
Available online at www.sciencedirect.com
www.elsevier.com/locate/inffus

Information Fusion 9 (2008) 354–369
A scalable correlation aware aggregation strategy
for wireless sensor networks

Yujie Zhu a,*, Ramanuja Vedantham a, Seung-Jong Park b, Raghupathy Sivakumar a

a School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
b Department of Computer Science Louisiana State University, Baton Rouge, LA 70803, USA

Received 8 September 2005; received in revised form 4 September 2006; accepted 23 September 2006
Available online 13 November 2006
Abstract

Sensors-to-sink data in wireless sensor networks (WSNs) are typically characterized by correlation along the spatial, semantic, and/or
temporal dimensions. Exploiting such correlation when performing data aggregation can result in considerable improvements in the
bandwidth and energy performance of WSNs. In this paper, we first identify that most of the existing upstream routing approaches
in WSNs can be translated to a correlation-unaware data aggregation structure – the shortest-path tree. Although by using a short-
est-path tree, some implicit benefits due to correlation are possible, we show that explicitly constructing a correlation-aware structure
can result in considerable performance improvement. Toward this end, we present a simple, scalable and distributed correlation-aware
aggregation structure that addresses the practical challenges in the context of aggregation in WSNs. Through simulations and analysis,
we evaluate the performance of the proposed approach with centralized and distributed correlation-aware and -unaware structures.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Wireless sensor networks (WSNs) have gained tremen-
dous importance in recent years because of their potential
use in various fields. However, the devices used for sensing
and communication in these networks are usually small,
cheap and low-powered and hence, have limited resources
for computation as well as for communication. This has
spurred a need for efficient protocols tailored specifically
towards sensor network environments.

One of the key tasks performed by any WSN is the col-
lection of sensor data from the sensors in the field to the
sink for processing. This task is also referred to as data

gathering. An important challenge associated with data
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gathering is to reduce the message cost to minimize the
bandwidth usage of the network and the energy consump-
tion of the sensor nodes. In this paper, we consider the
problem of efficient data gathering in environments where
the data from the different sensors are correlated. Such cor-
relation of data being collected can be leveraged by appro-
priately fusing the data in the network to the best extent
possible. Hence, the specific problem addressed in this
work can be stated as: How should an energy-efficient data

gathering structure be constructed to leverage any existing
correlation between data reported by the sensors?

Many research work have proposed solutions to con-
struct correlation-aware structures [1–3]. However, these
approaches are either centralized and require complete
knowledge regarding the number and location of sources,
or do not address several important practical challenges
for WSNs, such as ease of construction, maintenance
and synchronization requirements. Therefore, those
approaches are not suitable for a real-life sensor network
environment.
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In this context, we present a simple, scalable, and dis-
tributed approach called SCT (semantic/spatial correla-
tion-aware tree) that does not require any centralized
coordination while still achieving potential cost benefits
due to efficient aggregation. The SCT structure is instanta-
neously constructed during the course of a single query
delivery and does not require any knowledge of the number
of sources or their locations. The SCT approach, with its
highly manageable structure, ensures low maintenance
overhead of the aggregation structure, eliminates the need
for global synchronization among sensors for aggregation
of sensor-data, while also addressing the other challenges
described in Section 4 including load balancing and node
failures. Through simulations and analysis, we establish
the message costs incurred by SCT for a variety of network
conditions, and compare them with an ideal correlation-
aware and a correlation unaware approach. We show that
SCT, though simple in its realization, can achieve substan-
tial performance benefits.

The rest of the paper is organized as follows: Section 2
defines the problem and Section 3 discusses existing data
gathering structures and analyzes their characteristics.
Section 4 identifies the different challenges in designing a
practical, efficient correlation-aware structure. Section 5
presents the key design principles in the SCT approach
and describes how it addresses the corresponding chal-
lenges. Section 6 explains the SCT approach in detail.
Section 7 evaluates the performance of SCT in comparison
to ideal structures and practical implementation of shortest
path tree (SPT). Section 8 discusses the issues pertaining to
the SCT approach while Section 9 concludes the paper.
2. Problem definition

We consider a multi-hop WSN with one sink at the cen-
ter and n sensors distributed randomly in a circular field
according to a Poisson process.1 The sink sends a query
and k of the n sensors respond to the query. We refer to
these sensors that have information to send as sources in
the rest of the paper. We assume that all the sensors have
the same fixed transmission range equal to cr0, where c is
a small constant (c > 1) and r0 is the minimum connectivity
transmission range [4].

As a measure of the energy efficiency of a data gathering
structure, we define its message cost as the total number of
transmissions required for responses from all k sources to
reach the sink. Our primary goal is to minimize message
cost when there is correlation present between data from
different sources.

The following two types of correlations are considered
in this paper:
1 Note that the assumptions about the shape of the sensor field and the
location of the sink are made for better illustration of the proposed
approach and are not essential to the solution. We will discuss the
implications of different network shapes and sink locations in Section 8.
• Spatial correlation: This refers to the correlation of the
data reported by multiple sensors sensing the same event
or phenomenon. For example, consider the query: what
is the temperature in the region defined by the rectangle
(x1,y1,x2,y2)? Given the typical dense deployments of
sensors in WSNs, it is likely that the sensing regions of
two different sensors within the rectangular region over-
lap. Consequently, the data reported by these sensors
are spatially correlated. If the two sensors are very close
to each other, the data reported by both sensors is prac-
tically the same, which implies that the sensors are per-
fectly correlated.

• Semantic correlation: This refers to the correlation of
data reported by multiple sensors due to the semantics
of the query. The messages from different sensors report-
ing different events or phenomena and hence the content
of these messages may not be spatially correlated. How-
ever, if the query imposed is not about the specific
details of each event, but about certain statistics over
the entire event region, it is likely that the messages gen-
erated by each source can still be aggregated. For exam-
ple, consider the query: Is the total number of cars in the
rectangular region (x1,y1,x2,y2) greater than K? In this
case, even if the sensors are reporting data about differ-

ent cars, the information reported is correlated as it is
only required to find the total number of cars and con-
sequently determine if it is greater than K. Responses to
statistical queries such as min, avg, max, usually fall
under this category.

Characterizing the correlation existing between sensor
data is a fairly complicated task, since the nature of corre-
lation differs with the type of applications considered. Even
for a simple correlation model, the mathematical represen-
tation becomes difficult when multiple distributed sources
are involved. For simplicity, we adopt the same correlation
model used in reference [1], where each raw data packet is
assumed to bring a fixed amount of new information into
the aggregated data packet. Specifically, if q is defined to
be the correlation degree, and m to be the sizes of raw data
packets generated by sensor nodes, then after aggregation
of two data packets, the message size becomes
m + (1 � q)m. Similarly, for n sources, the aggregated data
packet has a size of m + (n � 1)(1 � q)m. Correlation
degree q = 1 means that two messages are perfectly corre-
lated (i.e. semantic correlation) therefore can be reduced
to one message of the same size. Correlation degree
0 < q < 1 indicates that two messages are partially corre-
lated (i.e. spatial correlation), while q = 0 implies that
two messages are independent of each other.

