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Abstract
A fast, accurate and fully automatic method of segmenting magnetic resonance images of the
human brain is introduced. The approach scales well allowing fast segmentations of fine resolution
images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means,
that enable it to scale to large data sets. Two types of modifications to create incremental versions
of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for
medium to extremely large data sets because they work on successive subsets of the data. They are
comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms
coupled with inhomogeneity correction and smoothing are used to create a framework for
automatically segmenting magnetic resonance images of the human brain. The framework is
applied to a set of normal human brain volumes acquired from different magnetic resonance
scanners using different head coils, acquisition parameters and field strengths. Results are
compared to those from two widely used magnetic resonance image segmentation programs,
Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are
comparable to FSL while providing significant speed-up and better scalability to larger volumes of
data.
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1 Introduction
The accurate, automated segmentation of magnetic resonance (MR) images provides the
possibility of improved medical care. It is expected that the resolution of the MR images
will increase as image acquisition technology continues to improve. In this paper, we present
a framework for segmenting MR images of the human brain. Inhomogeneity (bias)
correction is done on the front-end and smoothing is done on the back end of processing. In
between, a robust soft clustering approach is used because such methods have been shown to
provide stable and meaningful clusters [14]. In particular, fuzzy c-means (FCM) has been
used as a part of several image segmentation systems of both normal and abnormal brains
and other MR images [14,56–64].

For clinical use, segmentation results need to be obtained in a timely manner. FCM and
other soft clustering algorithms such as EM [35] are very time consuming. They may take
on the order of hours for a large volume of data and assume that all the data fits into local
memory. In the clinic, you may not have large memory machines available and we may need
to have scalable algorithms. Towards this end, a number of methods to scale up FCM have
been developed [20,24,26–28], but all require the full data set reside in memory. We
introduce two approaches to create a fast, scalable version of FCM. The result is a
segmentation package (FSSP) that is faster and significantly more scalable (in terms of
features and voxels) than two widely used packages FMRIB Software Library (FSL) [1] and
Statistical Parametric Mapping (SPM) [2].

In [31] we introduced a variant of FCM which makes one pass through the data by
clustering subsets of the data and creating a final partition by using weighted centroids
which represent the subsets. We showed that this single pass fuzzy c-means algorithm
(SPFCM) provides clustering quality which is very close to that of FCM given different
random initializations even when we load as little as 1% of the data at a time. It allows for
clustering of data sets which are too large for memory, but also allows for fast clustering of
data that fits in memory.

In this paper, we introduce and compare the performance of an online fuzzy clustering
algorithm called online FCM (OFCM) [32]. Unlike other single pass and scalable algorithms
[21,25,30,31] it can produce good segmentation quality without randomly accessing data.
The data is viewed as a stream and can come in any order. The approach introduced here
might be viewed as a modification of a streaming algorithm to summarize the entire data set
through a set of evolving cluster centroids.

The MR image segmentation algorithms we have developed are a part of the MIDAS Project
[53], whose goal is to simplify implementation of Magnetic Resonance Spectroscopic
Imaging (MRSI) for routine diagnostic imaging studies and to map normal metabolite
distributions in human brains. As part of the package, we use an existing bias correction
algorithm to deal with inhomogeneity and a spatial smoothing process. The fast clustering
algorithms enable the potential clinical use of the approach. MIDAS, and hence our
approach, is designed to work on any MR scanner, with any head coil, with any sequence,
with minimal tuning and in an automated way. The segmentation step is used with the
spectroscopic imaging and software for automated MRSI processing, brain region mapping,
statistical analysis, and clinical presentation. On completion, this software suite will be used
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for diagnostic neuroimaging applications including cancer, epilepsy, and neurodegenerative
disease. More about the MIDAS project is available in [50–52]. We will show that our
segmentation approach is comparable to FSL, which has been shown to be the current best
package in [65] when compared to 6 other approaches. FSSP is significantly faster than FSL
or SPM.

2 Related Work
Magnetic resonance images (MRI) have been widely used in medical applications. MR
imaging provides non-invasive detailed images of living tissues. This paper is focused on
MR brain images from normal human brains. MRI may be used for defining an anatomical
framework for functional visualization, cortical surface mapping, volume measurement,
tissue classification, and morphological adaptation assessment. Brain image segmentation
plays a very important role. In particular, segmenting the brain image into cerebro-spinal
fluid (CSF), grey matter (GM), and white matter (WM) is extremely important for
quantitative analysis and can serve as a baseline for MR spectroscopy.

In the literature, there exists a variety of segmentation schemes. A review of methods for
brain image segmentation was done by Pham [3]. The paper discussed the advantages and
disadvantages of the segmentation approaches used for medical imaging applications.
However, many of the approaches had the problem of required human interaction for
accurate and reliable results. Automation is necessary to process large amounts of brain data.
On the other hand, fully automated segmentation systems often cannot provide accurate
tissue classification due to their sensitivity to issues, such as the partial volume effect and
inter-tissue intensity contrast reduction. For these reasons, many classical intensity-based
classification models, such as the fuzzy-c means model and the mixture of Gaussians model
may give unstable results with tissue region misclassification caused by the presence of
artifacts. This area of research has received a large amount of attention. Many methods have
been proposed [4–13].

Conventional classification models often have another drawback. Most of them are based on
two-dimensional (2-D) images, which means processing is done slice by slice and eventually
2D results are combined into 3D. This has benefits but has other issues. To guarantee the
continuity of segmentation and the integrity of tissues along the third dimension, one must
not just ignore the neighboring slices when doing individual slice processing, however 3-D
methods are often computationally intensive. If the slices are processed along the axial plane
(X and Y), the third dimension will be the Z axis. It is also necessary to map tissues along
the third dimension to make a 3-D segmentation model. Mapping tissue in the Z direction
may not be a trivial task. In our previous work [14], a slice based automatic brain image
segmentation expert system showed some of the drawbacks of using slice processing.

Many 3D algorithms have also been developed [15,16], but volumetric processing of large
data sets tends to require a long time. FSL [1] and SPM [2] are currently publicly available
popular packages for doing brain image analysis; they both contain good segmentation tools.
Zhang [17] provided a method to improve segmentation smoothness and immunity to noise;
a finite mixture (FM) model was used for statistical segmentation of brain MRI, but later it
was found that FM's had a critical limitation, it only worked on well-defined images with
low noise. So, for real data with artifacts such as inhomogeneity and bias field distortion, a
problem occurs. Thus, a finite model by itself cannot produce reliable results in this case. In
order to overcome the difficulties, Zhang [17] took into account spatial information. They
incorporated both the Hidden Markov Random Fields (HMRF) model and the EM algorithm
into a HMRF-EM framework to solve the inhomogeneity problem at the same time. They
also incorporated the bias field correction algorithm of Guillemaud and Brady [19] into the
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model. This fully automated 3-D model proved to be robust and reliable for normal brain
segmentation.

