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Abstract

The World- Wide- Web is less agent-friendly than we
might hope. Most information on the Web is presented
in loosely structured natural language text with no
agent-readable semantics. HTML annotations struc-
ture the display of Web pages, but provide virtually no
insight into their content. Thus, the designers of intel-
ligent Web agents need to address the following ques-
tions: (1) To what extent can an agent understand
information published at Web sites? (2) Is the agent's
understanding sufficient to provide genuinely useful
assistance to users? (3) Is site-specific hand-coding
necessary, or can the agent automatically extract in-
formation from unfamiliar Web sites? (4) What as-
pects of the Web facilitate this competence?

In this paper we investigate these issues with a case
study using ShopBot, a fully-implemented, domain-
independent comparison-shopping agent. Given the
home pages of several online stores, ShopBot au-
tonomously learns how to shop at those vendors. After
learning, it is able to speedily visit over a dozen soft-
ware and CD vendors, extract product information,
and summarize the results for the user. Preliminary
studies show that ShopBot enables users to both find
superior prices and substantially reduce Web shopping
time.

Remarkably, ShopBot achieves this performance with-
out sophisticated natural language processing, and re-
quires only minimal knowledge about different prod-
uct domains. Instead, ShopBot relies on a combination
of heuristic search, pattern matching, and inductive

learning techniques.
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1 Introduction

In recent years, AI researchers have created several

prototype software agents that help users with email
and netnews filtering (Maes & Kozierok 1993), Web

browsing (Armstrong et al. 1995; Lieberman 1995),
meeting scheduling (Dent et al. 1992; Mitchell et al.
1994; Maes 1994), and internet-related tasks (Etzioni
& Weld 1994). Increasingly, the information such
agents need to access is available on the World- Wide
Web. Unfortunately, the Web is less agent-friendly
than we might hope. Although Web pages are written
in HTML, this language only defines how information
is to be displayed, not what it means. There has been
some talk of semantic markup of Web pages, but it is
difficult to imagine a semantic markup language that
is expressive enough to cover the diversity of informa-
tion on the Web, yet simple enough to be universally

adopted.
Thus, the advent of the Web raises several funda-

mental questions for the designers of intelligent soft-
ware agents:

.Ability: To what extent can intelligent agents un-
derstand information published at Web sites?

.Utility: Is an agent's ability great enough to pro-
vide substantial added value over a sophisticated
Web browser coupled with directories and indices
such as Yahoo and Lycos?

.Scalability: Existing agents rely on a hand-coded
interface to Internet services and Web sites (Krul-
wich 1996; "Etzioni & Weld 1994; Arens et al. 1993;
Perkowitz et al. 1996; Levy, Srivastava, & Kirk
1995). Is it possible for an agent to approach an
unfamiliar Web site and automatically extract in-
formation from the site?

.Environmental Constraint: What properties of
Web sites underlie the agent's competence? Is

sophisticated natural language understanding nec-
essary? How much domain-specific knowledge is
needed?

While we cannot answer all of the above questions con-
clusively in a single conference paper, we investigate



Figure 1:

algorithm,

(a) The learner's algorithm for creating vendor descriptions; (b) the shopper's comparison-shopping

of their catalogs. In particular, while different stores
use different product description formats, the use of
vertical separation is universal. For example, each
store starts new product descriptions on a fresh line.

Online vendors obey these regularities because they
facilitate sales to human users. Of course, there is no
guarantee that what makes a store easy for people to
use will make it easy for software agents to master .
In practice, though, we were able to design ShopBot
to take advantage of these regularities. Our proto-
type ShopBot makes use of the navigation regularity
by focusing on stores that feature a search form.3 The
uniformity and vertical separation regularities allow
ShopBot's learning algorithm to incorporate a strong
bias, and thus require only a small number of training
examples, as we explain below.

3.2 Creating Vendor Descriptions

The most novel aspect of ShopBot is its learner mod-
ule, illustrated in Figure 1 (a). Starting with just an
online store's home page URL, the learner must fig-
ure out how to extract product descriptions from the
site. Leaving aside for now the problem of finding the
particular web page containing the appropriate prod-
uct descriptions, the problem of extracting the prod-
uct descriptions from that page is difficult because
such a page typically contains not only one or more
product descriptions, but also information about the
store itself, meta-information about the shopping pro-
cess (e.g., "Your search for Encarta matched 3 items"
or "Your shopping basket is empty"), headings, sub-
headings, links to related sites, and advertisements.
Initially, we thought that product descriptions would

gation of online vendors in the new product domain.
Nevertheless, we were surprised by the relatively small
amount of knowledge ShopBot must be given before it
is ready to shop in a completely new product domain.

