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ABSTRACT
A wide variety of machine learning problems can be de-
scribed as minimizing a regularized risk functional, with dif-
ferent algorithms using different notions of risk and different
regularizers. Examples include linear Support Vector Ma-
chines (SVMs), Logistic Regression, Conditional Random
Fields (CRFs), and Lasso amongst others. This paper de-
scribes the theory and implementation of a highly scalable
and modular convex solver which solves all these estimation
problems. It can be parallelized on a cluster of workstations,
allows for data-locality, and can deal with regularizers such
as `1 and `2 penalties. At present, our solver implements 30
different estimation problems, can be easily extended, scales
to millions of observations, and is up to 10 times faster than
specialized solvers for many applications. The open source
code is freely available as part of the ELEFANT toolbox.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Optimization, Convexity

Keywords
Support Vectors, Gaussian Processes, Training Algorithms,
Large-Scale, Bundle Methods, Parallel Optimization

1. INTRODUCTION
At the heart of many machine learning algorithms is the

problem of minimizing a regularized risk functional. That
is, one would like to solve

minimize
w

J(w) := λΩ(w) + Remp(w) (1)

where Remp(w) :=
1

m

mX
i=1

l(xi, yi, w) (2)

is the empirical risk. Moreover, xi ∈ X are referred to as
training instances and yi ∈ Y are the corresponding labels.
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l is a nonnegative loss function measuring the discrepancy
between y and the predictions arising from using w. We
assume that it is convex in w. For instance, w might en-
ter our model via l(x, y, w) = (〈w, x〉 − y)2. Finally, Ω(w)
is a convex function serving the role of a regularizer with
regularization constant λ > 0.

If we consider the problem of predicting binary valued la-
bels y ∈ {±1}, we may set Ω(w) = 1

2
‖w‖2, and the loss

l(xi, yi, w) to be the hinge loss, max(0, 1− yi 〈w, xi〉), which
recovers linear Support Vector Machines (SVMs) [25, 36].
On the other hand, using the same regularizer but changing
the loss function to l(xi, yi, w) = log(1 + exp(−yi 〈w, xi〉)),
yields logistic regression. Extensions of these loss functions
allow us to handle structure in the output space [1]. Chang-
ing the regularizer Ω(w) to the sparsity inducing ‖w‖1 leads
to Lasso-type estimation algorithms [30, 39, 8].

The kernel trick is widely used to transform many of
these algorithms into ones operating on a Reproducing Ker-
nel Hilbert Space (RKHS). One lifts w into an RKHS and
replaces all inner product computations with a positive def-
inite kernel function k(x, x′)← 〈x, x′〉.

Examples of algorithms which employ the kernel trick (but
essentially still solve (1)) include Support Vector regression
[41], novelty detection [33], Huber’s robust regression, quan-
tile regression [37], ordinal regression [21], ranking [15], max-
imization of multivariate performance measures [24], struc-
tured estimation [38, 40], Gaussian Process regression [43],
conditional random fields [28], graphical models [14], expo-
nential families [3], and generalized linear models [17].

Traditionally, specialized solvers have been developed for
solving the kernel version of (1) in the dual, e.g. [9, 23].
These algorithms construct the Lagrange dual, and solve
for the Lagrange multipliers efficiently. Only recently, re-
search focus has shifted back to solving (1) in the primal, e.g.
[10, 25, 36]. This spurt in research interest is due to three
main reasons: First, many interesting problems in diverse
areas such as text classification, word-sense disambiguation,
and drug design already employ rich high dimensional data
which does not necessarily benefit from the kernel trick. All
these domains are characterized by large datasets (with m
of the order of a million) and very sparse features (e.g. the
bag of words representation of a document). Second, many
kernels (e.g. kernels on strings [42]) can effectively be lin-
earized, and third, efficient factorization methods (e.g. [18])
can be used for a low rank representation of the kernel ma-
trix thereby effectively rendering the problem linear.

For each of the above estimation problems specialized solvers
exist, and the common approach is to write a new solver for



every new domain. Unfortunately, many implementations
do not scale well and the scalable ones (e.g. SVMStruct [40])
are restricted to a rather specialized set of applications. Par-
allel solvers are even more difficult to find. Finally, the is-
sue of data locality is rarely addressed, e.g. situations where
data is owned by several entities which are unwilling to share
their parts of X and Y .

In this paper, we address all the above issues by develop-
ing a fast, efficient, scalable, and parallel convex solver which
can efficiently deal with data locality issues. We achieve this
by decoupling the computation of the objective function and
its gradient from the actual solver module. Our architecture
is modular, i.e., one can plug and play with many different
backend solvers many different loss functions, and different
regularizers. In particular, we describe an efficient variant
of the bundle method and provide rates of convergence.

The outline of our paper is as follows. In section 2 we
will describe bundle methods and adapt them to our set-
ting. We will also provide rates of convergence which are
significantly better than those reported previously in litera-
ture; this stems from a sophisticated analysis which modifies
and tightens previous proofs. In section 3 we will describe
various loss functions implemented in our solver, while sec-
tion 4 will describe the architecture of our solver. We will
also demonstrate the ease with which one can plug a off-
the-shelf solver like LBFGS into our framework. Section 5
is devoted to extensive experimental evaluation which shows
that our implementation is up to 10 times faster than state-
of-the-art specialized solvers in many applications, and we
conclude with an outlook and discussion in section 6. Proofs
are relegated to the appendix.

