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A Scalable Formulation for Look-Ahead
Security-Constrained Optimal Power Flow

Lamia Varawala , Student Member, IEEE, Mohammad Reza Hesamzadeh , Senior Member, IEEE,
Gyorgy Dán , Senior Member, IEEE, and Ross Baldick , Fellow, IEEE

Abstract—We consider the look-ahead security-const-
rained optimal power flow (LASCOPF) problem under trans-
mission line and generator contingencies. We first for-
mulate LASCOPF under the N − 1 contingency criterion
(LASCOPF1) using the dc power flow model. We observe
that the number of decision variables in the comprehen-
sive formulation increases quadratically with the number of
look-ahead intervals, T , making the problem infeasible to
solve for large T . To overcome this, we propose the reduced
LASCOPF problem (LASCOPF-r1) in which the number of
decision variables increases only linearly with T . There-
after, we prove that, barring borderline cases, if LASCOPF1

is feasible then the optimal solutions of LASCOPF1 and
LASCOPF-r1 are equivalent. We then extend our results
to the N − k contingency criterion (LASCOPF-ruk) for any
collection of k contingencies, and we prove that the or-
dering of the contingencies does not affect the optimal
solution. We then illustrate LASCOPF1 on a simple 2-bus
2-generator system. We show the numerical benefits of the
proposed LASCOPF-r1 formulation on the IEEE 118-bus,
the IEEE 300-bus, and the 2383-bus Polish systems.

Index Terms—N-k$ contingency criterion, look-ahead,
optimal power flow.

NOMENCLATURE

Sets
N Buses.
G Generators.
L Transmission lines.
L′ Transmission lines that do not partition the system.
CL Transmission line contingencies, CL ⊆ L′.
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CG Generator contingencies, CG ⊆ G.
Indices1

t Dispatch interval, t ∈ N.
u Interval in which contingency begins (viz. contin-

gency interval), u ∈ N.
n Bus, n ∈ N .
g Generator, g ∈ G.
l Transmission line, l ∈ L.
b Transmission line contingency, b ∈ CL.
c Generator contingency, c ∈ CG .
Parameters
T Length of the planning horizon.
Cg,t(x) Generation cost for one dispatch interval.

D
{0}
n,t , D

{c}
n,t Demand in the normal state, and under

P g, P g active power generation limits.
Ang Generator location; 1 if g is at n, 0 otherwise.

K
{0}
l ,K

{b}
l Transmission line capacity for the normal state and

under contingency b ∈ CL.
Rg, Rg Ramping limits in one dispatch interval contin-

gency c ∈ CG , respectively.
H

{0}
ln , H

{b}
ln Power transfer distribution factor of line l for

injection at bus n for the normal state, and under
contingency b ∈ CL, respectively.

Decision variables
p
(0)
g,t , p

(c,u)
g,t Generator dispatch in the normal state, and under

contingency c ∈ CG , respectively.

I. INTRODUCTION

THE optimal power flow (OPF) problem aims at minimizing
generation cost over a single dispatch interval, and has

been fundamental to power system operation ever since its incep-
tion [1]. It has, however, been recognized in recent years that due
to increasing amounts of intermittent generation capacity [2],
single interval OPF has to be extended to take into account the
ramping capability of generators and the dependence between
subsequent dispatch intervals [3].

This dependence is accounted for by the look-ahead OPF
(LAOPF) problem [4]. LAOPF minimizes the total generation
cost over multiple consecutive dispatch intervals (called the
planning horizon), taking into account generator ramping con-
straints and demand forecasts, and is particularly useful in case

1N represents the set of natural numbers.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7546-7105
https://orcid.org/0000-0002-9998-9773
https://orcid.org/0000-0002-4876-0223
https://orcid.org/0000-0003-2783-7321
mailto:varawala@kth.se
mailto:mrhesa@kth.se
mailto:gyuri@kth.se
mailto:baldick@ece.utexas.edu
mailto:baldick@ece.utexas.edu


VARAWALA et al.: SCALABLE FORMULATION FOR LOOK-AHEAD SECURITY-CONSTRAINED OPTIMAL POWER FLOW 139

Fig. 1. Illustration of LAOPF computed over a planning horizon of four
intervals, executed in every dispatch interval. The solution for the next
dispatch interval is implemented (dark), the rest is advisory (shaded).

of large anticipated changes in net demand [5]. The solution
obtained for the next dispatch interval is used for dispatch
instructions and locational marginal pricing, while that for sub-
sequent intervals is advisory [6]. The algorithm is executed again
based on the updated predicted demand after the dispatch inter-
val according to the principle of receding horizon control [7].
This look-ahead and receding horizon operation is illustrated
in Fig. 1, where for expositional clarity, we consider that all
intervals in the planning horizon are of equal duration. Although
several LAOPF implementations include unit commitment, our
discussion will be limited to dispatch and not commitment.

The importance of the dependence between subsequent dis-
patch intervals has been confirmed by the industry, and inde-
pendent system operators (ISOs) have recently shown increased
interest in LAOPF for real-time operation of power systems
with five minute dispatch intervals, often called multi-interval
real-time markets. LAOPF is already implemented by the New
York ISO (NYISO) [8], the California ISO (CAISO) [9], the
Midcontinent ISO (MISO) [10], Ontario’s Independent Elec-
tricity System Operator (IESO) [11], and the PJM Intercon-
nection [12] while the Electric Reliability Council of Texas
(ERCOT) has proposed the approach [13]. It is also being
considered in Australia [14]. Several ISOs also consider flexible
ramping products (FRPs) as a proxy to LAOPF [15]. FRPs are
akin to reserve capacity in that they ensure that there is sufficient
ramping capability in the system to manage large deviations in
demand between consecutive dispatch intervals. When there is
sufficient ramping capability, ISOs can safely implement single
interval OPF, which has a computational advantage over LAOPF,
but a potentially suboptimal outcome. Besides accounting for
the dependence between subsequent dispatch intervals, exist-
ing LAOPF implementations at ISOs as well as recent works,
e.g., [3] consider some form of security constraints as well.

In the literature, security constraints were first considered for
single dispatch interval OPF, called security constrained OPF
(SCOPF) [16]. The SCOPF was initially formulated considering
outages in transmission lines [17], but more recent works on
SCOPF consider outages in generators or in both [18]. The
model in [19] considers generation reserves (which allow re-
covery from generator contingencies), but does not explicitly
consider any security constraints. More recently, [3] considered

TABLE I
RELATED WORK ON LA/SC/OPF M : METHODOLOGY (

ANALYTICAL/NUMERICAL), LA : LOOK-AHEAD, LC : LINE CONTINGENCY, GC
: GENERATOR CONTINGENCY, N − k : N − k CONTINGENCY CRITERION

LAOPF with generation reserves, but without explicit treatment
of security constraints.

The integration of security constraints into LAOPF results
in the look-ahead security constrained OPF (LASCOPF) prob-
lem [20] where the authors considered the dc model under the
N − 1 contingency criterion. To overcome the vast computa-
tional complexity, they decompose the problem into multiple
SCOPF problems where a message passing algorithm is used
to model the effect of ramping constraints between consecutive
dispatch intervals. Their LASCOPF formulation is also used
by a variety of ISOs, i.e., they enforce ramp rate constraints be-
tween successive base case dispatches, and enforce transmission
contingency constraints on each base case dispatch, but they do
not account for outaged equipment in one interval remaining
outaged in subsequent intervals.

In this article, we propose an LASCOPF formulation that
models the entire planning horizon in the normal state as well
as under generator contingencies. Our model ensures security
against contingencies in any interval and accounts for the shut-
down of a contingent component for the remainder of the plan-
ning horizon. Accordingly, the contributions of the this article
are twofold. First, we propose a formulation for LASCOPF using
the dc power flow model considering both transmission line and
generator contingencies under the N − 1 contingency criterion,
LASCOPF1. This formulation suffers from high computational
complexity as the number of decision variables is quadratic in
the length of the planning horizon. Second, we prove analytically
that the number of decision variables in the LASCOPF1 formu-
lation can be reduced, leading to LASCOPF-r1. This formulation
is scalable, with size (number of decision variables) linear in the
length of the planning horizon as opposed to quadratic. We then
extend our proof to the N − k contingency criterion, leading
to the reduced LASCOPF-rk. We present numerical results that
demonstrate the reduction in computational complexity in prac-
tical applications. Table I provides an overview of the literature
on LAOPF, SCOPF, and LASCOPF, including our contribution.