The segmentation routine in SPM was described in [18] and works as follows; the MRI is fit
into an MRI template by means of a 12-parameter affine transformation. For each voxel of
the template, there exists a three-element vector specifying the a priori probabilities for GM,
WM, and CSF. Then the probability map is used to segment the fit MRI into its four
partitions (GM, WM, CSF, and “everything else.”) using an iterative soft clustering scheme.
Recently, in [65] a study of seven different automatic segmentation tools was reported.
Because ground truth is expensive and difficult to obtain, they proposed a method of
evaluating the performance of seven segmentation algorithms using a common agreement
principle framework. They also compared limited regions of the human brain to manually
drawn ground truth and got similar ratings of the algorithms to those obtained by using the
common agreement principle, which uses no ground truth. It was reported that FSL using
one feature (T1) was best overall. Although SPM (using one feature) was not always the
best, its rating was good and was close to the performance of FSL. Again, SPM like the FSL
package does a good job in segmenting brain images. Both are widely used in segmenting
normal MRI brain images; however, everyone using these two packages will observe that
both of them require quite significant computational time when processing a whole brain
volume. This is, arguably, the main disadvantage of using these two packages.

Many speed up techniques based on sampling [21,25] have been proposed but for large data
sets even a representative sample may be big enough so that it does not fit in memory.
Recently, many single pass algorithms have been proposed [29–31,33–36] which create a
final partition by scanning the data on the disk once. Single pass algorithms are an attractive
choice for scaling because they work under the notion of limited memory allocated and are
known to be fast and produce good quality final partitions. We believe future scalable
approaches should be based on either single pass or incremental or online clustering
algorithms. This is because besides scalability, these algorithms or their variants will
provide the framework for real time processing.

brFCM [22] speeds up clustering by reducing the resolution of the data. However, it requires
that all data be memory resident. In [42,43], a streaming algorithm was proposed using a k-
Median clustering algorithm called LOCALSEARCH using a single pass view of the data.
Data arrived in chunks and then each chunk was clustered using a LOCALSEARCH
algorithm and the memory was freed by summarizing the clustering result by weighted
centroids. This is somewhat similar to our OFCM algorithm though more complex as data is
treated hierarchically and the number of clusters may require time consuming search. A
main difference is in the fact that in fuzzy clustering an example may not completely belong
to a particular cluster. Our method of summarizing clustering results involves the fuzzy
membership matrix, which does not exist for the crisp cases. We believe, condensing
clustering solutions using fuzzy centroids and a fuzzy membership matrix is important;
otherwise, the summarized clustering solutions will simply reduce to a possibly less stable
form of a crisp clustering solution.

Although, the algorithm in [42] was classified as a streaming algorithm, in [37] it was
pointed out that a streaming algorithm may not be viewed as single pass clustering problem.
This is because a single pass algorithm over an entire stream will be dominated by outdated
history. They proposed a framework for analysis of clusters over different time frames. They
stored the summary statistics of the streaming data periodically using micro-clusters which
were the online component of their algorithm, and later analyzed these cluster summary
statistics over a user provided time horizon. Thus, the algorithm is neither purely online nor
fully automatic. Recently, various other streaming algorithms [37–41] for an evolving
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distribution have been proposed. In [54,55], we also introduced a streaming variant of the
fuzzy-c-means algorithm for clustering evolving data streams. As stated earlier, our OFCM
was designed to produce partition quality as good as clustering the full data set. Unlike
recently proposed streaming algorithms, we are not concerned about clustering quality for
different time horizons, but with summarizing clustering quality over the whole time horizon
so that at the end the final clustering solution is as good as that obtainable from clustering
the full data set.

3 Single Pass Fuzzy C Means Algorithm
Suppose we intend to cluster a large or very large data set present on a disk. We assume for
large or very large data sets that the data set size exceeds the memory size. As in [30], data
is randomly reordered on the disk. We can only load a certain percentage of the data based
on the available memory. If we load 1% of the data into memory at a time then we have to
do it 100 times to scan through the entire data set. We call each such data access a partial
data access (PDA). The number of PDAs will depend on how much data we load each time.
In our approach, after the first PDA, data is clustered into c partitions using fuzzy c means.
Then the data in memory is condensed into c weighted points and clustered with new points
loaded in the next PDA. We call them “weighted” points because they have weights, which
are calculated by summing the membership of examples in a cluster. This is the key
difference from the crisp clustering case [30], where a fuzzy membership matrix is not
present. In each PDA new singleton points are loaded into memory and clustered along with
the past c weighted points obtained from the previous clustering. We call this partial data
clustering (PDC). After clustering these new singleton points along with the past c weighted
points, they are condensed again into c new higher weighted points and clustered with
examples loaded in the next PDA. This continues until all the data has been scanned once.
The objective function of fuzzy c means was modified in a fashion similar to that in [22] to
accommodate the effect of weights.

As an example, consider a large or very large data set of n examples. If n1 examples are
fetched in the first PDA and clustered into c partitions then all n1 examples in memory are
condensed into c weighted points, whose weights sum up to n1. Condensation of n1
examples into c weighted points frees the memory. Next n2 examples are loaded into
memory in the next PDA. These new n2 examples are then clustered along with the c
weighted points. So, after the second PDA there will be n2 + c examples in memory for
clustering, out of which c are weighted points and n2 examples have weight one (singletons).
We will call the modified fuzzy c means algorithm which takes into account the weights of
the c weighted points, weighted fuzzy c means (WFCM). After clustering these n2 + c
examples in memory using WFCM they are condensed again into c new weighted points.
This time the weight of the c points sum up to n1 + n2 and thus they have more weight than
before. This is because there were already c weighted points, of total weight n1, present
when n2 new singleton examples were loaded in the second PDA. Similarly, after
completion of clustering in the third PDA, the weight of the new condensed c points will
sum up to n1 + n2 + n3. This means after the mth PDA there will be nm singleton points
loaded in the memory along with c weighted points from a previous PDC, whose weights
sum up to n1 + n2 + n3 + … + nm−1. So, if the last PDA loads nl examples, it essentially
clusters the whole data set, where n − nl examples remain as c condensed weighted points
and nl as singleton points. Thus, our simple SPFCM algorithm will produce a partition in a
single pass through the whole data set discarding a chunk of data after a partition is created.
To speed up clustering, we initialize each PDC with the final centroids obtained from the
previous PDC. This knowledge propagation allows for faster convergence.
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In other work [31,32], it has been shown for SPFCM that using 10% of the data per pass the
maximum difference from FCM applied to all of the data in terms of Jm was 0.3% for eight
data sets. The speedups ranged from 3.3 times to 13.6 times. These results are predicated on
data being reasonably well mixed by class. In the case that data comes in an order, perhaps
by class, the difference can be as large as 20% from FCM. However, in [32] it was also the
case that there was almost no change and a 2% change for two data sets. Clearly, the order
can have an effect.