In the rest of this section, we describe some impor-
tant observations that underlie our system, then dis-
cuss ShopBot's offline learning algorithm and its pro-
cedure for comparison shopping. Finally, we give em-
pirical results from our initial prototype ShopBot.

3.1 Environmental Regularities

It may seem that construction of a scalable shopping
agent is beyond the state of the art in AI, because it re-
quires full-fledged natural language understanding and
extensive domain knowledge. However, we have been
able to construct a successful ShopBot prototype by ex-
ploiting several regularities that are usually obeyed by
online vendors. These regularities are reminiscent in
spirit of those identified as crucial to the construction
of real-time (Agre & Chapman 1987), dynamic (Hor-

swiI11995), and mobile-robotic (Agre & Horswill1992)

agents.

.The navigation regularity. Online stores are de-
signed so consumers can find things quickly. For
example, most stores include mechanisms to ensure
easy navigation from the store's home page to a par-
ticular product description, e.g., a searchable index.

.The uniformity regularity. Vendors attempt to
create a sense of identity by using a uniform look and
feel. For example, although stores differ widely from

each other in their product description formats, any
given vendor typically describes all stocked items in
a simple consistent format.

.The vertical separation regularity. Merchants
use whitespace to facilitate customer comprehension

3In future work, we plan to generalize ShopBot to shop
at other types of stores.



shopping agent called ShopBot. ShopBot operates in
two phases: in the learning phase, an omine learner
creates a vendor description for each merchant; in the

comparison-shopping phase, a real-time shopper uses
these descriptions to help a person decide which store
offers the best price for a given product.

The learning phase, illustrated in Figure 1 (a), ana-
lyzes online vendor sites to learn a symbolic description
of each site. This phase is moderately computation-

ally expensive, but is performed omine, and needs to
be done only once per store.2 Table 1 summarizes the

problem tackled by the learner for each vendor. The
learner's job is essentially to find a procedure for ex-

tracting appropriate information from an online ven-
dor.

these issues by means of a case study in the domain of
electronic commerce.

This paper introduces ShopBot, a fully implemented

comparison-shopping agent.l We demonstrate the util-
ity of ShopBot by comparing people's ability to find

cheap prices for a suite of computer software products
with and without the ShopBot. ShopBot is able to

parse product descriptions and identify several prod-
uct attributes, including price and operating system,
for the products. It achieves this performance with-
out sophisticated natural language processing, and re-

quires only minimal knowledge about different product
domains. Instead, it extracts information from online
vendors via a combination of heuristic search, pattern

matching, and inductive learning techniques -with

surprising effectiveness. Our experiments demonstrate
the generality of ShopBot's architecture both within a
domain (we test it on a suite of online software shops)
and across domains (we test it on another domain, on-
line music CD stores).

The rest of this paper is organized as follows. We
begin with a brief description of the online shopping
task in Section 2. Section 3 provides a detailed de-

scription of the ShopBot prototype and the principles
upon which it is built. In Section 4 we present experi-
ments that demonstrate ShopBot's usefulness and gen-

erality. Finally, we discuss related work in Section 5,
and conclude with a critique of ShopBot and directions
for future work.

Table I: The Extraction Procedure Learning Problem

2 The Online-Shopping Task

Our long-term goal is to design, implement, and ana-

lyze shopping agents that can help users with all as-
pects of online shopping. The capabilities of a sophis-
ticated shopping assistant would include: 1) helping
the user decide what product to buy, e.g., by listing
what products of a certain type are available, 2) finding

specifications and reviews of them, 3) making recom-

mendations, 4) comparison shopping to find the best
price for the desired product, 5) monitoring "What's
new" lists and other sources to discover new relevant
online information sources, 6) and watching for special
offers and discounts.

In the remainder of this paper, we discuss our fully-

implemented ShopBot prototype. As a first step,
we have focused on comparison shopping. While
other shopping subtasks remain topics for future work,
ShopBot is already demonstrably useful (see Section 4).

ShopBot's capabilities ( and limitations) form a baseline
for future work in this area.