The rest of this article is organized as follows. Section II
presents the LASCOPF1 formulation. Section III presents the
reduced LASCOPF-r1 formulation and proves its equivalence to
LASCOPF1. Section IV extends the results to theN − k contin-
gency criterion, LASCOPF-ruk. Sections V and VI provide illus-
trative examples and numerical results, respectively. Section VII
discusses extensions of the model and numerical techniques that
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Fig. 2. Illustration of change from the normal state to the contingency
state when contingency c ∈ CG is observed in interval u ∈ N, u < T for
LASCOPF1.

allow faster computation of the proposed formulations. Finally,
Section VIII concludes this article.

II. COMPREHENSIVE LASCOPF UNDER N − 1
CONTINGENCY CRITERION: LASCOPF1

We begin with the LASCOPF1 problem over a planning
horizon of length T , under the N − 1 contingency criterion
using the dc power flow model. We assume that any transmission
line contingency b ∈ CL or any generator contingency c ∈ CG
can take place in any interval u, and a contingency is fully
specified by the combination of element, c ∈ CG or b ∈ CL,
together with the contingency interval, u. The normal state
dispatch of generator g in interval t is denoted by p

(0)
g,t and the

post-contingency dispatch under generator contingency c ∈ CG ,
where the contingency occurred in intervalu, is denoted byp(c,u)g,t

for t > u. Then, the dispatch is implemented as illustrated in
Fig. 2 where it is assumed that interval t = 0 is the interval of
execution of the problem, corresponding to the earliest planning
horizon in Fig. 1. Given the set of contingencies as input, the
LASCOPF1(CL, CG) problem is

minimize
p
(0)
g,t,p

(c,u)
g,t

T∑
t=1

∑
g∈G

Cg,t

(
p
(0)
g,t

)
(1a)

subject to:
(Normal state constraints)

∑
g∈G

p
(0)
g,t =

∑
n∈N

D
{0}
n,t (1b)

P g ≤ p
(0)
g,t ≤ P g (1c)

∣∣∣∣∣∣
∑
n∈N

H
{0}
ln

⎛
⎝∑

g∈G
Angp

(0)
g,t −D

{0}
n,t

⎞
⎠
∣∣∣∣∣∣
≤ K

{0}
l (1d)

Rg ≤ p
(0)
g,t − p

(0)
g,t−1 ≤ Rg (1e)

(Transmission line contingency constraints)
∣∣∣∣∣∣
∑
n∈N

H
{b}
ln

⎛
⎝∑

g∈G
Angp

(0)
g,t −D

{0}
n,t

⎞
⎠
∣∣∣∣∣∣
≤ K

{b}
l . (1f)

(Generator contingency constraints)

p
(c,u)
g,t = 0 if g = c (1g)
∑
g∈G

p
(c,u)
g,t =

∑
n∈N

D
{c}
n,t (1h)

P g ≤ p
(c,u)
g,t ≤ P g if g �= c (1i)

Rg ≤ p
(c,u)
g,t − p

(c,u)
g,t−1 ≤ Rg if g �= c, t > u+ 1 (1j)

Rg ≤ p
(c,u)
g,t − p

(0)
g,t−1 ≤ Rg if g �= c, t = u+ 1 (1k)

∀t ∈ N, t ≤ T ∀g ∈ G ∀l ∈ L ∀b ∈ CL, l �= b ∀c ∈
CG ∀u ∈ N, t > u.

Objective function (1a) is the cost of generation in the normal
state over T look-ahead intervals, assumed to be convex. Due to
the design of the power system the probability that a contingency
occurs is very low and is thus hard to estimate. Therefore, it is
common practice in the literature to not consider the cost of
generation under contingencies [14], [18]. For the normal state,
the power balance, generation capacity, normal transmission
line capacity, and ramping constraints are (1b), (1c), (1d), and

(1e), respectively. In (1d), K
{0}
l would typically be the long

term or steady state transmission line capacity. The normal
state also preventively satisfies transmission line contingency
constraints (1f), i.e., under a transmission line contingency,
where it is conservatively assumed that the dispatch remains the

same as in the normal state. Accordingly,K
{b}
l in (1f) is typically

the short term or emergency transmission line capacity, where

K
{b}
l ≥ K

{0}
l ∀b ∈ CL. The outaged transmission line may then

be restored, e.g., by an automated reclosure process, without a
deviation from normal dispatch. When a generator contingency
takes place, the affected generator typically cannot generate
for the remainder of the planning horizon as represented by
constraint (1g) which would require a change in the dispatch
of the remaining generators to compensate for the generation
shortfall. In addition, to compensate for the loss of generation
in the system, load shedding may be required as represented by
the power balance constraint (1h). Here, the total shed load is
typically less than the lost generation 0 ≤ ∑

n(D
{0}
n,t −D

{c}
n,t) ≤

p
(0)
g,t if g = c. Accordingly, for the generator contingency state,

generation capacity, and ramping constraints are (1i), and (1j),
respectively. For generator contingencies, one typically uses
short term transmission line limits allowing us to ignore trans-
mission line constraints. The corrective dispatch instruction is
employed in dispatch intervals t > u (see Fig. 2). Therefore, for
interval t = u+ 1, the ramping constraint between the generator
contingency and normal states is given by (1k).

Observe that for T = 1, LASCOPF1 is equivalent to single
interval SCOPF. Since the contingency interval satisfies u ∈
N, u < T = 1, i.e., u ∈ ∅, we cannot consider any corrective
generator contingencies. Also, it is useful to note here that our
formulation is different from existing formulations of LAOPF,
as implemented at certain ISOs [20]. Those formulations require
security with respect to a particular contingency, but they do not
model that for a given contingency scenario the generator is not
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available for the rest of the planning horizon as we do in (1j), i.e.,
they only consider t = u+ 1 in contingency states. Therefore,
they only consider ramping constraints in (1k) and ignore those
in (1j). Also, they do not have to consider u explicitly since it
is implicitly given by t. Our model enforces (1j), and is thus, a
more comprehensive formulation of LASCOPF.

Owing to the dependence of p(c,u)g,t , t > u on the interval u in
which the contingency would happen, the number of decision
variables and hence constraints is proportional to T (T − 1)/2
as can be estimated from Fig. 2. ThisO(T 2) dependence renders
the problem infeasible for large values of T . We present a
detailed analysis of the problem complexity in Appendix A.

III. REDUCED LASCOPF: LASCOPF-R1

To overcome the O(T 2) dependence of LASCOPF1, we now
propose a reduced formulation called LASCOPF-r1(CL, CG),
which differs from LASCOPF1 only in that the contingency
state decision variables p(c)g,t are independent of u. LASCOPF-r1
is formulated as

minimize
p
(0)
g,t,p

(c)
g,t

T∑
t=1

∑
g∈G

Cg,t

(
p
(0)
g,t

)
(2a)

subject to:
(Normal state constraints of the same form as (1b) to (1e):)

(5b) to (5e),
(Transmission line contingency constraints of the same form

as (1f):) (5f)
(Generator contingency constraints)

p
(c)
g,t = 0 if g = c, t > 1 (2g)
∑
g∈G

p
(c)
g,t =

∑
n∈N

D
{c}
n,t , if t > 1 (2h)

P g ≤ p
(c)
g,t ≤ P g if g �= c, t > 1 (2i)

Rg ≤ p
(c)
g,t − p

(c)
g,t−1 ≤ Rg if g �= c, t > 2 (2j)

Rg ≤ p
(c)
g,t − p

(0)
g,t−1 ≤ Rg if g �= c, t > 1 (2k)

∀t ∈ N, t ≤ T ∀g ∈ G ∀l ∈ L∀b ∈ CL, l �= b∀c ∈ CG .
In LASCOPF1, the dependence on u arises due to constraints

(1j) and (1k), and the value of u determines which constraint
would apply to decision variable p

(c,u)
g,t . In LASCOPF-r1, the

equivalent constraints are (2j) and (2k), respectively. However,
since the decision variable p

(c)
g,t is independent of u, it has to

satisfy (2j) and (2k) simultaneously so that the same contingency
dispatch can be used no matter when the contingency happens
as illustrated in Fig. 3.