3.1 Weighted Fuzzy C Means
We modified FCM (similar to [22]) to work with weighted examples. The objective function
(Jm) minimized by the WFCM is defined as follows:

(1)

The cluster membership matrix and centroids for the WFCM are calculated as:

(2)

(3)

Where,

uik : is the membership value of the kth example, xk, in the ith cluster.

vi : is the ith cluster centroid.

n : is the number of examples.

c : is the number of clusters.

wk : is the weight of the kth example.

Dik (xk, vi) = ‖xk − vi‖2 : is the norm. We have used the Euclidean distance.

It should be noted that modification of the objective function does not change the
convergence property of FCM because an integer weighted example is equivalent to many
examples with identical feature values (i.e. identical examples) [23]. In case of FCM, wk = 1,
∀k. We will discuss weighted example calculation for the single pass algorithm below.

Consider nd examples which are loaded in memory in the dth PDA.

3.1.1 Case 1: d=1—If d is equal to one i.e. the first PDA, there will be no previous
weighted points. In this case WFCM will be the same as FCM. In this case all nd points have
weight 1 because no weighted points from a previous PDC exist. Now, memory is freed by
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condensing the clustering result into c weighted points, which are represented by the c
cluster centroids vi, where 1 ≤ i ≤ c and their weights are computed as follows:

(4)

The weight of the c points, after condensing the clustering results, in memory is as follows:

(5)

It should be noted that when nd new singleton points (weight one) are loaded in all
subsequent PDA (d>1), their indices associated with w⃗ will begin at c + 1 and end at nd + c
i.e.

(6)

3.1.2 Case 2: d>1—In this case, clustering will be applied on singleton points freshly
loaded in the dth PDA along with c weighted points obtained after condensation from the (d
− 1)th PDC. So, there will be nd + c points in memory for clustering using WFCM. The new
nd singleton points have weight one. After clustering, the data in memory (both singletons
and weighted points) is condensed into c new weighted points. The new weighted points are
represented by the c cluster centroids vi, where 1 ≤ i ≤ c and their weights are computed as
follows:

(7)

Then memory is freed up and the weight of the condensed clustering result in memory is
updated as follows:

(8)

4 Online Fuzzy C Means
Consider a data set that has a maximum of c classes. Due to the constraints of limited
memory and computation time, an online algorithm will be able to load only a small amount
of data at a time depending upon the speed of data arrival and hardware capability. As in
[42], we assume data is both arriving and processed in chunks (equal to the buffer size), that
is, n1 data points arrive at time t1, n2 at t2, and so on. Then in the worst case a given chunk
of data might come from one class only and in the best case data might come from all c
classes. So, if we set the number of clusters to be always c (highest resolution) what effect
will it have on different mixtures?
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Case A: If less than c classes come in a chunk, then we are overclustering. Overclustering may not cause any
information loss as it will likely split homogeneous clusters. Information loss occurs when we undercluster,
which must group non-alike examples together.

Case B: If exactly all c classes come in a chunk, then we are neither overclustering nor underclustering.

So, setting the number of clusters always equal to c, the maximum number of classes in the
data set, may not cause any information loss. Hence, we set number of clusters to be c in
each chunk. After clustering data arriving at each time instant by FCM (a chunk), memory is
freed by condensing the clustering solution in memory into c weighted points. The c
weighted points are represented by the c cluster centroids obtained after clustering. The
summarization of clustering results involves the U matrix, which indicates the fuzziness of
the example's membership in each cluster. This is one key difference in our summarization
from crisp algorithms.

For example if there are nk examples in memory at time instant tk then after clustering,
memory is freed by summarizing the clustering result by c weighted centroids, whose
weights are calculated using the membership matrix as follows:

(9)

The weighted centroids are saved on the disk. At the end, the weighted centroids of all
chunks form an ensemble of weighted clustering solutions. The ensemble is then merged
into the final c clusters. The merging operation is done by clustering all the weighted
centroids in the ensemble using their weights. WFCM was used for this purpose. The only
difference was that there were no singleton points. To speed up clustering, we initialized the
cluster centroids of each chunk with the final centroids obtained from clustering the previous
chunk. This knowledge propagation allows for faster convergence, provided the distribution
does not change rapidly, which may often be the case.

The size of the ensemble is not likely to be large because it consists of only weighted
centroids. If in any case it becomes large, similar to [42] the weighted centroids from the
ensemble can be incrementally loaded and reclustered into c weighted centroids, which can
be retained in memory. This will decrease the ensemble size, which can be merged at the
last step into c partitions in memory. It should be noted that while clustering each chunk, we
do not use any history in OFCM. This allows each chunk to equally influence the final
clustering solution, which is a necessary condition for obtaining clustering quality as good
as clustering the entire stream at once.

OFCM resulted in a difference of between 0.17% and 3% from FCM applied to all the data
in terms of Jm [32] across nine data sets. The stream was sampled in increments of 5%
which is quite small. It has the advantage compared to SPFCM of being almost insensitive
to data order.

5 Data Sets
All MRI data were obtained using a T1-weighted MPRAGE sequence. Of the 33 MRI
volumes (or data sets) used, 32 were obtained at the University of Miami, with 18 from a
1.5-Tesla Siemens Sonata obtained with a standard head coil and interpolated resolution of
512 × 512 × 96, and 14 obtained at 3 T on a Siemens Trio using a 8-channel phased-array
head coil, and with a resolution of 256 × 256 × 144. Another data set was obtained at the
VA Medical Center San Francisco using a 1.5T Siemens Magnetom, and with a resolution
of 192 × 256 × 160. Although all imaging studies acquired T1-weighted (T1), Proton
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Density weighted (PD) and T2-weighted (T2) images, only the T1-weighted data was used
in this study. Table 1 shows the image acquisition parameters of the T1 modality in detail.

