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Abstract. This work proposes a new elliptic curve processor architec-
ture for the computation of point multiplication for curves defined over
fields GF'(p). This is a scalable architecture in terms of area and speed
specially suited for memory-rich hardware platforms such a field pro-
grammable gate arrays (FPGAs). This processor uses a new type of
high-radix Montgomery multiplier that relies on the precomputation of
frequently used values and on the use of multiple processing engines.

1 Introduction

This work introduces, to the authors’ knowledge, the first documented processor
architecture for the computation of elliptic curves point multiplications for curves
defined over fields GF(p). Hardware implementations have been documented for
the computation of point multiplications for curves defined over GF(2™). The
most notable implementations include [112[3[4516].

The architecture presented here is based on the standalone elliptic curve pro-
cessor architecture introduced in [6]. This architecture is modular, programmable,
and suitable for algorithms that rely on precomputations.

Multiplication is typically the most critical operation in the computation
of elliptic curves point multiplications. The architecture introduced here uses a
Montgomery multiplier. This type of multiplier has been the subject of extensive
research, see for example [7URQITO/TT].

For the elliptic curve processor (ECP) introduced here, this work devel-
ops a new multiplier architecture that draws from [9JT2] an approach for high
radix multiplication, from [8l9] the ability to delay quotient resolution, and
from [I0] the use of precomputation. In particular, this work extends the con-
cept of precomputation. The resulting multiplier architecture is a high-radix,
precomputation-based modular multiplier.

2 Mathematical Background

This section provides a brief introduction to elliptic curve point multiplication.
Additional information can be found in [I3|JT4].
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The ECP computes elliptic curve point multiplications for arbitrary curves
defined over GF(p). Point multiplication is defined as the product
kP = P+ P+...P, where k is an integer and P is a point on the elliptic

k times
curve. For fields GF(p), the curves of interest are defined by y? = 2® + ax + b,
where 4a> + 27b% # 0 mod M and M > 3.

One can visualize the computation of point multiplications as a hierarchy of
processing functions. At the top of the hierarchy are the point multiplication
functions. These functions compute point multiplications with repeated point
additions and point doubles. At the next level of the hierarchy are the point
addition and point double functions, which are intimately related to the co-
ordinates used to represent the points. At the bottom of the hierarchy are the
finite field functions required to perform the point addition and the point double
functions. Figure [[] shows how this hierarchy maps into the ECP architecture.

The ECP is best suited for the computation of point multiplications using
projective coordinates. When compared against algorithms for affine coordinates,
algorithms for projective coordinates trade inversions in the point addition and
in the point double operations for a larger number of multiplications and a
single inversion at the end of the algorithm. This inversion can be computed
with repetitive multiplications: ¢! mod M = ¢™~2 mod M, for prime modulus
M.

The ECP uses a Montgomery multiplier. The main advantage of this type of
multiplier is that it facilitates quotient estimation and facilitates carry propaga-
tion in hardware adders. Their main disadvantage is that they compute weighted
products: mult(4,B) = ABR™! mod M, where R is a constant.

For Montgomery multiplication to be effective, the input operands to the
point multiplication algorithm must be transformed into weighted residues of
the form AR mod M. The algorithm is then executed using these residues. At
the end of the algorithm, the results are then transformed back to not weighted
residues. Note that as described in [I5] the addition and subtraction of these
residues can be performed using traditional modular addition and subtraction
operations. For most cryptographic algorithms, the cost of these transformations
is amortized over a large number of operations.

3 Processor Architecture

The elliptic curve processor (ECP), shown in Figure [l consists of three main
components. These components are the main controller (MC), the arithmetic
unit controller (AUC), and the arithmetic unit (AU). The MC is the ECP’s
main controller. It orchestrates the computation of kP and interacts with the
host system. The AUC controls the AU. It orchestrates the computation of
point additions/subtractions, point doubles, and coordinate conversions. It also
guides the AU in the computation of field inversions. The AU is the hardware
that computes field additions/subtractions and multiplications, and performs
comparisons.
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Fig.1. Elliptic curve processor architecture

The following is a typical sequence of steps for the computation of kP in
the ECP using the double-and-add algorithm and the projective coordinates
algorithms shown in the appendix.