2. BUNDLE METHODS
The basic idea behind a cutting plane method is as follows:

Given a convex function g(w), it is always lower-bounded by
its first-order Taylor approximation, i.e.,

g(w) ≥ g(w0) + 〈w − w0, ∂wg(w0)〉 for all w, w0. (3)

This gives rise to the hope that if we have a set W =
{w1, . . . , wn} of locations where we compute such a Tay-
lor approximation, we should be able to obtain an ever-
improving approximation of g(w) [22]. See Figure 2 for an
illustration. Formally, we have

g(w) ≥ max
w̄∈W

[g(w̄) + 〈w − w̄, ∂wg(w̄〉)] , (4)

which means that g(w) can be lower-bounded by a piece-
wise linear function. Moreover, the approximation is exact
at all wi ∈ W . Note that if g(w) is not differentiable ev-
erywhere, we can pick an arbitrary element of the subdif-
ferential (which always exists) and use it instead of ∂wg(w).
Finally, if g(w) is twice differentiable, we can use the latter
to bound the deviation between the lower bound and g(w)
by using the mean value theorem. We have

0 ≤ g(w)− max
w̄∈W

[g(w̄) + 〈w − w̄, ∂wg(w̄)〉] ≤ ε (5)

where ε ≤ Md2(w, W ). Here M is an upper bound on the
largest eigenvalue of the Hessian

‚‚∂2
wg(w)

‚‚, and d2(w, W ) :=

minw̄∈W ‖w − w̄‖22 denotes the squared Euclidean distance
between w and the set W .

Instead of minimizing g(w) directly, cutting plane meth-
ods minimize it approximately by iteratively solving a linear

Figure 1: A convex function (solid) is bounded
from below by Taylor approximations of first order
(dashed). Adding more terms improves the bound.

program arising from its lower bound. Bundle methods are
cutting plane methods stabilized with the Moreau-Yosida
regularizer. Formally, they add a ‖w − wt−1‖2 regularizer
term to the objective to prevent the solution at time step t
from moving too far away from the previous solution wt−1.
Note that our algorithm is closely related but not identical
to bundle methods. In our case, the regularizer is already
built into the objective function. We describe details now.

2.1 Solving Regularized Risk Minimization
Since the loss function is l is assumed to be non-negative

and convex, it follows that Remp(w) is also convex and lower
bounded by 0. Moreover, denote

ai+1 := ∂wRemp(wi) and bi+1 := Remp(wi)− 〈ai, wi〉 .

From (3) it follows that

Remp(w) ≥ 〈ai, w〉+ bi for all i. (6)

Let Ri(w) := max(0, max
j≤i
〈aj , w〉+ bj) (7)

and Ji(w) := λΩ(w) + Ri(w). (8)

We are now able to define our algorithm to minimize J(w).

Algorithm 1 Bundle Method

Initialize i = 1, w0 = 0, and W = {w0}.
repeat

Compute gradient ai and offset bi.
Find minimizer wi := argminw Ji(w)
Update W ←W ∪ {wi} and i← i + 1.

until converged

The following lemma shows that Algorithm 1 makes con-
tinuous progress towards the optimal solution.

Lemma 1 Denote by w∗ the minimizer of J(w) and let J∗

be its minimum value. Then, the following holds:

J+
i := min

j≤i
Jj+1(wj) ≥ J∗ and J−i := Ji(wi) ≤ J∗. (9)

Moreover, the series J−i is monotonically increasing and the
series J+

i is monotonically decreasing.

The value J+
i − J−i is a lower bound on the duality gap

Ji+1(wi)−Ji(wi), and our algorithm stops once this quantity
is reduced below a pre-specified tolerance.



2.2 Constrained Convex Optimization
In order to make progress in our analysis and in the im-

plementation, we rewrite the problem of minimizing Ji(w)
as a constrained optimization problem. One can check that
this amounts to solving

minimize
w,ξ

λΩ(w) + ξ (10a)

subject to 〈aj , w〉+ bj ≤ ξ for all j ≤ i and ξ ≥ 0. (10b)

We proceed to analyzing `1 and `2 regularization.

Linear programming: If Ω(w) = ‖w‖1 we can cast the
above problem as a linear program via1

maximize
ξ,v,u

− ξ − λ1>(u + v) (11)

subject to [−1, A,−A][ξ, u, v]> ≤ −b.

Here A denotes the matrix [a1 a2 . . . ai], b the vector

[b1 b2 . . . bi]
>, and 1 the vector of all ones. Off-the-

shelf linear programming solvers solve (11) efficiently.
Quadratic programming: If Ω(w) = 1

2
‖w‖22, the dual

problem of (10) provides an efficient formulation:

maximize
α

Di(α) := − 1

2λ
α>A>Aα + α>b (12a)

subject to α ≥ 0 and 1>α ≤ 1. (12b)

Moreover, w = − 1
λ
Aα. Note that the size of the prob-

lem only grows in the size of i and that the gradients
ai only appear in the form of inner products. The
dominant time complexity is to form A>A.

Since the instances of (10), e.g. the linear and quadratic
programs, will not change substantially after every iteration
(we only add one more constraint at a time), a hotstart
solver can be suitable to update the solution. Hence the
time spent in the solver is typically small in comparison to
the cost of computing gradients.