Note that LASCOPF1 and LASCOPF-r1 are identical for
T = 2. To see why, observe that the contingency interval u ∈
N, u < T , i.e., u ∈ {1}. Since contingency state decision vari-
ables exist only for a single value ofu, imposing independence of
u in LASCOPF-r1 results in the same set of decision variables as
that of LASCOPF1. Thus, it is only for T > 2 that LASCOPF1

is different from LASCOPF-r1.

Fig. 3. Illustration of change from the normal state to the contingency
state when contingency c ∈ CG is observed in interval u ∈ N, u < T for
LASCOPF-r1.

Owing to the independence of p
(c)
g,t from the interval u in

which the contingency would happen, the number of decision
variables and constraints in LASCOPF-r1 is proportional to T ,
as can be estimated from Fig. 3. We present a detailed analysis of
the problem complexity in Appendix A. Intuition says that as a
result LASCOPF-r1 would be more scalable than LASCOPF1;
this intuition is confirmed by our numerical results presented
in Section VI. Also, due to the independence of the dispatch
from u, LASCOPF-r1 happens to consider the same number
of contingency states as existing LAOPF formulations, and
hence, it would have the same number of decision variables.
The significant difference between these problem formulations
is the additional consideration of (2j) in LASCOPF-r1. We
expect that the addition of this constraint does not increase
the computational complexity much while allowing for a more
comprehensive consideration of contingencies.

In the event of a generator contingency, barring borderline
cases, all generation levels for LASCOPF1 would at least be
equal to the normal state generation levels in the same interval,
i.e., p(c,u)g,t ≥ p

(0)
g,t ∀g ∈ G, g �= c, even if we account for load

shedding. In what follows, we show that under these conditions
solving LASCOPF-r1 is equivalent to solving LASCOPF1.

Theorem 1: If LASCOPF-r1 is feasible then LASCOPF1 is
feasible, and if LASCOPF1 is feasible and has a solution such
that p

(c,u)
g,t ≥ p

(0)
g,t ∀c ∈ CG ∀g ∈ G, g �= c, t, u ∈ N, u < t ≤ T

then LASCOPF-r1 is feasible. Furthermore, if LASCOPF1 has
such an optimal solution then the optimal objective values of
LASCOPF1 and LASCOPF-r1 are equal.

Proof: We begin by showing that LASCOPF-r1 is fea-
sible then LASCOPF1 is feasible. To do so, observe that
for LASCOPF1 and LASCOPF-r1 the normal state variables
(p

(0)
g,t |g ∈ G, t ∈ N, t ≤ T ), and the normal state constraints

(1b)–(1e) and (5b)–(5e), respectively, are identical. Thus, any
(p

(0)
g,t |g ∈ G, t ∈ N, t ≤ T ) that is feasible for LASCOPF1

is feasible for LASCOPF-r1 and vice versa. Also, given
any (p

(c)
g,t|c ∈ CG , g ∈ G, t ∈ N, t ≤ T ) that is feasible for

LASCOPF1 satisfying (2g) to (2k), we can choose p
(c,u)
g,t =

p
(c)
g,t ∀c ∈ CG , g ∈ G, t, u ∈ N, u < t ≤ T that will be feasible

for LASCOPF-r1 satisfying (1g) to (1k).
Next, consider that LASCOPF1 is feasible and has a

solution such that p
(c,u)
g,t ≥ p

(0)
g,t ∀c ∈ CG ∀g ∈ G, g �= c, t, u ∈

N, u < t ≤ T that satisfies (1g) to (1k). Under this condition,
we prove that LASCOPF-r1 is feasible. Also, if an optimal
solution satisfies this condition then LASCOPF-r1 has the same
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optimal objective value as LASCOPF1. We begin by observing
that the objective (2a) is a function only of the normal state
variables (p(0)g,t |g ∈ G, t ∈ N, t ≤ T ). Therefore, it is sufficient

for the proof that given any set of normal state dispatch (p(0)g,t |g ∈
G, t ∈ N, t ≤ T ) there exists a contingency state dispatch for
LASCOPF-r1 (p

(c)
g,t|c ∈ CG , g ∈ G, t ∈ N, t ≤ T ) that satisfies

(2g) to (2k). To do so, we will show that given a dispatch
interval t = t′ and a contingency c = c′, for all values of the
contingency interval u < t, u ∈ N, the feasible regions for the
dispatch (p

(c′,u)
g,t′ )g∈G must necessarily overlap with each other.

Therefore, LASCOPF-r1 can use a single decision variable
(p

(c′)
g,t′ )g∈G to represent the generation levels ∀u ∈ N, u < t′.
First, consider dispatch interval t = 2, and a contingency

c = c′. Let (p
(c′,1)
g,2 )g∈G be a feasible set of dispatch during

interval t = 2 for contingency c′ occurring during intervalu = 1.
Consider now the corresponding LASCOPF-r1 formulation, and
observe that p(c

′)
g,2 = p

(c′,1)
g,2 is feasible for dispatch interval t = 2

and contingency c = c′, since constraints (1g) to (1i) and (1k)
for u = 1, and constraints (2g) to (2i) and (2k) for c = c′ define
identical feasible regions for t = 2.

Let us now consider dispatch interval t = 3 and contingency
c = c′, and let (p

(c′,1)
g,3 )g∈G and (p

(c′,2)
g,3 )g∈G be feasible sets

of dispatch for LASCOPF1 for the contingency occurring
during interval u = 1 and u = 2, respectively. Let X be
the feasible region defined by (1g) and (1i) for t = 3 and
c = c′. Since constraints (1g) and (1i) are independent of
u, the variables p

(c′,1)
g,3 ∈ Xg , and p

(c′,2)
g,3 ∈ Xg ∀g ∈ G. From

(1g), Xg = {0} if g = c′ and from (1i), Xg = [P g, P g] if
g �= c′. Here, X =

∏
g∈G Xg . Also, let Y =

∏
g∈G Yg be the

feasible region defined by (1j) for t = 3, c = c′ and u = 1 such
that Yg = R if g = c′ and Yg = [Rg + p

(c′,1)
g,2 , Rg + p

(c′,1)
g,2 ]

if g �= c′. Similarly, let Z =
∏

g∈G Zg be the feasible
region defined by (1e) for t = 3, c = c′ and u = 2 such
that Zg = R if g = c′ and Zg = [Rg + p

(0)
g,2, Rg + p

(0)
g,2]

if g �= c′. Observe that since the problem is feasible, we
have (p

(c′,1)
g,3 )g∈G ∈X ∩ Y={0}×∏

g∈G,g �=c′ [max{P g, Rg +

p
(c′,1)
g,2 },min{P g, Rg + p

(c′,1)
g,2 }] and (p

(c′,2)
g,3 )g∈G ∈ X ∩ Z =

{0} ×∏
g∈G,g �=c′ [max{P g, Rg + p

(0)
g,2},min{P g, Rg + p

(0)
g,2}].

In the next step, we show for g �= c′ that Yg ∩ Zg = [Rg +

p
(c′,1)
g,2 , Rg + p

(0)
g,2] �= ∅. To show this, let us first consider (1e)

for t = 2, which is satisfied by p
(0)
g,2. After rearrangement we get

Rg − p
(0)
g,2 ≤ −p

(0)
g,1 ≤ Rg − p

(0)
g,2. (3)

Consider now (1k) for t = 2 and u = 1, which is satisfied by
p
(c′,1)
g,2 . After rearrangement we get

Rg − p
(c′,1)
g,2 ≤ −p

(0)
g,1 ≤ Rg − p

(c′,1)
g,2 . (4)

Since, LASCOPF1 is assumed to be feasible, we know that p(0)g,1

exists, and we obtain

Rg + p
(c′,1)
g,2 ≤ Rg + p

(0)
g,2 (5)

which implies Yg ∩ Zg �= ∅. Thus, X ∩ Y ∩ Z = {0} ×∏
g∈G,g �=c′ [max{P g, Rg + p

(c′,1)
g,2 },min{P g, Rg + p

(0)
g,2}] �= ∅.