First, the host loads & into the MC, loads the coordinates of P into the AU,
and commands the MC to start processing. The MC does its initialization and
then commands the AUC to do its initialization. The AUC initialization includes
the conversion of P from affine to projective coordinates and the conversion of
these coordinates into weighted residues (X = XR mod M, Y = YR mod M,
Z = Rmod M). During the computation of kP, the MC scans one bit of k at
time starting with the second most significant coefficient and ending with the
least significant one. In each of these iterations, the MC commands the AU/AUC
to do a point double. If the scanned bit is a 1, it also commands the AU/AUC to
do a point addition. For each of these point operations, the AUC generates the
control sequence that guides the AU through the computation of the required
field and comparison operations. After the least significant bit of k is processed,
the MC commands the AU/AUC to convert the result back to affine coordinates.
The AU/AUC first converts the result to affine coordinates and then converts
the coordinates to not weighted residues (x,y). Then, the MC signals to the host
the completion of the kP operation. Finally, the host reads the coordinates of
kP from the AU.

The ECP uses two loosely coupled controllers, the MC and the AUC, that
execute their respective operations concurrently. These are programmable pro-
cessors that execute one instruction per clock cycle.

The AU incorporates a multiplier, an adder (or adders), and a register file, all
of which can operate in parallel on different data. The AU’s large register set sup-
ports algorithms that rely on precomputations. An example of a precomutation-
based algorithm is an adaptation of a fixed base exponentiation method intro-
duced in [I6] for operations involving a known point. This algorithm requires on
average |m/w| + 2" point additions, the storage of [m/w] points, and no point
doubles. In the previous expressions, w is the window size, which is a measure of
the number of bits processed in parallel. To illustrate the benefits of precompu-
tation, consider a fixed point multiplication for an arbitrary curve defined over
GF (2192 — 264 1), which is one of the fields recommended in [I7]. Compared to
the traditional double-and-add algorithm, the fixed point algorithm is over four
times faster (assuming the use of the projective coordinates in [I8] with Z =1
and w = 4).
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4 Arithmetic Unit

The Arithmetic Unit (AU) is the ECP’s main processing unit. As Figure2shows,
it consists of a register file, an adder (or adders), and a multiplier. The multiplier
is the AU’s most critical component, and, consequently, it is the component that
drives the AU’s architecture. The AU’s architecture is defined at a high level by
the multiplication algorithm it implements and at a low level by the number
representation it uses.

| Register File
< v

ﬁ #input I output

—>

’,J

I
¥ v
Adder Breg.] r

Booth - u
recoder | | [Plss| | |[I9leas; O 27l

Multiplier

7’

Booth
Recoder

(delay regs.)

@) J;lsi PF.H_:‘;

Fig.2. Arithmetic Unit

The most popular cryptographic algorithms in use today require arithmetic
with large operands (160...10247" bits). To achieve a high rate of computation,
most hardware implementations resort to iterated multiplication methods that
approximate the desired result rather than computing exact ones. The approx-
imated results are then refined to exact results in post-processing operations.
The tradeoff is accuracy for speed. The ECP’s multiplier is an example. It im-
plements an iterated multiplication algorithm that approximates the multipli-
cation of AR mod M and BRmod M as ABRmod M + eM, where eM is a
measure of the accuracy of the multiplication. Note that for the basic forms of
Montgomery multiplication € = 1.

Number representation is an important element of an arithmetic architecture.
It defines how the numbers are represented and consequently how arithmetic is
conducted. The selection of a number representation is influenced by the design
methodology, the target architecture, and the area-time (or cost-speed) goals.
The ECP architecture is independent of number representations. To validate the
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ECP architecture a prototype that uses redundant number representation was
developed. The implementation results are discussed in section Bl

5 Modular Multiplication Algorithm

Algorithm 1 shows the ECP’s main multiplication algorithm. This algorithm is
a generalized version of the Montgomery multiplication algorithm with quotient
pipelining introduced in [9]. This generalized version supports positive and neg-
ative operands and incorporates Booth recoding and precomputation. Positive
and negative numbers arise naturally in Booth recoding and they are often used
in elliptic curve algorithms.

Booth recoding is a technique that allows the representation of a two’s
complement number B = Zf;é B;2"*) where s = n/u, Bi<s—1 € [0,2%) and
By_y € [-2471,2471) as B = Y0, B/2% where B} € [-2%~,2"1]. Here we
assume that B is represented by an integer number of digits of radix 2* and also
that its most significant bit represents the sign.

