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Abstract

Cell Painting is an established community-based, microscopy-assay platform that
provides high-throughput, high-content data for biological readouts. In November 2022,
the JUMP-Cell Painting Consortium released the largest annotated, publicly available
dataset, comprising more than 2 billion cell images. This dataset is designed for
predicting the activity and toxicity of 100k drug compounds, with the aim to make cell
images as computable as genomes and transcriptomes.

In this paper, we have developed a data analytics workflow that is both scalable and
computationally efficient, while providing significant, biologically relevant insights for
biologists estimating and comparing the effects of different drug treatments.

The two main objectives proposed include: 1) a simple, yet sophisticated, scalable
data analytics metric that utilizes negative controls for comparing morphological cell
profiles. We call this metric the equivalence score (Eq. score). 2) A workflow to identify
and amplify subtle morphological image profile changes caused by drug treatments,
compared to the negative controls. In summary, we provide a data analytics workflow
to assist biologists in interpreting high-dimensional image features, not necessarily
limited to morphological ones. This enhances the efficiency of drug candidate screening,
thereby streamlining the drug development process. By increasing our understanding of
using complex image-based data, we can decrease the cost and time to develop new,
life-saving treatments.

Author summary

Microscopy-assays are often used to study cell responses to treatments in the search for
new drugs. In this paper, we present a method that simplifies the understanding of the
data generated from such assays. The data in this study consists of 750 morphological
features, which describe the traits and characteristics of the cells, extracted from the
images. By using untreated cells as a biological baseline, we’re able to detect subtle
changes that occur in the treated cells. These changes are then transformed into an
equivalence score (Eq. score), a metric that lets us compare the similarities among
different treatments relative to our baseline of untreated cells. Our Eq. score approach
transforms complex, high-dimensional data about cell morphology into something more
interpretable and understandable. It reduces the “noise” in the features and highlights
important changes, the “signal”. Our method can be integrated into existing workflows,
aiding researchers in understanding and interpreting complex morphological data
derived from cell images more easily. Understanding cell morphology is crucial to
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deepening our knowledge of biological systems. Ultimately, this could contribute to the
faster and more cost-effective development of new, life-saving treatments.

Introduction 1

The process of drug development is a costly and time-consuming endeavor, prompting 2

researchers to explore new, more efficient methods of drug candidate screening. One 3

emerging approach is image-based profiling [1], which utilizes fluorescent markers with 4

techniques such as Cell Painting and CellProfiler, as well as Artificial Intelligence (AI), 5

to extract morphological features quickly and cost-effectively. CellProfiler is an 6

open-source image analysis software tailored for high-throughput biological experiments. 7

Developed by the Broad Institute, it enables customizable analysis pipelines and 8

incorporates various image processing algorithms. Its flexibility allows for diverse 9

applications in biological and biomedical research. By automating complex image 10

analysis tasks, CellProfiler facilitates the extraction of meaningful, reproducible 11

quantitative data, advancing high-content screening and biological image analysis [2]. 12

The affordability and high-throughput nature of image-based profiling, in combination 13

with providing both temporal and spatial information, make it an increasingly common 14

choice for drug screening purposes. However, while these techniques have evolved 15

greatly in recent years, connecting the thousands of images and their extracted features 16

back to biology in understandable metrics remains a significant challenge. 17

To address this issue, many researchers are turning to AI to find a solution. AI has 18

shown remarkable success in various applications, such as segmenting nuclei [3–5] and 19

cell bodies [6,7], image restoration [8,9], image super-resolution [10,11], and speeding up 20

fluorescent 3D sample imaging [12]. These examples demonstrate how AI-based methods 21

have excelled over traditional ones. Despite this success, the lack of explainability and 22

interpretability remains a major concern, particularly when classifying and quantifying 23

treatment data. This is partly due to the structure of the data, as most datasets have 24

numerous controls but a limited number of replicates for the actual treatments. 25

Combining this with a high-dimensional feature vector creates a skewed relationship 26

between observations and features, known as ”the curse of dimensionality” [13]. 27

In addition to AI-based solutions, traditional correlation-based metrics such as 28

cosine similarity, Pearson’s correlation, Spearman’s rank correlation, and Kendall’s rank 29

are often used today to examine the similarity between treatments [14, 15]. While these 30

metrics provide an overview of the data, they consider all features as equally important, 31

making it difficult to capture and identify the unique, subtle morphological changes that 32

separate different treatments from each other. 33

The skewed relationship between observations and features has been the standard in 34

chemometric problems for decades, where multivariate analysis (MVA) has shown great 35

success in capturing subtle differences between groups in high-dimensional data [16–18]. 36

