
A Scalable FPGA-based Multiprocessor

Arun Patel1, Christopher A. Madill2, Manuel Saldaña1, Christopher Comis1,
∗

Régis Pomès2, and Paul Chow1

1Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada M5S 3G4
2Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8,

and the Department of Biochemistry, University of Toronto
{apatel, msaldana, pc}@eecg.toronto.edu, {cmadill, pomes}@sickkids.ca

ABSTRACT
It has been shown that a small number of FPGAs can sig-
nificantly accelerate certain computing tasks by up to two
or three orders of magnitude. However, particularly inten-
sive large-scale computing applications, such as molecular
dynamics simulations of biological systems, underscore the
need for even greater speedups to address relevant length
and time scales.

In this work, we propose an architecture for a scalable
computing machine built entirely using FPGA computing
nodes. The machine enables designers to implement large-
scale computing applications using a heterogeneous combi-
nation of hardware accelerators and embedded micropro-
cessors spread across many FPGAs, all interconnected by
a flexible communication network. Parallelism at multiple
levels of granularity within an application can be exploited
to obtain the maximum computational throughput. By fo-
cusing on applications that exhibit a high computation-to-
communication ratio, we narrow the extent of this inves-
tigation to the development of a suitable communication
infrastructure for our machine, as well as an appropriate
programming model and design flow for implementing ap-
plications.

By providing a simple, abstracted communication inter-
face with the objective of being able to scale to thousands of
FPGA nodes, the proposed architecture appears to the pro-
grammer as a unified, extensible FPGA fabric. A program-
ming model based on the MPI message-passing standard is
also presented as a means for partitioning an application
into independent computing tasks that can be implemented
on our architecture. Finally, we demonstrate the first use of
our design flow by developing a simple molecular dynamics
simulation application for the proposed machine, which runs
on a small platform of development boards.

1. INTRODUCTION
Most of the FPGA-based accelerators built or proposed to

date either significantly improve the computational through-
put of a serial algorithm, or perform multiple iterations of a
homogenous, data-parallel computation simultaneously. In
either case, the problems considered require at most a hand-
ful of FPGAs to implement. These approaches still cannot
address intensive, large-scale computing applications that
require much greater speedups.

∗Now with PMC Sierra, Inc.

Class 1 Machine:

CPUs Only

Class 2 Machine:

CPUs and FPGAs

Class 3 Machine:

FPGAs Only

Figure 1: Three Classes of Computing Machines

In this paper, we propose an architecture and design flow
capable of scaling from just a few FPGAs up to thousands.
The approach is also able to support a heterogenous collec-
tion of hardware accelerators and embedded microproces-
sors, making it more suitable for implementing very large-
scale applications.

We begin by categorizing today’s high-performance com-
puting machines into three classes as depicted in Figure 1.
The first class consists of present-day supercomputers based
on CPU clusters. Computing tasks are partitioned coarsely
such that they are amenable to execution on multiple CPU
nodes. The second class is comprised of CPU-based clusters
that incorporate FPGA hardware for acceleration purposes.
In this model, the FPGA is largely a slave device that acts
under the direction of a processor node. We will focus on the
third class of computing machines, a machine constructed
solely of FPGA hardware nodes.

The purpose of this project is to establish the viability
of Class 3 architectures by demonstrating a significant ap-
plication speedup. Our eventual goal is to create a novel
high-performance computing platform. This paper presents
the TMD1, an implementation of a Class 3 architecture.

1The acronym TMD originally meant the Toronto Molecular
Dynamics machine, but this definition was rescinded as the
platform is not limited to Molecular Dynamics. We kept the
name in homage to earlier TM-series projects at the UofT.

RapidArray Interconnect Bus

CPU
(AMD)

I/F
Chip

FPGA

16MB QDR SRAM

2x2.0GB/s

3.2GB/s

12.8GB/s

3.2GB/s
(HyperTransport)

NUMALink Interconnect Bus

CPU

I/F
Chip

FPGA

6MB QDR SRAM

4x3.2GB/s

2x3.2GB/s

9.6GB/s

I/F
FPGA

SNAP or HI-Bar Switch

Dual-Port SRAM

Dual-Port SRAM

2x7.2GB/s

12.8GB/s

24.0GB/s

24.0GB/s

SRC MAP ArchitectureSGI RASC ArchitectureCray XD1 Architecture

User
FPGA

User
FPGA

Figure 2: Implementations of Class 2 High-Performance Computing Machines [11], [28], [31]

The modern supercomputing paradigm integrates copious
amounts of memory, I/O bandwidth, communication band-
width, and processing power. Addressing all four of these
requirements simultaneously with a new architecture is a
subject for much further research. We are concentrating
our investigation on the subset of applications that do not
require vast amounts of shared memory or tremendous I/O
bandwidth, namely applications that exhibit high compute-
to-communication ratios. Since the breadth of the study has
been pared down, we can focus on the issues of distributed
control and communication and developing an appropriate
programming model for such a system. A preliminary flow
for translating multithreaded software descriptions into a
collection of hardware netlists is presented, along with a
sample application based on this flow.

The design of this system is inspired by molecular dynam-
ics (MD) simulations, a highly-parallelizable n-body prob-
lem with computational complexity of O(n2). There are two
dominant types of calculations that constitute over 99% of
the computational effort in MD, each requiring a different
hardware accelerator structure. Developing a working MD
simulator that scales with our proposed architecture and
provides orders of magnitude in speedups is the first appli-
cation for this machine.

The TMD architecture can also be used to solve many
other computing challenges. The reconfigurability of its
constituent elements allows the platform to target a vari-
ety of applications, such as finite element analysis, optical
simulation, and weather prediction, as well as MD. Once
we have successfully developed the MD simulator, our focus
will shift to automating the development process for TMD
applications.

The first half of this paper concentrates on the proposed
architecture, beginning with a survey of related work in the
next section followed by a technical overview of the sys-
tem in Section 3. The second half of the paper focuses on
the programming model, starting with a discussion of the
requirements in Section 4, followed by a description of a
MPI-based message passing mechanism implementation in
Section 5. A preliminary implementation of a molecular dy-
namics simulation system is outlined in Section 6 and we
conclude and present avenues for future work in Section 7.

