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Abstract—Practical Byzantine Fault Tolerance (PBFT) consensus mechanism shows a great potential to break the performance
bottleneck of the Proof-of-Work (PoW) based blockchain systems, which typically support only dozens of transactions per second and
require minutes to hours for transaction confirmation. However, due to frequent inter-node communications, PBFT mechanism has a
poor node scalability and thus it is typically adopted in small networks. To enable PBFT in large systems such as massive Internet of
Things (IoT) ecosystems and blockchain, in this paper, a scalable multi-layer PBFT based consensus mechanism is proposed by
hierarchically grouping nodes into different layers and limiting the communication within the group. We first propose an optimal
double-layer PBFT and show that the communication complexity is significantly reduced. Specifically, we prove that when the nodes
are evenly distributed within the sub-groups in the second layer, the communication complexity is minimized. The security threshold is
analyzed based on faulty probability determined (FPD) and faulty number determined (FND) models respectively. We also provide a
practical protocol for the proposed double-layer PBFT system. Finally, the results are extended to arbitrary-layer PBFT systems with
communication complexity and security analysis. Simulation results verify the effectiveness of the analytical results.

Index Terms—PBFT, communication complexity, node scalability, consensus mechanism, blockchain.

1 INTRODUCTION

He consensus mechanism/algorithm, which orders transac-
Ttions and guarantees the integrity with consistency of the
blockchain across geographically distributed nodes, is of impor-
tance to blockchains, which is the backbone of groundbreaking
decentralized ledger technology and cryptocurrency. It provides
secure, accountable, and immutable and low-cost solutions. Thus,
it has shown great potential in various sectors such as financial
services, energy trading, supply chain management, Internet of
Things (IoT), etc [1].

The consensus algorithms largely determine the performance
of distributed system especially for blockchains, such as trans-
action throughput, latency, node scalability, security level, etc.
Depending on application scenarios and performance require-
ments, different consensus algorithms can be considered. In the
case of a permission-less public blockchain, nodes are allowed to
join or leave the network without permission and authentication;
therefore proof based algorithms such as Proof-of-Work (PoW)
[2], Proof-of-Stake (PoS) [3], and their variants are commonly
used in many public blockchain applications, where the cryp-
tocurrency such as Bitcoin is the most well-known one. Proof
based algorithms are designed with excellent node scalability
performance through nodes competition, which is essential to deal
with the double-spending problem. However, they could be very
resource demanding. For instance, recently published estimates of
bitcoin’s electricity consumption are wide-ranging, on the order of
20-80 TWh annually, or about 0.1% — 0.3% of global electricity
consumption [4]. Also, these consensus mechanisms have other
limitations, such as long transaction confirmation latency and low
throughput. For instance, the Transaction Per Second (TPS) is
generally limited to 7 in Bitcoin and about 15 in Ethereum, while
the transaction confirmation delay is typically as considerable
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as 10 minutes in Bitcoin and 15 seconds in Ethereum [5]. It is
worth pointing out the computational requirement of Proof-based
consensus varies from one to another, the notable examples of non-
computing Proof-based consensus is InterPlanetary File System
(IPFS), a distributed file system uses the concept of proof-of-
space/ space-time [6]. Though, Proof-based consensus has been
mostly seen in the applications of public blockchain, it has a
limited generic distributed system and blockchain coverage, as it is
still incrementally resource demanding, and the search of voting-
based consensus for blockchain and new generation distributed
system is imminent.

Unlike the public blockchain, the private and consortium
blockchains prefer to adopt lighter consensus protocols such as
PBFT, Paxos [7] and Raft [8] [9] to reduce the amount of
computational power and improve the transaction throughput [10].
They have been widely used in general distributed systems for
data synchronization, meanwhile, their property is also critically
important to the application scenarios of the blockchain-enabled
IoT ecosystem, which is typically composed of low cost and low
power devices. Though some private chain suitable consensus only
enables the Crash Fault Tolerance (CFT) [8], as it does not protect
the integrity of transactions from malicious attacks, but they are
acceptable for private blockchain where the nodes are trusted.

1.1 PBFT applied to blockchain

To protect distributed systems from malicious users, Practical
Byzantine Fault Tolerance (PBFT) was proposed in [11] as an
improved and practical protocol based on original Byzantine
Fault Tolerance (BFT) [12] [9]. Comparing to the Proof based
consensus such as PoW, where the security threshold is 51%), i.e.,
absolute secure transaction can be achieved if the malicious user(s)
occupies no more than half of the overall resource, PBFT requires
the number of malicious users under 33% of total participants to
ensure the system immune from the malicious attacks [11].