Theorem 2 Let G ≥ ‖∂wRemp(w)‖ be a bound on the norm
of the subdifferential, and let Ω(w) = 1

2
‖w‖2. Then the

bundle method produces a duality gap of at most ε after t
steps, where

t ≤ log2 λRemp(0)− 2 log2 G + 8G2

λε
− 4. (13)

Note that this bound is significantly better than that of [40,
35], since it only depends logarithmically on the value of the
loss and offers an O(1/ε) rate of convergence rather than the
O(1/ε2) rate in previous papers. This is largely due to an
improved analysis and would easily translate to algorithms
of the SVMStruct type. It explains why the number of steps
required is often considerably less than those predicted in
theory — the previous bounds were rather loose.

Corollary 3 Whenever the norm of the subdifferentials of
Remp(w) is bounded for all ‖w‖ ≤

p
2Remp(0)/λ, the bundle

method will converge to any given precision.

Corollary 4 The bundle method converges for any contin-
uously differentiable loss function l.

1We use x ≥ 0 to imply xi ≥ 0 for all i.

3. LOSS FUNCTIONS
A multitude of loss functions are commonly used to derive

seemingly different algorithms. This often blurs the similar-
ities as well as subtle differences between them, often for
historic reasons: Each new loss is typically accompanied by
at least one publication dedicated to it. We now discuss
some commonly used loss functions. Tables 1 and 2 contain
a choice subset of simple losses. More elaborate ones are
discussed below.

3.1 Scalar Loss Functions
In the simplest case we may write l(x, y, w) = l̄(〈x, w〉 , y),

as described in Table 1. In this case a simple application of
the chain rule yields that ∂wl(x, y, w) = l̄′(〈x, w〉 , y) ·x. For
instance, for squared loss we have

l̄(〈x, w〉 , y) = 1
2
(〈x, w〉 − y)2 and l̄′(〈x, w〉 , y) = 〈x, w〉 − y.

This means that if we want to compute l and ∂wl on a large
number of observations xi, represented as matrix X, we can
make use of fast linear algebra routines to precompute

f = Xw and g>X where gi = l̄′(fi, yi).

This is possible for any of the 13 loss functions (and many
more) listed in Table 1. The advantage of this unified repre-
sentation is that implementation of each individual loss can
be done in very little time. The computational infrastruc-
ture for computing Xw and g>X is shared.

Matters are slightly more complicated when maximizing
the area under the ROC curve, various Fβ scores, Preci-
sion@k, and ordinal regression losses, as proposed in [25].
All those functions rely on 〈w, xi〉 to perform classification
or ranking between the observations xi. Hence, we may use
fast linear algebra to pre-compute f = Xw. Subsequently
we sort f by the size of its values, which yields the permuta-
tion π, i.e., the vector fπ(i) is sorted. We now describe the
operations needed for multivariate scores:
ROC Score: Let us assume that f is sorted, n+ denote
the number of positive examples, n− the number of negative
examples, and n = n+×n− the total number of pairs whose
labels do not match. It is well known that the ROC score
is the fraction of examples ranked in the correct order, i.e.,
number of pairs (i, j) such that fi ≤ fj for yi < yj divided by
n. Assume that yij ∈ {±1}. [24] shows that this translates
into the loss l(X, y, w), which is given by

max
y′∈{±1}n

h X
yi>yj

[yij − 1]
ˆ
〈xi − xj , w〉 − 1

2

˜i
.

Moreover, [24] shows that this can be maximized and the
terms

P
i[yij − 1] and

P
j [yij − 1] for the maximizer yij can

be obtained in linear time, once f is sorted. This allows us
to compute the gradient ∂wl(X, y, w)X

yi=1

xi

X
j

[yij − 1]−
X

yj=−1

xj

X
i

[yij − 1].

Ordinal Regression performs essentially the same opera-
tion. The only difference is that yi need not take on binary
values any more. Instead, we may have an arbitrary number
of different values yi (e.g. 1 corresponding to ’strong reject’
up to 10 corresponding to ’strong accept’, when it comes to
ranking papers for a conference). [25] generalizes the results
of [24] to show that also in this case the value and gradients
of l can be computed in linear time, once f is sorted.



Table 1: Scalar loss functions and their derivatives, depending on f := 〈w, x〉, and y.

Loss l(f, y) Derivative l′(f, y)
Hinge [20] max(0,−yf) 0 if yf ≥ 0 and −y otherwise
Squared Hinge [26] 1

2
max(0,−yf)2 0 if yf ≥ 0 and f otherwise

Soft Margin [4] max(0, 1− yf) 0 if yf ≥ 1 and −y otherwise
Squared Soft Margin [10] 1

2
max(0, 1− yf)2 0 if yf ≥ 1 and f − y otherwise

Exponential [14] exp(−yf) −y exp(−yf)
Logistic [13] log(1 + exp(−yf)) −y/(1 + exp(yf))
Novelty [32] max(0, 1− f) 0 if f ≥ 0 and −1 otherwise
Least mean squares [43] 1

2
(f − y)2 f − y

Least absolute deviation |f − y| sgn(f − y)
Quantile regression [27] max(τ(f − y), (1− τ)(y − f)) τ if f > y and τ − 1 otherwise
ε-insensitive [41] max(0, |f − y| − ε) 0 if |f − y| ≤ ε and sgn(f − y) otherwise
Huber’s robust loss [31] 1

2
(f − y)2 if |f − y| < 1, else |f − y| − 1

2
f − y if |f − y| ≤ 1, else sgn(f − y)

Poisson regression [16] exp(f)− yf exp(f)− y

Table 2: Vectorial loss functions and their derivatives, depending on the vector f := Wx and on y.

