparable with that of the bootstrap for

b>n0:6 and converges to higher relative errors for the smallest values of b that were considered.

For the larger values of b, which are still significantly smaller than n, we again converge to low

relative error faster than the bootstrap. We are also once again more robust than the b out of n

bootstrap, which fails to converge to low relative error for b�n0:7. In fact, even for b�n0:6, the

BLB’s performance is superior to that of the b out of n bootstrap. Qualitatively similar results

hold for the other data-generating distributions, but with the BLB and the b out of n bootstrap

both performing better relatively to the bootstrap. In the experiments that are shown in Fig. 2,

the values of s (which are implicit in the time axes of our plots) that are required for convergence

of the BLB range from 1–2 for b = n0:9 up to 10–20 for b � n0:6 (for cases in which the BLB

converges to low relative error). As in the regression setting, subsampling (for which plots are

not shown) has a performance that is strictly worse than that of the b out of n bootstrap in all

cases.

To examine further the cases in which the BLB (when using small values of b) does not

converge to relative error comparable with that of the bootstrap, we explore how the various

procedures’ relative errors vary with n. In particular, for various values of n (and b), we run each

procedure as described above and report the relative error that it achieves after it converges (i.e.

after it has processed sufficiently many subsets, in the case of the BLB, or resamples, in the case
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Fig. 3. Relative error (after convergence) versus n for the BLB, the b out of n bootstrap (BOFN) and the
bootstrap (BOOT) in the classification setting (for both the BLB and the b out of n bootstrap, bDnγ with the
relevant values of γ given in the keys): (a) results for logistic regression with a linear data-generating distri-
bution and gamma X̃ i -distribution; (b) results for logistic regression with a linear data-generating distribution
and StudentT X̃ i -distribution
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of the b out of n bootstrap and the bootstrap, to allow its output to stabilize). Fig. 3 shows results

for the classification setting under the linear data-generating distribution with the gamma and

StudentT X̃i-distributions; qualitatively similar results hold for the normal X̃i-distribution. As

expected on the basis of our previous results for fixed n, the BLB’s relative error here is higher

than that of the bootstrap for the smallest values of b and n that were considered. Nonetheless,

the BLB’s relative error decreases to that of the bootstrap as n increases—for all values of γ

considered, with b=nγ—in accordance with our theoretical analysis; indeed, as n increases, we

can set b to progressively more slowly growing functions of n while still achieving low relative

error. Furthermore, the BLB’s relative error is consistently substantially lower than that of the

b out of n bootstrap and decreases more quickly to the low relative error of the bootstrap as n

increases.

5. Computational scalability

The experiments of the preceding section, though primarily intended to investigate statistical

performance, also provide some insight into computational performance: as seen in Figs 1 and

2, when computing on a single processor, the BLB generally requires less time, and hence less

total computation, than the bootstrap to attain comparably high accuracy. Those results only

hint at the BLB’s superior ability to scale computationally to large data sets, which we now

demonstrate via large-scale experiments on a distributed computing platform.

As discussed in Section 2, modern massive data sets often exceed both the processing and

the storage capabilities of individual processors or compute nodes, thus necessitating the use

of parallel and distributed computing architectures. As a result, the scalability of a quality

assessment method is closely tied to its ability to utilize such computing resources effectively.

Recall from our exposition in preceding sections that, owing to the large size of bootstrap

resamples, the following is the most natural avenue for applying the bootstrap to large-scale

data by using distributed computing: given data partitioned across a cluster of compute nodes,

parallelize the computation of the estimate (and hence u) on each resample across the cluster,

and compute on one resample at a time. This approach, although at least potentially feasi-

ble, remains quite problematic. Each computation of the estimate will require the use of an

entire cluster of compute nodes, and the bootstrap repeatedly incurs the associated overhead,

such as the cost of repeatedly communicating intermediate data between nodes. Additionally,

many cluster computing systems that are currently in widespread use (e.g. Hadoop MapReduce

(http://hadoop.apache.org)) store data only on disc, rather than in memory, owing

to physical size constraints (if the data set size exceeds the amount of available memory) or

architectural constraints (e.g. the need for fault tolerance). In that case, the bootstrap incurs the

extreme costs that are associated with repeatedly reading a very large data set from disc—reads

from disc are orders of magnitude slower than reads from memory. Though disc read costs may

be acceptable when (slowly) computing only a single full data point estimate, they easily become

prohibitive when computing many estimates on 100 or more resamples. Furthermore, as we

have seen, executing the bootstrap at scale requires implementing the estimator such that it can

be run on data distributed over a cluster of compute nodes.