This work uses the Modified Booth Algorithm, which is a window based
method [19J20]. This method uses s windows, where each window; groups the
set of bits (bjut(u—1)biut(u—2)--biu—1)2 for i = 0..s — 1, and where b_; = 0
(B; = Z;:g biu+;27). The set of bits enclosed by window;, is encoded as B} =

—bjut(u—1)2" "+ (Z;‘:—g biu+;27) +biy—1. Note that in Algorithm 1 the recoding
is done on a digit-by-digit basis. For this algorithm r, s, u, and v divide k. The
variables ¢h; and bh; are respectively the most significant bits of Q; and B;.

The validity of Algorithm 1 can be proven using an induction argument sim-
ilar to the one used in [9] to prove the validity of the Montgomery multiplication
algorithm in which this algorithm is based. One can verify with induction on
that Equation () defines an invariant of the loop. For this verification note that
|Si/2" | defines a truncated division equivalent to (S; — Q;)/2".

Notation: The symbol |z|,; is used to express an approximate modulo re-
duction that satisfies the following relation: |z|;; = 2 mod M + €M = x mod M.
||, is used to express least residue; that is, | |z|,, | < M, where the symbol
|y| represents the absolute value of y.

Using the loop invariant in Equation (), one can verify that when i = n+d+1
the output of the algorithm satisfies Equation (2)). This equation establishes that
the multiplication output is Sy, 4g42 = |ABR_1 !M (note that QM = 0 mod M).
This equation also defines the range, or accuracy, of the multiplication result in
terms of the maximum values of A and B (note B;>, = 0); the maximum value
for the reduction terms, QM, which is defined in Equations (@) (note Q¢ = 0);
the value of the multiplication constant R = 2*”; and the quotient resolution
delay, d.
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Algorithm 1: Modular Multiplication with Precomputation

Inputs:
e(-AA),A>0
B S Bk € (<B,B), B> 0, Bicy 1 € [0,25), By y € 2871, 25°1),
B1>f = O t S n
|2 (d+1) |M’ ged(M,2) =1, R = 2" d — quotient resolution delay
Output
Sntdt2 = |AB/R|y; € (=(AB+ OM)/R,(AB + OM)/R)

/* Pre-processing */
1. So =0, Qico=0
2. for i =0 to 2" ! do
2.1. Ali] =iA
end for
3. for i =0 to 2¢~! do
3.1. forj=0tov—1do
311 ali,j] = |[ia2]
end for
end for
/* Processing */
4. fori=0ton+ddo
/* Quotient Determination */
4.1. Qi = |Si|on
/* Recoding: ql € [-2vH2u s bl; € [-277 1,277 Y); ghy, bhy € [0,1] */
4.2. qh; 2k+zj Oqlwﬂ2 I =Qi+qhi1 [Fk=uv*/
4.3. if i <n then
bhi2% + 30T blisy ;27 = B +bhi_y [* k=rs*/
else
Yo blistj29 =0 /¥ Bisp =0%/
end if
/* Reductlon */
44, Qay =370 af lglivsyl 15 1(sign(alivss))
45.  AB; =Y Al [Blis+] V(sign(bliss;))2"
4.6.  Siy1 =S /2’“j +Qa;_ 4+ AB;
end for
/* Post-processing */

de .
5. Sntare = 288, ar1 + 200 Q1142 + qhy,
Loop Invariant:

d—1
245, + 24~ Z Qitij—a2"? + qhi_g_12"0~D = (1)
7=0
i—1 ) i—d—2 ‘
2kA(<Z B]Qk]) _ bhi,12kl + ok Z 2k(d+1) Q]Jrl)ij

7=0 j=0

<.
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Result after n+d+1 loop iterations:

d—1 n—=1,~" kE(d+1) _ . kj
2.8, a1 + Z Qn+1+j2kj + qh, = AB+ ZJZO (QO‘J+;; Qj+1)2"
§=0
2)
=(AB+QM)/R
€(—(AB+ OM)/R,(AB+ QM)/R))
QM:
N v—1 4
Qi =) qliv ;2 (3)
§=0
n—1
QM = Z(é\&jH?k(dH) - @j+1)2kj (4)
§=0
OM > maz( |QM] ) (5)