Loss Derivative
Soft Margin [38] maxy′(fy′ − fy + ∆(y, y′)) ey∗ − ey, where y∗ is the argmax of the loss

Scaled Soft Margin [40] maxy′ ∆
β(y, y′)(fy′ − fy + ∆(y, y′)) ∆β(y, y′)(ey∗ − ey), where y∗ is the argmax of the loss

Softmax [14] log
P

y′ exp(fy′)− fy

hP
y′ ey′ exp(f ′y)

i
/

P
y′ exp(f ′y)− ey

Multivariate Regression 1
2
(f − y)>M(f − y) where M � 0 M(f − y)

Document Ranking [29] show that a large number of
ranking scores (normalized discounted cumulative gain, mean
reciprocal rank, expected rank utility, etc.) can be optimized
directly by minimizing the following loss:

l(X, y, w) = max
π

X
i

ci

˙
xi − xπ(i), w

¸
+ 〈a− a(π), b(y)〉 .

Here ci is a monotonically decreasing sequence, the docu-
ments are assumed to be arranged in order of decreasing
relevance, π is a permutation, the vectors a and b(y) de-
pend on the choice of a particular ranking measure, and
a(π) denotes the permutation of a according to π. In this
case, a linear assignment algorithm will allow us to find the
permutation maximizing the loss and compute the gradients
subsequently.

A similar reasoning applies to Fβ scores [24]. Note that in
all cases we may use fast linear algebra routines to accelerate
the computationally intensive aspects Xw and g>X.

3.2 Vector Loss Functions
Next we discuss “vector” loss functions, i.e., functions

where w is a matrix (denoted by W ) and the loss depends on
Wx. Table 2 contains a number of cases (Note that in the
table we use ei to denote the i-th canonical basis vector).
Most notable are the cases of structured estimation, where

l(x, y, W ) = max
y′
〈wy − wy′ , x〉+ ∆(y, y′)

is a large-margin loss [38] and ∆(y, y′) is the misclassifica-
tion error by confusing y with y′. Rescaled versions were
proposed by [40] (we have β = 1 in Table 2). Log-likelihood
scores of exponential families share similar expansions.

In these cases we may again take recourse to efficient lin-
ear algebra routines and compute f = XW , which is now
a matrix by means of a matrix-matrix multiplication. Like-
wise, gradients are efficiently computed by g>X, where g is

now a matrix of the dimensionality of the number of classes.
Let us discuss the following two cases:
Ontologies for Structured Estimation: For hierarchical
labels, e.g. whenever we deal with an ontology [7], we can use
a decomposition of the coefficient vector along the hierarchy
of categories.

Let d denote the depth of the hierarchy tree, and assume
that each leaf of this tree corresponds to a label. We repre-
sent each leaf as a vector in Nd, which encodes the unique
path from the root to the leaf. For instance, if the tree is
binary, then we have y ∈ {0, 1}d.

We may describe the score for class y by computing 〈wy, x〉 =Pd
j=1

˙
wy1,...,yj , x

¸
, i.e., by summing over the vectors wy1,...,yj

along the path from wy1 to wy1,...,yd . Assuming lexico-
graphic order among vectors w, we can precompute the in-
ner products by a matrix-matrix multiplication between the
matrix of all observations X and W . A simple dynamic pro-
gramming routine (depth-first recursion over the ontology
tree) then suffices to obtain the argmax and the gradients
of the loss function for structured estimation. See [7] for
implementation details.
Logistic Hierarchical Model: The same reasoning ap-
plies to estimation when using an exponential families model.
The only difference is that we need to compute a soft-max
over paths rather than exclusively choosing the best path
over the ontology. Again, a depth-first recursion suffices.

3.3 Structured Estimation
In this case, we need to solve one of the two problems:

l(x, y, w) = max
y′

∆β(y, y′)
˙
φ(x, y′)− φ(x, y), w

¸
+ ∆(y, y′)

or l(x, y, w) = log
X
y′

exp
˙
φ(x, y′), w

¸
− 〈φ(x, y), w〉 .

In both cases, φ(x, y) is a user-defined feature map which
describes the relationship between data and labels, e.g. by



Figure 2: The architecture of our solver. Top: se-
rial version. Bottom: parallel version. Loss values
and their gradients, computed on subsets of the data
(Data 1 to Data N), are combined for the overall
gradient computation.

means of a set of cliques as in the case of conditional random
fields [28] or a Max-Margin-Markov network [38]. Note that
in [38] β = 0, whereas in [40] β = 1.

Gradients and function values are computed by dynamic
programming. In the first case this is done by solving for the
argmax y′ of the loss, which yields φ(x, y′) − φ(x, y) as the
gradient. In the second case, this is achieved by computing a
soft-max, or equivalently the expected value of φ(x, y′) with
respect to the exponential families distribution induced by
the sufficient statistics φ(x, y).

Note that the user only needs to implement these opera-
tions for his model to take advantage of the overall optimiza-
tion and parallelization infrastructure, including the access
to a range of different regularizers Ω(w).

4. ARCHITECTURE
Recall that Algorithm 1 has two distinct computationally

intensive stages: generating ai and bi, which requires com-
puting the value and derivative of the empirical risk Remp,
and subsequently solving a quadratic program. The latter,
however, only contributes to a small amount to the overall
cost of solving the optimization problem, in particular for
large amounts of data, as we shall see in Section 5. Note also
that in addition to our bundle method approach there exists
a large number of alternative optimization methods which
are able to solve (1) efficiently, provided that they have ac-
cess to the value Remp(w) and the gradient ∂wRemp(w).