In contrast, the BLB permits computation on multiple (or even all) subsamples and resamples

simultaneously in parallel, allowing for straightforward distributed and parallel implementa-

tions which enable effective scalability and large computational gains. For instance, given the

relatively small size of BLB subsamples and resamples, we can distribute subsamples to dif-

ferent compute nodes and subsequently use intranode parallelism to compute across different

resamples generated from the same subsample. Note that generation and distribution of the
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subsamples require only a single pass over the full data set (i.e. only a single read of the full data

set from disc, if it is stored only on disc), after which all required data (i.e. the subsamples) can

potentially be stored in memory. Beyond this significant architectural benefit, we also achieve

implementation and algorithmic benefits: we do not need to parallelize the estimator internally

to take advantage of the available parallelism, as the BLB uses this available parallelism to com-

pute on multiple resamples simultaneously, and exposing the estimator to only b rather than

n distinct points significantly reduces the computational cost of estimation, particularly if the

computation of the estimator scales superlinearly.

Given the shortcomings of the m out of n bootstrap and subsampling as illustrated in the

preceding section, we do not include these methods in the scalability experiments of this section.

However, it is worth noting that these procedures have a significant computational shortcoming

in the setting of large-scale data: the m out of n bootstrap and subsampling require repeated

access to many different random subsets of the original data set (in contrast with the relatively

few, potentially disjoint, subsamples that are required by the BLB), and this access can be quite

costly when the data are distributed across a cluster of compute nodes.

We now detail our large-scale experiments on a distributed computing platform. For this

empirical study, we use the experimental set-up of Section 4, with some modification to accom-

modate larger scale and distributed computation. First, we now use d =3000 and n=6 million

so the size of a full observed data set is approximately 150 Gbytes. The full data set is partitioned

across a number of compute nodes. We again use simulated data to allow knowledge of ground

truth; because of the substantially larger data size and attendant higher running times, we now

use 200 independent realizations of data sets of size n to compute the ground truth numerically.

As our focus is now computational (rather than statistical) performance, we present results

here for a single data-generating distribution which yields representative statistical performance

based on the results of the previous section; for a given size of data set, changing the underly-

ing data-generating distribution does not alter the computational resources that are required

for storage and processing. For the experiments in this section, we consider the classification

setting with StudentT X̃i-distribution. The mapping between X̃i and Yi remains similar to that

of the linear data-generating distribution in Section 4, but with the addition of a normalization

factor to prevent degeneracy when using larger d: Yi ∼Bernoulli[{1+exp.−X̃T
i 1d=

√
d/}−1]. We

implement the logistic regression by using L-BFGS (Nocedal and Wright, 2006) owing to the

significantly larger value of d.

We compare the performance of the BLB and the bootstrap, both implemented as described

above. That is, our implementation of the BLB processes all subsamples simultaneously in par-

allel on independent compute nodes; we use r = 50, s = 5 and b=n0:7. Our implementation of

the bootstrap uses all available processors to compute on one resample at a time, with compu-

tation of the logistic regression parameter estimates parallelized across the available compute

nodes by simply distributing the relevant gradient computations among the different nodes

on which the data are partitioned. We utilize Poisson resampling (van der Vaart and Wellner,