2. RELATED WORK
Although many of the design concepts used in the TMD

have architectural underpinnings in supercomputer technol-
ogy, the degree of parallelism we hope to exploit with the
TMD is much finer than that of threads and processes ex-
ecuting on CPUs. This section gives a review of existing

architectures that have been designed to address the re-
quirements of large-scale computing applications, and how
various groups have used FPGA hardware to accelerate ap-
plication performance.

2.1 Class 1 Machines
The majority of architectures that are designed to meet

the demands of high-performance computing applications
fall in the Class 1 category, which consists of a network of
CPUs. The IBM Blue Gene/L [13] is the most recent exam-
ple of an advanced Class 1 architecture, but this classifica-
tion also includes simple clusters of workstations. Despite
the wide variety of Class 1 implementations available, there
are numerous levels of parallelism that a CPU simply can-
not exploit, even with multiple execution units, SIMD in-
struction extensions, and out-of-order processing. For this
reason, vendors of Class 1 machines have recently incorpo-
rated reconfigurable FPGA hardware into their respective
architectures to create Class 2 machines.

2.2 Class 2 Machines
In Class 2 machines, FPGAs are used as coprocessors to

exploit fine-grained parallelism in algorithms via pipelining,
or data parallelism by replicating multiple instances of func-
tional units. This category encompasses all machines that
combine some form of reconfigurable hardware with at least
one CPU. Figure 2 differentiates the methods used by three
high-performance computing vendors for integrating recon-
figurable hardware into their architectures. Each company
has devised different methods for handling the data transfer
bottleneck between the CPU and FPGA environments, as
well as mechanisms for implementing computing kernels in
FPGA hardware.

The Cray XD1 [11] platform connects FPGAs directly to
CPUs using its proprietary RapidArray interconnect mecha-
nism. The FPGA can be configured to map external SRAM
components into the processor user memory space, allow-
ing a software application to transfer data directly to/from
the FPGA domain. Under ideal operating conditions, the
FPGA can process data in one region of the SRAM, while
the CPU concurrently fills or drains buffers in another re-
gion. A library of software routines with support for pre-
designed FPGA hardware is provided to end-users of the
system for application acceleration.

SGI uses its proprietary NUMALinkTMinterconnect fab-
ric to connect FPGA nodes to the rest of the system net-
work [28]. Unlike the Cray configuration, which uses exter-
nal SRAM as a cache, the SGI architecture allows the FPGA
direct access to the memory coherency domain used by the

{Parallelizable
Operation

Synchronization
Point (Barrier)

Figure 3: Fork-Join Control Flow Graph

processors. The external SRAM is used by the FPGA for
intermediate storage only. Software access to the FPGA is
also achieved through a set of FPGA-aware library routines.

Contrary to the approaches used by Cray and SGI, the
SRC Computers system does not couple the FPGAs for user
logic directly to the system bus [31]. An intermediate FPGA
is first used as a bridge between the system bus and a dual-
port RAM array. The second port of the RAM connects to
multiple FPGA chips containing user-definable logic. The
intermediate RAM array is used to implement buffers for ex-
changing data between the system bus and FPGA domains.
SRC uses a custom compiler for automatically extracting al-
gorithms suitable for hardware implementation from C code.

The final machine we consider is relevant to our intended
application of Molecular Dynamics, even though it is not
considered a supercomputing platform. The PROGRAPE
(PROgrammable GRavity Pipe) [16] hardware is a FPGA-
based implementation of the GRAPE engine [32], which was
developed for n-body simulations of stellar bodies and later
extended to molecular dynamics. PROGRAPE and its pre-
decessors accept as input a list of particles and their associ-
ated position coordinates, and returns the vector summation
of the net force on each particle due to the other n−1 parti-
cles in the system. Since PROGRAPE is based on reconfig-
urable hardware, the equations governing interparticle forces
can be altered to suit a variety of n-body applications. The
PROGRAPE FPGA hardware is connected to a host com-
puter using a PCI bus. Software executing on the host CPU
performs the O(n)-complexity computing tasks and uses the
FPGA hardware to accelerate the O(n2) calculations.

Despite the design effort expended by Cray, SGI, and SRC
to integrate FPGAs into their supercomputer architectures,
there are a number of issues that limit the performance gain
of the overall system. FPGAs and the hardware structures
that are constructed using them are inherently parallel de-
vices. Yet in Class 2 machines they are controlled by CPUs
that execute a serial sequence of instructions. The resulting
control flow graph typically resembles the fork-join model
illustrated in Figure 3. Processors execute serial streams of
instructions, and when an opportunity arises for exploiting
parallelism or accelerating a single task, the computation
is transferred to hardware. The results are then transferred
back to the CPU once computation has finished. Some of the
overhead for transferring data and waiting for the hardware
acceleration to complete can be amortized by performing
unrelated tasks in the CPU, similar to techniques used for
masking functional unit stalls in modern processors. How-
ever, identifying these optimizations and implementing them
effectively requires significant effort on the part of both the
hardware and software developers. The GRAPE systems
and all of their programmable derivatives are classic exam-
ples of this drawback: at each timestep, coordinate data is

96 bits
48 bits
36 bits Compute FPGA

Routing FPGA 138 bits
64 bits
Serial I/O Compute FPGA

Comm. FPGA

BEE Board Topology BEE2 Compute Module

Figure 4: BEE and BEE2 Architectures [8], [9]

transferred across the PCI bus, the hardware engines are
polled until the calculations have completed, and the force
results are transferred back to the CPU. The CPU is often
idle when the FPGA is busy processing and vice-versa.

2.3 Class 3 Machines
A number of groups have begun to investigate the mer-

its of building high-performance computing platforms us-
ing FPGA-based technology exclusively. For example, the
newly-commissioned FPGA High Performance Computing
Alliance (FHPCA) is working on developing a new type
of supercomputer using reconfigurable FPGA technology,
although details on the implementation are not yet avail-
able [12]. The OpenFPGA effort, launched in early 2005,
is also a joint effort by industry and academia to explore
various aspects of reconfigurable supercomputing [24]. Re-
searchers at the Berkeley Wireless Research Center have
been using Class 3 machines since 2003 to assist with the
rapid prototyping and development of wireless communicat-
ion algorithms.

The Berkeley Emulation Engine (BEE) is a machine de-
signed for prototyping wireless communication algorithms.
It is comprised of a network of 20 Xilinx Virtex 2000E
FPGAs, interconnected with multiple parallel buses, and 16
SRAM chips. It resides on a single 53cm x 58cm, 26-layer
printed circuit board (PCB) [8].