Therefore, we have developed a data analytics workflow that offers valuable insights for 37

biologists in estimating and comparing the effect of different treatments. In this 38

method, the negative control group serves as a biological baseline for predictive models. 39

The models focus on the differences in the morphological profiles between treatments 40

and the negative controls to identify the unique biological impact of a specific treatment. 41

The two main objectives of this method are: 1) to create a simple, yet sophisticated, 42

scalable metric for comparing morphological profiles, which we call the equivalence score 43

(Eq. score). The Eq. score is a multivariate prediction of a model that has been trained 44

to identify the relationship between a reference treatment and negative controls; 2) to 45

identify and amplify the subtle morphological profile changes caused by a treatment 46

compared to the negative controls. By transforming the morphological features to 47

predicted Eq. scores of several reference compounds, we demonstrate that we can 48
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reduce noise and enhance the signal that exists in the treatments compared to the 49

control group. With this, we provide a computational workflow based on MVA to assist 50

biologists in interpreting high-dimensional features, not necessarily limited to 51

morphological ones, and enhancing the efficiency of drug candidate screening, thereby 52

streamlining the drug development process. 53

Materials and methods 54

Correlation-based methods are widely used to identify similarities between 55

morphological feature profiles. While these methods provide a quick and easy overview 56

of the data, quantifying the nuances and subtle differences and similarities between 57

treatments can be challenging. In this paper, we present a semi-supervised method for 58

comparing the effects of treatments on cell cultures, which relies on negative controls 59

(Fig. 1). To reduce noise and highlight structured variation within treatment groups, we 60

compute Equivalence scores (Eq. scores) for each treatment using a PLS/OPLS model 61

trained on a reference treatment and the negative controls. Eq. scores offer a more 62

sophisticated metric compared to traditional correlation-based ones. By comparing Eq. 63

scores, we can identify treatments with similar effects. Furthermore, we create Eq. 64

scores for all 303 compounds in the dataset and use them as new features. We 65

benchmark these Eq. scores features versus the original CellProfiler features and show 66

an improved performance, even though the Eq. scores are based purely on the 67

CellProfiler features.

Fig 1. Pipeline where cells are labeled with fluorescent markers, grown in wells and
then imaged through fluorescent microscopy. The images are then preprocessed and
analyzed through the software CellProfiler. From the software, we get numerous
features which are then transformed through our multivariate approach.

68

Multivariate details 69

Principal Component Analysis (PCA) - Data overview 70

Principal Component Analysis (PCA) is a widely-used statistical method that can be 71

used to reduce the dimensionality of high-dimensional data. By identifying the 72

directions of maximum variation in the data, PCA creates new, orthogonal variables 73

called principal components. These principal components are linear combinations of the 74

original variables and can be used to summarize the information contained in the data. 75

In many cases, the first few principal components can capture most of the variation in 76

the original data, allowing for easier interpretation and visualization of the data. The 77

principal components, consisting of scores T and loadings P , are good “summaries” of 78

X such as: 79

X = TP ′ + E. (1)

Where E is the residual and is “small” if enough principal components are used and/or 80

X contains mainly systematic variation and low levels of noise. 81

PLS/OPLS - Predictive modeling 82

(Orthogonal) Partial Least Squares (PLS/OPLS) regression are multivariate techniques 83

for modeling the relationship between two matrices of variables: a predictor matrix X 84

and a response matrix Y. Like PCA, PLS/OPLS aims to identify new latent variables 85

that can summarize the systematic variation in the data. However, unlike PCA, 86
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PLS/OPLS takes into account the additional information provided by the response 87

matrix Y, allowing it to model the relationship between X and Y directly. 88

In PLS/OPLS, the predictor matrix X is decomposed into a set of scores T and 89

loadings P , as 90

X = TP ′ + E (2)

where E is the X-residual. In addition to this, the response matrix Y is also 91

decomposed into a set of scores C and loadings T: 92

Y = TC ′ + F, (3)

where C is the weights associated with Y and F is the Y-residuals. F represents the 93

difference between the observed Y and the modeled Ŷ . As with PCA, the weights, 94

scores and loadings can be calculated using various methods, with the NIPALS 95

algorithm [19] being one of the most commonly used. 96

Workflow 97

The premise of our approach is to compare a set of reference treatments to a control 98

group, which serves as a baseline during a calibration phase (Fig. 2a). During the 99

calibration phase, a scale between 0 and 1 is defined. The new scale, which we call the 100