Note that implementations can take advantage of the parallelism defined in
steps 4.2-4.6 of Algorithm 1 without using Booth recoding. These implemen-
tations can set gh; = bh; = 0 for all 4, and use digits ¢l;,+; € [0,2%) and
blis+j € [O,QT)

6 Analysis of Modular Multiplication Algorithm

In order to realize an area efficient multiplier, the ECP implements Algorithm 1
using precomputation. Precomputation reduces the complexity of the multiple
input adder needed to add all the terms in step 4.6 of Algorithm 1 at the expense
of a set of additions at the beginning of the algorithm (steps 2 and 3) and
storage. The issues associated with the implementation of Algorithm 1 using
precomputations are studied in the next sections.

6.1 Accuracy

The accuracy of the modular multiplication result is influenced by the range
of the input operands, the method employed to compute reduction terms, the
multiplication constant R, and the quotient resolution delay d.

In [12] two methods are defined for the computation of the reduction terms
|za ;- These methods are referred to as multiplication-based and lookup-based
reduction methods. The multiplication-based approach computes |za|y, = x |al,,.
The lookup-based method computes |zaly, = |zal,,. The accuracy of one
multiplication-based and two lookup-based reduction methods are summarized
in Table [l (Note that the reduction method affects the value of Qc;.)
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R is a design parameter that influences the reduction accuracy of the multi-
plier. As Table [[lshows, the accuracy of the result is bounded by the magnitude
of QM which grows proportionally with R. For applications requiring iterated
multiplications, such as modular exponentiations, R is often chosen so that the
accuracy of a multiplication result falls in the range (—2QM/R,20M/R), or
[0,2QM/R) when handling only positive numbers. Examples for this last appli-
cation can be found in [9], for which A, B € [0,2(28(@*+Y 1)), R > 4(2k(d+1) pr)
and QM € [0,2F( @D M R).

The results in Table [ correspond to the worse case values for QM, where
the value of a modulo reductions is approximated as M. Parameter selection
can greatly improve the accuracy and speed of a multiplication; for example,
[17] specifies modulus of the form M = S m,;2¢ +/_ 1, for which |27k=| =
(M —/4 1)/2k® for t > kx. For t > k(d + 1), QM < MR for all the reduction
methods listed in Table [Tl

Table 1. Accuracy of multiplication- and lookup-based reduction methods

Red. method Quo; OM (worst case)
—k(d+1) uj|ok(d+1) 2’6”-1) (g) k(d+1)
2 [ 22 e ( ") < 2H@F R

2u—_1
Lookup 1 Z;?;é ’qliv+j2*k(d+l)lM quj | 9k(d+1) pr (22kn_1) < ok@d+) prp (21)

)
Lookup 2 Z;?;é ‘qlierjQ*k(cHl)zuj ok(d+1) pr (&) v < deMR(2v)

2k —1

Multiplication Z;;S qlivyj

M

6.2 Processing Time

Equation (@) provides a processing time approximation for Algorithm 1. This
equation assumes that a single precomputation engine performs all the precom-
putations and transmits them to the respective processing units. In this equation
Tb and T'q represent the processing time for the computation of AB; and Qc; for
i = 0..n + d. The processing time is the sum of the precomputation time, which
is identified with the p subscript, and the processing time, which is identified
with the m subscript. (Note that the processing time T'b,, include n processing
operations because B;>, = 0. This condition does not apply to T'¢y,.)

The expression in Equation (B) is normalized with respect to a reference unit
of time. The processing cost of a precomputation operation is weighted by a
factor a and the processing cost of a processing operation is weighted by the
factor b. The factor ¢ defines the number of multiplications over which the pre-
computation cost is amortized. (Note that it is common in many cryptographic
algorithms to perform a large number of consecutive operations using the same
modulus.)

The factor e represents the number of precomputation sets to be computed.
As written, Algorithm 1 requires one set for the scalar products AB; and up
to v sets for the scalar products Qc,. Note that for the Lookup 2 reduction
method v sets need to be computed in step 3.1. For the multiplication and the
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Lookup 1 reduction methods, the precomputation engine can broadcast a single
precomputation set to the relevant processing engines. For the precomputation
of a single set, eliminate the loop in step 3.1, compute a[i| = |ic|y; in step 3.1.1,
and compute Cj&i = 25;01 al glivtj| 1(sign(glivs))2* in step 4.4.