BEE2, shown beside its successor BEE in Figure 4, is more
modular in design. It is is constructed using smaller PCBs
consisting of five Xilinx Virtex 2 Pro 70 FPGAs. BEE2
also uses parallel buses to implement connections between
FPGAs. One FPGA is designated as the control proces-
sor, and it connects via four buses to the remaining four
computation FPGAs. The computation FPGAs are also in-
terconnected using a mesh topology. All of the buses within
a module transmit data on both edges of a 300MHz clock
signal, providing over 2×40.0Gbps of bandwidth between
two adjacent computing FPGAs, and 2×20.0Gbps of band-
width between each of the computing FPGAs and the com-
munication FPGA. Every FPGA also has four independent
DDR2-400 memory interfaces capable of addressing a total
of 4GBytes. Global interconnection of the compute modules
is achieved through commercial high-speed serial intercon-
nection protocols, such as 10-Gbit Ethernet or Infiniband [9].
The computing modules conform to the 8U Blade form fac-
tor (32.225cm x 28.0cm) and are designed to be used in a
rack-mounted chassis.

The BEE/BEE2 systems are designed to have large mem-
ory bandwidth and high-capacity data links, making the
architecture ideal for applications that can be readily de-
scribed using a synchronous dataflow model. An entire tool

flow has been developed for BEE/BEE2 based on this set
of applications, allowing designers to enter high-level algo-
rithm descriptions using the MathWorks Simulink [29] lan-
guage and generate the appropriate FPGA configuration
files. However, this flow does not lend itself to applica-
tions that cannot be described using synchronous dataflow
models, such as the high compute-to-communication appli-
cations we are interested in. This is a limitation of the tool
flow and not the BEE/BEE2 architecture.

3. ARCHITECTURAL OVERVIEW
A processing node in a Class 1 machine is typically com-

prised of memory, I/O interfaces, and a CPU consisting of
several arithmetic units. Class 2 machines augment this
archetype with external FPGA hardware. However, imple-
menting a node in either type of machine requires multiple
physical components. Accordingly, there is a limit to the in-
tegration density achievable in Class 1 and 2 architectures.
Recent advances in FPGA technology have enabled the inte-
gration of circuits such as arithmetic cores, memory blocks,
high-speed I/O interfaces and microprocessors into a single
FPGA package. This fusion of reconfigurable hardware with
processing and communication elements results in an ideal
building block for a computing platform.

3.1 Computing Model
We define a unit of computation, regardless of its com-

plexity or implementation method, as a task. Tasks commu-
nicate data with each other but are otherwise self-contained.

In Class 1 architectures, tasks are implemented as soft-
ware processes executed by a CPU. The granularity of a
process is fairly coarse, since there is a trade-off between par-
allelizing a computation by adding extra processes to it, and
the overhead incurred by creating each additional process.
Regardless of the memory requirements or computational
complexity of a process, a CPU is capable of executing only
one process at a time. As a result, processes that do not
require significant amounts of computational effort will un-
derutilize a CPU, and computationally-intensive processes
will monopolize CPU time. Extra CPUs must be added to
a system to increase the number of processes that can be
executed simultaneously.

Tasks can be implemented using one of two methods in
a Class 3 machine. The first method is to use a software
process executing on a FPGA-based embedded microproces-

sor. CPU cores implemented using FPGA fabric (soft pro-
cessors) and fixed CPU cores incorporated into the FPGA
fabric are both considered embedded microprocessors. Al-
though using embedded processors to implement tasks is rel-
atively straightforward, this approach suffers from the same
drawbacks as Class 1 architectures: the maximum level of
parallelism that can be achieved is limited.

The second method of implementing a task on a Class
3 machine is to create a hardware computing engine. This
approach allows designers to take advantage of much finer
granularities of parallelism, and to create a solution that is
optimized to meet the performance requirements of a task.
The major advantage of this approach is that only the hard-
ware relevant to performing a task is used to create a com-
puting engine, allowing many small engines to fit within one
FPGA or one large engine to span across multiple FPGAs.
Increasing the number of parallel operations performed by a
computing engine can be achieved by modifying it to capi-

Task

Process on
CPU Node

Computing
Engine

Embedded
Microprocessor

C
la

s
s
 1

C
la

s
s
 3

Figure 5: Implementations of Computing Tasks

D E F

G H I

J K L

A

B

C

M

FPGAs Tasks

Figure 6: Multiple Computing Engine Example

talize on data parallelism within the task or by adding more
engines to the system to exploit task-level parallelism. Fig-
ure 5 illustrates different methods for implementing a task
on CPU or FPGA platforms.

The computing model for the TMD is described as a col-
lection of independent tasks executing concurrently. Tasks
exchange data by passing messages to each other via the
TMD communication network. System designers can spec-
ify whether tasks are implemented as processes executing on
CPUs, or as hardware computing engines according to the
requirements of the application. This is a manual process in
the current flow. Figure 6 illustrates a possible architecture
for a hypothetical application consisting of multiple tasks
implemented across several FPGAs. Tasks A and B reside
on one FPGA, as does task C. Tasks D through L are all
contained in a single FPGA, indicating that they are less
complex than the other tasks in the system. Finally, four
FPGAs are required to implement task M.

3.2 TMD System Architecture
The TMD is a scalable computing platform constructed

solely of FPGA processing nodes. Applications for the TMD
platform are designed as a collection of software processes
and hardware computing engines interconnected by a config-
urable communication network. Application designers have
the flexibility to specify the structure of each component,
as well as the network topology for interconnecting them.
The goal of the TMD architecture is to avoid imposing con-
straints in the design of an application by ensuring that the
logical links between computing engines and CPUs are as
flexible and abundant as possible. Furthermore, the network
interface is abstracted in a manner that allows a computing
engine or CPU to use a standard protocol and physical inter-
face to communicate with another engine or CPU, regardless
of which FPGA node either component resides in. Essen-
tially, the TMD architecture allows application designers to
treat the system as a single piece of scalable FPGA fabric.

A distributed memory model was chosen for the TMD as
it allows the platform to scale well with additional FPGA
nodes. Each computing task contains a separate instance

of local memory, and data is exchanged between tasks by
passing messages. Although the TMD architecture is tai-
lored to MD simulations, it can accommodate the subset
of high-performance computing applications that require a
distributed memory model and exhibit a high computation-
to-communication ratio.