Eq. score, represents the proportion of equivalence of a new treatment compared to the 101

reference treatment. PLS/OPLS regression is used to build the Eq. scores. The features 102

corresponding to the controls and a given reference treatment (X) are regressed against 103

an arbitrary vector of 0 and 1 (Y), corresponding to controls and the reference 104

treatment, respectively (Fig. 2a). To ensure that the predictions of the reference group 105

are fair, a leave-one-out cross-validation approach (LOOCV) is used for each replicate in 106

the reference group. New treatments can then be measured in the new referential built

Fig 2. In (a) is the first step of the method, fitting a PLS/OPLS model on a reference
treatment vs the control group. We create two Y-vectors where the reference
observations have 1 and the control group 0. In (b) the fitted model is used on other
treatments to model their Y in the same space, we call this value the Eq. score. In (c)
we iterate through this process to create a new feature space consisting of the Eq.
scores which can then be visualized for interpretation.

107

with PLS/OPLS models from the known treatments (Fig. 2b). They can then be 108

characterized by a single, or a spectrum, of Eq. scores and compared using multivariate 109

data analysis. 110

In this prediction step, the Sum Squared Error statistic (SSE) is used to evaluate the 111

feature space (X) and the prediction error of (Y). The former indicates if the features 112

presented by the predicted treatment lie within the training set feature space; the latter 113

shows how well the prediction is. The SSE for observation i is calculated as 114

SSEi =
∑

(Xi − X̂i)
2, (4)

over the features and where X̂ is the input X multiplied by the loadings and weights of 115

the PLS/OPLS model. This means that if treatments have high Eq. scores but also 116

high SSEs, we should be careful about drawing conclusions about similarities. 117

In Fig. 2c, steps (a) and (b) are repeated for each of the 303 treatments in the 118

dataset, creating a new feature space of Eq. scores where the systematic variation is 119

amplified and noise is reduced. This feature space, which is fully based on CellProfiler 120

features, can then be used to look for clustering and similarities with methods such as 121

PCA as well. 122
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Exemplifying with toxicity 123

The Eq. score method allows for the comparison of treatment effects relative to a 124

reference treatment based on the similarity or dissimilarity of their feature profiles. One 125

possible application of this method is in the assessment of different toxicities with 126

different cell death mechanisms. In this section, we will use a toy dataset to 127

demonstrate how Eq. scores can be utilized to better understand and compare the toxic 128

effects of various treatments. 129

Assume we have two known toxicities, Toxicity 1 and Toxicity 2, where each serves 130

as a reference treatment in two separate PLS/OPLS models. We can then predict the 131

Eq. scores of other treatments i.e. Treatment 1, 2 and 3 with the two models. The Eq. 132

scores can then be used as axes in a scatter plot to visualize the relationships among 133

different treatments and their toxicities. Fig. 3 provide insights into the extent to which 134

each treatment’s effects resemble the reference toxicities. From Fig. 3a, we can infer

Fig 3. (a) A scatter plot showing how similar treatments are to each other in terms of
the Eq. score of hypothetical Toxicity 1 and 2. On the x-axis, the Eq. scores from the
model of Toxicity 1 are presented and vice versa for the y-axis and Toxicity 2. The
observations of these groups are also present in the plot as orange and red clusters. (b)
The Eq. scores of Toxicity 1 are presented as a bar plot. These are the same values used
in (a) on the x-axis. (c) The Eq. scores of Toxicity 2 for different treatments.