3. Related work

3.1. Correlation unaware approaches

We now consider two of the popular choices used in the
design of routing protocols in sensor networks: (i) using the
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query paths to construct the sensors-to-sink routes and (ii)
using the location information of sensors and the sink to
forward messages to the sink. Most of the contemporary
routing approaches [5–7] fall under one of the two catego-
ries in terms of basic routing design principle. We consider
directed diffusion [5] and GPSR [6] as representative exam-
ples of (i) and (ii), respectively, and show that the structure
generated by these approaches can be translated to a Short-
est Path Tree (SPT).

In directed diffusion [5], sink requests data by sending
interests for named data. The interests are propagated
through the network wherein every node delivers the inter-
est to all its neighbors through a local broadcast. During
the diffusion process, all nodes set up gradients towards
their neighbors from which the interest was received. While
there are different possible criteria for the reinforcement of
the gradient, the most common practice results in a short-
est path tree rooted at the sink [1,8].

GPSR is a geographic routing protocol that eliminates
the need to maintain states while performing routing. In
this approach, every source in the sensor field knows the
geographical location of the sink, and addresses the mes-
sage for sink with the specific location. For each hop along
the path to sink, a node chooses the node closest in geom-
etric distance to the sink as the next hop destination and
forwards the message to it. Since GPSR delivers a vast
majority of packets in the optimal number of hops [6],
the data gathering tree again approximates shortest path
tree.

From the previous discussion we establish that two of
the representative routing schemes in sensor networks are
approximations of shortest path trees. Since the primary
goal of this structure is to minimize delay, shortest path
tree is not a correlation-aware data gathering structure.
Even though opportunistic aggregation may still occur
when different paths overlap with each other, this structure
does not maximize the aggregations possible in the net-
work. A correlation-aware structure, on the other-hand,
would be able to cut down message cost by explicitly facil-
itating data aggregation in the network.

3.2. Correlation-aware approaches

Several related work have been proposed in the context
of explicit aggregation [1–3,8]. We categorize them into two
general classes: correlation-aware structures assuming
complete global source knowledge and incomplete source
knowledge.

3.2.1. Structures built with complete source knowledge

When the full knowledge about source location is
known, the Steiner tree over all sources, sink and non-
source nodes gives the optimal message cost when the
degree of correlation is close to 1. However, the computa-
tion of Steiner tree is an NP-hard problem [9].

In [1,8], the authors propose simple heuristics that
approximate the Steiner tree to perform efficient aggrega-
tion when messages are correlated. For any given correla-
tion factor 0 < q 6 1, the authors describe (i) leaves
deletion heuristic and (ii) balanced SPT/multiple Traveling
Salesman Problem (TSP) tree as simple alternatives of the
Steiner tree.

In [10], the authors first identify that the message cost
can be modeled as a concave-cost function for any correla-
tion factor 0 < q < 1, and propose an algorithm that con-
structs approximation trees simultaneously good for all
concave cost functions.

However, these approaches require complete informa-
tion regarding the number of sources and their location
to be available at the sink and cannot work for the cases
when the information is incomplete. While such informa-
tion can be made available via queries and responses, the
overheads involved in acquiring such information both in
terms of message cost and delay could be potentially pro-
hibitive. Moreover, they are centralized approaches hence
do not scale well with increasing node densities typical to
WSN environments. Finally, these approaches try to solve
the problem of efficient aggregation from a theoretical per-
spective and do not consider the practical challenges that
we identify in Section 4.

3.2.2. Structures built with incomplete source knowledge

[2,3] address the more general problem of building
aggregation structure with optimal expected cost when
the knowledge of sources is incomplete.

The problem considered by both work is a network with
a root node and a collection of N client nodes in the net-
work. Each client, i, may choose to contact the root inde-
pendently from others with some probability pi along a
path from itself to the root. If a client chooses to contact
the root, the edges on this path become active. The goal
is to minimize the expected number (or cost) of active net-
work edges over a random choices of the clients. This prob-
lem is a stochastic version of the deterministic Steiner tree
problem.

The stochastic Steiner tree problem is an NP-complete
problem. Therefore, the focus of this work is on developing
constant-factor approximation algorithms. In [2], the
authors observe that the optimum solution is invariably a
tree, and the optimum tree consists of a central ‘‘hub’’ area
within which all edges are almost certainly used, together
with a fringe of ‘‘spokes’’ in which multiple clients contrib-
ute independently to the cost of the solution. To set up a
good approximation structure, their solution leverages a
facility location algorithm to identify a good set of ‘‘hubs’’
to which clients route messages at independent costs, and
the set of hubs are connected using a Steiner tree algorithm.
In [3], the authors design a similar structure constructed in
two stages: during the first stage, a subset of nodes D is
chosen by picking each node independently from the net-
work with probability proportional to pi, then a minimum
spanning tree is built over D; later revealed clients request-
ing services are connected to the existing structure with an
augmentation algorithm. Using the above principle, the
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authors propose a two-approximate algorithm for the sto-
chastic Steiner tree problem.

Both papers propose good constant-factor approx-
imation algorithms. However, they are not distributed
solutions and are not tailored for sensor network environ-
ments. For example, [2] requires building a Steiner tree
over ‘‘hubs’’, and [3] requires building a minimum span-
ning tree to form a first-stage backbone. Both need central-
ized computation with high complexity. Also, they assume
a fixed probability for nodes responding to a query and do
not handle the situation where the source density is vari-
able. Finally, they do not address all the practical chal-
lenges we identified in Section 4.

4. Challenges

The main goal of this work is to design an efficient
aggregation structure that minimizes the message cost. To
realize this goal, we first identify the following important
challenges and list the desirable properties of a solution
that addresses the challenges.

4.1. Construction

The foremost consideration in building an aggregation
structure is the manner in which the aggregation structure
is constructed. We have already seen that existing
approaches in WSNs are correlation unaware and approx-
imate a shortest path tree (SPT). In a SPT, aggregation is
not efficient even if the data from the sources are highly
correlated because the primary concern is to minimize the
delay. The ideal solution for the aggregation structure
would be a Steiner tree or a stochastic Steiner tree [2],
which depends on whether complete source knowledge is
available at the time of construction. However, both prob-
lems are NP-hard.

Even the approximation algorithms for constructing a
Steiner tree impose requirements such as the information
regarding the number of sources and the location of them
to be available at the sink a priori. This information could
be obtained if the sink adopts a two-phase querying proce-
dure, where the query is sent in the first phase and the
responses collected reveal the location of the sources inter-
ested in responding to that query. In the second phase, the
sink initiates the construction of the approximation of a
Steiner tree to optimize the message cost of the data trans-
mitted. However, the overhead involved is O(k), where k is
the number of sources. This overhead might be comparable
or even exceed the message cost of the aggregated mes-
sages. Another drawback of such a two-phase approach
is the delay incurred in determining required information.