One advantage of our new clustering algorithms is that they can efficiently use multiple
modalities. We compared our results with FSL (released version: 3.3.7) segmentation on the
T1 weighted feature only. We can also do multiple channel result comparison, but FSL is
computationally expensive on multiple channels and their results on multiple channels are
not known to be well studied and reported to be poor in [65]. In order to make the
comparison fair and reasonable, before performing segmentation, we used Smith's [49]
(http://www.fmrib.ox.ac.uk/analysis/research/bet/) brain extraction algorithm from the FSL
package to remove the skull tissue first. This will ensure that both FSL and our package use
the same volume of intracranial tissue for segmentation. SPM segmentations within the
same intracranial mask were also compared for evaluation purposes. FSL and SPM (SPM2
version) packages are publicly available at http://www.fmrib.ox.ac.uk/fsl/index.html and
http://www.fil.ion.ucl.ac.uk/spm/software/ respectively. We used SPM2 rather than SPM5
because it was significantly faster to segment a volume and the results were closer, on
average, to those of FSL.

The extracranial tissues (skull, bone, fat, etc.) and air were removed using the brain
extraction tool (BET2) [49]. The intracranial tissue obtained was then used for clustering.
The code for the BET2 is available at http://www.fmrib.ox.ac.uk/analysis/research/bet/.

Intensity inhomogeneity for high field MRIs may cause poor segmentation of MR images. If
present, it has to be corrected to get good segmentation results. We have implemented the
bias correction algorithm discussed in [48] with some modifications. We choose this bias
correction algorithm because it was shown to be fast and effective. In [48], an entire MR
volume was pre-processed to separate data from background/noise (generally air). Then, the
background/noise was filled with the average intensity of the non-background part. This was
done to prevent edge blooming. In our case, this background was the extracranial part of the
brain and air obtained after running the BET2 program. Another difference is that we
controlled the amount of bias correction by varying the parameters (standard deviation) of
the gaussian kernel used in [48], whereas in [48] nothing was mentioned about controlling
the parameters of the gaussian kernel. Intensity inhomogeneity may vary by magnetic field
strength and coil setting of MR acquisition hardware, so we believe different amounts of
bias correction may have to be done on MRI data obtained from different field strength and
coil settings. In our methods, using both the single pass and OFCM algorithm in the MIDAS
project, the user can select 3 modes of bias correction; “Light bias correction”, “Medium
bias correction”, and “Custom Correction”. For “Light bias correction”, the standard
deviation of the gaussian kernel in [48] was set to be 0.1, 1.5, 1.5 respectively in the Z, Y, X
directions. Similarly, for “Medium bias correction” the values were 2.0, 3.0, 3.0. These
values were decided after empirically testing on two training volumes, one a 1.5 T volume
and the other a 3 T volume. The gaussian kernel was normalized so that the maximum value
(at the peak) was 1. For “Custom Correction”, the user has to supply the parameters. Higher
standard deviation values mean more bias correction will be done because it will suppress
more low frequencies. One may consult [48] for more detail about the bias correction
algorithm.

The 1.5T data did not appear to have any significant intensity inhomogeneity and it was
therefore not necessary to perform any bias correction. The FSL package has a bias
correction algorithm integrated along with their clustering algorithm. Thus, the bias
correction algorithm was not a separate program we could control independently. It is
expected that FSL would detect low inhomogeneity and its bias correction effect would be
minimal. Like FSL, SPM2 also has a bias correction algorithm integrated into the package.
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Since the 3T data was acquired using phase-array detection, bias field correction was
necessary and was used for all packages.

6 MRI Data Processing
After the extracranial tissues were removed by BET2 and bias correction done (if
necessary), there were 3 tissues of interest left in the volume; CSF, GM, and WM. Bias
correction, when done, will be specified in the experimental section. The entire volume was
then partitioned using either the SPFCM or the OFCM algorithm. For SPFCM, the number
of clusters was kept to be 3. For the OFCM algorithm, we know that in whatever order the
data comes, the maximum number of intracranial classes will be 3 (CSF, GM, and WM) and
hence set c = 3. For the SPFCM as stated earlier the full data set is first randomly reordered,
and was fetched in chunks (buffer) of 10% of the total data set in each PDA. In case of the
OFCM algorithm the data chunk size was set to be 5% of the full data set, fetched from the
bottom of the brain to the top (processed as it comes). So, OFCM will process data as it
comes, while SPFCM will process randomly reordered data.

The FCM algorithm used the Euclidean distance metric, which introduces a bias towards
finding spherical clusters. So, we do a single iteration of post processing using the final
cluster centroids obtained after running the SPFCM/OFCM algorithm. First, an initial crisp
segmentation is computed using the centroids obtained from SPFCM/OFCM by simply
assigning a voxel to the nearest centroid. This is equivalent to assigning a voxel to the
cluster centroid with maximum membership. Once we get the crisp segmentation, the
covariance matrix associated with each cluster is then computed. Each cluster is modeled as
a Gaussian distribution with the final cluster centroids obtained from SPFCM/OFCM and
the associated covariance matrix. Now a refined segmentation using Bayes optimal
classification [47] can be obtained using the following function:

(10)

(11)

Where c is the number of classes,  is the posterior probability,  is the class
conditional density function (likelihood), P(zi) the prior probability of class zi, and p (x) the
evidence factor (normalized factor). As p (x) is just a scale factor, the discriminant function
reduces to the following [47]:

(12)

It should be noted that gi (x) is the scaled posterior probability.

As discussed above, we modeled the class conditional density function by the Gaussian
density function and assumed the prior for all classes to be the same. One may take the
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natural logarithm on both sides of Eq. 12 and ignoring the constant parts, the discriminant
function finally reduces to:

(13)

Where μi is the mean of the Gaussian (here we modeled it by the centroids obtained from

SPFCM/OFCM),  is the inverse of the covariance matrix, and |Σi| the determinant of the
covariance matrix. Crisp segmentation now can be obtained by assigning the voxels to the
class with the highest posterior probability. We call this the segmentation refinement step.