The comparison-shopping phase, illustrated in Fig-
ure I (b), uses the learned vendor descriptions to shop
at each site and find the best price for a specific product
desired by the user. It simply executes the extraction

procedures found by the learner for a variety of vendors
and presents the user with a summary of the results.
This phase executes very quickly, with network delays

dominating ShopBot computation time.
The ShopBot architecture is product-independent -

to shop in a new product domain, it simply needs a
description of that domain. To date, we have tested
ShopBot in the domains of computer software and mu-
sic CDs. The domain description consists of the in-
formation listed in Table I, plus some domain-specific
heuristics used for filling out HTML search forms, as
we describe below. Supplying a domain description
is beyond the capability of the average user; in fact,
it is difficult if not impossible for an expert to pro-
vide the necessary information without some investi-

3 ShopBot: A Comparison-Shopping

Agent
Our initial research focus has been the design, con-
struction, and evaluation of a scalable comparison-

2If a vendor "remodels" the store, providing different
searchable indices, or a different search result page format,
then this phase must be repeated for that vendor .

lThe current version of ShopBot is publicly accessible at

http://www.cs.washington.edu/research/shopbot.



the combination that will yield successful comparison

shopping.

Table 2: A vendor description.

The learner's basic method is to first find a set of
candidate forms -possibilities for the first decision.
For each form Fi, it computes an estimate Ei of how
successful the comparison-shopping phase would be if
form Fi were chosen by the learner. To estimate this,
the learner determines how to fill in the form (this
is the second decision), and then makes several "test

queries" using the form to search for several popular
products. The results of these test queries are used
for two things. They provide training examples from
which the learner induces the format of product de-
scriptions in the result pages from form Fi (this is the
third decision). The results of the test queries are also
used to compute Ei -the learner's success in finding
these popular products provides an estimate of how
well the comparison-shopping phase will do for users'
desired products. Once estimates have been obtained
for all the forms, the learner picks the form with the
best estimate, and records a vendor description com-
prising this form's URL and the corresponding second
and third decisions that were made for it.

In the rest of Section 3.2, we elaborate on this pro-
cedure. We do not claim to have developed an optimal

procedure; indeed, the optimal one will change as ven-
dor sites evolve. Consequently, our emphasis is on the

architecture and basic techniques rather than low-Ievel
details.

Finding and Analyzing Candidate Forms. The
learner begins by finding potential search forms. It
starts at the vendor's home page and follows URL
links, performing a heuristic search looking for any
HTML forms at the vendor's site. (To avoid putting an
excessive load on the site, we limit the number of pages
the learner is allowed to fetch.) Since most vendors
have more than one HTML form, this procedure usu-

ally results in multiple candidate forms. Some simple
heuristics are used to discard forms that are clearly not

be easy to identify because they would always con-
tain the product name, but this is not always the case;

moreover, the product name often appears in other
places on the result page, not just in product descrip-
tions. We also suspected that the presence of a price
would serve as a clue to identifying product descrip-
tions, but this intuition also proved false -for some
vendors the product description does not contain a

price, and for others it is necessary to follow a URL
link to get the price. In fact, the format of product

descriptions varied widely and no simple rule worked
robustly across different products and different ven-
dors.

However, the regularities we observed above sug-
gested a learning approach to the problem. We con-
sidered using standard grammar inference algorithms

( e.g. , (Berwick & Pilato 1987; Schlimmer & Hermens
1993)) to learn regular expressions that capture prod-
uct descriptions, but such algorithms require large sets
of labeled example product descriptions -precisely
what our ShopBot lacks when it encounters a new ven-
dor. We don't want to require a human to look at the
vendor's web site and label a set of example product

descriptions for the learner. In short, standard gram-
mar inference is inappropriate for our task because it
is data intensive and relies on supervised learning. In-

stead, we adopted an unsupervised learning algorithm
that induces what the product descriptions are, given
several example pages.

Based on the uniformity regularity, we assume all

product descriptions (at a given site) have the same
format at a certain level of abstraction. The basic idea
of our algorithm is to search through a space of possible
abstract formats and pick the best one. Our algorithm
takes advantage of the vertical separation regularity to

greatly reduce the size of the search space. We discuss
this in greater detail below.

Overview. The learner automatically generates
a vendor description for an unfamiliar online mer-
chant. Together with the domain description, a ven-
dor description contains all the knowledge required by
the comparison-shopping phase for finding products at
that vendor. Table 2 shows the information contained
in a vendor description. The problem of learning such
a vendor description has three components:

.Identifying an appropriate search form,

.Determining how to fill in the form, and

.Discerning the format of product descriptions in
pages returned from the form.