Typm =Tb+Tq= (Tb, + Thy,) + (Tqp + Tm) (6)
Cp Cq

To determine the optimum number of precomputations it is best to express
Equation (@) in terms of m = [logs M. Equation (7)) provides an approximation,
where n = [m/k]+d+f, f is a constant and R = 2™ +*(d+/)  According to Equa-
tion (@) and the possible cases in Table D f € [0,2] when A = B = 2F/2QM/R
and the target multiplication accuracy is Syigqy2 € (—2(QM/R),20QM/R).
These parameters are of interest here because they define a small number of
iterations for Algorithm 1 that generate results suitable for repeated multipli-
cations and they also allow a number of additions to be performed between
multiplications without the need for reduction. Unless otherwise specified, this
document will assume the use of the aforementioned parameters for general mul-
tiplications.

Tant — (bbbz o+ by[m/rs] + by(d + f)) @)

+ (“Z%"—l + by [m/uv] + by(2d + f))
q

6.3 Operations of Interest for Scalar Point Multiplication

Table Bllist some of the operations of interest in the computation of point multi-
plications. This table assumes that A = B = ok/2 OM/R. Entries 1 and 2 in this
table are used in the projective coordinate algorithms defined in [1§]. Entry 1
corresponds to the classical multiplication operation. Entry 2 defines a division
by 2 requiring just d + 2 iterations of the loop in Algorithm 1. Entry 3 defines a
multiplication of a special form which is used here to reduce the magnitude of
a value presumed to be |0|ps before comparing it to zero. Note that for Entry
3, OM is defined with respect to z (n = x) as shown in Table[ll, and this value
may be different from the value of QM used to define A.

Some of the elliptic curve algorithms defined in the open literature, such as
the ones in [I8], use comparisons in time critical functions, such as point addition
and point double. Comparisons are used, among others, to identify the point at
infinity during point add and point double operations. These comparisons involve
field elements, therefore numbers A and B are considered equal if A— B = |0],,,
which implies that their difference is a multiple of M.

The accuracy of Algorithm 1 is of the order QM/R, where QM is defined
in Table [1. Rather than adding specialized circuitry to perform this function,
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here we recommend an approach that multiplies a value presumed to be zero
by a constant. The idea is to perform this multiplication with high accuracy in
a short amount of time. To achieve high accuracy, we recommend the use of
Algorithm 1 with low quotient resolution delay (d a2 0) and possibly by using a
more exact version of Algorithm 1 (see Table [[). To achieve a short processing
time, we recommend multiplication by |2_’” ‘ 1y according to Table [2, where the
parameter x is adjusted so that the value of the multiplication result is close to
the value of M.

The recommended algorithm for the comparison of two field elements A and
B works as follows. First compute A — B. The result of this operation is a
multiple of M if A =|B|,,, and, if that is the case, |(A — B)/2’”‘M will also be
a multiple of M. Then, compute |(A — B)/2’”’|M according to Table 2l Finally,
refine the result to a value in the range (—M, M) and compare it against 0.

For the comparison of A with zero, assume that A = 2%/2+k(dat+1) A1 which
could correspond to the Multiplication-based reduction method shown in Table
[[l and that the operation }A /2k® | 57 1s done using the Lookup 2 reduction method
with d = 0 and « = d, +2, where d, corresponds to the quotient resolution delay
associated with A. For this example, the result of }A/2k(d“+2) ’M falls in the range
(—(2v+1)M, (2v+1)M). This result can be computed with d,+3 iterations of the
loop in Algorithm 1, but because these iterations are computed without quotient
resolution delay (d = 0) each one can take up to d, clock cycles. In other words,
a multiplier can compute multiplications with and without quotient resolution
delay, but when performing operations involving no quotient resolution delay,
the multiplier must wait for the quotient resolution. The quotient resolution is
assumed to take up to d, clock cycles.

Note that the algorithm just described is useful for a large set of applications.
If additional accuracy is needed for the reduction operations, one can implement
in the ECP a more accurate version of the multiplication algorithm, one such
algorithm is presented in [9].