1996) to generate bootstrap resamples, thereby avoiding the complexity of generating a random

multinomial vector of length n in a distributed fashion. Owing to high running times, we show

results for a single trial of each method, though we have observed little variability in qualitative

outcomes during development of these experiments. All experiments in this section were run

on Amazon EC2 and implemented in the Scala programming language using the Spark cluster

computing framework (Zaharia et al., 2012), which provides the ability either to read data from

disc (in which case the performance is similar to that of Hadoop MapReduce) or to cache it

in memory across a cluster of compute nodes (provided that sufficient memory is available) for

faster repeated access.
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Fig. 4. Relative error versus processing time for the BLB with b D n0.7 (�) and the bootstrap (�) on 150
Gbytes of data in the classification setting (because the BLB’s computation is fully parallelized across all
subsamples, we show only the processing time and relative error of the BLB’s final output): (a) results with
the full data set stored only on disc; (b) results with the full data set cached in memory

In Fig. 4(a), we show results obtained by using a cluster of 10 worker nodes, each having 6

Gbytes of memory and eight compute cores; thus, the total memory of the cluster is 60 Gbytes,

and the full data set (150 Gbytes) can only be stored on disc (the available disc space is ample

and far exceeds the size of the data set). As expected, the time that is required by the bootstrap

to produce even a low accuracy output is prohibitively high, whereas the BLB provides a high

accuracy output quite quickly, in less than the time that is required to process even a single

bootstrap resample. In Fig. 4(b), we show results that were obtained by using a cluster of 20

worker nodes, each having 12 Gbytes of memory and four compute cores; thus, the total memory

of the cluster is 240 Gbytes, and we cache the full data set in memory for faster repeated access.

Unsurprisingly, the bootstrap’s performance improves significantly with respect to the previous

disc-bound experiment. However, the performance of the BLB (which also improves) remains

substantially better than that of the bootstrap.

6. Tuning parameter selection

Like existing resampling-based procedures such as the bootstrap, the BLB requires the speci-

fication of tuning parameters controlling the number of subsamples and resamples processed.

Setting such tuning parameters to be sufficiently large is necessary to ensure good statistical per-

formance; however, setting them to be unnecessarily large results in wasted computation. Prior

work on the bootstrap and related procedures—which largely does not address computational

issues—generally assumes that a procedure’s user will simply select a priori a large, constant

number of resamples to be processed (an exception is Tibshirani (1985), who discussed the issue

but did not provide a general solution). However, this approach reduces the level of automation

of these methods and can be quite inefficient in the large data setting, in which each subsample

or resample can require a substantial amount of computation.

Thus, we now examine the dependence of the BLB’s performance on the choice of r and s,

with the goal of better understanding their influence and providing guidance towards achieving

adaptivity in their selection. For any particular application of the BLB, we seek to select the

minimal values of r and s which are sufficiently large to yield good statistical performance.



810 A. Kleiner, A. Talwalkar, P. Sarkar and M. I. Jordan

s

(a) (b)

r

1 3 5 10 25 50 100 200

500

200

100

50

40

30

20

10

5 0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

R
e

la
ti
v
e

 E
rr

o
r

Time (sec)

BLB−0.6

BLB−0.7

BLB−0.8

BLB−0.9

BOOT

Fig. 5. Results for BLB tuning parameter selection: (a) relative error achieved by the BLB for various values
of r and s, with b D n0.7; (b) relative error versus processing time (without parallelization) for the BLB with
adaptive selection of r and s (�, resulting stopping times of the BLB trajectories) and the bootstrap (BOOT);
for the BLB, bDnγ with the value of γ for each trajectory given in the key

Recall that in the simulation study of Section 4, across all of the settings considered, fairly

modest values of r (100 for confidence intervals) and s (from 1–2 for b = n0:9 up to 10–20

for b = n0:6) were sufficient. Fig. 5(a) provides further insight into the influence of r and s,

giving the relative errors that are achieved by the BLB with b=n0:7 for various r, s pairs in the

classification setting with a linear data-generating distribution and StudentT X̃i-distribution.

In particular, note that, except for the smallest values of r and s, it is possible to choose these

values independently such that the BLB achieves low relative error; in this case, selecting s�3

and r �50 is sufficient.

Although these results provide some guidance for tuning parameter selection, we expect the

sufficient values of r and s to change on the basis of the identity of u and ξ (for example, we

expect a confidence interval to be more difficult to compute and hence to require larger r than a

standard error) and the properties of the underlying data. Thus, to help to avoid the need to set

r and s to be conservatively and inefficiently large, we now provide a means for adaptive tuning

parameter selection, which we validate empirically.