The TMD architecture is divided into three hierarchical
tiers, allowing it to scale up to configurations potentially
containing thousands of FPGAs. Figure 7 illustrates each
of the three tiers. The lowest tier of the TMD hierarchy
exists within a FPGA package. Designers can specify any
network topology for interconnecting computing engines and
embedded processors contained in a single FPGA, subject
to resource constraints.

The second tier of the hierarchy is at the PCB level, and is
referred to as a cluster. One cluster consists of eight FPGAs
for implementing computing tasks, and an additional FPGA
for communicating with other clusters. A fully-connected
topology is used to network the FPGAs on a cluster.

The third tier of the hierarchy is used to interconnect
clusters to form a large network. Commercially-available
switches designed for high-performance computing applica-
tions could be used in this tier, since they are capable of
scaling up to systems containing hundreds of clusters and
therefore thousands of FPGA nodes.

3.3 System Implementation
The Xilinx Virtex-II Pro XC2VP100 FPGA is used to

implement computing nodes in the TMD. The XC2VP100
features twenty high-speed serial I/O links, 444 multiplier
cores, 7.8Mbits in distributed BlockRAM structures, and
two embedded PowerPC processors [35].

3.3.1 Intra-FPGA Communication
Intra-FPGA communication is achieved through the use

of point-to-point unidirectional FIFOs. The FIFOs are im-
plemented using the Xilinx Fast Simplex Link (FSL) core,
as it is fully-parameterizable and optimized for the Xilinx
FPGA architecture [35]. Recent work by Saldaña et. al. [27]
has shown that point-to-point connections can be used to at-
tain a fully-connected network topology on modern FPGA
fabrics for systems containing up to 16 nodes.

Both computing engines and embedded microprocessors
use the FSL physical interface for sending and receiving data
across communication channels. FSL modules provide ‘full’
and ‘empty’ status flags that can be used by transmitting
and receiving computing engines as flow control and syn-
chronization mechanisms. Using asynchronous FSLs allows
a computing engine to operate different clock frequency than
other components in the system.

3.3.2 Inter-FPGA Communication
Many FPGA-based systems use parallel buses to commu-

nicate data between FPGAs and other components in the
system. To achieve high data rates, wide buses operating
at high clock frequencies must be carefully routed between
components on a PCB. Since this method is rapidly ap-
proaching physical limits [5], FPGA manufacturers have in-
corporated hardware to support gigabit-rate serial I/O inter-
faces into their products [3, 35]. The TMD inter-chip com-
munication network uses multi-gigabit transceiver (MGT)
hardware to implement the physical communication links
between FPGA components.

Twenty MGTs are available on the XC2VP100 FPGA,
each capable of providing 2×3.125Gbps of full-duplex com-
munication bandwidth over only two pairs of traces. Future
revisions of both Xilinx and Altera FPGAs will increase this
data rate to over 10Gbps per channel [3, 35]. Our current
hardware configuration limits the maximum raw data rate
to 2.5Gbps per direction, yielding an effective bandwidth of
2×2.0Gbps after 8B/10B encoding.

A fully-connected network topology is used to intercon-
nect all nine FPGAs on a cluster PCB. Using MGT links to
implement this topology requires only 144 traces, and yields
a maximum theoretical bisection bandwidth of 2×32.0Gbps
(assuming 2×2.0Gbps per link) between the eight computing
FPGAs. By contrast, each BEE2 module requires 808 traces
to interconnect five FPGAs and can obtain a maximum bi-
section bandwidth of 2×80.0Gbps between four computing
FPGAs. Therefore, PCB complexity can be reduced con-
siderably by using MGTs as a communication medium, and
with 10.0Gbps serial transceivers on the horizon, bandwidth
will increase accordingly.

The Aurora core available from Xilinx [35] is designed to
interface directly to MGT hardware and provides link-layer
communication features. An additional off-chip communic-
ation controller (OCCC), described in [10], was also devel-
oped to supplement the Aurora and MGT hardware cores.
The OCCC provides reliable transport-layer communication
between tasks residing on different FPGAs, and currently
uses a lightweight protocol designed to minimize communic-
ation latency. A minimum trip time of 1.23µs is observed for
a 32-byte packet, while larger packets achieve a peak full-
duplex throughput of 2×1.928Gbps corresponding to 96.4%
link efficiency.

Computing engines and embedded microprocessors con-
nect to the OCCC using the FSL interface described in Sec-
tion 3.3.1. This enables hardware and software for the TMD
to be developed without consideration for whether data will
travel through on-chip or off-chip channels.

3.3.3 Inter-Cluster Communication
The MGT links described in Section 3.3.2 can be used

to emulate standardized high-speed interconnection proto-
cols such as Infiniband [20] or 10-Gbit Ethernet [19]. The
2×10.0Gbps 4X SDR subset of the Infiniband specification
can be implemented by aggregating four MGT links, en-
abling the use of commercially-available Infiniband switches
for accomplishing the global interconnection network be-
tween clusters. This approach reduces the design time of the
overall system, and provides a multitude of features neces-
sary for large-scale systems, such as fault-tolerance, network
provisioning, and scalability.

4. PROGRAMMING MODEL
A programming model provides a user with an efficient

method for implementing applications while abstracting un-
derlying hardware complexities. It is arguably as impor-
tant a component to the performance of a high-performance
computing machine as the design of the architecture itself.
Programming models are defined by the architecture of a
machine, as well as the nature of applications intended to
be executed on the machine. This section presents a pro-
gramming model for the TMD that is well-matched to its
scalability, parallel processing ability and distributed mem-
ory architecture. However, this programming model is not

Intra-FPGA Communication Inter-FPGA Communication Inter-Cluster Communication

Inter-c
luster

Inter-cluster Cluster SwitchOff-Board Link

Compute
FPGA

Cluster
PCB

Figure 7: TMD Architecture Hierarchy

limited to the TMD. It can also be applied to other Class 3
architectures with support for distributed memory, such as
the BEE/BEE2 [8, 9] platforms described in Section 2.3.