Moreover, the types of queries and responses sent may
influence the nature of the ideal solution required for
aggregation. The queries and responses can be categorized
as (1) single query and one-time responses from the
sources, (2) single query and multiple continuous responses
from the same set of sources and (3) single query and multi-
ple responses from a varying set of sources. We will explain
each of these classifications briefly and present the ideal
solution for each classification:

• One-shot queries and responses: In this category, the sen-
sors send a one-time query and the corresponding
responses from the sources are also one-time responses.
In this case, the two-phase procedure that we had dis-
cussed above will be clearly infeasible both in terms of
delay and message cost, since the message cost of the
first phase will be comparable to the message cost of
the aggregated responses. If the probability distribution
of sources is given, the stochastic Steiner tree is the opti-
mal aggregation structure.

• Single queries and multiple responses from the same set of

sources: Here, the sink sends one-time queries but the
responses from each sensor may comprise multiple
packets. However, the set of sensors responding to the
query remains the same over all the packets. If the num-
ber of continuous responses is large, the cost incurred in
determining the number of sources in a two-phase
approach could be amortized over the message costs
involved in aggregation. In this case, the network Steiner
tree is the optimal aggregation solution.

• Single query and multiple responses from a varying set of

sources: Here, the responses to the one-time queries may
comprise multiple messages but the responding source
sets may vary with time. For this case, it is desirable
to have a solution that is independent of the location
of sources or the number of sources. Therefore, the opti-
mal solution is neither a network Steiner tree nor a Sto-
chastic Steiner tree problem as the set of sources and
their probability can vary for different packets. We
define this problem as a generalized Stochastic Steiner

tree problem.

In summary, a desirable practical solution should con-
sider the tradeoffs between the overhead involved in the
construction process itself on the one hand, and the mes-
sage cost of the aggregation structure on the other hand,
and ensure that it is reasonably efficient across all query
and response paradigms.

4.2. Maintenance

An aggregation structure may be modified or recon-
structed after a certain period of time to accommodate load
balancing, node failures or for any other reasons.

Load balancing is to ensure that the energy consumed
by all the nodes is fairly even over a certain period of time.
In an aggregation structure, aggregation nodes take the
responsibility of receiving, computing and transmitting of
aggregated messages, hence consume more energy than
non-aggregation nodes. If the role of aggregation node is
performed by a certain node for a long time, this node
may fail much earlier than other nodes, impacting the con-
nectivity of the network. To address this issue, we would
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like to spread the roles of aggregation nodes among all
nodes so that the network does not become disconnected
prematurely.

The aggregation structure should also be resilient to
node failure, which is very common in sensor networks.
Otherwise, it is likely that some messages will never reach
the sink even though there may be alternate paths avail-
able. Therefore, when node failure occurs, the structure
should have the ability to adapt and form a different,
near-efficient structure.

One way to reconstruct the structure is where the nodes
send explicit beacons to the central coordinator requesting
a structure modification, and the coordinator reconstructs
the structure partially or globally according to the number
of nodes requesting such changes. However, this approach
requires central coordination and may incur large over-
heads. In a more desirable approach, nodes should be able
to reconstruct the aggregation structure in a distributed
fashion with low overheads and delay.

4.3. Synchronization requirements

One of the main considerations for any aggregation
scheme is the time each node has to wait before it aggre-
gates the messages received from all sources downstream
of it. We refer to these timing requirements as synchroniza-
tion requirements. In the absence of such timing require-
ments, messages from some downstream sources may
arrive after aggregation at a particular aggregation node
and hence need to be transmitted separately. This will
increase the message cost despite the existence of an effi-
cient aggregation structure.

Ideally, a scheme should enable an aggregation node to
wait until the arrival of messages from all sources down-
stream before aggregation is performed. One way to do this
is by having a timer at every node and wait for the expira-
tion of the timer based on a waiting function, similar to the
one described in [11], before performing aggregation. In
this approach, each node waits for a time corresponding
to MAX � i · D after the reception of the first response,
where MAX is the maximum wait time proportional to
the depth of the aggregation tree constructed, i is the hop
count of the node from the sink and D is the average degree
of a sensor node. When the timer expires, it is assumed that
all the messages from sources downstream have arrived at
this node and the messages are aggregated. One of the
obvious problems of this approach is that the nodes use
the average degree of the network as opposed to the degree
of that particular node. This makes the timer value not
accurate and may cause imperfections in aggregation. On
the other hand, the problem with incorporating a fine-
grained timer is the higher message overhead of time syn-
chronization, and complicated computation at each sensor
node.

In order to address this problem, an ideal aggregation
structure should facilitate event-driven aggregation and
should rely on timing requirements only sparingly. In this
case, the timers can be made coarse as they will not be used
often.
4.4. Other considerations

An aggregation approach should also be reasonably effi-
cient in terms of message cost when the degree of correla-
tion varies (0 < q 6 1). In addition, it should be able to
perform efficient aggregation irrespective of the distribu-
tion of sources. As we will see in Section 7, the proposed
approach takes into account these considerations and
performs reasonably well for a wide range of network
scenarios.
5. The SCT design basis

The design of SCT is predicated on two important
elements:

• An aggregation backbone facilitating the generation of
efficient aggregation trees

• A fixed structure independent of source distribution and
density.2

These two design elements address the challenge of effi-
cient construction, and incorporate the characteristics and
requirements of sensor networks. In this section, we estab-
lish and justify these two design elements. The details of
SCT approach will be present in Section 6.
5.1. Motivation for a ring-and-sector division

Our target problem of data collection with variable
source distributions and densities can be thought of as a
generalized version of the stochastic Steiner tree problem.
The stochastic Steiner tree gives the optimal message cost
when there is a given source probability while our goal is
to find the efficient aggregation tree for variable source
probabilities. In [2,3], the authors have presented central-
ized constant-factor approximations to the stochastic Stei-
ner tree problem. In this subsection, we will provide
motivation of the structure we used to approximate the
generalized stochastic Steiner tree, adopting similar argu-
ments provided by the above two related work.

Consider the network model in which each sensor, i, has
a probability, pi, to report data to sink. If an edge e

between two sensor nodes is used by a set of source node
D to transmit data to sink, then the cost of this edge can
be defined as:

ce ¼ Pr½e is active� ¼ 1�
Y
i2D

ð1� piÞ ð1Þ



Fig. 1. SCT structure: rings, sectors and aggregation nodes.
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This cost function captures the tradeoffs in the characteris-
tics of data transmission and correlation in sensor net-
works as follows: when more sources use one particular
edge, the total communication cost for this edge increases;
on the other hand, the cost per message decreases due to
the correlation between multiple messages. Since the ce is
a concave function, if the number of sources using one edge
is beyond a certain value, adding more sources causes only
a minimal increase in the total cost. Therefore, it pays to
place a certain number of aggregation nodes in the network
with the property that all the edges between those aggrega-
tion nodes are highly utilized. The sources can then connect
opportunistically to closest aggregation nodes using edges
with a higher cost. With this structure, the total expected
cost of the aggregation tree for a certain source probability
distribution can be minimized.