Concretely, to select r adaptively in the inner loop of the BLB algorithm (see Table 1), we

propose an iterative scheme whereby, for any given subsample j, we continue to process resam-

ples and to update ξÅ
n,j until it has ceased to change significantly. Noting that the values uÅ

n,k

that are used to compute ξÅ
n,j are conditionally IID given P

.j/
n,b, for most forms of ξ the series

of computed ξÅ
n,j-values will be well behaved and will converge (in many cases at rate O.1=

√
r/,

though with unknown constant) to a constant target value as more resamples are processed.

Therefore, it suffices to process resamples (i.e. to increase r) until we are satisfied that ξÅ
n,j has

ceased to fluctuate significantly; we propose to use algorithm 2 (detailed in Table 2) to assess this

convergence. The same scheme can be used to select s adaptively by processing more subsamples

(i.e. increasing s) until the BLB’s output value s−1
Σ

s
j=1 ξÅ

n,j has stabilized; in this case, one can

simultaneously also choose r adaptively and independently for each subsample. When paral-

lelizing across subsamples and resamples, one can simply process batches of subsamples and

resamples (with batch size determined by the available parallelism) until the output stabilizes.

Fig. 5(b) shows the results of applying such adaptive tuning parameter selection in a represen-

tative empirical setting from our earlier simulation study (without parallelization). For selection
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Table 2. Algorithm 2: convergence assessment

Input: a series z.1/, z.2/, : : : , z.t/ ∈R
d ; w∈N, window size (<t); "∈R, target relative error (>0)

Output: true if and only if the input series is deemed to have ceased to fluctuate beyond
the target relative error

If ∀j ∈ [1, w], .1=d/Σ
d
i=1 |z.t−j/

i − z
.t/
i |=|z.t/

i |� " then
return true

otherwise
return false

end

Table 3. Statistics of the various values
of r selected by the BLB’s adaptive tuning
selection (across multiple subsamples, with
bDn0.7) when ξ is either our confidence inter-
val width based measure or a componentwise
standard error†

Confidence Standard
interval error

Mean 89.6 67.7
Minimum 50 40
Maximum 150 110

†The relative errors achieved by the BLB and
the bootstrap are comparable in both cases.

of r we use "=0:05 and w =20, and for selection of s we use "=0:05 and w =3. As illustrated

in Fig. 5(b) the adaptive tuning parameter selection allows the BLB to cease computing shortly

after it has converged (to low relative error), limiting the amount of unnecessary computation

that is performed without degradation of statistical performance. Though selected a priori, "

and w are more intuitively interpretable and less dependent on the details of u and ξ and the

underlying data-generating distribution than r and s. Indeed, the aforementioned specific values

of " and w yield results of comparably good quality when also used for the other data generation

settings that were considered in Section 4, when applied to a variety of real data sets in Section

7 below, and when used in conjunction with different forms of ξ (see Table 3, which shows that

smaller values of r are selected when ξ is easier to compute). Thus, our scheme significantly

helps to alleviate the burden of a priori tuning parameter selection.

Automatic selection of a value of b in a computationally efficient manner would also be

desirable but is more difficult because of the inability to reuse computations that are performed

for different values of b easily. One could consider similarly increasing b from some small value

until the output of the BLB stabilizes (an approach that is reminiscent of the method that was

proposed in Bickel and Sakov (2008) for the m out of n bootstrap); devising a means of doing so

efficiently is the subject of future work. Nonetheless, on the basis of our fairly extensive empirical

investigation, it seems that b=n0:7 is a reasonable and effective choice in many situations.

7. Real data

We now present the results of applying the BLB to several real data sets. In this context, given the

absence of ground truth (i.e. the fact that the true value of ξ{Qn.P/} is unknown for a real data
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Fig. 6. Average (across dimensions) absolute confidence interval width versus processing time on the
University of California at Irvine connect4 data set (logistic regression; d D 42I n D 67557) (for both the BLB
and the b out of n bootstrap, b D nγ with the value of γ for each trajectory given in the keys): (a) results for
the BLB (using adaptive tuning parameter selection; �, output at convergence) and the bootstrap (BOOT);
(b) results for the b out of n bootstrap (BOFN)

set), it is not possible to evaluate the statistical correctness of any particular estimator quality

assessment method objectively; rather, we are reduced to comparing the outputs of various

methods (in this case, the BLB, the bootstrap and the b out of n bootstrap) with each other.