4.1 Message Passing Model
The architecture of the TMD does not utilize shared mem-

ory or shared bus structures; rather, each computing en-
gine contains its own local memory. A programming model
suitable for distributed memory is necessary for such a sys-
tem. The message-passing programming model fits this re-
quirement, and has also proven to be a successful paradigm
for scientific computing applications running on supercom-
puters and clusters of workstations. Using a standardized
message-passing interface such as MPI [23] as the basis for
the TMD programming model provides a familiar environ-
ment for application developers. Moreover, using MPI en-
ables portability of parallel applications to different plat-
forms by standardizing the syntax and semantics of the pro-
gramming interface.

The programming approach we present begins with a net-
work of embedded microprocessors, implemented on FPGA
fabric, exchanging messages using MPI functions. Applica-
tions designed for the TMD are initially described as a set of
software processes executing on the microprocessor network.
Each process emulates the behaviour of a computing engine
and uses MPI function calls to exchange data with other
processes. These function calls use the TMD communicat-
ion infrastructure described in Section 3.3 to transmit and
receive data packets. An entire system can be prototyped
on the TMD in this manner. We use the abstraction of em-
bedded microprocessors executing MPI function calls as an
intermediate step in the process of mapping an application
to a set of computing engines implemented on the TMD.

4.2 Design Flow
Prior to describing the TMD design flow, it is instruc-

tive to differentiate the challenges between mapping a single
computational kernel to an FPGA-based hardware module,
and mapping an entire parallel application to an architec-
ture containing multiple FPGAs.

A number of design tools exist for directly translating C
code into synthesizable hardware, such as HardwareC [21],
Handel-C [17], or C2Verilog [30]. These tools are best suited
for identifying computationally-intensive application kernels
and implementing them in hardware modules, usually con-
fined to a single FPGA. However, software applications con-
tain other programming tasks that can pose challenges to
automated software-to-HDL design flows, such as I/O func-
tions, complex control structures, and pointer-based mem-
ory accesses. Consequently, not every application can be

translated directly into hardware.
Additional complexities arise when developing a method

for automatically implementing parallel applications on the
TMD. Communication networks for interconnecting FPGAs
in the TMD are defined, but networks for interconnect-
ing multiple computing engines within individual FPGAs
must be implicitly inferred by analyzing the communicat-
ion pattern of the software implementation. Intrinsic data
and functional parallelism existing within the application
should also be automatically detected and taken advantage
of. Higher-level parallel application features such as dy-
namic load balancing and task allocation are also important
constructs that may not be realizable in hardware. In Class
2 machines, many of these challenges are mitigated due to
the presence of the host processors in the system.

The current design flow developed for the TMD does not
attempt to address these issues automatically. Rather, a
manual flow is used to transform parallel software applica-
tions into networks of hardware computing engines. This
approach allows us to study and evaluate design decisions
for the TMD architecture, identify potential problems in the
flow, and debug the initial architecture. An automated de-
sign process would follow as a result of these activities. Our
current flow resembles that presented by Youssef et. al [36],
but we extend the model to many embedded microproces-
sors distributed across multiple FPGAs.

Step 1 - Workstation Level

Step 2 - Workstation Level

Step 3 - TMD Level

Step 4 - TMD Level

 Application
Prototype

A B C

B

Process A Process B Process C

A C

TMD-MPI TMD-MPI

MPI MPI

TMD-MPI TMD-MPI

Figure 8: TMD Application Design Flow

Figure 8 illustrates the TMD design flow. Step 1 begins
by developing a prototype of the application in a high-level
programming language such as C/C++. The resulting code
is sequential in nature and is only intended to provide a
generic solution to the computing problem. At this stage,
the application can be profiled to identify computationally-
intensive routines.

Step 2 refines the prototype application by partitioning
it into simple, well-defined processes that can be replicated
to exploit the implicit parallelism of the application. The
granularity of each process is much finer than that of soft-
ware processes normally used in parallel applications, since
each process is meant to emulate the behaviour of a comput-
ing engine. Inter-process communication is achieved using
a full implementation of the MPI message passing library,
allowing the application to be developed and validated on a
workstation. This approach has the advantage of allowing
the programmer access to standard tools for developing, pro-
filing, and debugging parallel applications. To proceed with
the next step, the programmer refines the parallel program
so that it is compatible with the functionality provided by
the TMD-MPI library, as described in Table 1 of Section 5.2.

Step 3 takes the collection of software processes devel-
oped in Step 2 and implements them on the TMD using
embedded microprocessors. Each microprocessor contains a
library of MPI-compliant message-passing routines designed
to transmit messages using the TMD communication infra-
structure. The portability of MPI allows the software code
to be recompiled and executed on the microprocessors. At
this stage, execution of the entire application is possible, al-
lowing the interaction between emulated computing engines
and CPUs to be tested and the implementation correctness
to be validated on the architecture.

The final step of the programming flow replaces algo-
rithms executing on embedded microprocessors with hard-
ware computing engines. This step is only required for
performance-critical computing engines and can be omitted
for less intensive computing tasks. Additionally, control-
intensive tasks that are difficult to implement in hardware
can remain as software executing on microprocessors. The
tight integration between embedded microprocessors and
hardware engines implemented on the same FPGA fabric
makes this a viable option. Translating the computationally-
intensive processes into hardware engines is done manually
in the current flow. Since the system has been already par-
titioned into individual computing tasks and all communic-
ation primitives have been explicitly stated at this stage, C-
to-HDL tools may also be used to perform this translation.
Once a computing engine has been designed, a hardware
message-passing engine (MPE) is used to perform message-
passing operations in hardware.

5. MPI IMPLEMENTATION
The MPI standard does not specify a particular imple-

mentation architecture or style. Consequently, there are
multiple implementations of the standard, each with dif-
fering performance characteristics, such as OpenMPI [14],
MPICH [15], and LAM [6]. This section presents some back-
ground on MPI and then describes our own implementation
of MPI called TMD-MPI.

5.1 Background
Current MPI implementations are targeted to computers

with copious memory, storage, and processing resources, but
these resources are scarce in the embedded microprocessor
domain. We have implemented a subset of the MPI standard
that provides sufficient functionality for many applications,
such as the MD simulator presented in Section 6.

In projects such as eMPI/eMPICH [22], the authors port
MPICH to the embedded systems domain. They begin by
compiling a basic MPICH implementation consisting of six
fundamental primitives, and later add functionality to it.
A set of embedded libraries are obtained with varying de-
grees of functionality. However, their approach assumes the
existence of a compact lower layer of MPICH as well as
an operating system. In our approach, we also present a
basic MPI implementation, but it encompasses everything
between the programming interface to the hardware access
layer and does not require an operating system.