Keeping in line with this observation, our architecture
abstracts out the computation of Remp(w) and ∂wRemp(w)
from the bundle method solver (see Figure 2). The solver
part deals with the regularizer Ω(w) and is able to query
the loss function for values of Remp(w) and ∂wRemp(w) as
needed. This is very similar to the design of the Toolkit for
Advanced Optimization (TAO) [5].

Depending on the type of loss function, computing Remp

can be very costly. This is particularly true in cases where
l(x, y, w) is the log-likelihood of an intractable conditional
random fields or of a corresponding Max-Margin-Markov
network. This effect can be mitigated by observing that
both Remp(w) and its gradient can be computed in parallel
by chunking the data and computing the contribution due
to each chunk separately. In effect, we insert a multiplexer
between the solver and the loss functions (see Figure 2).
This multiplexer has the sole purpose of broadcasting the

values of w to the losses and summing over the values and
gradients of the individual losses before passing those values
on to the solver. In practice, this is achieved by invoking
MPI::AllReduce(), which allows hierarchical aggregation.

The loss functions themselves only interact with the solver
via an interface which queries their values and gradients.
This means that it is trivial to add losses or solvers without
changing the overall architecture.

4.1 Benefits
By taking advantage of the unified design of Algorithm 1

our algorithm has several advantages over custom-built solvers:

Simplicity: Our setup is surprisingly straightforward. This
translates into a relatively compact code, despite the
large number of problems solved.

Modularity in the solver: It is possible to add more solvers
without any need to change the problem itself, pro-
vided that all they need is value and first order infor-
mation about the empirical risk term. In fact, we can
take advantage of off-the-shelf packages instead of hav-
ing to build our own in many cases (see next section).

Modularity in the loss function: In the same fashion it
is possible to add more loss functions without any need
to change the rest of the architecture. This has allowed
us to plug in over 30 loss functions.

Parallelization: Since dealing with Remp(w) is the domi-
nant part it is easy to parallelize this by distributing
calculations on the data over a number of computers.

Vectorization: Many of the computations can be done more
efficiently by using floating point accelerators such as
General Purpose GPUs.

One of the major advantages of our approach is that data
can be stored locally on the units computing values and
gradients of the loss functions. It is not necessary that the
main solver has access to the data. Nor is it necessary that
individual nodes share the data, since all communication
revolves around sharing values and gradients of Remp[w].

• This has the added benefit of preserving a large de-
gree of privacy [12] between the individual database
owners and the system using the solver. At every step
the data owner will only return a gradient which is
the convex combination of a set of observations. As-
suming that we use a loss function whose derivative
can only take on a small number of different values,
we will not be able to reconstruct the vectors xi from
it. In addition to that, each data owner may check
whether Remp[w] + λΩ[w] is decreasing on his portion
of the data. If this is severely violated it gives him a
good indication that the interface is being abused for
snooping on the content of the database.
• Note that distributed data also has the advantage that

the problem of file I/O is diminished since disk access is
local. Given that modern disks are a factor of 50 slower
than memory bandwidth and by a factor of 2 slower
than computer networks, this alleviates a significant
bottleneck.

4.2 Off-the-shelf Methods
Since our architecture is modular (see figure 2), we show

as a proof of concept that it can deal with different types of
solvers, such as an implementation of LBFGS [6] from TAO
[5]. There are two additional requirements: First, we also



need to provide a subdifferential and value of the regularizer
Ω(w). This is easily achieved via

1

2
∂w ‖w‖22 = w and ∂w ‖w‖1 3 sgn w. (14)

Second, we need a method to assess solution quality.

Lemma 5 Let x ∈ Rn, assume that f is convex on Rn and
let λ > 0. Moreover let g(x) ∈ ∂xf(x) + λx. Then we have

min
x

f(x) + λ
2
‖x‖22 ≥ f(x0) + λ

2
‖x0‖22 −

1
2λ
‖g(x0)‖22 . (15)

Using the above lemma we can lower bound the minimum
of the regularized risk functional. Using the definition

J−(w) := Remp(w) + λ
2
‖w‖22 −

1
2λ
‖∂wRemp(w) + λw‖22

we are able to bound the number of significant figures via

SigFig(w) ≥ log10
2(J(w)−J−(w))

|J(w)|+|J−(w)| . (16)

This provides us with a good convergence monitor for all
cases using quadratic regularization. Note that bound is
not applicable when we use the `1 regularizer Ω(w) = ‖w‖1.
However, this is a situation where convergence with LBFGS
is poor, since ‖w‖1 is not continuously differentiable in w.

While the bundle methods use the past gradients to lower
bound the convex objective function, BFGS is a quasi-Newton
method that uses the past gradients to estimate the inverse
of the Hessian. Furthermore, to bound the memory and
computational costs associated with storing and updating
the complete inverse Hessian, the LBFGS algorithm uses
only the past n gradients (n is user defined).

LBFGS is known to perform well on continuously differ-
entiable problems, such as logistic regression, least-mean-
squares problems, or conditional random fields [34]. But, if
the functions are not continuously differentiable (e.g., the
hinge loss and its variants) then LBFGS may fail. Empir-
ically, we observe that LBFGS does converge well even for
the hinge losses if we have a large amount of data at our
disposition. We conjecture that this is due to the fact that
unlike in the ‖w‖1 regularization, the non-differentiability is
“smoothed-out” by averaging over many losses.

5. EXPERIMENTS
We now demonstrate that our algorithm is a) scalable in

the number of observations, b) scalable when λ decreases
c) it parallelizes well, d) it is versatile, and e) it is faster
than any competing specialized solver on the subproblems
it solves.