These components represent three decisions the learner
must make. The three decisions are strongly interde-
pendent, of course -e.g., the learner cannot be sure
that a certain search form is the appropriate one until
it knows it can fill it in and understand the result-

ing pages. In essence, the ShopBot learner searches
through a space of possible decisions, trying to pick



ular products given in the domain description. It
matches each result page for one of these products
against the failure template; any page that does not
match the template is assumed to represent a success-
ful search. If the majority of the test queries are fail-

ures rather than successes, the learner assumes that
this is not the appropriate search form to use for the
vendor. Otherwise, the learner records generalized
templates for the header and tailer of success pages,
by abstracting out references to product attributes and
then finding the longest matching prefixes and suffixes
of the success pages obtained from the test queries.

The learner now uses the bodies of these pages from
successful searches as training examples from which to
induce the format of product descriptions in the result
pages for this form. Each such page contains one or
more product descriptions, each containing informa-
tion about a particular product (or version of a prod-

uct) that matched the query parameters. However, as
discussed above, extracting these product descriptions
is difficult, because their format varies widely across
vendors.

We use an unsupervised learning algorithm that in-
duces what the product descriptions are, given the
pages. Our algorithm requires only a handful of train-

ing examples, because it employs a very strong bias
based on the uniformity and vertical separation reg-
ularities described in Section 3.1. Based on the uni-

formity regularity, we assume all product descriptions
have the same format at a certain level of abstraction.6
The algorithm searches through a space of possible ab-
stract formats and picks the best one. Our abstrac-
tion language consists of strings of HTML tags and/or
the keyword text. The abstract form of a fragment of
HTML is obtained by removing the arguments from
HTML tags and replacing all occurrences of interven-

ing free-form text with text. For example, the HTML
source:

<li>Click<a href=lIhttp://store.com/Encarta">
here</a>for the price of Encarta.

would be abstracted into "<li>text<a>text</a>text."

There are infinitely many abstract formats in this
language to consider in our search. Of course, we need
only consider the finitely many which actually occur
in one of the bodies of the success pages from the test

products. While this still leaves us with a very large
search space, we can prune the space further. Based on
the vertical separation regularity, the learner assumes
that every product description starts on a fresh line, as

specified by an HTML tag (e.g., <p>, <br>, <li>, etc.).

searchable indices, e.g., forms which prompt the user
for "name," "address," and "phone number" .Each re-
maining form is considered potentially to be a search-
able index; the final decision of which form the shopper
should use is postponed for now.

The learner now turns to its second decision -how
to fill in each form. Since the domain model typically
includes several attributes for each test product, the
learner must choose which attribute to enter in each
of the form's fill-in fields. Our current ShopBot does
this using a set of domain-specific heuristic rules pro-
vided in the domain description.4 The domain descrip-
tion contains regular expressions encoding synonyms
for each attribute; if the regular expression matches the
text preceding a field, then the learner associates that
attribute with the field. In case of multiple matching

regular expressions, the first one listed in the domain
description is used. Fields that fail to match any of
the regular expressions are left blank.

Identifying Product Description Formats.
The learner's third decision -determining the for-
mat of product descriptions in pages returned from the
form -is the most complex. The algorithm relies on
several common properties of the pages typically re-
turned by query engines. (1) For each form, the result
pages come in two types: one for "failure" pages, where
nothing in the store's database matched the query pa-
rameters, and one for "success" pages, where one or
more items matched the query parameters. (2) Suc-
cess pages consist of a header, a body, and a tailer,
where the header and tailer are consistent across differ-
ent pages, and the body contains all the desired prod-
uct information (and possibly irrelevant information
as well). (3) When success pages are viewed at an ap-

propriate level of abstraction, all product descriptions
have the same format, and nothing else in the body
of the page has that format.5 Based on these prop-

erties, we decompose the learner's third decision into
three subproblems: learning a generalized failure tem-

plate, learning to strip out irrelevant header and tailer
information, and learning product description formats.

The learner first queries each form with sev-
eral "dummy" products such as "qrsabcdummy-

nosuchprod" to determine what a "Product Not
Found" result page looks like for that form. The
learner builds a generalized failure template based on
these queries. All the vendors we examined had a sim-

ple regular failure response, making this learning sub-

problem straightforward.
Next, the learner queries the form with several pop-

6In fact, the assumption of a uniform format is justified
by more than the vendor's desire for a consistent look and
feel. Most online merchants store product information in
a relational database and use a simple program to create
a custom page in answer to customer queries. Since these
pages are created by a (deterministic) program, they have
a uniform format.