Because we cannot determine the relative error of each procedure’s output without knowledge

of the ground truth, we now instead report the average (across dimensions) absolute confidence

interval width that is yielded by each procedure.

Fig. 6 shows results for the BLB, the bootstrap and the b out of n bootstrap on the University

of California at Irvine connect4 data set (Frank and Asuncion, 2010), where the model is logistic

regression (as in the classification setting of our simulation study above), d =42 and n=67557.

We select the BLB tuning parameters r and s by using the adaptive method that was described

in the preceding section. Notably, the outputs of the BLB for all values of b considered, and the

output of the bootstrap, are tightly clustered around the same value; additionally, as expected,

the BLB converges more quickly than the bootstrap. However, the values that are produced by

the b out of n bootstrap vary significantly as b changes, thus further highlighting this proce-

dure’s lack of robustness. We have obtained qualitatively similar results on six additional data

sets from the University of California of Irvine data set repository (ct-slice, magic, millionsong,

parkinsons, poker and shuttle) (Frank and Asuncion, 2010) with different estimators (linear re-

gression and logistic regression) and a range of values of n and d (see the on-line supplementary

materials for plots of these results).

8. Time series

Although we have focused thus far on the setting of IID data, variants of the bootstrap—such as

the moving block bootstrap and the stationary bootstrap—have been proposed to handle other

data analysis settings such as that of time series (Efron and Tibshirani, 1993; Hall and Mammen,

1994; Kunsch, 1989; Liu and Singh, 1992; Politis and Romano, 1994). These bootstrap variants

can be used within the BLB, in computing the requisite plug-in approximations ξ{Qn.P
.j/
n,b/}, to

obtain variants of our procedure which are applicable in non-IID data settings. The advantages

(e.g. with respect to scalability) of such BLB variants over variants of the bootstrap (and its
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Table 4. Comparison of the standard
and stationary bootstrap and the BLB
on stationary time series data with
nD5000†

Method Results for Results for
standard stationary
method method

BLB-0.6 2:2±0:1 4:2±0:1
BLB-0.7 2:2±0:04 4:5±0:1
BLB-0.8 2:2±0:1 4:6±0:2
BLB-0.9 2:2±0:1 4:6±0:1
Bootstrap 2:2±0:1 4:6±0:2

†We report the average and standard devia-
tion of estimates (after convergence) of the
standard deviation of the rescaled mean
aggregated over 10 trials. The true popu-
lation value of the standard deviation of
the rescaled mean is approximately 5.

relatives) remain identical to the advantages that were discussed above in the context of large-

scale IID data. We briefly demonstrate the extensibility of the BLB by combining our procedure

with the stationary bootstrap (Politis and Romano, 1994) to obtain a ‘stationary BLB’ which is

suitable for assessing the quality of estimators applied to large-scale stationary time series data.

To extend the BLB in this manner, we must simply alter both the subsample selection mech-

anism and the resample generation mechanism such that both of these processes respect the

underlying data-generating process. In particular, for stationary time series data it suffices to sel-

ect each subsample as a (uniformly) randomly positioned block of length b within the observed

time series of length n. Given a subsample of size b, we generate each resample by applying the

stationary bootstrap to the subsample to obtain a series of length n. That is, given p∈ [0, 1] (a

tuning parameter of the stationary bootstrap), we first select uniformly at random a data point

in the subsample series and then repeat the following process until we have amassed a new series

of length n: with probability 1−p we append to our resample the next point in the subsample

series (wrapping around to the beginning if we reach the end of the subsample series), and with

probability p we (uniformly at random) select and append a new point in the subsample series.

Given subsamples and resamples that are generated in this manner, we execute the remainder

of the BLB procedure as described in algorithm 1.