The experiments were carried out on a cluster of 1928
1.6Ghz Itanium2 cpus and 3.2 Gbytes/s bidirectional band-
width per link2. The time reported for the experiments are
the CPU time without IO. One exception is for parallel ex-
periments where we report the CPU time and network IO
time.

5.1 Datasets
We focus on the following 6 datasets. Our choice is largely

influenced by the choices in [24, 25] concerning classifica-
tion tasks for the purpose of reproducing results reported in
the work. For regression tasks, we pick some of the largest

2http://nf.apac.edu.au/facilities/ac/hardware.php

datasets in Lúıs Torgo’s website3. Since some of the regres-
sion datasets are highly nonlinear, we perform a low rank
incomplete Cholesky factorization [19] and keep the dimen-
sion less than 1000.

For ranking tasks, we use an MSN web search data with
1000 queries.

Table 3: Datasets their properties.
dataset abbr. #examples dimension density %
CLASSIFICATION
Adult9 adult9 32561 123 11.28
Real & Simulated real-sim 57763 20958 0.25
Autos & Aviation aut-avn 56862 20707 0.25
Web8 web8 45546 300 4.24
KDDCup-99 kdd99 4898431 127 12.86
Covertype covertype 522911 54 22.22
Reuters CCAT ccat 23149 47236 0.16
Reuters C11 c11 23149 47236 0.16
20 Newsgroups news20 15960 1355181 0.03
REGRESSION
MV mv 40000 126 99.82
Friedman fried 40000 1000 98.77
2D planes cart 40000 1000 98.04
Pole Telecomm pol 10000 1000 96.49
RANKING
MSN ranking msn 45882 368 99.73

1000 queries
PARALLEL
Reuters CCAT ccat 804414 47236 0.16
Reuters C11 c11 804414 47236 0.16
Arxiv astro-ph astro-ph 62369 99757 0.08
Covertype covertype 522911 54 22.22

5.2 Software
For classification experiments, we compare our software

with svmperf and libsvm. For regression experiments, we
compare our solver with svmlight and libsvm. To the best
of our knowledge, these are the state-of-the-art solvers at
the moment. Our solver is called bmrm.

5.3 Classification
In this experiment, we carry out experiments with soft-

margin (hinge) loss with various values of {1.0, 0.3, 0.1, 0.03,
0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00001, 3e-05, 1e-05, 3e-
06}. The results are shown in Figure 3. As can be seen from
the figure, our solver is usually faster than svmperf and
significantly outperforms libsvm. The difference between
our method and svmperf is very small in log-log scale but in
reality our method can be a lot faster than svmperf ranging
from 2 to 10 times.

5.4 Regression
The next step, we investigate the behavior of our solver for

regression problems and particularly the ε-insensitive loss
function. The values of λ that we choose belong to the
set {1.0, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001,
0.00001, 3e-05, 1e-05, 3e-06}. The results are shown in Fig-
ure 4. As can be seen from the figure, our solver is signifi-
cantly faster than both svmlight and libsvm.

5.5 Scaling behavior with sample size
For the scaling experiments in the sample size, we fixed

λ = 10−5 and computed the time for a binary soft-margin
classifier. To see how the algorithm behaves for different
values of λ, we used the full datasets and show how λ affects
the total runtime.

As can be seen in Figure 5, the time required to solve a
problem is essentially linear in the sample size. This behav-
ior is similar to svmperf as observed by [25]. The remark-

3http://www.liacc.up.pt/~ltorgo/Regression/
DataSets.html



Figure 3: Classification runtime of three algorithms (log-log scale)

Figure 4: Regression runtime of three algorithms (log-log scale)

Figure 5: Chunk size vs time (log-log scale)

able fact is that these good properties are consistent between
both choices of regularization. Both are problems which typ-
ically require very different solvers to perform well, yet in
our approach they are both effectively tractable by using the
same method. Also note that the time required to load the
dataset often exceeded the time to perform estimation on it.

It is interesting to see that λ influences the runtime per-
formance of our algorithm more than the sample size does.

5.6 Scaling behavior with number of comput-
ers

A second test investigates the scalability of our method.
For this purpose we ran our solver on a cluster of work-
stations. We perform the experiments with three different
losses: soft-margin loss, NDCG loss [29], and ordinal regres-
sion with several values of λ and datasets.

The number of computers we use ranges from {1, 2, 4, 8,
16, 32, 40, 48, 56, 64}. We report the CPU time + network
communication time in Figure 6.

Figure 6 shows the algorithm for hinge loss scales linearly
in the number of nodes, i.e. the time is given by T (n) = a+
b/n. Here a is the time required to solve the inner subprob-
lem using linear or quadratic programming solvers. This
part is not parallelized yet in the current implementation.
The advantage of our parallelization would be even more
apparent if we were using datasets several orders of magni-
tude larger than the publicly available collections, since in
this case a would remain constant, however b scales with the
amount of data required for processing.

For ranking experiments, the algorithm does not scales as
well as soft-margin. The main reason is that the dataset
is grouped into queries, and some queries have more docu-
ments than the other. The nodes that have queries that have
more documents tend to take much longer than other nodes
and this forces other nodes to wait for results. However, the



Figure 6: Parallel classification, NDCG ranking, and ordinal regression with bmrm (log-log scale)

results are still very promising.