We are now ready to show that there is a dispatch p
(c′)
g,3 for

LASCOPF-r1 that satisfies constraints (2g) and (1i) to (2k). Ob-
serve that constraints (2g) and (2i) are identical to (1g) and (1i)
for t = 3 and c = c′ since the latter are independent of u. Addi-
tionally, observe that (2j) is equivalent to (1j) for u = 1 since we
have chosen p

(c′)
g,2 = p

(c′,1)
g,2 and that (2k) is equivalent to (1k) for

u = 2 since we have chosen equal values for the normal state dis-
patch in LASCOPF-r1 and LASCOPF1. Then, since p

(c′)
g,3 must

satisfy (2g) to (2k), (p(c
′)

g,3 )g∈G ∈ X ∩ Y ∩ Z . Now, observe that

(p
(c′,1)
g,3 )g∈G ∈ X ∩ Y satisfies (1h). This implies for the lower

boundaries of Xg ∩ Yg ∀g ∈ G that
∑

g∈G,g �=c′ max{P g, Rg +

p
(c′,1)
g,2 }+ 0 ≤ ∑

n∈N D
{c}
n,3. Similarly, (p

(c′,2)
g,3 )g∈G ∈ X ∩ Z ,

which also satisfies (1h), implies for the upper boundaries
ofXg ∩ Zg ∀g ∈ G that

∑
g∈G,g �=c′ min{P g, Rg + p

(0)
g,2}+ 0 ≥∑

n∈N D
{c}
n,3. Therefore, there must exist (p(c

′)
g,3 )g∈G ∈ X ∩ Y ∩

Z satisfying (2h), which is identical to (1h). Hence, (p(c
′)

g,3 )g∈G
is feasible if (p

(c′,1)
g,3 )g∈G and (p

(c′,2)
g,3 )g∈G are feasible. Conse-

quently, p(c
′)

g,3 = p
(c′,1)
g,3 = p

(c′,2)
g,3 ∀g ∈ G.

So far we have shown the proof for t = 2 and t = 3. We
can repeat the above analysis for time t = t′, t′ > 3 starting
with t′ = 4 in increasing order. First, note that we can set
(p

(c′,u)
g,t′−1)g∈G = (p

(c′)
g,t′−1)g∈G ∀u ∈ N, u < t′ − 1. Then, for c =

c′ and t = t′ constraints (1j) ∀u ∈ N, u < t′ − 1 and (2j), and
thus the entire feasible regions for (p

(c′,u)
g,t′ )g∈G ∀u ∈ N, u <

t′ − 1, and (p(c
′)

g,t′ )g∈G are identical. Then, it follows that p(c
′,u)

g,t′ =

p
(c′)
g,t′ ∀u ∈ N, u < t′ − 1. Now, following the analysis above, we

can show that (p(c
′,u)

g,t )g∈G = (p
(c′)
g,t )g∈G ∀u ∈ N, u < t′, includ-

ing u = t′ − 1. We can show this ∀c′ ∈ CG . This proves that fea-
sibility of LASCOPF1 implies feasibility of LASCOPF-r1 and
allows us to set p

(c,u)
g,t = p

(c)
g,t ∀c ∈ CG ∀g ∈ G ∀u, t ∈ N, u <

t ≤ T . This concludes the proof. �

IV. EXTENSION TO k CONTINGENCIES: LASCOPF-Rk

In what follows, we generalize LASCOPF-r1 to the N − k
contingency criterion, i.e., the system should remain secure
when up to k contingencies occur in the planning horizon.
Accordingly, we include security constraints for r transmission
line contingencies, (b1, . . . , br) and s generator contingencies,
(c1, . . . , cs) for all r, s ≥ 0, r + s ≤ k. For notational simplic-
ity, we consider that up to one generator contingency can occur
in a single dispatch interval. Since security against transmission
line contingencies is preventive, we could have multiple in a
single interval. Then, LASCOPF-rk(CL, CG) can be written as

minimize
p
(0)
g,t,p

(c1,...,cs)
g,t

T∑
t=1

∑
g∈G

Cg,t

(
p
(0)
g,t

)
(6a)

subject to:
(Normal state constraints of the same form as (1b) to (1e):)

(9b) to (9e).
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(Transmission line contingency constraints)
∣∣∣∣∣∣
∑
n∈N

H
{b1,...,br}
ln

⎛
⎝∑

g∈G
Angp

(0)
g,t −D

{0}
n,t

⎞
⎠
∣∣∣∣∣∣
≤ K

{b1,...,br}
l (6f)

(Generator contingency constraints)

p
(c1,...,cs)
g,t = 0, if g ∈ {c1, . . . , cs} (6g)
∑
g∈G

p
(c1,...,cs)
g,t =

∑
n∈N

D
{c1,...,cs}
n,t (6h)

P g ≤ p
(c1,...,cs)
g,t ≤ P g, if g /∈ {c1, . . . , cs} (6i)

Rg ≤ p
(c1,...,cs)
g,t − p

(c1,...,cs)
g,t−1 ≤ Rg, if g /∈ {c1, . . . , cs} (6j)

Rg ≤ p
(c1,...,cs)
g,t − p

(c1,...,cs−1)
g,t−1 ≤ Rg, if g /∈ {c1, . . . , cs}

(6k)

∀t ∈ N, t ≤ T ∀g ∈ G ∀l ∈ L ∀r, s ∈ N, r, s ≤ k, t > s
∀b1, . . . , br ∈ CL, b1 �= . . . �= br, l /∈ {b1, . . . , br} ∀c1, . . . ,
cs ∈ CG , c1 �= . . . �= cs.

Observe that H{b1,...,br}
ln can be calculated as a simple exten-

sion of H{b}
ln [21] and only depends upon the set of contingen-

cies {b1, . . . , br}, and not the order in which they would take
place. Since the security against transmission line contingencies
is preventive, the ordering of a transmission line contingency
w.r.t. a generator contingency is also insignificant allowing us
to completely disregard when they occur. For the generator
contingency state (c1, . . . , cs), ramping constraints now have to
be with state (c0, . . . , cs−1) instead of the normal state, where
c0 represents the normal state. This makes the ordering of
generator contingencies significant. Observe that for br ∈ CL,
CL will vary with the contingencies {b1, . . . , br−1} that have
already taken place since a contingency can only occur once in
a single component and the set of lines that do not partition the
system may change. Similarly, for cs ∈ CG , CG will vary with
{c1, . . . , cs−1}. The transmission line contingency constraints
have to be considered over a combination of r contingencies
and the generator contingency constraints over a permutation of
s contingencies, for r + s ≤ k.

In what follows, we propose the formulation LASCOPF-ruk,
defined as LASCOPF-rk subject to

p
(c1,...,cs)
g,t = p

{c1,...,cs}
g,t ∀s ∈ N, s ≤ k ∀c1, . . . , cs ∈ CG ,

c1 �= . . . �= cs ∀g ∈ G ∀t ∈ N, s < t ≤ T.
(7)

The additional constraint requires the contingency state solu-
tion to be independent of the order in which contingencies take
place. Thus, for this formulation it suffices to consider generator
contingency constraints to be a combination instead of a permu-
tation of s contingencies. In what follows, we show that under
certain conditions LASCOPF-rk is equivalent to LASCOPF-ruk.

Theorem 2: If LASCOPF-ruk is feasible then LASCOPF-rk
is feasible and if LASCOPF-rk is feasible and has a solution
such that either

1) p
(c1,...,c

1
s)

g,t ≥ p
(c1,...,c

2
s)

g,t ∀s ∈ N; s ≤ k; ∀c1, . . . ,
cs−1, c

1
s, c

2
s ∈ C; c1 �= · · · �= cs−1 �= c1s �= c2s; ∀g ∈

G; g /∈ {c1, . . . , cs−1, c
1
s, c

2
s}; ∀t ∈ N; t ≤ T or

2) p
(c1,...,c

1
s)

g,t ≤ p
(c1,...,c

2
s)

g,t ∀s ∈ N; s ≤ k; ∀c1, . . . ,
cs−1, c

1
s, c

2
s ∈ C; c1 �= · · · �= cs−1 �= c1s �= c2s; ∀g ∈

G; g /∈ {c1, . . . , cs−1, c
1
s, c

2
s}; ∀t ∈ N; t ≤ T

then LASCOPF-ruk is feasible. Furthermore, if LASCOPF-rk
has such an optimal solution then the optimal objective values
of LASCOPF-rk and LASCOPF-ruk are equal.