4We adopted this simple procedure for expedience; it is
not an essential part of the ShopBot architecture. We plan
to investigate enabling ShopBot to override the heuristics
in cases where they fail.

sProperty (2) can be made trivially true by taking the
header and tailer to be empty and viewing the entire page
as the body. However, an appropriate choice of header and
tailer may be necessary to obtain property (3).



through a graphical user interface (GUI) based on the
domain description. The operation of the shopper is
fairly simple. Once it has received a request from the
user via the GUI, it goes in parallel to each online
vendor's searchable index, and fills out and submits
the forms. For each resulting page not matching the
vendor's failure template, it strips off the header and
tailer, and looks in the remaining HTML code for any
results -any logical lines matching the learned prod-
uct description format. It then sorts the results by
ascending order of price,7 and generates a summary
for the user .

ShopBot: Summary of Results

SI-. from ht!D:/lwwwJnt=&- used"". ..-'onnODd gotbaa~

St-. from ht!D:/lwwwovbout=m/ovb.",n""" used ""' ..~rn fo~ ODd got baa ~

SI-. from ht!D:/lwwwavolan.nl." used ""' ..-'orm ODd go, baa ~

Mac:

WlndOM:

~~~';~~~'i:i NN.. V1 nIW1NnnW\"-"""""""CD-ROM"""J 34"'2

Figure 2: A snapshot of ShopBot shopping for Quicken.

4 Empirical Results

In this section we consider the overall usefulness of
the current ShopBot prototype, the ease with which
ShopBot can learn new vendors in the software domain,
and its degree of domain independence.

So the algorithm breaks the body of each result page
into logical lines representing vertical-space-delimited

text, and then only considers abstract formats that
correspond to at least one of the logical lines in one
of the result pages. Thus, instead of being linear in
the size of the original hypothesis space, the learning
algorithm is linear in the amount of training data, i.e.,
the number and sizes of result pages.

The bodies of success pages typically contain logi-
callines with a wide variety of abstract formats, only
one of which corresponds to product descriptions. (See

(Doorenbos, Etzioni, & Weld 1996) for some exam-
pIes. ) The learner uses a heuristic ranking process to
choose which format is most likely to be the one the
store uses for product descriptions. Our current rank-
ing function is the sum of the number of lines of that
format in which some text (not just whitespace) was
found, plus the number in which a price was found,
plus the number in which one or more of the required
attributes were found. This heuristic exploits the fact
that since the test queries are for popular products,
vendors tend to stock multiple versions of each prod-
uct, leading to an abundance of product descriptions
on a successful page. Different vendors have very dif-
ferent product formats, but this algorithm is broadly
successful, as we show in Section 4.

Generating the Vendor Description. The
ShopBot learner repeats the procedure just described
for each candidate form. The final step is to decide
which form is the best one to use for comparison shop-
ping. As mentioned above, this choice is based on mak-
ing an estimate Ei for each form Pi of how successful
the comparison-shopping phase would be if form Pi
were chosen by the learner. The Ei used is simply the
value of the heuristic ranking function for the winning
abstract format. This function reflects both the num-
ber of the popular products that were found and the
amount of information present about each one. The
exact details of the heuristic ranking function do not
appear to be crucial, since there is typically a large
disparity between the rankings of the "right" form and
alternative "wrong" forms.

Once the learner has chosen a form, it records a ven-
dor description (Table 2) for future use by the ShopBot

shopper described in the next section. If the learner
can't find any form that yields a successful search on a
majority of the popular products, then ShopBot aban-
dons this vendor.

The ShopBot learner runs offline, once per merchant.
Its running time is linear in the number of vendors, the
number of forms at a vendor's site, the number of "test
queries," and the number of lines on the result pages.
The learner typically takes 5-15 minutes per vendor.

3.3 Real-Time Comparison Shopping

Learned vendor descriptions are used by the ShopBot
shopper to do comparison shopping, as illustrated in
Figure 1 (b). The shopper interacts with the user

4.1 Evaluating ShopBot Utility

We conjectured that there are two components respon-
sible for the ShopBot's utility. First, the ShopBot shop-
per acts as a repository of knowledge about the web:
since the user interacts with the shopper after the

learning phase has been completed, ShopBot is able to
immediately access online vendors and search for the
user's desired product. Second, the ShopBot shopper is

7Prices are extracted using special hand-coded

techniques.



slightly lower than the users in group 1 found above,