We now present simulation results comparing the performance of the bootstrap, the BLB, the

stationary bootstrap and the stationary BLB. In this experiment, which was initially introduced

by Politis and Romano (1994), we generate observed data consisting of a stationary time series

X1, : : : , Xn ∈R where Xt =Zt +Zt−1 +Zt−2 +Zt−3 +Zt−4 and the Zt are drawn independently

from a normal(0,1) distribution. We consider the task of estimating the standard deviation of the

rescaled mean Σ
n
t=1 Xt=

√
n, which is approximately 5; we set p=0:1 for the stationary bootstrap

and the stationary BLB. The results in Table 4 (for n = 5000) show the improvement of the

stationary bootstrap over the bootstrap, the similar improvement of the stationary BLB over

the BLB, and the fact that the statistical performance of the stationary BLB is comparable with

that of the stationary bootstrap for b �n0:7. Note that this exploration of the stationary BLB

is intended as a proof of concept, and additional investigation would help to elucidate further

and perhaps to improve the performance characteristics of this extension of the BLB.
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9. Conclusions

Our results have suggested that the BLB can provide an automatic, accurate means of assessing

estimator quality that is well aligned with modern parallel and distributed computing architec-

tures and is scalable to very large data sets. Nonetheless, the BLB has some limitations, and in

this section we review some of these limitations, present potential remedies and discuss some

avenues of possible future work.

First, recall that the full computational benefits of the BLB are only realized when applying

the procedure to an estimator which scales computationally in the number of distinct data

points that are presented to it (i.e. in the number of distinct atoms in the empirical distribution

of the observed data). However, even when the estimator under consideration does not satisfy

this criterion, the BLB continues to provide substantial benefits with respect to storage and

network transmission of resamples; its space requirements are of order O.b/ rather than O.n/.

This storage benefit in turn allows the BLB to continue to yield some computational advantage

relative to the bootstrap due to the properties of typical computer architectures: smaller BLB

resamples can potentially be stored in main memory, which can be accessed far more quickly

than hard discs (on which larger bootstrap resamples exceeding the capacity of the main memory

would be stored).

We have focused our development of the BLB on the setting of IID data, noting that the pro-

cedure can also be applied, with some modification, to data exhibiting appropriate stationarity

(e.g. stationary time series). However, particularly when working with large data sets, assump-

tions regarding independence and stationarity of the observed data may not be valid. In such

cases, the BLB as presented above would require that the observed data be preprocessed (e.g. via

detrending) to yield a data set which is, for example, stationary. Another potential alternative

would be to alter the BLB to obtain a variant which is directly applicable to non-stationary

data. For instance, one might assume that BLB subsets can be chosen so that the data within

them are stationary. However, after bootstrapping each subset as prescribed by the BLB, the

results could not be combined via simple averaging due to intersubset non-stationarity; rather,

a more complex procedure would be required, as discussed in the related work of Lahiri et al.

(2012).

Note also that, although the BLB allows bootstrap methodology to be scaled to much larger

data sets than the classical bootstrap, it is important to emphasize that for data sets in the

petabyte or exabyte range the ‘small subsets’ that are used by the BLB may themselves be overly

large, and extensions of the BLB approach will be required for scalability to such regimes.

Finally, it is worth noting that, although the BLB shares the statistical strengths of the boot-

strap, we conversely do not expect our procedure to be applicable in cases in which the bootstrap

fails (Bickel et al., 1997). It would presumably be possible to extend the applicability of the BLB

to such edge cases by modifying it to apply the m out of n bootstrap or subsampling, rather than

the bootstrap, to each subsample (e.g. thus yielding the ‘bag of little m out of n bootstraps’).

Although the computational advantages of such a BLB variant would be less pronounced than

in settings in which the bootstrap is consistent, this approach could still provide useful compu-

tational gains, particularly on very large data sets.
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Appendix A

We provide here the key elements of the proofs of the theoretical results that are included in Section 3. See
the on-line supplementary materials for full proofs of all the results.