Based on these observations, a good aggregation struc-
ture should have the following features: (i) A subset of
nodes is chosen as aggregation nodes and a spanning tree
is built on top of these nodes to form a ‘‘backbone’’ for
aggregation; (ii) Each node in the backbone is responsible
for aggregating messages from sources within a certain
sub-area.

There are many ways to construct the aggregation back-
bone. In this paper, we design a uniform division of the net-
work to assist in the construction of the backbone, based
on the following criteria:

• The division of the network should facilitate the distrib-
uted selection of aggregation nodes within the network
with no additional message overhead.

• The division should result in energy-efficient data aggre-
gation irrespective of distribution of sources.

• The interconnection of aggregation nodes to form the
backbone should be achieved in a distributed fashion
with low overhead.

• The division of the network should ensure easy connec-
tivity of all non-backbone nodes to the aggregation
backbone.

In SCT, one such efficient division of the network is
adopted, where the network is divided into rings and sec-
tors. The division not only addresses all of the above desired
criteria, but is also characterized by several impressive
practical benefits, including lack of global synchronization

requirement for aggregation of sensor-data, ability to per-
form load balancing with no additional message overhead,
ability to address node failures, etc. The ring-sector division

is also characterized by the unique invariant that a message

sent by any source always propagates towards the sink at

each hop, because of the symmetrical structure of the divi-

sion. We elaborate more on the motivations of ring-sector
division in SCT later in this section and in Section 6.

As illustrated in Fig. 1, the network is divided into m
concentric rings with the same width (R/m). Each ring is
in turn divided into sectors of the same size such that on
average each sector contains about n0 nodes. For each sec-
tor, an aggregation node is chosen as a member of the
aggregation backbone, and each aggregation node in ith
ring is connected to it’s upstream aggregation node in (i-
1)th ring via shortest path. The collection of all aggregation
nodes and shortest paths form the backbone aggregation
tree. Each aggregation node is responsible for collecting
messages from all sources in the sector it belongs to.

As we will see in the Section 6, this structure can facili-
tate the realization of a desirable aggregation backbone in
a distributed fashion. But the problem is only partially
addressed because our goal is an optimal aggregation struc-
ture for variable source densities. Therefore, the next ques-
tion is what is the optimal number of the aggregation
nodes. An immediate observation is that with increasing
number of sources, the number of optimal backbone aggre-
gation nodes increases. This can be explained intuitively as
follows: when the number of sources is small, probability
of aggregating two or more messages from different sources
at an aggregation node is relatively small. Moreover, hav-
ing more aggregation nodes translates to a backbone with
higher cost, because of the additional transmissions
required by the aggregation nodes. Therefore, fewer aggre-
gation nodes are more desirable.

However, as source number increases, the probability
that two or more messages from sources being aggregated
at each aggregation node increases. Therefore, addition of
aggregation nodes helps in aggregating the messages from
different sources as early as possible. In this case, the addi-
tional cost incurred by introducing extra aggregation nodes
can be offset by the reduced high-transmission cost edges
used due to early aggregations. Hence, as source density
increases, more aggregation nodes are desirable.

As we identified above, a good approximation of opti-
mal structure should adapt with different source densities:
the higher the source density, the more nodes are involved
in the backbone. This indicates that the proposed ring-sec-
tor structure should also adapt to source densities in order
to approximate the optimal solution. However, in the next
subsection, we will show that a fixed structure satisfying
certain properties is reasonably efficient for a wide range



Fig. 2. The optimal structures when n = 2000.
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of source densities, and hence motivate a relatively stable
aggregation structure with low maintenance overhead.

5.2. Motivation for a source-independent aggregation

structure

In the previous sub-section we pointed out that for the
ring-sector structure proposed, the optimal number of
aggregation nodes increases with the source density. In this
sub-section, we will show that when the source density is
beyond a certain point, the optimal structure stays the
same because of a ‘‘saturation’’ phenomenon. Thus, by
choosing a fixed aggregation structure, we are able to do
efficient aggregation for a large range of source densities
while incurring very little construction overhead.

The optimal sector size generally reduces with increasing
source density. But this reduction is not always desirable.
Consider a certain threshold source number k0 at which
the optimal sector size is small enough such that aggrega-
tion node just falls into transmission range of every other
node in the sector. We call the size of the sectors at this
point the saturation size. In this case, every source message
can reach aggregation node with 1-hop transmission.
Reducing sector beyond the saturation size will not help
increasing aggregation efficiency. Furthermore, the intro-
duction of additional aggregation nodes increases the mes-
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sage cost. Thus, when the number of sources, k, is
increased beyond k0, decreasing the sector size results in
increased message cost. Therefore, when k > k0, the opti-
mal aggregation structure should remain the same.
Fig. 2(a) and (b) are visualizations of the aggregation trees
when each sector reaches saturation size. These figures
show the SCT aggregation tree constructed over all source
nodes and aggregation nodes. The scattered points on the
background are non-source, non-aggregation nodes.
Fig. 2(a) is the optimal aggregation tree when n = 2000
and k = 250, and Fig. 2(b) is the optimal structure when
n = 2000, and k = 500. From the two figures we can
observe that the ‘‘backbone’’ of the aggregation trees are
the same, only the sources increase in the latter case. This
is because saturation is already achieved when k = 250.
Therefore, even if k increases, the optimal structure
remains the same. Notice that the above ‘‘saturation’’ phe-
nomenon is not specific to the ring-sector structure we pro-
posed, but is true for the optimal aggregation structure in
general due to the fixed transmission ranges of all sensor
nodes.

The effect of saturation on message cost is also substan-
tiated by other simulation results. Fig. 3(a) shows for a cer-
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Table 1
Comparison of computed and experimental m* and n�0

Node
density

Computed
m*

Experimental
m*

Computed
n�0

Experimental
n�0

n = 2000 8.54 9 13.9 16
n = 4000 11.6 12 14.9 16
n = 6000 14.1 15 15.5 16
n = 8000 16.1 17 16.0 16

Fig. 4. Maximum travel distance within a sector.
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increase. However, after n0 = 16, costs increase with
increasing n0, indicating saturation for both cases.

Fig. 3(b) shows how the optimal n0 varies with k/n. For
a wide range of source densities, the optimal structure is the
same. This implies that a fixed aggregation structure is
good enough most of the time in our application.
Simulation results for other node densities give similar
results.

We now describe how the optimal values for m3 and n0
4

can be estimated at the sink. Both parameters are chosen
such that each sector in the network reaches the saturation
size. The choice of m and n0 is explained next.

The choice of m determines the depth of the aggregation
tree. Since the downstream aggregation nodes are sources
for the aggregation nodes one ring closer to the sink, to
achieve saturation size, level-i aggregation nodes should
be within 1-hop distance to level-i + 1 aggregation
nodes. Therefore, m can be determined by the following
formula:

m� ¼ R
r

b ð2Þ

where R is the radius of the network, r is the transmission
range of the nodes, and b is a constant used to accommo-
date the fact that aggregation nodes are not distrubted on a
straight line. We choose a empirical value of 1.32 for b
based on experimental results.