because the data in Table 4 was obtained at a later
date.9) This demonstrates the generality of ShopBot's
architecture and learning algorithm within the soft-
ware domain. The table also shows the variability in
both price and availability across vendors, which mo-
tivates comparison shopping in the first place.

4.3 Generality Across Product Domains

We have created a new domain description that en-
ables ShopBot to shop for pop/rock CD's. We chose
the CD domain, first used by the hand-crafted agent

BargainFinder (Krulwich 1996), to demonstrate the ver-
satility and scope of ShopBot's architecture. With one
day's work on describing the CD domain, we were able
to get ShopBot to shop successfully at four CD stores.

BargainFinder currently shops successfully at three.l0
So with a day's work, we were able to get ShopBot into
the same ballpark as a domain-specific hand-crafted

agent.
Of course, we do not claim our approach will work

with every online vendor. In fact, we know of several
vendors where it currently fails, because its learning

algorithm uses such a strong bias that it cannot cor-
rectly learn their formats. Nevertheless, the fact that
it works on all ten software vendors found by an in-

dependent source strongly suggests that sites where it
fails are not abundant.

both methodical and effective at actually finding prod-
ucts at a given vendor; most users are too impatient
to perform a manual exhaustive search. For our first

experiment, we attempted to measure the usefulness of
the current prototype ShopBot and to determine which

component was responsible for the utility. We enlisted
seven subjects who were novices at electronic shopping,
but who did have experience using Netscape. We di-
vided the subjects into three groups:

1. Those who used ShopBot (3 subjects),

2. Those who used Netscape's search tools and were

also given the URLs of twelve software stores used

by ShopBot (2 subjects), and

3. Those who were limited to Netscape's search tools

(2 subjects).

Two independent parties suggested popular software

items, yielding descriptions of four products: Netscape
Navigatior and Hummingbird eXceed for Windows,
and Microsoft Word and Intuit Quicken for the Mac-
intosh. We asked all subjects to try to find the best
price for these products and to report how long it took
them. Table 3 presents the mean time and prices for
each group.

It is perhaps unsurprising that ShopBot users com-

pleted their task much faster than the other subjects,
but there are several interesting observations to draw
from Table 3. First, subjects limited to Netscape's
search methods never found a lower price than ShopBot
users. Second, although we thought the list of store
URLs might make group 2 subjects more effective than

ShopBot users, the URLs actually slowed the subjects
down. We suspect the tedium of checking stores re-

peatedly caused group 2 subjects to make mistakes as
well. For example, one group 2 subject failed to find
a price for eXceed ( the other found a low price on an

inappropriate version). It seems clear that ShopBot's
utility is due to both its knowledge and its painstaking
search.

4.2 Acquisition of New Software Vendors

To assess the generality of the ShopBot architecture, we
asked an independent person not familiar with ShopBot
to find online vendors that sell popular software prod-
ucts and that have a search index at their Web site.
The subject found ten such vendors, and ShopBot is
able to shop at all of them.8 ShopBot currently shops
at twelve software vendors: the aforementioned ten
plus two more we found ourselves and used in the orig-
inal design of the system. Table 4 shows the prices
it found for each of four test products chosen by inde-

pendent subjects at each store. (Some of the prices are

BOf these ten, four were sites we had studied while de-
signing ShopBot, while six were new. ShopBot requires spe-
cia! assistance on one site, where the only way to get to the
search form is to go through an image map; since ShopBot
cannot understand images, we gave it the URL of the search
form page instead of the URL of the home page.

5 Related Work

We can view related agent work as populating a three-
dimensional space where the axes are the agent's task,
the extent to which the agent tolerates unstructured

information, and whether its interface to external re-
sources is hand-coded. In this section, we contrast
ShopBot with related agents along one or more of these
dimensions. ShopBot is unique in its ability to learn to
extract information from the semi-structured text pub-
lished by Web vendors.

Much of the related agent work requires structured
information of the sort found in a relational database

(e.g., (Levy, Srivastava, & Kirk 1995; Arens et al.
1993)). The Internet Softbot (Etzioni & Weld 1994)
is also able to extract information from the rigidly for-
matted output of UNIX commands such as Is and
Internet services such as netfind. There are agents
that analyze unstructured Web pages, but they do so

gOne subject in group 2 managed to find a lower price