Another single iteration post processing step, which uses spatial information from
neighborhood voxels, was also added to refine the segmentation further. One of the reasons
for using spatial information in clustering is to improve the visual appearance of the
segmentation (improves smoothness), which might be especially helpful for data with noise
and intensity inhomogeneity. A review of several algorithms using spatial information in
clustering or using Hidden Markov Models can be found in [45]. In the FSL package [1], a
HMRF model was used to include spatial information. We incorporate spatial information
after the segmentation refinement step. For each voxel, we used a 3 dimensional
neighborhood (X, Y, and Z) and refined the posterior probability using an additive model
incorporating spatial information. The additive model we used is a variant of the
multiplicative model used in [46] for incorporating spatial information in FCM. Our model
is as follows:

(14)

Where the spatial function is , N (x) is a 3 dimensional window,
neighborhood, centered on pixel x.

 is the refined posterior probability after using neighborhood information and the
final crisp segmentation was obtained by assigning the voxel to the class with the highest
probability.

The parameters k1 and k2 control the relative importance of neighborhood information
incorporated. In our experiment we chose the size of the window to be 3 × 3 × 3. The
parameters k1 and k2 were selected to be 1 and 0.05 respectively for 1.5T data. Our 3T data
was smoother with a greater influence from the local neighborhood with k2 set to 0.10. We
set these parameter values after testing on 2 volumes, one for 1.5T and one for 3T data, to
get reasonable visual smoothness. We treat these two volumes as training volumes and their
names will be mentioned in the results section.

To reduce computational complexity, we kept both segmentation refinement and spatial
information incorporation post processing steps as a single iteration operation. These post
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processing operations were done by loading data incrementally to reduce the memory
requirement.

7 Experimental Results and Discussion
To evaluate the quality of tissue segmentation results, one would ideally compare results
with a set of real ground truth images. In our experiments, we chose FSL to be the reference
frame because recently in [65] FSL, using the T1 feature, was reported to be the best
compared to six other fully automatic segmentation algorithms, including SPM. Both FSL
and SPM are freely available.

Segmentation quality of each tissue was evaluated on a volume basis. For each voxel, we
first look at the FSL segmentation (kept as the reference) and then we look at the same voxel
position in our segmented results. If both FSL and the segmentation of another algorithm
classified a voxel as the same tissue, we count it as a match. We computed how many voxels
matched in an entire volume and then expressed it as a percentage. We compared the result
of the FSL segmentation (kept as reference) with the segmentation of the SPM2 package and
our algorithm. This was done to empirically evaluate how well we match with both FSL and
SPM. It will also provide insight into how the segmentations of the packages match with
each other. We will both quantitatively and visually analyze segmentation quality.

In our experiments, instead of using the current version of SPM5, we used SPM2. We
compared our results based on crisp segmentation (the pixel value is either 0 or 255),
however, SPM provides pixel values between 0 and 255. Hence, we had to convert the
original SPM images to a crisp segmentation. We have three volumes where segmentation
was very poor when using SPM5, plus the running time of SPM5 was significantly more
than SPM2, therefore we used SPM2. Unlike FSL and our packages, SPM2 does not
separate intracranial tissues from extracranial tissues before segmentation. It uses a
probability map to produce four partitions (GM, WM, CSF, and “everything else.”) using an
iterative soft clustering scheme. It assigns partial volume values to each tissue type. FSL and
our packages remove the extracranial tissues (skull, bone, fat, etc.) and air using the brain
extraction tool, BET2. To make a fair comparison, an SPM2 segmentation after application
of the intracranial mask, produced by the BET2 program of FSL on the same volume, was
extracted for comparison purposes. This will ensure segmentation results within the same
area of the brain were compared for all packages. The SPM segmentation was then
converted to a crisp segmentation by assigning a voxel, within the intracranial mask, to the
tissue with highest membership. All experimental results are reported using the T1 weighted
image.

All experiments were run on a Windows XP platform with a Pentium 4 3.00 Ghz CPU, 1
GB of memory. The running time reported for the packages here includes the time from the
start of a package until it produced the final segmented results. Both FSL and FSSP are
written in C and compiled under gcc here (or any C compiler in general). SPM runs in
MATLAB and one would expect it to be slower to execute.

In all our experiments, the 1.5 T volume names start with MN and the 3 T volume names
start with Vol. As discussed earlier, we used some training volumes for setting the
parameters of the bias correction program and the spatial information incorporating (post
processing) program in our algorithm. We used volume MN011 as the training volume for
1.5T data and Volume Vol009 for 3T data. It should be noted that MN011 was used only for
tuning parameters of the spatial information incorporating program, as bias correction was
not done on the 1.5 T data sets. After testing on the 3T training volume, Vol009, we chose
the “Medium Bias Correction” option for correcting inhomogeneity on all 3T volumes
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before segmenting them using FSSP with the SPFCM or OFCM algorithms. The parameter
setting on the training volumes were done manually to obtain visually good segmentations.
For FSL and SPM, we found their default parameter settings gave visually good
segmentations on the above two training volumes. So, we did not change their default
settings, except the fractional intensity threshold value of the BET2 program was kept to be
0.2 for all experiments. Its value ranges from 0 to 1, and larger the value the more will be
the estimate of the intracranial brain mask.

7.1 Quantitative Comparison of Segmentations
Tables 2 and 3 show the average match of the three tissues, CSF, GM, and WM, segmented
by FSSP with SPFCM or OFCM, and SPM when compared to the segmentations of FSL on
the 1.5 T and 3 T volumes respectively. The match is exact voxel to voxel. Table 4 shows
the average running time of each of the algorithms and the speed up obtained compared to
FSL. Bias correction and inhomogeneity correction times were included for all packages for
3T data. Bias correction was not done for the 1.5T data (unnecessary) for our FSSP package.
This means the speed increases on the 3T data may be more informative. We note that bias
correction and inhomogeneity correction are done incrementally at every iteration in FSL
and therefore are difficult to extract. Performance of the algorithms on each volume is
available in Tables 9, 10, 11, 12, 13 and 14 in the Appendix section. Below we analyze the
results of the algorithms.

Table 2, row 2, shows the results using FSSP with the SPFCM algorithm on the 1.5 T data.
The average CSF match compared to the FSL segmentation package was 84.05%. GM and
WM had match values of 84.10% and 97.47% respectively. The average running time of our
algorithm based on SPFCM was 1.3 minutes whereas for FSL it was 22.53 min, which
means our method is about 17 times faster. The overall average match of all three tissues on
all the 1.5 T data to FSL was 88.54%. Table 2, row 4, shows the result of SPM segmentation
compared to FSL segmentation on the 1.5 T volumes. The average match of CSF and WM
was 75.65% and 62.64% respectively. This was much lower compared to FSSP using
SPFCM (FSSP–SPFCM); though a slight increase in GM was observed (3.75%). The
overall average match of SPM for all three tissues on all the 1.5 T volumes was 75.38%,
which is much lower compared to FSSP–SPFCM (88.54%). FSSP using SPFCM was also
more than 15 times faster compared to SPM, 1.3 min versus 20.50 min. So, the segmentation
results of FSL and our FSSP package using SPFCM were in more agreement than the SPM
package.