Proof: We begin by observing that if LASCOPF-ruk is
feasible then LASCOPF-rk must be feasible since the for-
mer simply has the additional constraint (7). Next, consider
that LASCOPF-rk is feasible and has a solution such that
either (i) or (ii) satisfies (6g) to (6k). Under this condition,
we will prove that LASCOPF-ruk is feasible and that if an
optimal solution satisfies this condition then LASCOPF-ruk
has the same optimal objective value. To do so, first observe
that the objective (6a) is a function only of the normal state
variables (p

(0)
g,t |g ∈ G, t ∈ N, t ≤ T ). Since LASCOPF-rk and

LASCOPF-ruk only differ in the contingency state, it is sufficient
to show that (p

(c1,...,cs)
g,t )g∈G exists satisfying (6g) to (6k) if

and only if (p{c1,...,cs}g,t )g∈G exists such that (7) is also satisfied
∀c1, . . . , cs ∈ CG ∀t ∈ N0, s < t ≤ T . First, let us consider a
feasible instance of LASCOPF-rk. It is trivial to see that if s = 1,
then p

(c1)
g,t = p

{c1}
g,t ∀c1 ∈ CG ∀g ∈ G ∀t ∈ N0, 1 < t ≤ T .

Let us now consider s = 2 contingencies, dispatch interval

t = 3, and let (p
(c′1,c

′
2)

g,3 )g∈G for contingencies c1 = c′1 and

c2 = c′2, and (p(c
′
2,c

′
1)

g,3 )g∈G for contingencies c1 = c′2 and c2 = c′1
be feasible sets of dispatch for LASCOPF-rk. Without loss of

generality, let us consider that p(c
′
1)

g,2 ≤ p
(c′2)
g,2 ∀g ∈ G. Let X be

the feasible region defined by (6g) and (6i) for t = 2, c1 = c′1,
and c2 = c′2. Since constraints (6g) and (6i) are independent of

the ordering of contingencies, the variables p
(c′1,c

′
2)

g,3 ∈ Xg , and

p
(c′2,c

′
1)

g,3 ∈ Xg ∀g ∈ G. From (6g), Xg = {0} if g ∈ {c′1, c′2} and
from (1i), Xg = [P g, P g] if g /∈ {c′1, c′2}. Here, X =

∏
g∈G Xg.

Also, let Y =
∏

g∈G Yg be the feasible region defined by (6k)
for t = 3, c1 = c′1 and c2 = c′2 such that Yg = R if g ∈ {c′1, c′2}
andYg = [Rg + p

(c′1)
g,2 , Rg + p

(c′1)
g,2 ] if g /∈ {c′1, c′2}. Similarly, let

Z =
∏

g∈G Zg be the feasible region defined by (6k) for t = 3,
c1 = c′2 and c2 = c′1 such thatZg = R if g ∈ {c′1, c′2} andZg :=

[Rg + p
(c′2)
g,2 , Rg + p

(c′2)
g,2 ] if g /∈ {c′1, c′2}. Observe that since the

problem is feasible, we have (p
(c′1,c

′
2)

g′,3 )g∈G ∈ X ∩ Y = {0}2 ×∏
g∈G,g/∈{c′1,c′2}[max{P g, Rg + p

(c′1)
g,2 },min{P g, Rg + p

(c′1)
g,2 }]

and (p(c
′
2,c

′
1)

g′,3 )g∈G ∈X ∩ Z={0}2×∏
g∈G,g/∈{c′1,c′2}[max{P g, Rg

+ p
(c′2)
g,2 },min{P g, Rg + p

(c′2)
g,2 }].

In the next step, we show for g /∈ {c′1, c′2} that Yg ∩ Zg =

[Rg + p
(c′2)
g,2 , Rg + p

(c′1)
g,2 ] �= ∅. To show this, let us first consider

(6k) for t = 2 and c1 = c′1 which is satisfied by p
(c′1)
g,2 . After

rearrangement we get

Rg − p
(c′1)
g,2 ≤ −p

(0)
g,1 ≤ Rg − p

(c′1)
g,2 . (8)
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Fig. 4. 2-bus 2-generator system to illustrate LASCOPF.

Consider now (6k) for t = 2 and c1 = c′2, which is satisfied

by p
(c′2)
g,2 . After rearrangement we get

Rg − p
(c′2)
g,2 ≤ −p

(0)
g,1 ≤ Rg − p

(c′2)
g,2 . (9)

Since, LASCOPF1 is assumed to be feasible, we know that
p
(0)
g,1 exists, and we obtain

Rg + p
(c′2)
g,2 ≤ Rg + p

(c′1)
g,2 (10)

which implies Yg ∩ Zg �= ∅. Thus, X ∩ Y ∩ Z =

{0}2 ×∏
g∈G,g/∈{c′1,c′2}[max{P g, Rg + p

(c′2)
g,2 },min{P g, Rg +

p
(c′1)
g,2 }] �= ∅.

Next, observe that (p
(c′2,c

′
1)

g,3 )g∈G ∈ X ∩ Y satisfies (6h).
This implies for the lower boundaries of Xg ∩ Yg ∀g ∈ G
that

∑
g∈G,g/∈{c′1,c′2} max{P g, Rg + p

(c′2)
g,2 } ≤ ∑

n∈N D
{c′1,c′2}
n,3 .

Similarly, (p
(c′1,c

′
2)

g,3 )g∈G ∈ X ∩ Z , which also satisfies (6h),
implies for the upper boundaries of Xg ∩ Zg ∀g ∈ G that∑

g∈G,g/∈{c′1,c′2} min{P g, Rg + p
(c′1)
g,2 } ≥ ∑

n∈N D
{c′1,c′2}
n,3 .

Therefore, there must exist (p
{c′1,c′2}
g,3 )g∈G ∈ X ∩ Y ∩ Z

satisfying (6h). Consequently, (7) is feasible.
So far we have shown the proof for t = 2, and t = 3. We

can repeat the above analysis for time t = t′, t′ > 3 start-
ing with t′ = 4 in increasing order. First, note that we can

set (p(c
′
1,c

′
2)

g,t′−1 )g∈G = (p
(c′2,c

′
1)

g,t′−1 )g∈G = (p
{c′1,c′2}
g,t′−1 )g∈G . Then, observe

that for t = t′ (6j) is identical for the pair c1 = c′1 and c2 =
c′2, and the pair c1 = c′2 and c2 = c′1. We can show this
∀c′1, c′2 ∈ CG . Then, we can add one contingency at a time
and repeat the above analysis, considering one pair of contin-
gencies at a time, to set p(c1,...,cs)g,t = p

{c1,...,c2}
g,t ∀c1, . . . , cs ∈

CG ∀g ∈ G ∀t ∈ N0, s < t ≤ T , which proves that feasibility of
LASCOPF-rk implies feasibility of LASCOPF-ruk. Conversely,
if LASCOPF-ruk is feasible, LASCOPF-rk is also feasible since
the latter does not contain constraint (7). This concludes the
proof.

V. ILLUSTRATIVE EXAMPLE

In what follows, we illustrate LASCOPF on the 2-bus 2-
generator system shown in Fig. 4 with parameters shown in the
following table.

Furthermore, p
(0)
1,0 = p

(0)
2,0 = 0. Here, we consider K

{b}
l =

K
{0}
l ∀b ∈ CL. We select bus 2 as the reference bus, and thus,

H
{0}
12 = H

{0}
22 = 0 ∀l ∈ {1, 2} [21]. The predicted demandD{0}

n,t

is as follows.

Here, we consider D{c}
n,t = D

{0}
n,t ∀c ∈ CG .