for Quicken than ShopBot, by going to a web site ShopBot
didn't know about.

lOIn our informal experiments, BargainFinder tried to
shop at eight stores. Three of them blocked out its access.
It was successful at three others. At the remaining two, it
tried but failed to find products. We were able to find prod-
ucts at these two stores "by hand," so BargainFinder's fail-
ure may be the result of buggy or out-of-date hand-crafted
code written just for these two stores (which motivates our
use of a learning algorithm in the first place).



Navigator eXceed Word Quicken
1 13:20 30.71 373.06 282.71 42.95

2 112:30 38.21 (not found) 282.71 41.50 I

3 58:30 40.95 610.00 294.97 42.95 I

Table 3: Subjects using the ShopBot performed the task much faster and generally found lower prices.

Home Page URL Navigator eXceed Word Quicken

http : / /www .internet. net/ $ 28.57 $ 282.71~43~o6

http://www.cybout.com/cyberian.html 36.95 289.95 42.95
http://necxdirect.necx.com/ 31.95 329.95 42.95

http://www.sparco.com/ 35.00 312.00 49.00

http://www.warehouse.com/ 39.95

http://www.cexpress.com/ ? ? ?
http://www.avalon.nf.ca/ 44.95

http://www.azteq.com/ ? ?

http://www.cdw.com/ 289.52

http://www.insight.com/web/zdad.html 315.00

http://www.applied-computer.com/twelcome.html
http://www.sidea.com/

?

$ 349.56 43.47
59.00

Table 4: Prices found by ShopBot for the four test products at twelve software stores. A space left blank indicates
that ShopBot successfully recognized that the vendor was not selling this product; "?" indicates ShopBot found
the product but did not determine the price; "-,, indicates that ShopBot failed to find the product even though the
vendor was selling it.

lied on hand-coded "wrappers" to parse the response
from each Web site into a small, ordered list of rele-
vant tokens. Thus, ShopBot is solving a different learn-

ing problem than ILA: instead of trying to interpret
each of a list of relevant tokens, ShopBot attempts
to identify the relevant tokens and learn the format
in which they are presented. ShopBot replaces ILA's

hand-coded wrappers with an inductive learning algo-
rithm biased to take advantage of the regularities in
Web store fronts.

Along the task dimension, BargainFinder (Krul-
wich 1996) is the closest agent to ShopBot. Indeed,

ShopBot's task was inspired by BargainFinder's feasi-
bility demonstration and popularity. However, there
are major technical differences between BargainFinder
and ShopBot. Whereas BargainFinder must be hand-
tailored for each store it shops at, the only information

ShopBot requires about a store is its URL -ShopBot
uses AI techniques to learn how to extract information
from the store.

6 Summary, Critique, & Future Work

Although the Web is an appealing testbed for the de-
signers of intelligent agents, its sheer size, lack of or-
ganization, and ubiquitous use of unstructured natu-
ral language make it a formidable challenge for these
agents. In this paper we presented ShopBot, a fully-
implemented comparison-shopping agent that operates
on the Web with surprising effectiveness. ShopBot au-

only in the context of the assisted browsing task (Arm-
strong et at. 1995; Lieberman 1995), in which the

agent attempts to identify promising links by infer-
ring the user's interests from her past browsing behav-
ior. Finally, there have been attempts to process semi-

structured information, but again in a very different
context than ShopBot. For example, FAQ-Finder (Ham-
mond et at. 1995) relies on the special format of FAQ
files to map natural language queries to the appropri-
ate answers.

In contrast with ShopBot, virtually all learning soft-
ware agents ( e.g., (Maes & Kozierok 1993; Maes 1994;
Dent et at. 1992; Knoblock & Levy 1995)) learn about
their user's interests, instead of learning about the ex-
ternal resources they access. The key exception is the
Internet Learning Agent, ILA (Perkowitz et at. 1996).
I LA learns to understand external information sources

by explaining their output in terms of internal cate-
gories. ILA learns by querying an information source
with familiar objects and analyzing the relationship of

output tokens to the query. For example, it queries
the University of Washington personnel directory with
Etzioni and explains the output token 685-3035 as
his phone number .

ShopBot borrows from ILA the idea of learning by
querying with familiar objects. However, ShopBot
overcomes one of ILA's major limitations. ILA focused
exclusively on the problem of category translation and
explicitly finessed the problem of locating and extract-
ing relevant information from a Web site -ILA re-



to vendors it considers likely to stock the product at
a good price.

.ShopBot relies heavily on HTML. If a vendor pro-
vides information exclusively by embedding it in
graphics or using Java, ShopBot will be unable to
handle the vendor. However, future versions of

ShopBot should be able to run Java applets and at-
tempt to analyze their output, just as ShopBot cur-
rently does with HTML. We acknowledge that in