Aggarwal et. al [1] present a Class 2 computing machine
that uses Handel-C and MPI to implement parallel architec-
tures within and across multiple FPGAs, but the use of MPI
is limited to inter-host communication. In our work, MPI is
used to communicate between computing engines and em-
bedded microprocessors without the presence of an external
host.

Youssef et. al. [36] describe the development of a hard-
ware OpenDivX video encoder. The application is initially
described using four parallel software processes communicat-
ing using MPI send and receive primitives. The system is
then implemented using SystemC, and appropriate versions
of the MPI primitives are also implemented for simulation
purposes. Such simulation aids could prove beneficial in the
translation process performed in Step 3 of the TMD design
flow. However, only the send and receive primitives are im-
plemented, which do not provide sufficient functionality for
our scope of applications.

The BEE2 project described in Section 2.3 also suggests
using MPI as a programming model to simplify the task of
porting supercomputing applications to the BEE2 architec-
ture [9]. However, to the best of our knowledge, no results
have been presented yet based on this endeavour.

5.2 Implementation of TMD-MPI
This section describes the implementation of a simplified,

light-weight MPI library called ‘TMD-MPI’ implemented
specifically for embedded microprocessors on the TMD ar-
chitecture. Although TMD-MPI is currently written for
the Xilinx MicroBlaze microprocessor [35], it can easily be
ported to different platforms by modifying the lower hard-
ware interface layers.

There are several hardware and software issues to resolve
before an implementation of the TMD-MPI library can be
developed. We begin by describing the hardware issues per-
taining to the communication infrastructure of the TMD.
Two classes of networks exist within the TMD; the first is
the external network described in Section 3.3.2 that inter-
connects FPGA components, and the second is the internal
communication network described in Section 3.3.1 that in-
terconnects the computing engines and embedded micropro-
cessors within a single FPGA. A lightweight point-to-point
protocol is used to transmit data over the internal commun-
ication network. The external communication uses a slightly
different packet format required by the OCCC, and bridge
modules are used to translate data packets between the in-
ternal and external network formats.

In the current version of the TMD-MPI library, message-
passing functions such as protocol processing, management
of incoming and pending message queues, and packetizing
and depacketizing of long messages are performed by the
embedded microprocessor executing the application process.
This method allows the message-passing functionalities to
be developed and tested easily, but incurs a performance
penalty in the application process. Once the details of the
TMD-MPI implementation have been finalized, most of the
message-passing functionality will be provided by more ef-
ficient hardware cores. This translates into a reduction in
processing overhead for embedded microprocessors as well
as simplification of hardware computing engines. An exam-
ple of how certain MPI functionality can be implemented
in hardware is found in Underwood [34], where the authors
manage MPI message queues using hardware buffers. This
implementation reduced the latency for queues of moderate
length while adding only minimal overhead to the manage-
ment of shorter queues.

The TMD-MPI implementation follows a layered approach
similar to the method used by MPICH. The primary advan-
tage of this technique is that TMD-MPI can be ported to
different platforms by modifying only the lowest layers of
the implementation. Figure 9 illustrates the four layers of
the TMD-MPI implementation.

MPI Application Interface

Point-to-Point MPI Functions

Send/Recv Implementation

FSL Hardware Interface

Application

Hardware

{TMD-MPI

Layer 1

Layer 2

Layer 3

Layer 4

Figure 9: TMD-MPI Implementation Layers

Layer 4 represents the MPI functional interfaces avail-
able to the application. Layer 3 implements collective op-
erations such as synchronization barriers, data gathering,
and message broadcasting (MPI Barrier, MPI Gather, and
MPI Bcast, respectively) using simpler point-to-point MPI
primitives. Layer 2 consists of the point-to-point MPI prim-
itives, namely MPI Send and MPI Recv. Implementation de-
tails such as protocol processing, data packetizing and de-
packetizing, and message queue management are handled
here. Finally, Layer 1 is comprised of four macros that pro-
vide access to physical communication channels. Porting
TMD-MPI to another platform requires a replacement of
Layer 1 and possibly some minor changes to Layer 2.

TMD-MPI currently implements only a subset of func-
tionality specified by the MPI standard. Although this set of
operations is sufficient for our initial MD application, other
features can be added as the need arises. Table 1 lists a
description of the functions implemented to date.

There are several outstanding issues in TMD-MPI that
are currently being investigated. In a MPI-based applica-
tion executing on a Class 1 machine, the mpirun command
is invoked by a user to launch the application. This com-
mand uses the underlying operating system to spawn mul-
tiple processes on different hosts, and is also responsible for
assigning unique ranks to each process. Since there is no un-
derlying operating system in our current implementation, we

Table 1: Functionality of TMD-MPI
Utility Functions

MPI Init Initializes TMD-MPI environment

MPI Finalize Terminates TMD-MPI environment

MPI Comm rank Get rank of calling process in a group

MPI Comm size Get number of processes in a group

MPI Wtime Returns number of seconds elapsed since
application initialization

Point-to-Point Functions

MPI Send Sends a message to a destination process

MPI Recv Receives message from a source process

Collective Functions

MPI Barrier Blocks execution of calling process un-
til all other processes in the group reach
this routine

MPI Bcast Broadcasts message from root process to
all other processes in the group

MPI Reduce Reduces values from all processes in the
group to a single value in root process

MPI Gather Gathers values from a group of processes

statically assigned each process to an embedded micropro-
cessor and determine MPI process ranks at compile-time. A
boot-loading mechanism is being developed to provide this
functionality. Other minor issues include: lack of support for
data types larger than 32 bits, support for only synchronous
(blocking) implementations of MPI Send and MPI Recv prim-
itives, and support for only multiplication and addition re-
duction operations in MPI Reduce.

6. SAMPLE APPLICATION
The first application for the TMD architecture was cre-

ated to demonstrate the effectiveness of the programming
model and design flow described in Section 4.2. Molecular
simulations of biological systems have long been one of the
principal application domains of large-scale computing [2].