First, we consider LAOPF (formally equivalent to
LASCOPF1(∅, ∅), i.e., with empty contingency sets) for
this system with a planning horizon of T = 5 to serve as a
benchmark against which to compare LASCOPF. Observe that
C1,t(p) < C2,t(p) ∀t ∈ {1, . . . , 5}, the total demand is less
than P 1 in all intervals, and the difference in demand between
successive intervals is within the ramping limits of generator
1, R1 ≤ D

{0}
2,t −D

{0}
2,t−1 ≤ R1 ∀t ∈ {1, . . . , 5}. In addition,

generator 2 has no minimum generation limit, P 2 = 0, and
the transmission line capacity constraints are not violated,
H

{0}
l1 D

{0}
2,t ≤ K

{0}
l ∀l ∈ {1, 2}, t ∈ {1, . . . , 5}. Therefore,

generator 1 can serve all the demand as follows.

As can be seen, LAOPF favours a dispatch where the cheapest
generator generates all the demand since the demand is less than
its maximum generation limits.

In what follows, we consider LASCOPF under generator con-
tingencies CG = {1, 2} and no transmission line contingencies
CL = ∅ (i.e., LASCOPF1(∅, {1, 2})) in order to demonstrate
the effect of generator contingencies on the normal state. First,
we consider a planning horizon of T = 4. Since generator 1
is cheaper, it should generate as much as possible, but the
solution has to satisfy the security constraints, i.e, if generator
1 had a contingency in interval u, generator 2 would have to
satisfy all demand in interval u+ 1. Thus, due to the ramping
limit of generator 2, it always has to generate enough to ensure
D

{1}
2,t − p

(0)
2,t−1 ≤ R2. Consequently, the solution is as follows.

Observe that at t = 4 there are no security constraints, al-
lowing generator 1 to serve all demand. To summarize, the
security constraints in LASCOPF1(∅, {1, 2}) ensure that the
more expensive generator 2 maintains a minimum generation
in order for it to be able to ramp up to serve all the demand in
case there was a contingency in the cheaper generator 1. This
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results in an increased generation cost in the normal state as
compared to LAOPF, which is to be expected since the normal
state faces more constraints.

In what follows, we consider LASCOPF1(∅, {1, 2}) under a
planning horizon of T = 5 to demonstrate how security con-
straints may render the problem infeasible. Observe that there is
no feasible dispatch (p(0)1,4, p

(0)
2,4) that would ensure security under

a single generator contingency, i.e., for whichD{2}
2,5 − p

(0)
1,4 ≤ R1

and D
{1}
2,5 − p

(0)
2,4 ≤ R2. Under a contingency in either generator

1 or 2 the other generator will be unable to ramp up to meet all
the demand. Thus, LASCOPF1(∅, {1, 2}) for T = 5 would be
infeasible.

Finally, let us also consider transmission line contingen-
cies CL = {1, 2} in order to demonstrate their effect, i.e.,
LASCOPF1({1, 2}, {1, 2}) for a planning horizon of T = 4.
Observe that transmission line contingencies, being preventive,
would even apply to t = 4, unlike generator contingencies. This
allows us to isolate their effect from that of generator contingen-
cies on the normal state dispatch in interval t = 4. The security
constraints require the normal state dispatch to satisfy transmis-
sion line capacity constraints if line 1 has a contingency. In this
case, H{1}

11 = H
{1}
12 = H

{1}
22 = 0, H

{1}
21 = 1 [21]. Therefore, the

dispatch has to ensure that p(0)1,t ≤ K
(1)
2 ∀t ∈ {1, . . . , 5}, and

thus, the solution is as follows.

As can be seen, LASCOPF1({1, 2}, {1, 2}) has the same
dispatch as LASCOPF1(∅, {1, 2}) up to t = 3. In t = 4, trans-
mission line security constraints ensure that if either one of
the transmission lines fails, the remaining transmission line can
continue to supply power to bus 2 within its limits. Accordingly,
the generation by the cheaper generator 1 should be less than the
minimum of the two transmission line capacities. This increases
the generation by the expensive generator 2, increasing costs. In
Appendix II, we illustrate the effect of security constraints on
larger systems.

VI. NUMERICAL RESULTS

First, we demonstrate for our proposed LASCOPF-r1 the
scalability for large T and its computational advantage over
the LASCOPF1 formulation for the IEEE 118-bus and the
IEEE 300-bus systems [22]. For both systems, we con-
sider the data as provided with the following modifications.
We consider demand D

{0}
n,t = D

{c}
n,t = Doriginal

n ∀c ∈ CG , ini-

tial generation p
(0)
g,0 = poriginal

g , ramping limits −Rg = Rg =

0.15(P g − P g), CG = G, and CL = L. As an illustration, for the
IEEE 118-bus system the difference in problem size between
LASCOPF1(G,L′) and LASCOPF-r1(G,L′) when T = 26 is
as follows.

Fig. 5 shows the computational time of the formulations as a
function of the planning horizon, T using Gurobi Optimizer

Fig. 5. Computational time of the comprehensive and reduced formu-
lations for the IEEE 118-bus system and the IEEE 300-bus system.

Version 8.1. Observe that the comprehensive formulation is
infeasible to compute for large values of T in all cases and in
general for the IEEE 118-bus system when transmission line
constraints in [23] are included. These results show the clear
advantage of the proposed reduced formulation, as it reduces
the computational time by two orders of magnitude. Also, ob-
serve that including transmission line constraints in the problem
significantly increases the computational time. This establishes
the efficiency of the proposed LASCOPF-r1 for larger planning
horizons.

Second, we consider the 2383-bus Polish power system [22]
to illustrate scalability to large systems, and the computa-
tional advantage of LASCOPF-r1 over LASCOPF1 and of
LASCOPF-ru2 over LASCOPF2. We consider the data as pro-
vided with demand D

{0}
n,t = D

{c}
n,t = Doriginal

n /3 ∀c ∈ CG for t

odd and D
{0}
n,t = D

{c}
n,t = Doriginal

n /1.5 ∀c ∈ CG for t even, ini-

tial generation p
(0)
g,0 = poriginal

g , ramping limits −Rg = Rg =

0.25(P g − P g), CG = {1, 2}, and CL = ∅. As an illustration,
for the Polish system the difference in problem size between
LASCOPF1({1, 2}, ∅) and LASCOPF-r1({1, 2}, ∅) for T = 10
is as follows.

Fig. 6 shows the computational time of the formulations as
a function of the planning horizon, T using MATPOWER [22]
version 6.02. The results show that for LASCOPF-r1({1, 2}, ∅)
the computational time increases linearly in T , as op-
posed to the quadratic trend for LASCOPF1({1, 2}, ∅). Thus,

2R. D. Zimmerman, C. E. Murillo-Sanchez (2016). MATPOWER (Version
6.0) [Software]. Available: https://matpower.org
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Fig. 6. Computational time of LASCOPF1, LASCOPF-r1,
LASCOPF-r2 and LASCOPF-ru2 for the 2383-bus Polish power
system.

LASCOPF-r1({1, 2}, ∅) is computationally more efficient, with
an increasing advantage as the length of the planning horizon
increases. Similarly, for T > 2, the computational times of both
LASCOPF-r2({1, 2}, ∅) and LASCOPF-ru2({1, 2}, ∅) follow a
linear trend. For T = 2, all formulations have the same compu-
tational times, in accordance with our discussions in Sections III
and IV. ForT > 2, LASCOPF-ru2({1, 2}, ∅) is computationally
more efficient than LASCOPF-r2({1, 2}, ∅), which confirms the
efficiency of the proposed formulations for larger systems.