Determination of n0 is based on the requirement that
every node within this sector is less than 1-hop away from
the aggregation node. Refer to Fig. 4, the furthermost pos-
sible node within this sector is located at the corner of this
sector, we indicate the distance of this node to aggregation
point as b. The distance b is calculated in the right-angled
triangle as follows:
3 The total number of rings in network, or the aggregation levels.
4 The average number of sensor nodes in each sector, determines the

sector size.
z ¼ ði� 1ÞR sin a
m

ð3Þ

y ¼ iR
m
� ði� 1ÞR cos a

m
ð4Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p
ð5Þ

¼ R
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4iði� 1Þ sin2 a

2
Þ þ 1

r
ð6Þ

The angle a for the ith ring is given by:

a ¼ m2n0p
2ð2i� 1Þn ð7Þ

When a! 0, sin a
2
! a

2
, and Eq. (6) reduces to

b ¼ R
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðm

2n0p
2n
Þ2 þ 1

r
ð8Þ

To make sure b is less than transmission range, we let b = r
r, where r < 1 is a constant. From Eqs. (8) and (2), and we
can derive the optimal n�0 for large k as:

n�0 ¼ 0:428
r
R

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rb2 � 1

q
ð9Þ

Through empirical studies, we determine r = 0.836. To
verify the accuracy of the choice of constants, we compare
optimal m and n0 derived from Eqs. (2) and (9) and those
obtained from simulations. Table 1 shows that the theoret-
ical values match experimental optimums closely.

6. The SCT approach

In this section, we explain the SCT approach in detail.
We present the different phases of the data aggregation
process as well as provide insights for the design choices.

6.1. Division of the network

During the setup phase, the sink propagates the follow-
ing information to the entire network: (i) location of itself,
(Xs,Ys), (ii) the total number of nodes, n (iii) the radius of
the network, R and (iv) the computed values for m and n0

to all the nodes in the network. Each node in the network is
assumed to know it’s own geographical location. When a
node receives the packet, it first computes the distance
between itself and the sink. This determines the ring, i, to
which it belongs to. For example, any node at a distance
d from the sink, such that ði� 1Þ R

m < d 6 i R
m, belongs to

the ith ring. Each node can calculate the number of sectors
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per ring s(i) as: sðiÞ ¼ d2ði�1Þn
n0m2 e. Given the locations of the

node with respect to the sink and the number of sectors
within the ring, any node can determine the sector number
to which it belongs.

6.2. Determination of aggregation nodes

Once the network has been divided into sectors and
rings, the aggregation node for each sector has to be
selected. In the SCT approach, the aggregation nodes are
selected by leveraging the fixed, geometric division of the
sensor field.

For each sector in a given ring, the geometric center of
the lower arc bounding the sector is defined as the ideal
location of the aggregation node for this sector. The node
closest to this ideal location is chosen as the aggregation
node. Given the value of m and n0, each source not only
knows the sector and ring numbers to which it belongs
but can also determine the boundaries of the sector. If we
are to adopt polar coordinates and if a and b are the
bounding angles of a sector corresponding to the ith ring,
the location of the aggregation node is given by
ði� 1Þ R

m ;
aþb

2

� �
.

Each source within this sector routes messages to this
location of the aggregation point. During the query for-
warding phase, each node piggybacks the coordinates of
itself along with the query and other information sent by
the sink. In this fashion, a node can learn the locations
of its immediate neighbors during the query delivery phase.
When a source wants to send it’s message to the ideal loca-
tion of the aggregation point, it sends the packet to the
node closest to the ideal location. Once a node receives this
packet, it then does a local broadcast declaring itself as the
aggregation node. Since most of the nodes within any sec-
tor are in a one-hop region of the aggregation node, the
other source nodes will then forward their packets to this
aggregation node. In this way, the node closest to this ideal
location becomes the aggregation node where messages are
aggregated. In a few cases, it is possible that two sources
may elect two different nodes as aggregation nodes simulta-
neously. However, such instances are rare and do not
increase the message cost considerably because of the fol-
lowing two reasons: (i) most of the nodes in a sector are
within a 1-hop region of each other, and (ii) once a node
is elected as the aggregation node, the local broadcast will
enable other sources to identify this node as the aggrega-
tion node.

Thereafter, these aggregation nodes act as sources for
the sectors in the next ring closer to the sink, and send
aggregated messages to aggregation nodes of those sectors.
With this approach messages are combined step by step as
they progress towards the sink, until the last ring is
reached, for which the sink is the aggregation node.
Fig. 5 is a illustration of this aggregation process.

The aggregation nodes are implicitly elected by the rout-
ing protocol when the sources first send their data to the
location of the aggregation nodes. To ensure that an aggre-
gation nodes is elected at every sector irrespective of the
presence or absence of sources in that sector, we adopt
the following procedure in the last ring: (i) During the
query forwarding phase, some nodes in the last ring iden-
tify themselves as a corner nodes within each sector. The
corner nodes are located at the periphery of the upper
arc bounding a sector and farthest from the ideal location
of the aggregation node. (ii) These corner nodes take on the
responsibility to identify the physical aggregation node for
this sector by forwarding a dummy packet to the geograph-
ical location of the aggregation node. Note that this proce-
dure needs to be done only for sectors in the last ring as
these aggregation nodes act as sources when communicat-
ing to the upstream aggregation nodes.

This geometric election of the aggregation nodes facili-
tates independent and distributed computation of aggrega-
tion point locations by each node. It also enables a location
based routing approach to be used to send packets from
the sources to the aggregation nodes or between aggrega-
tion nodes. The geometric structure construction and
aggregation nodes election allow each node to have a con-
sistent view of the entire network to help set up the SCT
structure in a distributed fashion.
6.3. Event-driven data collection

To achieve maximum aggregation of the source data at
the aggregation nodes, it is also necessary to ensure that
these nodes wait for an optimum delay value. In Section
4, we identified the drawbacks of using a fine-grained
aggregation timer to trigger the aggregation process. In
SCT we use a more desirable alternative where there are
only coarse-grained timers and the aggregation process is
mainly event-driven. This approach is motivated by the
fact that each aggregation node knows the exact number
of children that are also aggregation nodes. When an
aggregation node receives information from all children
that are aggregation nodes, it is assured that the data from
all sources within the sector are also received by an aggre-
gation node. This is because the sources transmit their data
at the beginning of each message collection round while the
aggregation nodes wait for the notifications from all the
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downstream aggregation nodes. The arrival of messages
from all downstream aggregation nodes is used as the trig-
ger to merge and propagate the information collected,
upstream towards the sink. Thus, synchronization is
achieved in an event-driven fashion without the need for
explicit delay timers at each aggregation node.