A.1. Proof sketch for theorem 1
Given that F is a Donsker class, the empirical process Gn =n1=2.Pn −P/ converges in distribution to the
P-Brownian bridge process GP as n →∞. Additionally, defining P

Å
n,b as the empirical distribution of a

size n resample from P
.j/

n,b, theorem 3.6.3 of van der Vaart and Wellner (1996) implies that, conditionally on
the sequence P

.j/

n,b, the sequence of processes G
Å
n,b =n1=2.P

Å
n,b −P

.j/

n,b/ also converges in distribution to GP ,
in probability, as b, n →∞. Now, let R be the random element to which n1=2{φ.Pn/ −φ.P/} converges
in distribution, as given by the functional delta method (van der Vaart, 1998). The delta method for
the bootstrap (see theorem 23.9 of van der Vaart (1998)) then implies that n1=2{φ.P

Å
n,b/ −φ.P

.j/

n,b/} also
converges conditionally in distribution to R, given P

.j/

n,b, in probability. As a result, given the assumed
continuity of ξ, it follows that ξ{Qn.P

.j/

n,b/} and ξ{Qn.P/} have the same asymptotic limit, in probability,
for any j. The continuous mapping theorem (van der Vaart, 1998) then immediately yields the final result
desired. �

To prove theorem 2, remark 1 and theorem 3, we use the following two supporting lemmas, which follow
straightforwardly from the definitions of the pk and p̂k in theorem 2 in conjunction with standard properties
of V-statistics and U-statistics (see the on-line supplementary materials for proofs of the lemmas).

Lemma 1. Assume that X1, : : : , Xb ∼P are IID and let p̂k.X1, : : : , Xb/ be the sample version of pk based
on X1, : : : , Xb, as defined in theorem 2. Then, assuming that E{p̂k.X1, : : : , Xb/

2}<∞, var{p̂k.X1, : : : , Xb/
−pk}=var{p̂k.X1, : : : , Xb/}=O.1=b/.

Lemma 2. Assume that X1, : : : , Xb ∼P are IID and let p̂k.X1, : : : , Xb/ be the sample version of pk based
on X1, : : : , Xb, as defined in theorem 2. Then, assuming that E|p̂k.X1, : : : , Xb/| < ∞, |E{p̂k.X1, : : : ,
Xb/}−pk|=O.1=b/.

A.2. Proof of theorem 2
Summing expansion (3) over j and subtracting expansion (2), we find that

∣

∣

∣

∣

s−1
s

∑

j=1

ξ{Qn.P
.j/

n,b/}− ξ{Qn.P/}

∣

∣
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(
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We now further analyse the first two terms on the right-hand side of expression (4); for the remainder
of this proof, we assume that k ∈ {1, 2}. Observe that, for fixed k, the p̂

.j/

k are conditionally IID given
X1, : : : , Xn for all j, and so

var

{

s−1
s

∑

j=1

.p̂
.j/

k −pk/−E.p̂
.1/

k −pk|Pn/|Pn

}

=
var.p̂

.1/

k −pk|Pn/

s
,

where we denote by E.p̂
.1/

k −pk|Pn/ and var.p̂
.1/

k −pk|Pn/ the expectation and variance of p̂
.1/

k −pk over
realizations of P

.1/

n,b conditionally on X1,. . . , Xn. Now, given that p̂
.j/

k is a permutation symmetric function
of size b subsets of X1, : : : , Xn, E.p̂

.1/

k −pk|Pn/ is a U-statistic of order b. Hence, we can apply corollary
3.2(i) of Shao (2003) in conjunction with lemma 1 to find that

var{E.p̂
.1/

k −pk|Pn/−E.p̂
.1/

k −pk/}=var{E.p̂
.1/

k −pk|Pn/}�
b

n
var.p̂

.1/

k −pk/=O

(

1

n

)

:

From the result of lemma 2, we have

|E.p̂
.1/

k −pk/|=O

(

1

b

)

:

Combining the previous three expressions, we find that
∣

∣

∣

∣

s−1
s

∑
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p̂
.j/

k −pk

∣
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=OP

[√
{var.p̂

.1/

k −pk|Pn/}
√

s

]

+OP

(

1
√

n

)

+O

(

1

b

)

:

Finally, plugging into equation (4) with k =1 and k =2, we obtain the desired result. �

The proofs of remark 1 and theorem 3 follow via similar arguments.
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