VII. DISCUSSION

A. Use of Benders Decomposition to Obtain Solutions

In what follows, we discuss how Benders decomposi-
tion [24] may be used to allow us to compute LASCOPF1

and LASCOPF-r1 faster. Observe that LASCOPF1 has a block
structure where normal state decision variables can be grouped
as (p

(0)
g,t |g ∈ G) ∀t ∈ N, t < N , i.e., into T blocks of size |G|

with constraints (1b) to (1d) and (1f). Similarly, contingency
state decision variables can be grouped as (p

(c,u)
g,t |g ∈ G) ∀c ∈

CG∀u, t ∈ N, u < t < N , i.e., into |CG| × T (T − 1)/2 blocks
of size |G| with constraints (1g) to (1i). Each such group is
depicted as a circle in Fig. 2. Furthermore, the objective function
is decomposable into functions over individual normal state
blocks. Then, it is only the ramping constraints (1e), (1j), and
(1k) that couple blocks to one another as represented by arrows
in Fig. 2. Taking advantage of this block structure, nested Ben-
ders decomposition can be used to compute the problem more
efficiently. To see how to do so, consider interval t′ < T . We can
consider the normal state block (p

(0)
g,t′ |g ∈ G) defined by t = t′

to be a master problem with the subproblems being
1) the normal state block (p(0)g,t′+1|g ∈ G) defined by t = t′ +

1 and
2) the contingency state block (p

(c′,t′)
g,t′+1|g ∈ G) defined by

contingency c′, contingency intervalu = t′ and t = t′ + 1
∀c′ ∈ CG ,

since these are the blocks connected to the master problem
by ramping constraints. Similarly, the contingency state block
(p

(c′,u′)
g,t′ |g ∈ G) defined by contingency c′, contingency interval

u′ < t′ and t = t′ can be considered to be a master problem with
the subproblem being the contingency state block (p

(c′,u′)
g,t′+1|g ∈

G) defined by c′, u = u′ and t = t′ + 1 ∀c ∈ CG , u′ ∈ N, u′ <
T . If this is done ∀t′ ∈ N, t′ < T , we obtain a nested master-
subproblem structure.

Similarly, we can observe a block structure in LASCOPF-r1.
However, here we will define 1 block (p(0)g,1|g ∈ G) of size |G| for

interval t = 1, and (p
(0)
g,t , p

(c)
g,t|c ∈ CG , g ∈ G) ∀t ∈ N, 1 < t <

T , i.e., T − 1 blocks of size (1 + |CG|)× |G| consisting of the
normal state and contingency states for all contingencies c. Each
such block corresponds to all the circles for a given interval t
in Fig. 3. The circles have to be grouped into blocks because
a single contingency state decision variable is constrained by
both ramping constraints (2j) and (2k) as represented by arrows
in Fig. 3. Then, given interval t′ < T the block defined by t = t′

can be defined as the master problem with the subproblem being
the block defined by t = t′ + 1. If this is done ∀t′ ∈ N, t′ < T ,
we obtain a nested master-subproblem structure and can use
nested Benders decomposition for solving it.

B. Contingency Filtering

In what follows, we discuss how contingency filtering [25]
can be applied to the presented LASCOPF formulations under
both the N − 1 and N − k criteria. Observe that the set of
transmission line contingencies CL could be any subset of the
generators L. Similarly, the set of generator contingencies CG
could be any subset of the generators G. This allows us to
apply contingency filtering and consider a restricted set of only
those contingencies CL ⊂ L and CG ⊂ G that are expected to be
binding in any realization of LASCOPF.

Contingency filtering may be taken a step forward by elim-
inating not only entire contingencies from the formulation but
also individual contingency constraints that are not expected
to be binding even if some other constraints deriving from the
same contingency are retained [17]. E.g., given contingency c′,
(1i) may be eliminated but (1g) may be retained.

Note that, no matter the extent to which we perform contin-
gency filtering, LASCOPF-r1 will always maintain an advantage
over LASCOPF1, and LASCOPF-ruk over LASCOPF-rk. This
is because we would identify the same set of entire contingencies
or corresponding sets of individual constraints to be eliminated
from the reduced formulations as we do for the comprehensive
formulations. Therefore, the number of decision variables and
hence also the overall number of constraints will remain lower
in the reduced formulations.

C. Partitioning Following Transmission Line
Contingencies

In what follows, we will show that our results extend to
transmission line contingencies that partition the system.

Consider that the system is partitioned into a set N =
{N1, . . . ,NN} of N islands, where Ni is the set of buses in
island i. Each island must satisfy the power balance constraint

∑
n∈Ni

∑
g∈G

Angpg,t =
∑
n∈Ni

Dn,t ∀Ni ∈ N (11)
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where superscripts may be added to pg,t and Dn,t to distin-
guish the normal and particular contingency states. Therefore,
transmission line contingencies that partition the system must
be treated as corrective contingencies similar to generator con-
tingencies since following a contingency power balance must be
recovered in the resulting islands.

Accordingly, in order to account for system partitioning,
we may simply consider CG ⊆ G ∪ L\L′. Furthermore, in
LASCOPF1, LASCOPF-r1, and LASCOPF-rk, we may replace
the power balance constraints (1h), (2h), and (6h) with (11).
Observe that constraints representing generator shutdown (1g),
(2g), and (6g) only apply to generator contingencies.

Under the N − 1 contingency criterion, due to partitioning,
the assumption that p(c,u)g,t ≥ p

(0)
g,t ∀g ∈ G would not hold since

a transmission line contingency would create imbalances of
opposite directions in the two islands formed. However, it is
reasonable to assume that in each island Ni either all contin-
gency generation levels are not less than the normal genera-
tion levels, i.e., p(c,u)g,t ≥ p

(0)
g,t ∀g ∈ G, g �= c,

∑
n∈Ni

Ang = 1

or are not greater than those, i.e., p(c,u)g,t ≤ p
(0)
g,t ∀g ∈ G, g �=

c,
∑

n∈Ni
Ang = 1. Accordingly, to show that LASCOPF-r1 is

equivalent to solving LASCOPF1, Theorem 1 can be modified as
follows.

Theorem 3: If LASCOPF-r1 is feasible then LASCOPF1 is
feasible, and if LASCOPF1 is feasible and has a solution such
that either

1) p
(c,u)
g,t ≥ p

(0)
g,t ∀c ∈ CG ∀g ∈ G, g �= c,

∑
n∈Ni

Ang =
1, t, u ∈ N, u < t ≤ T or

2) p
(c,u)
g,t ≤ p

(0)
g,t ∀c ∈ CG ∀g ∈ G, g �= c,

∑
n∈Ni

Ang =
1, t, u ∈ N, u < t ≤ T

∀Ni ∈ N then LASCOPF-r1 is feasible. Furthermore, if
LASCOPF1 has such an optimal solution then the optimal
objective values of LASCOPF1 and LASCOPF-r1 are equal.

The proof is similar to that of Theorem 1. We note
that transmission networks have sufficient redundancy by de-
sign so that partitioning would typically result from multiple
contingencies.

D. Contingency Reserve Limits

In what follows, we show how to derive contingency re-
serve limits [19] from LASCOPF1. Since LASCOPF1 explicitly
considers every generator contingency, the contingency reserve
limits are implicit in (1i). This eliminates the need for the
surrogate constraint

Sg,t ≤ p
(c,u)
g,t − p

(0)
g,t ≤ Sg,t

∀c ∈ CG ∀g ∈ G, g �= c ∀u, t ∈ N, u < t ≤ T (12)

where Sg,t and Sg,t represent the lower and upper contingency
reserve limits respectively. Instead, we can obtain the parameters
Sg,t (and similarly Sg,t) from our formulation as

Sg,t = min
{
0, p

(c,u)
g,t − p

(0)
g,t |c ∈ CG , c �= g, u ∈ N, u < t

}

∀g ∈ G ∀t ∈ N, 1 < t ≤ T.
(13)

VIII. CONCLUSION

We considered LASCOPF under the N − 1 contingency cri-
terion over transmission line and generator contingencies. We
showed that the O(T 2) decision variables in the comprehen-
sive LASCOPF1 formulation can be reduced to O(T ) decision
variables leading to the new LASCOPF-r1 formulation, with
significantly lower computational cost. We generalized the for-
mulation to the N − k contingency criterion, LASCOPF-ruk
for which we showed that the order in which the contingencies
occur can be ignored. Our evaluation of the proposed problem
formulations on three IEEE benchmark systems shows that our
results are an important step toward computationally efficient
solutions to the LASCOPF problem.

An interesting extension of our work would be to provide
analytical or numerical methods to handle the large number of
variables in LASCOPF-ruk. In particular, it is useful to em-
ploy decomposition techniques such as Benders decomposition,
investigate their complexities and compare their efficiency for
our reduced formulations. In addition, the theory developed in
this article using the dc power flow model has a straightforward
extension to the nonlinear ac power flow model. One could use
existing numerical techniques to handle the nonconvexity of
ACOPF [18] and implement our reduced formulations in the
ACOPF context.