some cases the output will be too complex or too

graphical to permit analysis, but hope that the prob-
lem will be lessened by the fact that vendors tend to
include "Iow-technology" formats for the benefit of
users on slow network links and users whose browsers
are not Java-compliant. Finally, in the more dis-
tant future, agents may have sufficient value to users
that they will clamor for vendors to provide agent-

friendly interfaces to their stores.

All these issues need to be addressed in future re-
search. We also plan additional tests of the ShopBot
learner to demonstrate scalability to more domains

( e.g., books, consumer electronics, etc.). Each of these
domains consists of products that can be concisely
described with a small number of attributes, so it
should be feasible to develop domain descriptions for
them. We hope to endow ShopBot with more knowl-
edge about the various product domains. For example,
we plan to provide ShopBot with rough price expecta-
tions for different products. A $1.00 price for Encarta
is probably an error of some sort, not a bargain.

We believe that the basic ideas behind the learn-

ing algorithm of Section 3.2 are not limited to cre-
ating descriptions of product catalogs. We are plan-
ning to extend the algorithm to generate "wrappers"
( i. e. , interface functions) for accessing databases whose

contents can be described with relational schemata
and whose search forms can be interpreted as re-
lational operations restricted with the use of bind-

ing templates (Rajaraman, Sagiv, & Ullman 1995;
Kwok & Weld 1996). For example, we are general-
izing our approach to learn the contents of Web-based
Yellow Pages services.

More generally, we conjecture that the vendor reg-
ularities that facilitate ShopBot's success are far from
unique. ShopBot is a case study suggesting that many
Web sites are semi-structured and thus amenable to
automatic analysis via AI techniques. We anticipate
that regularities will be discovered in other classes of
Web sites, which will enable intelligent Web agents to
thrive. Although the Web is less agent-friendly than
we might hope, it is less random than we might fear .

tomatically learns how to shop at online vendors and
how to extract product descriptions from their Web
pages. It achieves this performance without sophisti-
cated natural language processing, and requires only
minimal knowledge about different product domains.
Instead, it uses heuristic search, pattern matching, and
inductive learning techniques which take advantage of
regularities at vendor sites. The most important regu-
larity we observed empirically is that vendors structure
their store fronts for easy navigation and use a uniform
format for product descriptions. Hence, with a modest
amount of effort ShopBot can learn to shop at a Web
store.

The experiments of Section 4 demonstrate that
ShopBot is a useful agent which successfully navigates a
variety of stores and extracts the relevant information.
The first experiment showed that ShopBot provided

significant benefit to its users, who were able to find
better prices in dramatically less time than subjects
without ShopBot. The second and third experiments
showed that ShopBot scales to multiple stores and mul-

tiple product domains. It shops successfully at all ten
software stores found by an independent person. And
although it was originally designed for software, a new
domain description enabled it to shop for CD's as well,
with coverage comparable to that of BargainFinder, an

agent custom built for this domain.
While our experiments have shown that the ShopBot

prototype is remarkably successful, they have also re-
vealed a number of limitations. Some of these apply to
ShopBot as it stands now, and can probably be fixed
with fairly straightforward extensions:

.ShopBot needs to do a more detailed analysis of

product descriptions. It does not distinguish be-
tween upgrades to a product and the product itself.
Because the upgrades tend to be cheaper than the

product, they appear higher in ShopBot's sorted list.

.ShopBot relies on a very strong bias, which ought
to be weakened somewhat. In particular, ShopBot
assumes that product descriptions reside on a single
line, and that product description lines outnumber
other line types. A more sophisticated learning al-

gorithm would check whether these assumptions are
violated, and if so, resort to a more subtle analysis
of the vendor's product descriptions.

Other concerns may impact the ShopBot's basic archi-
tecture:

.ShopBot is limited to stores that provide a search-
able index. Some online stores, especially ones with
smaller inventories, provide no index, but use a hier-

archical organization instead. ShopBot needs to be
able to navigate such hierarchies-

.The ShopBot shopper's performance is linear in the
number of vendors it accesses ( except for the negli-
gible cost of sorting the final results). Once an order
of magnitude more merchants populate the Web, it
will be important for ShopBot to restrict its search
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