Table 3, row 2, shows the result of the FSSP using SPFCM on the 3-Tesla data. Compared
to the FSL segmentation, we got an average match for CSF, GM, and WM to be 85.69%,
75.37% and 98.12% respectively. We observe the GM match was not as high as in the 1.5
Tesla data. This could be due to the difference in the bias correction algorithm. As stated
earlier, FSL has the bias correction algorithm integrated in their clustering algorithm and in
our case it was done before clustering. SPM also has bias correction integrated. The package
based on the SPFCM outperforms FSL in terms of running time again on 3 T data; 0.68 min
versus 6.52 min, which is above 9 times faster. Since the image size is smaller for 3-Tesla
data, the corresponding running time for FSL is much less than with 1.5 Tesla data. The
overall average match for all three tissues on all 3 T data was 86.39%. So, the average
overall match of all tissues on the 3T data was lower compared to the 1.5 T data. Table 3,
row 4, shows the result of the SPM segmentation compared to the FSL segmentation on the
3 T volumes. Similar to the result on 1.5 T volumes, the average match of CSF and WM,
83.49% and 59.81% respectively, was much lower compared to FSSP–SPFCM; though, an
increase in GM was observed (5.71%). The overall average match of SPM of all three
tissues on all the 3 T volumes was 74.79%, which is much lower compared to FSSP–
SPFCM (86.39%). FSSP–SPFCM was also around 10 times faster compared to the SPM
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package, 0.68 min versus 7.43 min. It seems that also on 3 T data FSL and our FSSP–
SPFCM package were more in agreement than the SPM package.

Table 2, row 3, shows the results from FSSP with the OFCM (FSSP–OFCM) algorithm on
the 1.5 T volumes. The FSSP–OFCM had a better average match, compared with the FSL
package, than the package based on SPFCM. Compared to the FSL segmentation, there was
an 88.93% match for CSF, which is about 4% higher compared to the package based on
SPFCM. GM and WM matched at 85.52%, 96.56% respectively. Though WM match
dropped a little bit compared to FSSP–SPFCM, it did improve GM match slightly. The
average running time for FSSP–OFCM was 2.09 min, which was slower than FSSP–SPFCM
but significantly faster than the FSL package (above 10 times). The overall average match
rate for all three tissues on the 1.5 T data was 90.33%, which is higher than the package
using SPFCM. Compared to FSL, FSSP–OFCM also had a better overall match than SPM
on all the three tissues, 90.33% versus 75.17%. FSSP using OFCM was also above 9 times
faster than SPM.

In Table 3, row 3, we present the results of FSSP using OFCM on the 3-Tesla data. On the
3-Tesla data, when compared to FSL, again the match of CSF and GM were better than for
FSSP–SPFCM; though a slight drop in the match of WM was observed. Compared to the
FSL segmentation, we got an 87.30% match for CSF, which is about 1.61% higher
compared to FSSP–SPFCM. GM was 77.94%, which is about 2.57% higher compared to
FSSP–SPFCM, while WM match dropped by 0.98%. Again, FSSP–OFCM was slightly
slower than SPFCM, but much faster than the FSL package (above 5 times). The overall
match of all three tissues on all the 3 T volumes was 87.53%; a better overall match
compared to SPFCM. Compared to the segmentation of FSL, FSSP–OFCM also had a better
overall match percentage than SPM on all three tissues, 87.53% versus 73.97% for SPM. It
was also above 5 times faster than SPM.

7.2 Visual Comparison of Segmentation
Figures 1, 2, 3, and 4 show the segmented slices of FSL, FSSP with SPFCM, FSSP with
OFCM, and SPM (we also provide the unprocessed original result from SPM2). They also
display the raw data from the T1 modality. For each volume, we have chosen three slices for
display; a slice through the lateral ventricles (center slice), one slice from the upper part of
the brain, and one slice from the lower part of the brain. The center slice of a volume
generally has a butterfly shaped ventricular CSF feature, and was chosen by visual
inspection. The upper slice is chosen 10 slices above the center slice, and the lower slice is
chosen 10 slices below the center slice. In the segmented images, different shades represent
different tissues. Figure 1 shows that the segmented tissues from FSSP using SPFCM or
OFCM and FSL on the 1.5T volumes are visually more similar to each other than the
segmentation produced by SPM. The match computed on all tissues, evaluated before, also
validated this. The SPM segmentation does not always look reasonable. In general, WM
often looks under estimated and GM looks to be over estimated. Figure 3 shows results on
the 3T volumes. On 3T data, similar results were observed. Visual observation of the raw
data shows that the 3T data has visibly large intensity inhomogeneity, especially at the
bottom of the slices. Compared to the FSL segmentation, visual observation reveals that the
relative disagreement of the FSL segmentation with our packages generally occurred mostly
in the bottom half of the slices; however, the package based on OFCM matched slightly
better compared to the package based on SPFCM. Quantitative evaluation earlier also
supported this fact. On average we got a better match, on all three tissues, on the 1.5 T data
than on the 3T data. We believe, this happened due differences in bias correction algorithm
on the 3T data, which in the future could be modified.
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8 Effect of Post Processing Steps
In all the results above, simple processing was performed after a volume was segmented
using the FSSP with the SPFCM or OFCM algorithm. First, the segmentation refinement
algorithm used a gaussian model to minimize the bias of the Euclidean distance metric
towards spherical clusters. Second, spatial information from neighborhood voxels was
utilized to smooth the segmented image. Tables 5, 6, 7, and 8 show the results with and
without using the post processing both for the SPFCM and the OFCM algorithms on the two
training volumes, MN011 (1.5T) and Vol009 (3T). Compared to FSL, the average match
rate on all three tissues always improved after the post processing steps. The minimum
improvement was by 1.28% on Vol009 using the OFCM algorithm, while the maximum
improvement was by 3.34% on volume MN011 also using the OFCM algorithm. Because
the match rate always improved compared to FSL and FSL is a widely used segmentation
package and seems to provide more stable segmentations than SPM, the use of such post
processing is recommended.