PBFT is favoured for private and consortium chains, thanks to
the lower complexity and low energy consumption, which is par-
ticularly important for wireless IoT applications [13]. A promising



advancement of PBFT can be found in Hyperledger development
[14], part of Hyperledger business blockchain frameworks, which
has been adopted by tech giants like IBM or Wall Street Fintech,
such as J.P. Morgan [15].

1.2 Motivations

Though PBFT has shown good performance in terms of
latency, resource requirement and nodes complexity, the node
scalability, which is a metric to measure how well the network
reflects the capacity of the system to handle the increasing number
of nodes, is a bottleneck of PBFT since it relies on heavy inter-
node communications. Thus, from the communication complexity
perspective, the PBFT based blockchain hardly scales up to 100
nodes [16].

Variant PBFT-based consensuses have been proposed to solve
the problem of poor scalability. For example, PBFT with short-
lived signature [17], minimizes the consensus time for signature
verifying. Another significant evolution path is sharding, where
shards have their own consensus group; hence the transactions
can be confirmed within a short time because of the smaller size
network [18] [19]. However, the trade-off includes increased com-
munication costs and lowered security levels. For instance, every
shard keeps its own data, which is not shared with other shards.
In the case of users requesting contracts on several shards, inter-
node communications go up quickly. Meanwhile, putting segments
of data into different repositories without proper redundancy and
recoverability is risky. Losing control of any individual shard will
interrupt the blockchain completely, either causing untraceable
and irreversible records to future records or forking the chain from
the breaking point [20].

The communication complexity issues in the PBFT system
is due to the exhaustive peer to peer communication among
the nodes. To reduce the cost of communication, intuitively,
one can construct a hierarchical multi-layer PBFT by refraining
the communication within their layers or sub-groups. The sub-
consensus can be performed per group, and the overall consensus
can be defined as exceeds the number of groups achieved the
sub-consensus. This multi-layer PBFT system model is initially
proposed in [21], providing a brief analysis of communication
complexity based on a particular case. However, there are still
many challenges to be addressed before this idea can be applied in
a real system. Firstly, the complexity analysis derived in the [21]
cannot be applied to generic situations as it is developed under the
premise that the number of nodes in each sub-group is equal. To
better represent the practical situation, detailed analysis should be
provided considering various node allocation scenarios. Also, the
security analysis in [21] is derived under the hypothesis that faulty
nodes only exist in the bottom layer, which does not apply to
real situations where faulty nodes are randomly distributed into all
layers. Therefore, new security analysis should also be provided to
verify the reliability of multi-layer PBFT system. Finally, to ensure
liveness and safety of the network, a new complete protocol is also
needed.

1.3 Contributions and organizations

In this paper, we first propose a double-layer PBFT system,
as shown in Fig. 1, where we have m replicas in the first layer
and n sub-layer replicas in the second layer, which give a total
number of 1 + m + mn nodes in the network. Then we extend
this system model to a more general X -layer case (X > 2, X € 1)
to analyze and compare communication complexity in multi-layer
systems. The security analysis shows that the security performance
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Fig. 1. Topology of the proposed double-layer PBFT system. (Note that
we give double-layer system as an example here, the idea proposed in
this paper can be extended to arbitrary-layer PBFT.)

is improved over time, and the consensus algorithm accommodates
at most | % |x | %] faulty nodes to ensure the absolute safety of
the system under malicious attacks. Meanwhile, only m? 4+ mn?
inter-node messages, instead of O(Z?) messages in a traditional
single-layer PBFT network consensus, are required.

However, it is inevitable that the scalability is improved at
the cost of a longer delay as the consensus-reaching process goes
through more than one layer. As a result, the proposed multi-
layer PBFT would not be appropriate for systems such as some
financial scenarios in consortium blockchain which requires both
node scalability and low latency transaction. On the contrary,
in other applications such as blockchain-enabled scenarios with
massive [oT devices connection, where scalability is a bottleneck
but not latency, multi-layer PBFT provides a solution with greatly
improved node scalability while protecting the system from ma-
licious attacks [22] [23] [24]. For instance, blockchain can be
used to play an important role for tracking and managing all
elements involved in supply chain from raw materials to the final
products to ensure the quality of the manufacturing [25]. Given
the fact that there are many player within the system, traditional
single layer PBFT based blockchain is hard to scale up. With
multi-layer PBFT, the suppliers could be divided into groups and
layers and consensus can be reached among them to provide
reliable information for different parties and ensure the efficiency
of manufacturing.