Table 2. Multiplications of interest

# Mult. B AB R n |Sntdt2]
1[|ABR™'| || B [<2"(QM/R)*|> (2"QM)'?llog,x R < 20M/R

2 JA4/2] [2F7F 2F-TA 2k 1 <A
3[JA2% ], | 1 A 2" z [<(A+aoM)/2*

6.4 Area and Storage

The most complex operation of Algorithm 1 is the computation of the two scalar
multiplications AB; and Qa; — the multiplication in step 5 is just a shift opera-
tion. These scalar multiplications can be computed using scalar multipliers. For
the computation of a scalar multiplication, a scalar multiplier would add up to
k/2 numbers per clock cycle when employing Booth recoding and k copies when
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using no recoding. Assuming that all the operands in Algorithm 1 are of the
same size, the concurrent computation of step 4.6 would require the addition of
k + 1 operands when using recoding or 2k 4+ 1 when using no recoding. On the
other hand, when using precomputation the concurrent computation of step 4.6
requires the addition of s + v 4+ 1 operands.

A limiting factor in the practical implementation of multiplication with pre-
computation is the size of the memory required to store the precomputed values.
The use of Booth recoding in Algorithm 1, reduces the memory requirements by
half when no storage is provided for values known to have zero value (e.g., 0% A).
Assuming that each precomputed product used in the computation of ZEI re-
quires m + k(d + 1) + r-bits of storage, that each precomputed scalar product
used in the computation of @&i requires m + u-bits of storage, and that each
processing unit stores its own set of precomputed values, Algorithm 1 requires
2" Y m + k(d + 1) + r) + v2u"1(m + u) -bits of storage. Note that if multiple
reduction methods are used concurrently, such as the use of a reduction method
with d # 0 and one with d = 0, more than one copy of reduction coefficients
needs to be stored.

Note that the relationships between r and s, and, between u and v, allow
designers to control the memory size; for example, to achieve a given k, a designer
could fix r and then derive s, which defines the required number of processing
elements. This approach is particularly attractive for architectures that employ
fixed size memory elements, such as field programmable gate arrays (FPGAs).

6.5 Effect of Quotient Pipelining

Quotient pipelining is the technique that allows fast rate of computations by
allowing the use of delayed reduction terms (d # 0). The delay is reflected in
steps 4.4 and 4.6 of Algorithm 1. The computation in step 4.4 occurs in the
background and takes d iterations to complete. To avoid stalling, the results
from step 4.4 are consumed as they become available in step 4.6.

The cost of this technique is reduced accuracy, increased processing time and
increased area. The impact of this technique can be reduced by eliminating pro-
cessing functions associated with the quotients, such as recoding, and by hiding
quotient operations behind other functions. For example, the scalar products in
step 4.6 of Algorithm 1 could be computed serially with all the processing en-
gines dedicated to the computation of a scalar multiplication, instead of having
two sets, each working on a different scalar product.

6.6 Number Representation

The previous discussion considered the upper layers of the ECP architecture,
which are independent of the number representation. This section considers the
specific example of stored-carry representation.

Stored-carry representation is attractive for the implementation of an ECP,
among others, because of its support for fast addition using carry-save addition,
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natural interaction with non-redundant number representation, and its ability
to support two’s complement arithmetic.

The main drawbacks of stored-carry representation stem from its represen-
tation of a number with two numbers; for example, A = C + S, where A, B,
and C' are numbers of almost equal size. This representation doubles the storage
requirements for an operand with respect to non-redundant representation and
makes comparisons difficult. A comparison can be carried out by performing
a subtraction, converting the result to non-redundant representation and then
comparing the result against zero.

The use of Booth recoding in Algorithm 1 alleviates the storage requirements
imposed by stored-carry representation. In addition, the ability to amortize pre-
computations over a large number of operations can be used to reduce memory
requirements by storing precomputed values in non-redundant representation.
The ECP’s multiplier architecture, shown in Figure [, also makes provisions
for the conversion of numbers to non-redundant representation; for example, the
conversion of B can be done in a digit-by-digit basis before recoding. In addition,
the system could employ a carry propagate adder for the conversion of numbers
to non-redundant representation before storing them in the register file.

7 Multiplier Architecture

The AU’s architecture is shown in Figure[Z. The multiplier and adder together
implement Algorithm 1. The adder, which is optimized for accumulation (A =
A + B), feeds precomputation values to the multiplier. Both the adder and the
multiplier receive one of their inputs from the register file. They also output
results to the register file.