9 Conclusions
We have presented a fast fully automatic human brain segmentation system for MRIs. The
new method, FSSP, uses scalable approaches: single pass/incremental/online fuzzy
clustering algorithms to segment an entire volume of data at once. With the improvement in
hardware technology more and more high resolution images will be acquired that might not
be loadable into memory. In this situation, soft clustering may be expensive to run. The
single pass/incremental/online algorithms partition the entire image volume by scanning the
data from the disk only once, thus preventing disk accesses which will be necessary for a
standard fuzzy clustering algorithm (FCM) for data larger than available memory.
Compared to FCM, these algorithms are also significantly faster even if data is loadable into
memory. FSSP using OFCM will scale seamlessly to data sets larger than a standard
computer memory. Single pass/incremental/online algorithms could even be used in the
future with hardware innovations to enable real time MR processing. We evaluated our
segmented results against two well known state of the art segmentation packages, FSL and
SPM, on 33 volumes of normal human brain MR images. Recently, a study of seven
automatic segmentation algorithms reported FSL and SPM as good segmentation
algorithms, using the T1 image, where FSL was rated the best among all. The segmentation
produced by our algorithms matches fairly close to that of the segmentation produced by the
FSL package, on average on all tissues the match was above 85% both on 1.5T and 3T data
(Tables 9, 10, 11, 12, 13, and 14). Segmentation results of SPM were also compared to FSL.
They were not as close to FSL as ours and produced some questionable segmentations. A set
of figures show the subtle visual difference between FSL and our approaches, as well as
sometimes distinct differences with SPM. Compared to the FSL, FSSP based on single pass/
incremental/online algorithms also required significantly less computation time and matched
more closely than SPM. The scalable package introduced seems promising for processing
high resolution MR images.
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Appendix
Table 9

1.5 Tesla: Comparison of segmentations of SPFCM VS FSL.

Name CSF(%) GM(%) WM(%) Running time (SP FCM)
(Minutes)

Running time (FSL) (Minutes)

MN011 84.68 84.28 99.28 1.54 23.39

MN012 79.34 81.432 98.65 1.71 25.41

MN014 83.36 83.54 98.69 1.37 26.41

MN015 78.34 79.60 96.75 0.97 23.36

MN016 84.44 81.57 98.70 1.42 31.45

MN017 90.23 87.78 95.75 1.3 25.32

MN018 86.04 85.0 98.62 1.61 21.45

MN019 82.02 81.96 99.46 1.25 20.47

MN020 84.21 80.45 98.6 1.91 35.48

MN021 85.09 94.14 87.02 0.94 17.41

MN022 82.04 88.16 94.79 1.65 19.49

MN023 82.36 82.13 99.00 1.28 20.47

MN024 83.36 86.73 97.35 1.16 20.44

MN025 84.02 78.63 98.08 1.5 27.41

MN026 87.04 82.55 99.7 1.26 20.38

MN027 85.96 84.78 99.19 1.19 22.01

MN028 83.36 84.73 99.37 1.21 20.55

MN029 84.86 86.23 94.89 1.08 21.43

MNLA005 86.27 84.18 98.10 0.29 5.7

AVG 84.05 84.10 97.47 1.30 22.53

Table 10

1.5 Tesla: Comparison of segmentations of SPM2 VS FSL.

Name CSF(%) GM(%) WM(%) Running time (SPM) (Minutes) Running time (FSL) (Minutes)

MN011 74.84 94.80 66.00 19.78 23.39

MN012 72.18 94.25 62.49 18.64 25.41

MN014 63.55 89.52 61.66 22.37 26.41

MN015 79.76 91.55 59.94 22.83 23.36

MN016 69.15 88.77 75.13 23.15 31.45

MN017 81.52 85.50 56.32 18.67 25.32

MN018 77.51 93.77 65.86 20.93 21.45

MN019 74.91 90.28 65.06 18.60 20.47

MN020 77.38 89.85 58.75 21.34 35.48

MN021 33.15 73.64 66.39 23.87 17.41

MN022 67.68 87.25 60.51 19.73 19.49

MN023 72.1 93.74 63.76 22.43 20.47

MN024 85.62 81.92 62.78 19.35 20.44
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Name CSF(%) GM(%) WM(%) Running time (SPM) (Minutes) Running time (FSL) (Minutes)

MN025 86.72 89.44 53.76 20.10 27.41

MN026 81.8 87.63 69.47 22.56 20.38

MN027 94.35 79.02 55.70 21.49 22.01

MN028 79.46 90.23 68.03 23.77 20.55

MN029 75.32 89.76 63.99 24.63 21.43

MNLA005 90.28 78.14 54.55 5.30 5.70

AVG 75.65 87.85 62.64 20.50 22.53

Table 11

3 Tesla: Comparison of segmentations of SPFCM VS FSL.

Name CSF(%) GM(%) WM(%) Running time (SP FCM) (Minutes) Running time (FSL) (Minutes)

Vol001 84.41 76.112 98.49 0.73 6.66

Vol007 88.74 75.50 97.75 0.71 7.34

Vol009 87.18 77.81 98.16 0.63 5.67

Vol011 86.20 75.69 99.20 0.67 6.62

Vol015 87.76 76.88 97.51 0.68 6.62

Vol016 85.03 76.65 97.80 0.67 6.68

Vol018 87.73 78.75 97.10 0.63 6.61

Vol044 84.55 76.82 98.05 0.86 6.37

Vol049 87.38 74.59 98.28 0.66 7.61

Vol055 83.91 74.22 96.87 0.75 6.59

Vol057 83.31 75.20 98.69 0.57 6.6

Vol060 85.08 76.27 97.95 0.69 6.31

Vol061 84.74 70.04 99.39 0.69 6.22

Vol063 83.06 70.67 98.45 0.64 5.37

AVG 85.69 75.37 98.12 0.68 6.52

Table 12

3 Tesla: Comparison of segmentations of SPM2 VS FSL.

Name CSF(%) GM(%) WM(%) Running time (SPM) (Minutes) Running time (FSL) (Minutes)

Vol001 68.04 85.19 64.52 7.89 6.66

Vol007 88.56 83.20 62.21 8.90 7.34

Vol009 94.44 80.95 53.32 9.13 5.67

Vol011 76.78 86.93 64.19 6.78 6.62

Vol015 86.94 84.09 62.21 7.54 6.62

Vol016 84.13 86.16 57.55 6.35 6.68

Vol018 88.7 83.94 53.52 7.67 6.61

Vol044 96.34 78.41 54.69 6.79 6.37

Vol049 97.29 71.77 52.11 8.10 7.61
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Name CSF(%) GM(%) WM(%) Running time (SPM) (Minutes) Running time (FSL) (Minutes)