Note that, in such hierarchical scenarios, the consensus is
reached in a network with biased rights in different layers. Indeed,
we have seen the most consensus models in blockchain have
treated their nodes with the equality, however, it is also common to
find examples of inequality in real-life for upper level scalability
and availability; for example, the practice of liquid democracy, has
shown a good influence on social stability and performing the best
interests of represented members, in which case, the participants
are still in active power after the upper-tier delegate is elected.
Another common example of master/slave (leader/follower) model
of data storage has produced promising results regarding the
availability and I/O performance. Moreover, a lack of flexibility
and liquid can be added with the proposed dynamic multi-layer
design. The multi-layer PBFT and the advanced system together
form a rolling, robust and flexible consensus for not only digital



distributed systems, but also prompts real-life impacts. From this
point of view, the proposed PBFT consensus serves as a viable
solution to the current society to a trade-off between an efficient
but low secure, centralized architecture and a highly secure but
low efficient distributed one.

To summarize, this paper makes the following contributions

e This paper first introduces a novel double-layer PBFT
model. This model is scalable since ‘ilt reduces the inter-
node communications to C' = 1.9Z3, comparing to the
traditional PBFT system of O(Z2).

e Second, the analytical security performance of the pro-
posed system is derived. It proves that under certain
conditions, the maximum number of faulty nodes can
increase from | %] to | % | x| ].

e Third, a new double-layer PBFT protocol is introduced,
based on which consensus can be reached among nodes in
different layers.

o Finally, a general X-layer PBFT model is proposed, which
is proven to have the minimum communication complexity
reduced to linear C' = 6Z=16 when the network depth is
maximized to X,,,,.. Additionally, the security threshold
is derived.

The rest of the paper is organized as follows. Section 2 reviews
the related work. In Section 3, the double-layer PBFT model
is proposed. Then, the communication complexity is analyzed
and compared to the original PBFT. In Section 4, the security
threshold is derived based on the double-layer system. A general
X-layer system is proposed and analyzed in Section 5. Section 6
proposes the protocols for double-layer PBFT system and Section
7 concludes the paper.

2 RELATED WORK

Variant consensus algorithms have been designed for permis-
sioned blockchain to provide safety under trustless environment
with different performances [26]. Practical Byzantine Fault Toler-
ance (PBFT) [11] is one of the most popular State Machine Repli-
cation (SMR) technology, which provides % optimal tolerance
under malicious attacks with low latency. In recent years, with the
growing interest in blockchain, many new protocols based on SMR
are proposed. In The Next 700 BFT Protocols, the author present a
method to simplify the designing of new protocols by introducing
Abortable Byzantine faulT toleRant stAte maChine replicaTion
(Abstract) as a new way to illustrated BFT [27]. Results show
that the proposed protocol by using Abstract provides a better
performance in terms of both latency and throughput.

Apart from the application in permissioned blockchain, the
concept of quorum certificate is also borrowed in Ethereum Casper
to provide safety for Ethereum 2.0 [28]. It is an extra mechanism
on top of PoS and serves as a finality gadget. The Casper does
not generate the block but determines the sequence of blocks on
chain. The designated replicas (validators in Ethereum) votes for
a parent-children relationship for two collections of blocks and
form a quorum certificate granted by more than % of replicas.
Considering that Ethereum 2.0 updates rapidly, it is difficult
to draw a conclusion on the application of shards and Casper.
The sharding may sacrifice safety and increase communication
complexity, and the actual implementation of Casper in Ethereum
2.0 also affects it.

One problem PBFT protocols may encountered is the difficulty
to implement. BFT-SMART is so far the most popular open-source
library for BFT-SMR application based on Java, filling the gap
between the literature work and practical implementation [29].
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Evaluation shows that the throughput of BFT-SMART reaches
more than 80,000 TPS. Also, although it is simpler than other BFT
implementing systems, it still contains 13.5K lines of Java code,
which is much more complicated than the implementing systems
for Paxos [26].