135

that Treatment 1 exhibits a stronger effect related to Toxicity 1, while Treatment 2 has 136

a weaker effect related to Toxicity 2. It is possible to speculate that both treatments are 137

the same as Toxicity 1 and 2, respectively, but at different concentrations. Interestingly, 138

Treatment 3 appears to exhibit a combined effect of both Toxicity 1 and Toxicity 2. 139

The same thing can be observed in Fig. 3b and c but in a bar plot for the equivalence of 140

Toxicity 1 and 2 respectively. This type of plot is particularly useful if we only have one 141

reference treatment we want insights into. 142

By summarizing the feature vectors into Eq. scores and visualizing them in a scatter 143

plot or bar plot, we can efficiently compare and interpret the toxic effects of different 144

treatments. This approach offers a valuable tool for researchers in understanding the 145

relationships between various treatments and their associated toxicities. 146

Results 147

Comparing Eq. scores 148

By fitting an PLS/OPLS model on a reference group of treatments and the negative 149

control group and predicting the other compounds with it, we get Eq. scores. We can 150

use the Eq. scores as axes in a scatter plot to see relations between treatments, such as 151

in Fig. 4. In Fig. 4a we see distinct clustering of treatment groups. Noticeably,

Fig 4. (a) A scatter plot showing how similar treatments are to each other in terms of
the Eq. score of SB-202190 and purvalanol-a. (b) The Eq. scores of SB-202190 are
presented as a bar plot. These are the same values used in (a) on the y-axis. (c) The Eq.
scores of purvalanol-a for different compounds. As in (b) these values are also the same
as in the x-axis (a).

152

SB-203580 and SB-202190, which have the same target MAPK14, are close. Both have 153

high Eq. scores of SB-202190 and low Eq. scores of purvalanol-a. We can observe the 154

same with aminopurvalanol-a and purvalanol-a with the common target CDK2. These 155

treatments instead have low Eq. scores of SB-202190 and high Eq. scores of 156
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purvalanol-a. This can also be visualized in bar plots as in (b) and (c) to see the 157

comparison in one treatment direction. 158

Expanding further, we can incorporate the SSE of each model into the interpretation 159

of the results. The SSE can also be used as a scaling factor to adjust and correct the 160

predictions if they are not in a known feature space of the PLS model. Fig. 5 presents 161

the results from models fitted on SB-202190, purvalanol-a and PD-98059 in bar plots. 162

In Fig.5b, the Eq. scores from the SB-202190 model are displayed and we can see that

Fig 5. In the first row, (a), (b) and (c) the results from the model fitted on SB-203580
are presented. In the second row (d), (e), (f) the results from the purvalanol-a model
and in the last row (g), (h), (i) are the results from the PD-98059. The bars correspond
to treatments and are colored according to the treatment target where blue is MAPK14,
orange is CDK2 and light green is BRAF.

163

SB-203580, which shares the same target, has the highest Eq. score. Furthermore, in 164

Fig.5c it also has the lowest SSE, meaning that the prediction of the Eq. score is within 165

the confidence space of the model. Based on these two scores, we calculate a weighted 166

score in Fig.5a. 167

Similar results can be observed in the second row for the purvalanol-a model’s 168

prediction. However, since aminopurvalanol-a has a high SSE, the weighted score in Fig 169

.5d is considerably lower than the Eq. score. 170

In the third row, we present the results from the PD-98059 model, and we observe a 171

different trend. The treatment with the same target, ZM-336372, has a negative Eq. 172

score. This indicates that the two treatments have an effect in the opposite direction 173

with respect to the negative control group. 174

PCA of Eq. scores 175

By combining the Eq. scores of the six compounds, we create a new feature space with 176

the same number of features as compounds. By applying PCA to these new features we 177

get principal components that capture the directions with the most systematic variation. 178

A plot of the first two principal components is displayed in Fig. 6. The groups are

Fig 6. A PCA plot of Eq. scores from the compounds. T1 is the first principal
component and T2 is the second principal component. There are four observations in
each cluster and a center point marked with a triangle. DMSO is the negative control
cluster located around the origo. In the legend, the name of the treatments and their
corresponding targets are listed.

179

distinctly separated. Notably, aminopurvalanol-a and purvalanol-a, which share the 180

target CDK2, are both located in the same direction from the negative controls but 181

with different magnitudes. PD-98059 and ZM-336372 with the common target BRAF, 182

are located in different directions but close in T1. The opposite can be observed with 183

SB-202190 and SB-203580 where the two are similar in T2 but not in T1. The same 184

plot based on the original CellProfiler features can be found in the supplementary 185

information. 186

Fig. 6 summarizes the similarities of the compounds in a two-dimensional plane. It 187

is important to note the difference between Fig. 6 and 5a. Fig. 5a uses the Eq. scores 188

of two compounds as its axes while Fig. 6 uses the Eq. scores of all six compounds and 189

projects into two dimensions. 190
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Benchmarking CellProfiler features vs Eq. Scores 191