Vol055 76.43 82.34 59.93 6.24 6.59

Vol057 38.34 62.63 75.99 7.38 6.60

Vol060 88.89 89.74 57.75 6.89 6.31

Vol061 91.57 81.41 64.44 7.10 6.22

Vol063 92.37 78.40 54.91 7.32 5.37

AVG 83.49 81.08 59.81 7.43 6.52

Table 13

1.5 Tesla: Comparison of segmentations of OFCM VS FSL.

Name CSF(%) GM(%) WM(%) Running time (OFCM)
(Minutes)

Running time (FSL) (Minutes)

MN011 86.72 84.85 99.18 1.96 23.39

MN012 85.1 83.93 97.84 2 25.41

MN014 89.29 85.79 97.74 2.25 26.41

MN015 85.55 81.25 95.55 2.06 23.36

MN016 89.8 83.7 98.03 2 31.45

MN017 93.96 87.93 94.75 2.74 25.32

MN018 89.56 86.07 98.21 2.17 21.45

MN019 88.74 83.23 99.25 1.93 20.47

MN020 87.93 82.44 97.9 2.12 35.48

MN021 90.8 93.36 84.38 2.04 17.41

MN022 88.24 89.6 92.33 2.26 19.49

MN023 89.42 84.04 98.37 2.32 20.47

MN024 87.68 87.54 96.54 1.97 20.44

MN025 89.71 82.18 96.16 2.89 27.41

MN026 90.61 85.03 99.35 2.02 20.38

MN027 92.11 85.31 98.76 2.27 22.01

MN028 87.45 85.55 99.18 1.94 20.55

MN029 89.77 89.1 93.06 1.96 21.43

MNLA005 87.2 83.91 98.13 0.76 5.7

AVG 88.93 85.52 96.56 2.09 22.53

Table 14

3 Tesla: Comparison of segmentations of OFCM VS FSL.

Name CSF(%) GM(%) WM(%) Running time (OFCM) (Minutes) Running time (FSL) (Minutes)

Vol001 86.51 78.75 97.72 1.16 6.66

Vol007 89.51 77.73 97.1 1.26 7.34

Vol009 87.38 79.84 97.42 1.03 5.67

Vol011 86.8 77.82 98.79 1.12 6.62

Vol015 87.42 78.02 97.17 1.18 6.62
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Name CSF(%) GM(%) WM(%) Running time (OFCM) (Minutes) Running time (FSL) (Minutes)

Vol016 86.18 77.99 97.38 1.12 6.68

Vol018 88.57 80.57 96.33 1.24 6.61

Vol044 85.62 79.24 97.28 1.39 6.37

Vol049 89.97 77.04 97.49 1.78 7.61

Vol055 86.65 77.90 95.48 1.39 6.59

Vol057 85.54 78.48 97.83 1.51 6.6

Vol060 86.78 80.10 96.66 1.31 6.31

Vol061 88.65 73.93 98.61 1.23 6.22

Vol063 86.66 73.80 97.71 1.38 5.37

AVG 87.30 77.94 97.35 1.29 6.52
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Figure 1.
1.5 Tesla: Volume MN018. Segmentation of slices 38 (first row), 48 (second row), and 58
(third row): (1) RAW T1 (2) FSL (3) SPFCM (4) OFCM (5) SPM.
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Figure 2.
1.5 Tesla: Volume MN018: original segmentation results with skull (native space) from
SPM, slices 38 (first row), 48 (second row), and 58 (third row).
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Figure 3.
3 Tesla: Volume Vol060. Segmentation of slices 70 (first row), 80 (second row), 90 (third
row): (1) RAW T1 (2) FSL (3) SPFCM (4) OFCM (5) SPM.
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Figure 4.
3 Tesla: Volume Vol060: original segmentation results with skull (native space) from SPM,
slices 70 (first row), 80 (second row), and 90 (third row).
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Table 1

Image acquisition parameters.

Source Modality Slice thickness (mm) TR (ms) TE (ms)

UM 1.5T data T1 1.5 1800 4.38

UM 3T data T1 1 2150 4.38

UCSF 1.5T data T1 1.5 1970 4.38

TR repetition time, TE echo time, UM University of Miami, UCSF University of California at San Francisco
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Table 2

Average match and standard deviation in () of the segmentations of FSSP using SPFCM or OFCM, and SPM
compared to FSL on the 1.5 T volumes.

CSF (%) GM (%) WM (%) Average (%)

SPFCM 84.05 (2.68) 84.10 (3.59) 97.47 (2.94) 88.54

OFCM 88.93 (2.16) 85.52 (2.95) 96.56 (3.59) 90.33

SPM 75.65 (12.87) 87.85 (5.84) 62.64 (5.46) 75.38

All values are expressed in percentage.
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Table 3

Average match and standard deviation in () of the segmentation of FSSP using SPFCM or OFCM, and SPM
compared to FSL on the 3 T volumes.

CSF (%) GM (%) WM (%) Average (%)

SPFCM 85.69 (1.83) 75.37 (2.44) 98.12 (0.71) 86.39

OFCM 87.30 (1.3) 77.94 (2.0) 97.35 (0.86) 87.53

SPM 83.49 (15.41) 81.08 (6.89) 59.81 (6.43) 74.79

All values are expressed in percentage.
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Table 5

SPFCM algorithm matching percentage with FSL on 1.5 T training volume MN011 with and without post
processing.

Post processing CSF GM WM Avg

Off 78.08 83.43 99.22 86.91

On 84.68 84.28 99.28 89.41
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Table 6

SPFCM algorithm on the 3 T training volume Vol009 matching percentage with FSL with and without post
processing.

Post processing CSF GM WM Avg

Off 82.48 78.76 97.48 86.24

On 87.18 77.81 98.16 87.71
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Table 7

OFCM algorithm on the 1.5 T training volume MN011 matching percentage with FSL with and without post
processing.

Post processing CSF GM WM Avg

Off 78.08 83.43 99.22 86.91

On 86.72 84.85 99.18 90.25
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Table 8

OFCM algorithm on the 3 T training volume Vol009 matching percentage with FSL with and without post
processing.

Post processing CSF GM WM Avg

Off 83.78 80.10 96.92 86.93

On 87.38 79.84 97.42 88.21
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