Another bottleneck of PBFT is its scalability. As mentioned
in the introduction, the communication complexity limits the
performance of protocols. Former researchers have also proposed
various solutions. The HotStuff leverages threshold signature to re-
duce communication complexity [30]. In each phase, the primary
broadcasts messages and each replica responses a valid message
with a partial signature. The primary collects them responses
with partial signature more than % replicas and combine into a
digital signature. This signature is broadcasted by replica again,
which serves as a quorum certificate. Unlike HotStuff, the multi-
layer PBFT proposed improves node scalability by reorganizing
network structure, where the threshold signature can also be ap-
plied to further reduce the communication complexity. Moreover,
it is noticeable that as the network scales up, the primary in
HotStuff has to collect and broadcasts an increasing number of
messages and combines more partial signatures. This workload
can be barked down by implementing our tree-like structure. Also,
the pace of HotStuff is affected by the primary since it waits for
the aggregation of partial signature to advance.

3 COMMUNICATION COMPLEXITY OF DOUBLE-
LAYER PBFT

3.1 Original single-layer PBFT

Before introducing the system model of double-layer PBFT,
the protocol and communication complexity of original single-
layer PBFT [11] are briefly analyzed in this subsection. Fig. 2
shows the protocol diagram of the original single-layer PBFT. As
an example, we assume there is one primary node and three state
machine replicas. The consensus is triggered by a client sending
a request to the nodes’ header (Replica 0). Then consensus will
be operated among the nodes, and if an agreement is reached
among the replicas, the new record will be committed to the
blockchain, vice versa. The whole consensus process includes
three stages pre — prepare, prepare and commait as shown
in Fig. 2. On receiving the request from the client, the primary
node (i.e., Replica 0) broadcasts a pre — prepare message to
the other nodes. In prepare and commit stages, all replicas
send messages to check the validity of received messages. In each
stage, a minimum number of consistent messages are required for
stepping into the subsequent stage.

The consensus is technically reached when the commit phase
is successful among the majority of non-faulty nodes. Specifically,
the client must receive at least f + 1 replies (f denotes the number
of faulty nodes in the group) from the nodes to validate the final
consensus with a total number of 3 f + 1 replicas. This ensures that
at least one non-faulty replica replies to this operation. In the case
of the client fails to collect f + 1 replies, the client may resend
the request to primary for retry. Upon receiving the same request
again, if the consensus is already reached on the commit phase,
replicas just resend the final stage messages. If the consensus is
not reached, the network goes over the protocol again.

From Fig. 2, we can see that PBFT is a communication
demanding protocol. Given the total node number Z, the original
single-layer PBFT requires O(Z?) times of inter-node communi-
cations to reach consensus. Obviously, the system is not scalable
since the complexity burden is non-affordable when Z is large
(i.e., thousands).



In the next, a scalable multi-layer PBFT system and protocol
is proposed to reduce the communication complexity. The per-
formance analysis and protocol design of a double-layer system
will be introduced first, and then the arbitrary-layer system will be
proposed in Section 5.

Epre-preparei prepare i commit

C|I‘et \ :
N ) ==Y/
I ERNND ") V4
Replica 2 } \ \ N

Replica 3

Fig. 2. Single-layer PBFT consensus processing [11].

3.2 Protocol overview of double-layer PBFT

In the double-layer PBFT protocol, scalability is improved
by recursively inserting the PBFT consensus algorithm between
commit and reply phases as the sub-layer algorithm. The higher
layer forms a certificate, which proves that the consensus was
reached. With this certificate, a node in the first layer initiates a
PBFT consensus reaching process among second layer nodes.

As illustrated in Fig. 1, there are m replicas and a primary
node in the first layer. Each replica in the first layer forms a
consensus group with n sub-layer replicas in the second layer. The
primary invokes a new operation by multicasting pre — prepare
messages to replicas in the first layer with information about this
operation. The replica accepts valid pre — prepare requests and
step into prepare phase by multicasting prepare messages within
the first layer. If one replica receives no less than 2f identical
prepare messages from other first-layer replicas, that operation
is prepared on this replica. A prepared replica then multicasts
commit messages among first-layer replicas.

Similarly, this operation is committed after collecting 2 f iden-
tical commsit messages. At this point, this particularly first-layer
replica is considered as the primary node in its consensus group
and starts consensus reaching by multicasting new preprepare
messages to its sub-layer nodes. For instance, in Fig. 1, a commit-
ted node 7! sends pre — prepare messages to node 72 and other
replicas in C'onsensusGroup0. Second-layer replicas repeat the
process mentioned above until the commit phase. Finally, all
committed replicas in the second layer send reply messages to
primaries, and primaries reply to the client. This protocol will be
stated in detail in Section 6.