6.1 Molecular Dynamics
Atomic-level simulations of biomolecular systems have be-

come an integral tool of biophysical and biomedical research.
One of the most widely used methods of computer simula-
tion is molecular dynamics where one applies classical me-
chanics to predict the time evolution of a molecular system.
In MD simulations, empirical molecular mechanics equa-
tions are used to determine the potential energy of a col-
lection of atoms as a function of the physical properties and
positions of all atoms in the simulation. The net force act-
ing on each atom is determined by calculating the negative
gradient of the potential energy with respect to its position.
With the knowledge of both the position and the net force
acting on every atom in the system, Newton’s equations of
motion are solved numerically to predict the movement of
every atom. This step is repeated over small time increments
(∆t ∼= 10−15s) to yield a time trajectory of the molecular
system. For meaningful results, these simulations need to
reach relatively large length and time scales, underscoring
the need for scalable computing solutions.

There are many software-based MD simulators available
including CHARMM [18], AMBER [7], and NAMD [25].
Current theoretical and technological limitations limit MD
simulations to a maximum on the order of 105 atoms and
time scales on the order of approximately 10−8 seconds.

The MD application developed for the TMD is patterned

after NAMD, an open-source molecular dynamics simula-
tor for supercomputers. Specifically, the TMD employs the
same spatial decomposition strategy for effective paralleliza-
tion which has allowed NAMD to scale to systems contain-
ing thousands of nodes [26]. This version of the application
will be used to validate the TMD architecture, programming
model, and development flow. Future versions will focus
on improving computational performance by leveraging the
scalability of the TMD platform.

6.2 Implementation
The first version of the TMD MD application performs

simulations of noble gases, which provides the advantage of
simplicity since only one type of atomic interaction needs
to be considered. The total potential energy of the system
results from van der Waals forces which are modeled by the
Lennard-Jones 6-12 equation [2].

The application was developed using the design flow out-
lined in Section 4.2. An initial proof-of-concept application
was created to determine the algorithm structure. Next,
the application was refined and partitioned into four well-
defined processes: (1) force calculations between all atom
pairs; (2) summation of component forces to determine the
net force acting on each atom; (3) updating atomic coordi-
nates; and (4) publishing the atomic positions. Each task
was implemented in a separate process written in C++, and
inter-process communication was achieved by using MPICH
over a standard switched ethernet computing cluster.

The next step in the design flow was to recompile each
of the four simulator processes to target the embedded mi-
croprocessors implemented on the TMD architecture. The
portability of MPI eliminated the need to change the com-
munication interface between the software processes. The
simulator was partitioned onto 2 FPGA nodes as illustrated
in Figure 10. Each node is implemented using the Amirix
AP1100 development board [4].

3

2

1

4
3) Update Atomic
 Coordinates

1) Calculate Inter-
 atomic Forces

2) Sum all Force
 Vectors

4) Publish Atomic
 Coordinates

O
C

C
C

O
C

C
C

E
th

e
rn

e
t M

A
C

M
G

T
 L

in
k

Host
CPU

FPGA Board #1 FPGA Board #2

Figure 10: MD Application Implementation

The FPGA on the first board contains three microproces-
sors responsible for the force calculation, force summation,
and coordinate update processes, respectively. All of the
processes communicate with each other using TMD-MPI.
The second FPGA consists of a single microprocessor ex-
ecuting an embedded version of Linux [33]. It also uses
TMD-MPI to communicate with the first FPGA over the
MGT link, as well as a TCP/IP-based socket connection to
relay atomic coordinates to an external program running on
a host CPU.

This initial MD application demonstrates the effective-
ness of the programming model by implementing a software
application on the TMD architecture. Future versions of
the application will build on this foundation by adding fur-
ther components necessary to simulate more complicated

biomolecular systems. The final step in the design flow will
be to replace the computationally-intensive processes with
dedicated hardware implementations.

7. CONCLUSIONS AND FUTURE WORK
In this work, we have proposed an architecture for a scal-

able high-performance computing platform, the TMD, built
entirely using a flexible network of commodity FPGA hard-
ware. The TMD is designed for applications that exhibit
high computation-to-communication ratios as well as an ab-
undance of parallelism. To this end, we have developed
an abstracted, low-latency communication interface that en-
ables multiple computing tasks to easily interact with each
other, irrespective of their physical locations in the network.
The network is realized using high-speed serial I/O links,
which facilitate high integration density at low PCB com-
plexity as well as a dense network topology.

We have also developed a programming model for the
TMD commensurate with the scalability and parallel na-
ture of the architecture. Using the MPI message-passing
standard as the framework for creating applications, we pro-
vide parallel application developers with a familiar develop-
ment paradigm. Additionally, the portability of MPI en-
ables application algorithms to be composed and refined on
CPU-based clusters. A flow is also proposed for taking a
software application written for CPUs, partitioning it into a
collection of parallel computing tasks, and implementing it
on the TMD as hardware computing engines and embedded
microprocessors. Finally, we have demonstrated the use of
the architecture, programming model, and design flow by
implementing a simple molecular dynamics simulator.

This work outlines the first step towards the larger goal of
building a FPGA-based supercomputer. Our next immedi-
ate step is to evaluate the network topology, programming
model, and design flow of the proposed architecture by im-
plementing a subset of it using a cluster of development
boards. This step also includes analyzing the performance
of the internal and external communication networks, refin-
ing the TMD-MPI library and developing hardware support
for passing messages, and expanding the capability of our
flagship MD application. Once we have demonstrated the
viability of the TMD architecture, we will investigate meth-
ods for automating our design flow.

Acknowledgements
Portions of this work were supported by CMC Microsystems,
Amirix Systems, Inc., the SOCRN, NSERC, CONACYT,
CIHR, The Hospital for Sick Children and Xilinx, Inc. The
authors would also like to thank the reviewers and Andrew
House for their helpful comments.

8. REFERENCES
[1] V. Aggarwal, I. A. Troxel, and A. D. George. Design

and Analysis of Parallel N-Queens on Reconfigurable
Hardware with Handel-C and MPI. In 2004 MAPLD

International Conference, Washington, DC, USA,
2004.

[2] M. P. Allen and D. J. Tildesley. Computer simulation

of liquids. Clarendon Press, New York, NY, USA,
1987.

[3] Altera, the Leader in Programmable Logic.
http://www.altera.com/. Curr. Jan. 2006.

[4] AP1000 PCI Platform FPGA Development Board.
Technical report, Amirix Systems, Inc., Oct. 2005.
http://www.amirix.com/downloads/ap1000.pdf.