5.7 Convergence
Last we address the issue of the speed of convergence and

its dependence on the value of λ. In Figure 7, we plot the
tolerance as a function of number of interations for various
values of λ for many datasets. Not surprisingly we see that
the number of iterations depends on λ: for decreasing λ
the number of iterations increases. This is consistent with
Theorem 2. For most datasets, the rate starts very fast then
slows down and becomes linear.

5.8 Versatility
It is worth noting that throughout previous experiments,

we have demonstrated that our solver can deal with many
loss functions from classification, regression to ranking. There
are many more loss functions that our solver can deal with
such as quantile estimation, novelty detection, least squared
regression etc. For these problems our method works re-
ally well and exhibits similar nice convergence properties
as described in previous sections. Unfortunately, it is very
hard to find competing software to compare our solver with,
and due to space constraint, we choose to omit the results.
Results for these problems will be published in a separate
report.

6. OUTLOOK AND DISCUSSION
Related Work Our work is most closely related to the
prize-winning paper of Joachims [25]. In fact, for a par-
ticular solver, namely a bundle method, a set of loss func-
tions l, namely binary `1 soft-margin loss, ROC-scores, Fβ

scores and ordinal regression, and a particular regularizer Ω,
namely quadratic regularization, both methods are equiv-
alent. The advantage in our solver is the use of efficient
linear algebra tools via PETSc [2], the modular structure,
the considerably higher generality in both loss functions and
regularizers, and the fact that data may remain local.

Moreover, our work is related to [11], where MapReduce
is used to accelerate machine learning on parallel comput-
ers. We use similar parallelization techniques to distribute
the computation of values and gradients of the empirical
risk Remp(w) to a cluster of workstations. Given the lack
of availability of a robust MapReduce implementation (only
Java versions such as Hadoop are freely accessible), our im-
plementation details differ significantly.

Finally, several papers [26, 10] advocate the use of Newton-
like methods to solve Support Vector Machines in the “pri-
mal”. However, they need to take precautions when dealing
with the fact that the soft-margin loss function used in an
SVM is only piecewise differentiable. Instead, our method
only requires subdifferentials, which always exist for convex

functions, in order to make progress. The large number of
and variety of implemented problems shows the flexibility.
Extensions and Future Work We believe that the frame-
work presented in this paper will prove very fruitful in the
future. Besides applications of the solver to other estimation
problems, such as covariate shift correction and distributed
novelty detection there are a number of extensions:

• The acceleration of the optimization by means of a spe-
cialized stream processor, i.e. high end graphics cards.
• Note that we can perform the optimization in feature

space, as long as inner products between the gradients
can be computed efficiently. This is the case for certain
string and graph kernels.
• The quadratic programming part of the our algorithm

can be reduced by the simple line-search used in the
proof of Theorem 2. This makes our method amenable
to implementation in computationally constrained sys-
tems, such as sensor networks.

Summary On a wide variety of datasets our algorithm out-
performed state-of-the-art custom built solvers, converging
to the optimal solution within 20 - 200 iterations through the
dataset. Unlike other bespoke custom built solvers, our soft-
ware is open source and freely available for download. We
invite the research community to contribute to the codebase
as a shared resource (http://elefant.developer.nicta.
com.au/).
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J. Kohlmorgen, and V. Vapnik. Predicting time series with
support vector machines. In ICANN’97, pages 999–1004,
1997.

[32] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and
R. C. Williamson. Estimating the support of a
high-dimensional distribution. TR 87, Microsoft Research,
Redmond, WA, 1999.



[33] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and
R. C. Williamson. Estimating the support of a
high-dimensional distribution. Neural Comput.,
13(7):1443–1471, 2001.

[34] F. Sha and F. Pereira. Shallow parsing with conditional
random fields. In Proceedings of HLT-NAACL, pages
213–220, 2003.

[35] S. Shalev-Shwartz and Y. Singer. Online learning meets
optimization in the dual. In COLT, 2006. extended version.

[36] V. Sindhwani and S. Keerthi. Large scale semi-supervised
linear svms. In SIGIR ’06, pages 477–484, New York, NY,
USA, 2006. ACM Press.

[37] I. Takeuchi, Q. Le, T. Sears, and A. Smola. Nonparametric
quantile estimation. JMLR, 2006.

[38] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov
networks. In NIPS, pages 25–32, 2004.

[39] R. Tibshirani. Regression shrinkage and selection via the
lasso. J. R. Stat. Soc. Ser. B Stat. Methodol., 58:267–288,
1996.

[40] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent
output variables. JMLR, 6:1453–1484, 2005.

[41] V. Vapnik, S. Golowich, and A. J. Smola. Support vector
method for function approximation, regression estimation,
and signal processing. In NIPS, pages 281–287, 1997.

[42] S. V. N. Vishwanathan and A. J. Smola. Fast kernels for
string and tree matching. In NIPS, pages 569–576, 2003.

[43] C. K. I. Williams. Prediction with Gaussian processes:
From linear regression to linear prediction and beyond. In
M. I. Jordan, editor, Learning and Inference in Graphical
Models, pages 599–621. Kluwer Academic, 1998.

A. PROOFS
Proof Lemma 1. Recall that the Taylor expansion is exact for

all wj . Therefore J(wj) = Jj+1(wj) for all j ≤ i, and the upper
bound on J∗ follows. Since J(w) ≥ Ji(w) for all w it also follows
that their minima satisfy the same inequality. Since wi is the
minimizer of Ji(w) the lower bound follows.