The aggregation node identification procedure in the last
ring also helps in determining the time to aggregate and
forward messages to the upstream aggregation node. Even
if there are no sources within a sector, the aggregation node
sends out a small message to the upstream sector indicating
the absence of sources. The arrival of messages from all the
downstream aggregation nodes is used to trigger the aggre-
gation process in that aggregation node. In this way, the
aggregation process is mainly event driven. For the case
when there are no nodes in a downstream sector, there will
not be any downstream aggregation node in that sector. In
these rare cases, the aggregation nodes use the coarse-
grained aggregation timer before aggregating the messages
from other downstream aggregation nodes and sources.
Note that the probability of occurrence of such empty sec-
tors is extremely low as we will discuss in Section 8.
6.4. Load balancing

Load balancing schemes, as we have identified in Section
4, are important to ensure that the resources of all non-
source nodes are utilized to roughly the same extent over
a period of time. We propose two simple schemes to dis-
tribute the roles of aggregation nodes to different sets of
nodes over a certain period of time:

(1) Location of the rings: In the current SCT description,
the different rings are of width R

m, where R is the radius
of the network and m is number of rings. To do load
balancing, the location of the first ring can be shifted
by a distance R

m� rc, where r is the one-hop transmis-
sion range and c is a small integer that is varied from
0 � � � R

mr. The same offset is applied to every ring so that
the width of the ring is still maintained to be R

m for all
rings except the first and last.

2) Orientation of the sectors: In a similar way, we can
choose the offset angle for a sector to be different
across multiple queries. The offset angle, h, can be
incremented according to the relation, h ¼ c

sðiÞ where
s(i) is the number of sectors in the ith ring and c is
a small integer dependent on the query identifier. This
again assures that different nodes are chosen as aggre-
gation nodes over several query floods.
6.5. Aggregation reliability and node mobility

The failure of any non-aggregation node will not impact
the correctness or efficiency of the SCT approach. There-
fore, here we only discuss how the aggregation node failures
are addressed in SCT. Recall that we require an aggregation
node to announce itself to its neighbors once it receives the
first message from a source. In this way, aggregation node
failures before the setup of the SCT structure can be identi-
fied by the lack of announcement from the particular node,
and another node closet to the ideal location can announce
itself as the aggregation node of this sector. If an aggrega-
tion node fails during the information collection phase,
the lack of ACK messages from this node to sources can
inform them of its failure. In this case, the retransmission
of the first packet enables the election of a new aggregation
node, which in turn broadcasts an announcement upon
receiving the retransmitted message. After the re-election,
aggregation proceeds as usual. Notice that the election of
a new aggregation node may delay the entire aggregation
process due to the retransmissions and announcement nec-
essary, but the correctness and efficiency of the aggregation
process will not change since it is event-driven.

In the case of node mobility, the proposed solution
needs to be modified to accommodate mobility in (i)
sources, (ii) aggregation nodes and (iii) other nodes. If
the sources are mobile but the aggregation nodes are fixed,
sources will forward to the closest aggregation node given
its current location. If aggregation nodes are mobile, the
node failure handling mechanism can be leveraged to elect
a new aggregation node for that sector. Mobility of other
nodes does not affect the SCT approach.

7. Performance evaluation

In this section we evaluate the performance of the SCT
approach under different network configurations and com-
pare it with two centralized schemes: minimum Steiner
Tree, SPT, and one decentralized scheme: DSPT (Decen-
tralized Shortest Path Tree). We vary the node density,
source density, source distribution, as well as correlation
coefficient (q) and evaluate the message cost of the four
structures under different scenarios.

7.1. Simulation environment

• We use a discrete event simulator based on the LECS
simulator for all evaluations. The simulation topologies
are largely similar to those used in general sensor net-
works: 2000–8000 nodes are uniformly distributed
within a circular field of radius 400 m. The number of
sources that generate messages for one specific query
varies from 1

10
, 1

6
, 1

4
to 1

2
of the total number of nodes in

the network.
• We evaluate the SCT approach using two metrics: mes-

sage cost and data gathering latency. For message cost,
we measure the total number of transmissions required
for all responses to reach the sink for one round of data
collection, and for data gathering latency, we measure
the time interval from the time when all sources start
to send messages, to the last message reaches the sink.

• To focus on the comparison of aggregation efficiency of
different structures, we assume a perfect MAC layer that
avoid collisions of data packets.
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• All the simulation results are derived after averaging
results over 10 random seeds and are presented within
95% confidence intervals.

• Since minimum Steiner tree is the optimal solution when
sources are fixed, we compare SCT with an approxima-
tion of minimum Steiner tree (MST) generated using
Prim’s algorithm. We also compare the SCT with SPT
generated by Dijkstra’s algorithm because it is represen-
tative of correlation-unaware structures. To highlight the
benefit of SCT as a distributed solution, a decentralized
version of the shortest path tree (DSPT) is also included
in the evaluation. In DSPT, GPSR routing protocol is
used to approximate SPT in a distributed fashion
because the routes generated by GPSR closely approxi-
mate SPT, especially when node density is high [6].
7.2. Perfect correlation (q = 1) scenarios

7.2.1. Different node densities

We first compare the performance of the decentralized
SCT with that of the DSPT. In this scenario, we assume
that data from all sources are correlated perfectly (q = 1).
We will address the (q < 1) case later in this section.

Fig. 6(a)–(c) show the cost of two decentralized schemes
as a function of the number of nodes for different numbers
of sources k. In these simulations, we choose the total
number of nodes n as 2000, 4000, 6000, and 8000, and
the number of sources k as n

10
, n

4
, and n

2
, respectively. To

ensure fair comparison, we assume DSPT uses an explicit
mechanism to achieve perfect aggregation, therefore the
message cost is a measure of the aggregation structure effi-
ciency only (we will present results related to delay perfor-
mance of both schemes later). It can be seen that SCT
outperforms DSPT scheme under all situations. Interest-
ingly, we observe that the cost of DSPT is up to 200% of
the SCT cost as the number of nodes increases. The DSPT
cost also increases faster than the SCT cost as node num-
ber increases. This is expected since more nodes reduces
the efficiency of aggregation in DSPT as the paths chosen
by different sources are less likely to overlap. Therefore,
SCT can be considered a more scalable approach. Further-
more, it is observed that the difference between the two
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Fig. 6. Performance comparison between SCT, and DSPT: Figure (a), (b), and
different source densities k.
schemes increases as the ratio of the number of sources
to the number of nodes, k

n, decreases because more sources
increase the probability of aggregation for DSPT. As the
ratio k

n approaches 1, both schemes converge into n

transmissions.
7.2.2. Decentralized vs. centralized schemes

We compare the performance of the decentralized SCT
and DSPT schemes with the centralized schemes they
approximate. Fig. 7 shows the cost of the proposed scheme
and the centralized schemes as a function of the node
number. To evaluate the cost of the centralized schemes,
we assume perfect aggregation for both SPT and MST.
From the figures we can see that DSPT’s message cost
approaches closely that of SPT while SCT’s message cost
approaches closely the cost of MST. Furthermore,
although SCT is a decentralized scheme without perfect
aggregation, it still outperforms the centralized SPT, since
SCT explicitly aggregates sensor data, while SPT just lever-
ages aggregation opportunistically. We also observe that as
the k/n ratio increases, the difference between both decen-
tralized schemes and their approximated centralized
schemes decreases, because as k increases, both schemes
can achieve better aggregation and approach the perfor-
mance of an ideal structure.
7.3. Different correlations (0 < q < 1)

In the extreme case of q = 1, minimum Steiner tree is the
optimal aggregation structure, while for q = 0 (no correla-
tion), SPT is the optimal aggregation structure. For the
general case 0 < q < 1, no optimal solution exists. And
the problem is classified as NP-complete in [1].