[5] D. Brady. FPGA I/O Features Help Lower Overall
PCB Costs. FPGA and Structured ASIC Journal,
Aug. 2004. http://www.fpgajournal.com/articles/
20040810_mentor.htm.

[6] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open
Cluster Environment for MPI. In Proceedings of

Supercomputing Symposium, pages 379–386, 1994.

[7] D. Case, I. T.E. Cheatham, T. Darden, H. Gohlke,
R. Luo, K. M. Jr., A. Onufriev, C. Simmerling,
B. Wang, and R. Woods. The Amber biomolecular
simulation programs. In Proceedings of JCCM ’05,
volume 26, pages 1668–1688, 2005.

[8] C. Chang, K. Kuusilinna, B. Richards, A. Chen,
N. Chan, R. W. Brodersen, and B. Nikolic. Rapid
Design and Analysis of Communication Systems Using
the BEE Hardware Emulation Environment. In
Proceedings of RSP ’03, pages 148–, 2003.

[9] C. Chang, J. Wawrzynek, and R. W. Brodersen.
BEE2: A High-End Reconfigurable Computing
System. IEEE Des. Test ’05, 22(2):114–125, 2005.

[10] C. J. Comis. A High-speed Inter-process
Communication Architecture for FPGA-based
Hardware Acceleration of Molecular Dynamics.
Master’s thesis, University of Toronto, 2005.

[11] Cray XD1 supercomputer for reconfigurable
computing. Technical report, Cray, Inc., 2005. http:
//www.cray.com/downloads/FPGADatasheet.pdf.

[12] FPGA High Performance Computing Alliance.
http://www.fhpca.org/. Curr. Jan. 2006.

[13] R. S. Germain, B. Fitch, A. Rayshubskiy,
M. Eleftheriou, M. C. Pitman, F. Suits, M. Giampapa,
and T. C. Ward. Blue matter on blue gene/l:
massively parallel computation for biomolecular
simulation. In Proceedings of CODES+ISSS ’05, pages
207–212, New York, NY, USA, 2005. ACM Press.

[14] R. L. Graham, T. S. Woodall, and J. M. Squyres.
Open MPI: A flexible high performance MPI. In
Proceedings of PPAM ’05, Poznan, Poland, Sept. 2005.

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the
MPI message passing interface standard. Parallel

Computing, 22(6):789–828, Sept. 1996.

[16] T. Hamada, T. Fukushige, A. Kawai, and J. Makino.
PROGRAPE-1: A Programmable Special-Purpose
Computer for Many-Body Simulations. In FCCM,
pages 256–257, 1998.

[17] Handel-C Documentation. http://www.celoxica.com.
Curr. Jan. 2006.

[18] Y.-S. Hwang, R. Das, J. H. Saltz, M. Hodoscek, and
B. R. Brooks. Parallelizing molecular dynamics
programs for distributed-memory machines. IEEE

Computational Science & Engineering, 2(2):18–29,
Summer 1995.

[19] IEEE802.3 10GBASE-CX4 Study Group.
http://www.ieee802.org/3/10GBCX4/, Mar. 2002.
Curr. Jan. 2006.

[20] The InfiniBand Architecture Specification R1.2.
Technical report, InfiniBand Trade Association, Oct.

2004. http://www.infinibandta.org.

[21] D. Ku and G. DeMicheli. HardwareC - A language for
hardware design. Technical Report CSL-TR-90-419,
Stanford University, 1988.

[22] T. P. McMahon and A. Skjellum. eMPI/eMPICH:
Embedding MPI. In Proceedings of MPIDC ’96, page
180, Washington, DC, USA, 1996. IEEE Computer
Society.

[23] MPI - Message Passing Interface.
http://www-unix.mcs.anl.gov/mpi/. Curr. Jan.
2006.

[24] OpenFPGA - Defining Reconfigurable
Supercomputing. http://www.openfpga.org/. Curr.
Jan. 2006.

[25] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,
E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel,
L. Kale, and K. Schulten. Scalable molecular
dynamics with NAMD. In Proceedings of JCCM ’05,
volume 26, pages 1781–1802, 2005.

[26] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale.
NAMD: biomolecular simulation on thousands of
processors. In Proceedings of Supercomputing ’02,
pages 1–18, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[27] M. Saldaña, L. Shannon, and P. Chow. The
Routability of Multiprocessor Network Topologies in
FPGAs. In Proceedings of SLIP ’06, 2006. (To Appear
in March).

[28] Extraordinary Acceleration of Workflows with
Reconfigurable Application-specific Computing from
SGI. Technical report, Silicon Graphics, Inc., Nov.
2004. http://www.sgi.com/pdfs/3721.pdf.

[29] The MathWorks - MATLAB and Simulink for
Technical Computing. http://www.mathworks.com/.
Curr. Jan. 2006.

[30] D. Soderman and Y. Panchul. Implementing c
algorithms in reconfigurable hardware using c2verilog.
In Proceedings of FCCM ’98, page 339, Washington,
DC, USA, 1998. IEEE Computer Society.

[31] General Purpose Reconfigurable Computing Systems.
2005, SRC Computers, Inc.
http://www.srccomp.com/.

[32] M. Taiji, T. Narumi, Y. Ohno, and A. Konagaya.
MDGRAPE-3: A Petaflops Special-Purpose Computer
System for Molecular Dynamics Simulations. In
Proceedings of PARCO ’05, pages 669–676, 2003.

[33] uClinux Embedded Linux/Microcontroller Project.
http://www.uclinux.org/. Curr. Jan. 2006.

[34] K. D. Underwood, K. S. Hemmert, A. Rodrigues,
R. Murphy, and R. Brightwell. A Hardware
Acceleration Unit for MPI Queue Processing. In
Proceedings of IPDPS ’05, page 96.2, Washington,
DC, USA, 2005. IEEE Computer Society.

[35] Xilinx - The Programmable Logic Company.
http://www.xilinx.com/. Curr. Jan. 2006.

[36] M.-W. Youssef, S. Yoo, A. Sasongko, Y. Paviot, and
A. A. Jerraya. Debugging HW/SW interface for
MPSoC: video encoder system design case study. In
Proceedings of DAC ’04, pages 908–913, New York,
NY, USA, 2004. ACM Press.