The third claim follows from Ji(w) ≥ Jj(w) for all w and all i ≥
j, hence the series J−i is monotonic. Since the min is being taken

over a larger set at every iteration, the series J+
i is monotonically

decreasing.

To prove Theorem 2 we need an auxiliary lemma:

Lemma 6 The minimum of 1
2
dx2 − cx with c, d > 0 and x ∈

[0, 1] is bounded from above by − c
2

min(1, c/d).

Proof. The unconstrained minimum of the problem is x∗ =
c/d with minimum value −c2/2d. If c ≤ d, this is also the con-
strained minimum. For c > d we take x∗ = 1, which yields d/2−c.
The latter is majorized by −c/2. Taking the maximum over both
minima proves the claim.

Proof Theorem 2. Denote by αi the maximizer of Di(α), i.e.
the dual problem (12). We know by strong duality that Di(α

i) =
Ji(wi), which provides a lower bound on the minimum J∗ of
J(w). Moreover, we know by Lemma 1 that

εi := Ji+1(wi)− Ji(wi) ≥ J+
i − J−i =: γi

is an upper bound on the size of the duality gap and therefore
on the quality of the solution. After solving Di+1(α) we will ob-

tain a new lower bound, i.e. J−i+1 = Di+1(αi+1). Since J+
i is

monotonically decreasing, it follows that if we can lower bound
the increase in J−i in terms of εi we are going to obtain a conver-

gence guarantee for J+
i − J−i , too.

Obviously, we cannot compute Ji+1(wi+1) explicitly, since it
involves solving a quadratic program. However, in order to obtain
a lower bound on the improvement, we simply consider a line-
search along the line joining [αi, 0] to [0, 1]. Denote by ᾱ(η) :=

ˆ
ηαi, (1− η)

˜
the solution obtained by optimizing (12) along this

line, for η ∈ [0, 1]. Clearly, any such ᾱ(η) is feasible.
We need to analyze two separate regimes of the line search:

a) the maximum is attained for η ∈ (0, 1) and b) the maximum
is attained for η = 1. In order to apply Lemma 6 we need to
compute linear and quadratic terms of Di(ᾱ(η)) and express εi

in terms of αi.
Since the Taylor expansion is exact for all wj , we have that

Ji+1(wi) = λ
2
‖wi‖2 + 〈ai+1, wi〉+ bi+1. Denote by Ā denote the

extended matrix [A ai+1] and by b̄ the extended vector [b bi+1].

Then ai+1 = Ā ei+1, bi+1 = b̄
>

ei+1, and wi = − 1
λ

Ā[αi, 0].
This allows us to write

Ji+1(wi) = 1
2λ

[αi, 0]> Ā
>

Ā[αi, 0]| {z }
λΩ(wi)

− 1
λ

e>i+1 Ā
>

Ā[αi, 0]| {z }
〈ai+1,wi〉

+ b>ei+1| {z }
bi+1

Moreover, since Ji(wi) = Di(α
i) we may write

Ji(wi) = − 1
2λ

[αi, 0]> Ā
>

Ā[αi, 0] + b̄
>

[αi, 0].

Taking differences yields

εi = 1
λ
[αi,−1]> Ā

>
Ā[αi, 0] + b̄

>
[−αi, 1].

Next we compute the linear and quadratic terms of Di(ᾱ(η)).

l = ∂ηDi(ᾱ(η)) = εi and

q = ∂2
ηDi(ᾱ(η)) = 1

λ
[αi,−1]> Ā

>
Ā[αi,−1] = λ ‖∂wJ [wi]‖2 .

Using Lemma 6 it follows directly that the improvement in the
dual and therefore the decrease in γi−γi+1 is at least l

2
min(1, l/q).

We now bound q further:
Since λwi is in the convex hull of a1 . . . ai, it follows that

‖λwi‖2 ≤ G2, and hence q = 1
λ
‖λwi − ai+1‖2 ≤ 4G2

λ
. This

means that γi − γi+1 ≥ γi
2

min(1, γiλ/4G2). Furthermore, un-

til γi ≤ 4G2

λ
we have γi+1 ≤ γi

2
. This happens for at most

log2

“
γ0λ
4G2

”
steps. But, the initial dual optimization problem is

empty, hence its value is 0, and we know that γ0 is Remp(0).
Therefore, for log2 Remp(0)λ − 2 log2 G − 2 steps we halve the
upper bound on the improvement.

Subsequently, the reduction in γi+1 is at least γ2λ/8G2, lead-
ing to the difference equation γi+1 ≤ γi − γ2

i λ/8G2. Since this
is monotonically decreasing, we can upper bound this by solving
the differential equation γ′(t) = −γ2(t)λ/8G2, with the bound-

ary conditions γ(0) = 4G2/λ. This in turn yields γ(t) = 8G2

λ(t+2)
,

and hence t ≤ 8G2

λγ
− 2. For a given γ we will need 8G2

λγ
− 2 more

steps to converge.

Proof Corollary 3. The initial value of the regularized risk
is Remp(0) and the empirical risk is a nonnegative function. Hence

we know that w never must exceed a ball of radius
p

2Remp(0)/λ.
Since we start from w = 0, we will never exit this ball. Hence G
is bounded within this ball and Theorem 2 applies.

Proof Lemma 5. Since f is convex,

f(x) + λ
2
‖x‖2 ≥ f(x0) + 〈x− x0, ∂xf(x0)〉+ λ

2
‖x‖2

for all x and x0. The right hand side is minimized by setting
x = − 1

λ
∂xf(x0). Plugging this into the lower bound yields the

right hand side of (15).