In Fig. 8, we characterize the message complexity of
SCT when the correlation coefficient varies from 0.2 to
0.9. Notice that in this graph, the number of transmissions
is normalized to a unit message size. For example, if after
aggregation, a node transmits a message of size 1.5 times
the unit message size, it is counted as 1.5 transmissions.
From this figure, we can see that for both DSPT and
SCT, message cost reduces as q increases, since the two
schemes have either implicit or explicit mechanisms to
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(c) show the number of transmissions as a function of number of nodes for
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Fig. 8. Performance comparison between SCT and DSPT in case of different correlation factor q.

Fig. 7. Performance comparison between SCT and centralized schemes, SPT and MST: Figure (a) and (b) show the number of transmissions as a function
of number of nodes for different number of sources k.
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leverage the correlation. However, the message cost of SCT
reduces faster than DSPT because it facilitates aggregation
at an earlier stage of packet forwarding, hence can reduce
packet transmission cost more effectively. Since DSPT is
the optimal structure when q = 0, we expect that the two
curves will cross each other at a certain small correlation
factor. For n = 8000, the cross point occurs at q = 0.2,
while for n = 2000, the cross point is expected to occur at
q < 0.2. As we analyzed earlier, DSPT aggregates less effi-
ciently when n becomes large, hence it does not lose much
when q decrease, therefore it performs relatively better for
a smaller q when n is large.

7.4. Delay sensitivity

To evaluate a data gathering scheme, latency is another
important metric besides the message cost. In this part, we
study the data gathering latency of SCT and at the same
time characterize the message cost-latency trade off for
SPT.

Since SCT is an event-driven approach, none of the
aggregation nodes on the tree needs a timer, and each
aggregation node can forward messages as soon as it
receives responses from downstream aggregation nodes.
Therefore, there is very little overhead for perfect aggrega-
tion. While for SPT, in order to achieve perfect aggrega-
tion, each node on the tree has to set a timer and wait
for a certain amount of time before aggregation.
Since SPT itself does not include any mechanism for
aggregation timing, we implement a simple scheme [11] that
sets aggregation timer for each node based on its hop dis-
tance to the sink. Each node on the tree knows its distance
(in hop count) as well as the maximum distance D among
all nodes on the tree to the sink (depth of the tree). Given
a maximum delay MAX_DELAY, per-hop delay D is calcu-
lated as MAX_DELAY/D. A node that is i hops away from
the sink will wait for MAX_DELAY-i * D time before
aggregating and forwarding data it has received. In this
way, if D is large enough to accommodate transmission
and contention delay at each hop, perfect aggregation
can be achieved.

Fig. 9 shows the number of transmissions as a function
of maximum delay MAX_DELAY for n = 2000 and
n = 4000 cases. It is shown that SPT achieves perfect aggre-
gation when MAX_DELAY is more than 8.0 s. However,
the cost of SPT increases as MAX_DELAY approaches
5.0 s since smaller MAX_DELAY increases the possibility
of late arrivals of data before aggregation. Once a packet
misses its aggregation deadline at one of the intermediate
hops, the probability of it missing deadlines at later hops
becomes higher, which explains why SPT performance
aggravates quickly as MAX_DELAY decreases. On the
other hand, since SCT is an event driven data aggregation
structure, its message cost remains the same irrespective of
different delays, which explains the flat curves in both
figures.
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Fig. 9. Performance comparison between SCT and SPT in case of different delays.
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7.5. Localized events

Until now, we have assumed that sources are deployed
independently in a sensor field. This is typical when consid-
ering semantic correlation, where each source reports infor-
mation about a discrete event. However, spatial correlation
usually generates non-uniformly distributed sources, where
multiple sources are reporting the same event. In this case,
sources are clustered around one or more spots in the net-
work. In this section, we investigate how SCT performs
when sources are distributed in such a fashion.

In the simulation, we consider n = 2000 and n = 8000
scenarios, each has a total of k ¼ n

4
sources in the network.

The number of events (spots) in the network is varied from
k

100
, k

50
� � � to k

5
. With this configuration, the total number of

sources does not change, but the distribution varies from a
highly concentrated scenario to close to uniform
distribution.

Fig. 10(a) and (b) show the simulation results for such
spot topologies. When there are very few events and source
distributions are highly concentrated, DSPT achieves good
aggregation at early stage and aggregated messages reach
the sink along only a few paths. But SCT also performs
well because SCT does explicit aggregation within each sec-
tor that contains sources, while other sectors without
sources or not on the aggregation paths to the sink do
not take part in the aggregation process, therefore does
not incur any extra cost. From the figure, we can see that
at n = 2000, when the number of events is small, DSPT
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Fig. 10. Performance comparison between SCT and DSPT for Different nu
and SCT have similar cost. But as the number of events
increases, sources are less concentrated as in the previous
case, and the probability of DSPT paths overlapping
reduces, hence the higher message cost. However, for
SCT the only extra cost is the introduction of more aggre-
gation nodes into the aggregation tree, which is limited by
the total number of sectors in the network. Therefore, the
increase of message cost is much less compared with DSPT.
For n = 8000 case we observe a similar trend, and even for
the least event number, SCT outperforms DSPT, because
as we analyzed earlier, the chance of DSPT paths overlap-
ping decreases as node density increases.

8. Issues and discussions

8.1. Empty sectors

In Section 6, we assumed that each sector contains at
least one node which can serve as an aggregation point
and ensure that the tree is connected. However, due to
the irregularity of Poisson node distribution, it is possible
that some of the sectors may not contain any node. Here,
we investigate the implications of having an empty sector.
In this case, downstream aggregation nodes of the empty
sector won’t find a path to aggregate, and hence will not
be able to forward the aggregated information. The design
of SCT has a simple back up strategy in this case: if an
aggregation node is not able to find an aggregation node
upstream, it will simply forward the aggregation message
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mbers of localized events in case of 2000 and 8000 nodes, respectively.
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to a neighbor in the adjacent sector. After that, the aggre-
gated message will be delivered via a connected aggregation
path.

Although this is a less efficient aggregation path, we
argue that the probability of empty sectors is extremely
low for the target environment.