So far, we have only looked at a portion of the full JUMP-CP1 dataset to 192

comprehensibly illustrate the methods and its result. Now, we will apply it on a larger 193

scale on all 303 compound treatments, cell lines and time points as in Fig. 2c. We use a 194

benchmarking metric developed by Srinivas Niranj Chandrasekara at Broad Institute 195

called the fraction of positive (fp) of the mean Average Precision (mAP) [14,20]. This 196

metric is presented in Fig. 7, for a comparison of replicability in terms of the fp between 197

the predicted Eq. Scores, where the prediction is based on CellProfiler features, and the 198

CellProfiler features themselves. Although the Eq. scores are based on the CellProfiler

Fig 7. Comparison of the fraction of positive (fp) of the mean Average Precision
(mAP) based on CellProfiler features (red) and the generated Eq. scores (blue) for
compound treatments. The results are grouped according to cell type and at what
timepoint the data was collected. Short represents the 48h mark and long the 96h mark.

199

features, they perform consistently better than the CellProfiler features for the 200

compounds due to the ability of PLS/OPLS models to capture and amplify structures 201

in high-dimensional data. 202

In Fig. 8 we look at the mAP on which the fp in Fig. 7 are based, for the Eq. scores 203

and CellProfiler features. Although the difference between the mAP of the Eq. scores

Fig 8. Comparison of the mean Average Precision based on CellProfiler features (red)
and the Eq. scores (blue) for compound treatments. The results are grouped according
to the cell type and at what time point the data was collected. Short represents the 48h
mark whereas long represents the 96h mark.

204

and the CellProfiler features is not huge, the Eq. scores perform better across the board. 205

Discussion 206

Feature extraction from cell images and the post-processing of these are hot topics 207

today, particularly within the biopharmaceutical industry. There are great tools 208

available to extract these features but the tools to explore, interpret and discover 209

similarities between different treatments, and especially between modalities, are falling 210

behind. This is a challenging task since the number of features is generally high in 211

comparison to the number of replicates. Luckily, this skewed relationship between 212

observations and features has been the standard in chemometric problems for decades 213

where the family of PLS methods has shown great success. 214

We have demonstrated that our proposed PLS/OPLS-based method can be useful 215

for the downstream analysis of cellular morphological profile data. As shown with the 216

compounds, we can compare treatments to one another by their Eq. score as well as 217

using these scores as new features. The new features generated by the PLS/OPLS 218

models represent the effect of each treatment in each treatment’s direction, defined by 219

the PLS/OPLS models. These will summarize the hidden correlation of the most 220

explanatory original features of each treatment. 221

The Eq. scores perform consistently better than the CellProfiler features in terms of 222

the benchmarking metric defined by Niranj [20]. PLS/OPLS models focus on amplifying 223

the features that are structurally important to distinguish a treatment from the 224

negative controls. Thus, we should expect the Eq. scores to perform better than the 225

original features as the models reconstruct the features resulting in a stronger, less noisy 226

signal. Compounds typically have a clear effect in which the PLS/OPLS models can 227

easily find the important variables and amplify the signal accordingly. 228
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In drug screening and development, it is common that we know the gene we want to 229

target to treat a disease but not which compound candidates target the correct genes. 230

With this approach, we can more easily than before create an Eq. score of the gene or 231

genes we want to target and then compare the equivalence of compounds and 232

CRISPR-treated observations. Creating PLS/OPLS models based on the compound 233

target and looking at the Eq. score of the CRISPR treatment will also give us more 234

insight if the compound has other effects as well. This is a clear difference compared to 235

correlation since correlations are symmetric and the PLS/OPLS models will be different. 236

We can also modify the method to suit different datasets. One example is where the 237

concentrations of the compounds differ. In that case, the intensities set as the target for 238

the PLS/OPLS models could be set as 1 and 2 for two different concentrations 239

representing the different levels of effects. This, of course, is if the treatments are 240

expected to behave in such a way. 241

We are looking forward to exploring the combination of chemometric approaches 242

with the strengths of modern deep-learning approaches. We believe that these 243

techniques can complement each other to increase our understanding of the complex 244

data generated today and by doing so, decrease the cost and time to develop new, 245

life-saving treatments. 246
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