In addition, one may extend the formulations to include costs
under contingencies and reserve costs. Observe that Theorems 1
and 2 do not hold if the objective is a function of the contingency
state generation levels since LASCOPF-r1 and LASCOPF-ruk

effectively impose constraints on contingency state generation
levels as compared to LASCOPF1 and LASCOPF-rk, respec-
tively, and thereby potentially increasing the optimal objective
value. Accordingly, one may investigate the differences in op-
erational costs (including costs under contingencies and reserve
costs) between LASCOPF1 and LASCOPF-r1, and between
LASCOPF-rk and LASCOPF-ruk. Based on this, for a given
system one may weigh the expected operational cost against the
computational efficiency for individual systems.

APPENDIX I
PROBLEM COMPLEXITY

A. Comprehensive Formulation: LASCOPF1

To analyze the complexity of LASCOPF1, we now consider
the number of decision variables and constraints. For the nor-
mal state, we require |G| × T decision variables, one for each
generator, for each interval. Then, (1b) represents T equal-
ity constraints, one for each dispatch interval. Equations (1c)
and (1e) represent 4× |G| × T inequality constraints, two for
each decision variable. (1d) represents 2× |L| × T inequality
constraints, two for each transmission line, for each interval,
and (1f) represents 2× |CL| × (|L| − 1)× T , two for each line
contingency, for each remaining line, for each interval.

For the generator security constraints, we require |CG| ×
|G| × T (T − 1)/2 additional decision variables, one for each
generator contingency in CG , for each generator in G, for each
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TABLE II
COMPLEXITY OF LP AND QP ALGORITHMS. LP : LINEAR PROGRAMMING,

QP : QUADRATIC PROGRAMMING m : NUMBER OF DECISION VARIABLES, L :
BITS NEEDED FOR MODEL

contingency interval, u < T , for each remaining interval af-
ter the contingency interval, u < t ≤ T . Then, (1g) and (1h)
represent |CG| × T (T − 1) equality constraints, one for each
generator contingency, for each contingency interval, for each
remaining interval. Equation (1i) represents 2× |CG| × (|G| −
1)× T (T − 1)/2 inequality constraints, two for each generator
contingency, for each remaining generator (|G| − 1 in number),
for each contingency interval, for each remaining interval. Equa-
tions (1j) and (1k) together represent 2× |CG| × (|G| − 1)×
T (T − 1)/2 inequality constraints, two for each generator con-
tingency, for each remaining generator (i.e., |G| − 1), for each
contingency interval, for each remaining interval. To summarize,
the LASCOPF1 problem requires the following:

1) |G| × T + |CG| × |G| × T (T−1)
2 decision variables;

2) T + |CG| × T (T − 1) equality constraints;
3) 4× |G| × T + 2× |L| × T + 2× |CL| ×

(|L| − 1)× T + 4× |CG| × (|G| − 1)
× T (T − 1)/2 inequality constraints.

Observe that the number of variables and the number of con-
straints increase quadratically in T which renders the problem
formulation computationally infeasible for large T .

B. Reduced Formulation: LASCOPF-R1

Contrary to LASCOPF1, the proposed LASCOPF-r1 formu-
lation has decision variables for generator contingencies that are
independent of u. Therefore, we only require one variable for
each generator contingency, for each generator, for each dispatch
interval in which a contingency could be realized, 1 < t ≤ T ,
amounting to |G| × |CG| × (T − 1) decision variables. Accord-
ingly, the number of constraints in (2g) to (2i) on these variables
follow suit. However, contrary to LASCOPF1, these variables
need to satisfy both (2j) and (2k). Therefore, LASCOPF-r1
requires the following:

1) |G| × T+|G| × |CG| × (T − 1) decision variables;
2) T + 2× |CG| × (T − 1) equality constraints;
3) 4× |G| × T + 2× |L| × T + 2× |CL| × (|L| − 1)× T

+6×|CG|×(|G|−1)×(T−1) inequality constraints.
Importantly, the number of variables and constraints in the

reduced formulation scales linearly with T .
In Table II, we survey some state-of-the-art algorithms to

solve linear and quadratic programming problems. Common
to all the algorithms is that complexity is increasing in both
number of decision variables m and the number of bits needed
to model the problem L. Since LASCOPF-r1 has both m and
L following O(T ) as opposed to LASCOPF1 which follows

Fig. 7. Relative generation cost with and without security constraints
as a function of relative ramping limit for the IEEE 14-bus system.
Generation cost is relative to the corresponding minimum cost in LAOPF
and ramping limit is relative to generation range.

Fig. 8. Generator dispatch with (left bar) and without (right bar) secu-
rity constraints for the IEEE 14-bus system over a planning horizon.

O(T 2), it is expected to be more computationally tractable, as
we have demonstrated in Section VI.

APPENDIX II
ILLUSTRATION OF LASCOPF ON LARGER SYSTEMS

In this appendix, we compare the proposed LASCOPF1(L,G)
formulations to LAOPF (mathematically equivalent to
LASCOPF1(∅, ∅)) for common benchmark systems: IEEE
14-bus, IEEE 118-bus, and IEEE 300-bus systems in [30].

Fig. 7 shows the normalized total cost and the cost in a
single interval as a function of the ramping limit for the IEEE
14-bus system obtained using LAOPF and LASCOPF1 for 0 ≤
−Rg = Rg ≤ Pg − P g . We use T = 26 dispatch intervals, and

demand D
{0}
n,t = D

{c}
n,t = (1 + 0.23 sin tπ

24 )×Doriginal
n ∀c ∈ CG ,

p
(0)
g,0 = poriginal

g , CG = G, CL = L. In addition to the total cost, we
show the cost in interval 2, which has the highest difference in
cost between LAOPF and LASCOPF1 for −Rg = Rg = 0.498,
the point at which LASCOPF1 becomes feasible. Observe that
the increase in cost is less than 0.1% indicating a low cost of
security. For LAOPF the curves of the total cost and cost in
interval 2 intersect indicating that for lower values of Rg , there
are other intervals that have a larger relative cost. Also, since
the curves for LAOPF and LASCOPF1 meet, it indicates that
transmission line security constraints are not binding for high
ramping limits.
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Fig. 9. Relative generation cost with and without security constraints
as a function of relative ramping limit for the IEEE 118-bus (left) and
IEEE 300-bus (right) systems. Generation cost is relative to the cor-
responding minimum cost in LAOPF and ramping limit is relative to
generation range.

Fig. 8 shows, for the IEEE 14-bus system, the dispatch in every
interval for LAOPF and LASCOPF1 when−Rg = Rg = 0.498.
Observe that the dispatches in intervals 1 to 10 are different in
both cases, as the expensive generators have a higher gener-
ation in LASCOPF1. Comparing intervals 1 and 13, we can
observe that the dispatch for the same demand is different for
LASCOPF1. This is because, at interval 13, the demand is
decreasing and following a contingency, the cheapest generator
can alter generation within ramping constraints. Nonetheless, the
dispatch is identical for LAOPF since the increase at interval 1
equals the decrease at interval 13 and −Rg = Rg . This is also
confirmed from Fig. 7 where the flat curve indicates that ramping
constraints are not binding. Interval 2 has the highest difference
in cost due to a combination of high absolute demand and rate
of increase in demand.

Fig. 9 compares costs of LAOPF and LASCOPF1 for IEEE
118-bus with transmission line constraints as in [23], and IEEE
300-bus systems. We used the same method as for IEEE 14-bus
system. For IEEE 118-bus system, transmission line constraints
are binding only when their limits are decreased to about 1% of
their value reported in [23]. Also, the relative cost for LAOPF for
a single interval does not decrease monotonically with the rel-
ative ramping limits. This happens because LAOPF minimizes
the total cost and not the cost in a single interval, underlining
the importance of the look-ahead framework. For IEEE 300-bus
system, interval 6 has the highest difference in cost since the total
demand is a large fraction of the total generation making ramping
constraints in interval 6, which has a large demand, most binding.
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