Consider a network with n nodes and S total number of
sectors of the same size, the probability that no empty sec-
tor exists in the network is:

P ¼
Sn �

PS�1

i¼1

s

i

� �
ðS � iÞnð�1Þiþ1

Sn

¼ 1�
XS�1

i¼1

s

i

� �
1� i

S

� �n

ð�1Þiþ1

where

S ¼
Xm

i¼1

sðiÞ ¼
Xm

i¼1

ð2i� 1Þn
mn0

	 

ð10Þ

For the n�0 and m* we chose for the fixed structure, the
probabilities of non-empty sectors for various node densi-
ties are shown in Table 2.
8.2. Comparison with clustering approaches

Structure-wise, SCT approach bears a few similarities
with clustering algorithms proposed for ad-hoc and sensor
networks [12,13]. In a clustering approach, the entire net-
work is partitioned into clusters of similar size, with a head
node elected in each cluster. Non-cluster nodes report mes-
sages via a short path to their corresponding cluster heads,
where messages are aggregated and transmitted to the sink,
and the total transmission cost is reduced through the
decreased total transmission distance and smaller message
size. With this analogy, a natural question to ask is: How

is SCT different from these clustering algorithms?

In terms of cluster construction, there are two different
solutions from existing works. One approach is for each
node to broadcast in a certain area its properties (id, node
degree, residual energy etc.), following which an election
process is executed to choose the cluster head [13,14]. This
approach generally assures regular cluster size and full
node coverage, but at the cost of high communication over-
head. Using the approach proposed in [13], the clustering
algorithm is triggered at periodic intervals to select new
cluster heads. At each interval, the clustering process
requires a certain number of iterations to finally select
Table 2
The probability of non-empty sectors

Node density Probability (%)

n = 2000 99.97
n = 4000 99.99
n = 6000 99.94
n = 8000 99.89
the desired cluster head. If the minimum probability of
a node becoming a cluster head is p, it takes N 6
dlog2

1
pe þ 1 steps for the election algorithm to terminate

(N = 6 � 15 iterations for average scenarios). During each
iteration, a tentative cluster head generates broadcasting
messages, resulting in a total message cost (for setting up
the cluster structure) to be of order N*n, where n is the
total number of nodes in the network. This translates to
significant energy consumption, given that the election pro-
cess is invoked repeatedly to achieve load balancing. In
contrast SCT does not require the overhead of message
exchange in either the initial set up phase or in the later
maintenance phase, where structure modifications are
performed.

Another approach, such as the one used in [12], is to
specify a certain probability for each node to become a
cluster head, and the node which turns out to be cluster
head announces itself through a limited-scope flooding.
This approach incurs lower message overhead, but cannot
guarantee a uniform cluster head distribution and full cov-
erage of all non-cluster nodes. Therefore, the orphan nodes
not covered by any cluster heads have to transmit their
messages directly to the sink, significantly increasing the
total message cost. On the contrary, in SCT, aggregation
nodes are chosen implicitly without any message exchange,
since the location of the node is the criteria for head selec-
tion. Therefore, in terms of clustering forming overhead, it
is comparable to the probability-based approach. On the
other hand, the clustering structure formed in SCT is orga-
nized such that each node is guaranteed to be covered by
an aggregation node, and every cluster has similar size.
In this sense, a low message cost is achieved without incur-
ring any overhead for additional message exchanges.

In terms of cluster manageability, SCT benefits from its
highly regular structure. Since cluster heads consume more
energy in terms of communication and computation, clus-
ter head rotation is a essential part of any clustering
scheme. For most of the clustering schemes, rotation
involves re-election of cluster heads, which incurs a lot of
overhead. While with SCT, since the structure is symmetric
along all radii, a simple rotation of the SCT rings and sec-
tors moves the roles of cluster heads to a different set of
nodes in the network. With carefully designed rotation
sequence, the role of cluster heads can be evenly distributed
to all sensors in the network.

8.3. Impact of network shape and sink location

In the previous sections, we assume that the sensor net-
work has a circular shape and the sink is located at the cen-
ter of the network. These assumptions are made for ease of
discussion and presentation of SCT. The approach itself
does not impose any constraint on the shape of the net-
work and the location of the sink. For example, consider
a network with rectangular shape and the sink located at
one of the four corners of the rectangle. In this case, the
SCT structure can still be constructed by fitting the entire
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network into a polar coordinate, with sink being the root
of the SCT and the diagonal of the rectangle being the
radius. Load balancing can be achieved as well by shifting
the rings and sectors periodically as described before.
Although the efficiency of the SCT structure for irregular
network shapes may not be as high as that of circular net-
work shape, the correctness of SCT is not compromised.

8.4. Other related work

In [15], a TTDD approach is proposed to provide scal-
able and efficient data delivery to multiple mobile sinks
in sensor fields. Each data source in TTDD pro-actively
builds a grid structure which enables mobile sinks to con-
tinuously receive data on the move by flooding queries
within a local cell only. This approach is similar to SCT
in that they both construct virtual geometric structures (a
grid structure in TTDD and a ring-sector structure in
SCT) to facilitate data delivery. However, TTDD addresses
the problem of communication between sensors and mobile
sinks in the sensor field. The focus of TTDD is point-to-
point communication in wireless sensor networks, while
our work focuses on data collection in many-to-one
communication (i.e. data aggregation). Furthermore, the
primary challenge addressed in [15] is to maintain connec-
tivity between senders and receivers when one of them is
mobile, while we consider mainly static sensor networks
and focus on the energy-efficiency of the data aggregation
process.

EWSN [16] proposes combining passive clustering
scheme with directed diffusion to restrict the flooding of
interests and exploratory data at the initial stage of direct
diffusion. Passive clustering is proposed in [17] to control
the exchange of flooded messages in sensor networks.
Instead of constructing a cluster structure pro-actively, this
scheme piggybacks all control information on data mes-
sages to save the cost required for setting up clusters, at
the cost of less up-to-date clustering structures. A simple
cluster-head selection approach, where the first sensor
nodes declaring itself as cluster-head wins, is used to reduce
the overhead of complicated clustering approach. The
application of passive clustering to directed diffusion can
effectively reduce the flooding overhead of interest and
exploratory message propagation. However, it does not
address the problem of improving the aggregation effi-
ciency of directed diffusion, which is the problem consid-
ered in this work.

In [18], the authors describe an approach to set up con-
nections among a given set of cluster heads to ensure a con-
nected backbone among cluster heads. In this approach, a
random distributed algorithm is proposed to provide con-
nectivity with high probability. The focus of this work is
ensuring connectivity of cluster heads (aggregation nodes
in our context), while our focus is to select a subset of
nodes as aggregation nodes to minimize the total message
cost of data gathering. Therefore, the contributions of
these two works are orthogonal to each other.
9. Conclusions

In this paper, we propose a novel solution to aggregate
correlated information from a subset of sensors to the sink.
The proposed scheme is scalable, distributed, requires min-
imal computation and is highly-manageable compared with
existing solutions. The proposed scheme is assessed both
intuitively and analytically. Through simulations, we com-
pared the proposed scheme with ideal, centralized data
structures as well as a distributed structure. Simulation
results show that as a correlation-aware structure, SCT
performs significantly better than correlation-unaware
structures in terms of message cost and data gathering
latency.
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