To accomplish a high rate of computation, the architecture shown in Figure
Blcan be implemented using stored-carry representation. To balance storage and
processing speed requirements one can choose to represent some numbers in
stored-carry representation and others in non-redundant representation.

The reduction terms |ia2“j . and some of the temporary results can be
converted to non-redundant representation before storage. Operand B of the
multiplication can be loaded to the multiplier in stored-carry form and then
converted to non-redundant representation one digit at a time as the loop in
Algorithm 1 progresses. The reduction terms ); can also be converted to non-
redundant representation before applying Booth recoding.

To support stored-carry representation, the architecture in Figure B2l must
be enhanced with a carry propagate adder and with an efficient way to store
numbers represented in stored-carry representation. For the ECP prototype de-
scribed in the next section, we implemented a carry propagate adder with a
digit-serial adder placed at point (A) in Figure 2. For the storage of numbers
represented in stored-carry representation, we recommend that the output mul-
tiplexer in Figure 2l be able to independently forward to the register file each of
the numbers used to represent a number in stored-carry representation; that is,
for A = C + S, this multiplexer can send either C' or S to the register file.
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Note that the two numbers used to represent a number in stored-carry rep-
resentation can be treated as two numbers represented in non-redundant rep-
resentation. Therefore, for the terms represented in stored-carry representation,
such as A[ |blis4+;| ](sign(bl;s4+;), one can use two processing units per term.
Where each processing unit handles numbers represented in non-redundant rep-
resentation. This design approach allows the use of a common processing unit
architecture for stored-carry and non-redundant number representations.

8 Prototype Implementation

The validity of the ECP architecture was verified with a prototype that im-
plemented the double-and-add algorithm using the projective coordinates algo-
rithms defined in [I8] for point addition and point double operations (the algo-
rithms are shown in the appendix). This prototype was programmed to support
the field GF(2'92 — 264 — 1), which is one of the fields specified in [17].

To verify the ECP’s architectural scalability to larger fields, a modular mul-
tiplier for fields as large as GF (252! — 1) was also prototyped. This field is the
biggest one recommended in [I7] for elliptic curves defined over GF(p). This
prototype exhibits the same area scalability and frequency of operation as does
the multiplier of the ECP prototype. The following discussion focuses exclusively
on the ECP prototype.

The ECP prototype used a 16-bit MC processor with 256 words of program
memory, a 32-bit AUC processor with 2048 words of program memory, and a
dual set of 128 registers, each of which is m + k(d + 2) bits wide. The dual set
of registers permits the storage of numbers in stored-carry representation. (Note
that a single register set capable of storing stored-carry numbers could have been
used instead.) The prototype provided a 32-bit I/O interface to the host system.
The ECP multiplier exhibits the following attributes: s = v = 2, r = u = 4,
k=8, m =192, and d = 4.

The ECP prototype for GF(2192—264—1) uses 11,416 LUTs, 5,735 Flip-Flops,
and 35 BlockRAMS. LUTSs are lookup-tables that are used in the prototype as
16x1-bit RAMs or as 4-input gates. The BlockRAMs are dual-ported 4k-bit
blocks of RAM, which are used in the register file, in the MC and AUC as
program memory, and in the multiplier as Booth recoders. The frequency of
operation of the prototype was 40 MHz. (The frequency of operation of the
521-bit multiplier was 37.3 MHz.)

The validity of the prototype was verified with non-optimized code. Assum-
ing that the ECP is coded in a form that extracts 100% throughput from its
multiplier, it will compute a point multiplication for an arbitrary point on a
curve defined over GF(2'9? — 264 — 1) in approximately 3 msecs (n = 192/8 +1,
d =4, k =rs =uv = 8) using the algorithms shown in the appendix. This
estimate ignores the processing cost of additions and overhead operations and it
assumes the computation of 17m multiplications per point multiplication: 15.5m
for the point double and the point add operations and 1.5m for the inverse re-
quired in the conversion to affine coordinates. For the modular multiplications,
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this estimate assumes negligible precomputation cost for the reduction terms,
Qq;, and assumes the precomputation of 23 — 2 values for the terms AB; (no
computation required for 0A or 1A4).

The prototypes were implemented using the Xilinix’s XCV1000E-8-BG680
(Virtex E) FPGA. The prototypes were coded in VHDL. They were synthesized
with Synopsis” FPGA Compiler 3.5.0 and Xilinx’s Design Manager M3.1i.

8.1 Comparisons with Other Implementations

Table Bl summarizes the features of the multiplier used in the ECP prototype
and the features of one of the multiplier architectures introduced in [10] which
also relies on precomputation. Both of these multipliers exhibit comparable area
requirements (#LUTs), when one assumes s = v = 1 and r = u = 4. Note that
the multiplier in [I0] uses a fixed value of k, where this value is highly dependent
on the underlying FPGA architecture.

It should be pointed out that the multiplier architecture introduced in [10]
can be enhanced with some of the techniques introduced here. For example,
to overcome the radix limitation, currently fixed at 2%, this multiplier could
employ multiple processing engines per cell (s,v # 1), and to reduce memory
requirements it could use Booth recoding.

Table 3. ECP multiplier vs. Design 2 multiplier [10]

Characteristic ECP Design 2 (k = 4)[10]
Type semi-systolic systolic
Main Application Elliptic Curves Exponentiation
Basic Operation ’ABR71|M |ABR71|M & |ACR71’M
Throughput (mult. /#clks) 1/([m/k] + 2d) 2/(2[m/k])
Latency (#clks) < [m/k] +2d 2[m/k|
Accuracy < 2(2F9FD ) 202F )M
Max. Radix 2" 2F
#LUT (24425 +v))(m+ k(d+ 1)) 12m
# Flip-Flops (24+2s+v)(m+k(d+1)) 12m
Frequency (MHz) 40 48
FPGA XCV1000E-8-BG680 XC4000

9 Conclusions

This work proposed a new elliptic curve processor architecture for the computa-
tion of point multiplication for curves defined over fields GF(p). This processor
uses a new type of high-radix Montgomery multiplier that relies on the precom-
putation of frequently used values and on the use of multiple processing engines.

The ECP’s architectural scalability was verified with prototype implemen-
tations suitable for the implementation of secure elliptic curve cryptosystems
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(192- and 521-bits). Our estimates reflect that if were possible to extract 100%
throughput from our multiplier, the computation of a point multiplication in a
curve defined over GF (2192 —26% —1) could be computed in about 3 msecs using
the double-and-add algorithm and the projective coordinates algorithms defined
in [18).
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A

Elliptic Curve Point Multiplication

Algorithm 2: Double-and-add point multiplication using the projective coordinates algorithms

defined in [I8]

double_and_add(z, y, k)
(X,Y, Z) = conv_projective(z,y)
(X0, Y0, Z0) = (X,Y,Z) /* Py =P */
for i =1 — 2 down to 0 do
(X,Y,Z) = double(X,Y, Z) /* P =2P */
if k; = 1 then /* P = P+ Py */
(X,Y, Z) = add(Xo, Yo, Zo, X, Y, Z)
end if
end for
(z,y) = conv_affine(X,Y, Z)
return (z,y)

double(Xl,Yl,Zl)
/* if P = O then return O */
if (X1,Y1,Z1) = O then return(O)
else /* P # O return 2P */
M =3X?+aZ}

Zy =2Y171

S =4XY}?

Xo=M?—28

T =8Y#

Yo=M(S—X2)-T
endif

return(Xas, Y2, Z2)

conv_projective(z, y)
return (X =z,Y =y, Z=1)

conv_affine(X,Y, Z)
return(x = X/Z2,y = Y/Z3)

add(Xo, Yo, Zo, X1, Y1, Z1)

/* if Pi = O then return Pp*/

if (Xl,Yl,Zl) = O then
I‘Gf:ul“Il()(O7 Yo, Zo)

/* else if Py = —P; then return O */

else if ()(07 Yo, Z()) = —(Xl, Y1, Z1) then
return(O)

/* else if Py = P; then return 2Py*/

else if (Xo, Yo, Zo) = (X1, Y1, Z1) then
(X2,Ys, Z2) = double(Xo, Yo, Zo)

else /* return Po = Py + P1 */

Uo = X022
So =Y0Zi5
U =X122
S1 =Y1Zg
W =Uy—U;
R=5Sy—-51
T=Uo+ U
M = So + 51
Zo = ZoZaW

Xo=R? -TW?
V=TW?-2X,
2Yo = VR - MW?3
endif
return(Xa, Y2, Z2)
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