3.3 Communication complexity analysis of double-
layer PBFT

The double-layer PBFT model is proposed in Fig. 1, where
the first-layer leader controls m replicas, each of which serves as
a primary node of the n sub-layer replicas in the second layer.
Therefore, there are 1 + m + mn nodes in the system. Note
that here we assume each sub-group in the second layer has the
same number of nodes, and a generic case will be discussed in
Proposition 11. Based on this, the communication complexity can
be calculated as the following proposition.
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Proposition 1. For a double-layer PBFT system with m replicas
in the first layer and n sub-layer replicas in each sub-group, the
communication complexity C' to reach consensus is

C=(m+1)*+m(n+1)> (1)
Proof is derived in Appendix.

In the next, we aim to find the optimal setup of a double-layer
system with given Z nodes to provide the lowest communication
cost. When the overall number of nodes Z is given to form
a double-layer PBFT, we can assign either larger groups (i.e.,
smaller m and larger n) or a larger number of groups (i.e., larger
m and smaller n). Proposition 9 gives the best grouping algorithm
in terms of minimizing the communication complexity.

Proposition 2. For a double-layer system containing Z nodes in
total, the minimum communication complexity can be achieved
when n equals to the nearest integer to the real positive root of
following equation:

Z -4

nP+3n2+n=27-1, 3

(3<n<

). (©))
Proof is derived in Appendix.

Note that, Proposition 9 is based on the assumption that the
system is full, in other words, the number of sub-layer replicas in
each sub-group is equal.

Proposition 9 provides with a pragmatic method to design a
double-layer PBFT system with minimum C' In the next, we try
to find a direct function of C' vs. Z so that the communication
complexity of any double-layer system can be estimated analyti-
cally.

Proposition 3. When m and n are fixed by optimal allocation
and the system is full, the relationship between communication
complexity C' and rotal node number Z can be written as

C~1975. 3)
Proof is derived in Appendix.

Fig. 3 compares the analytical and estimated results from
Proposition 9 and Proposition 10 respectively and validates the
availability of equation (27).
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Fig. 3. Comparison of analytical and estimated results of communication
complexity for double-layer PBFT.



From Fig. 3 we can see that compared with original single-
layer PBFT, where C is quadratic of Z, the communication
complexity is greatly reduced in double-layer PBFT systems. For
example, the communication complexity of a system with 1000
nodes is reduced by two orders of magnitude, from 106 to 2x 10%.
Unfortunately, the communication complexity of the double-layer
PBFT system is still not linear against the node number; instead,
it is of % order.

In the following proposition, we focus on the setup of the
systems that are not full. In other words, the number of sub-layer
replicas in each sub-group may be different.

Proposition 4. If the double-layer system is not full, the commu-
nication complexity reaches a smaller value when the vacancies
are equally distributed into the sub-groups. The minimum value
can be reached by distributing vacancies to the minimum number
of sub-groups.

Proof is derived in Appendix.

Through double-layer PBFT, complexity can be significantly
lowered compared to the original single-layer PBFT. However,
the proposed system may cause a longer delay. In addition, with
such a topology, the security performance should be analytically
investigated to guide the actual system deployment.

4 SECURITY ANALYSIS
4.1 Security threshold analysis

In the double-layer PBFT, nodes in both layers participate in
the consensus reaching process. The first layer is a classic PBFT
model that tolerates no more than || faulty nodes based on
the conclusion Z >= 3f 4+ 1 [11]. In the second layer, as
there are m PBFT consensus groups, we need to analyze the
threshold of consensus-reached sub-groups required to ensure the
security and Liveness of the whole system. During the consensus-
reaching process, as the leader of each sub-group directly send
post — reply to the client, each consensus sub-group is regarded
as a whole. While any individual node in PBFT systems can be
divided into three categories, including consensus reached, not
reached and faulty node. A consensus network may only be in two
situations: consensus reached and not reached. In other words,
a consensus sub-group would also be in two situations, either
consensus reached or not. In this case, a system tolerates at most
L%J failed groups to reach consensus, i.e., the security threshold
of consensus-reached sub-groups is | % |.

To facilitate distributed systems and blockchain in different
environments, we analyze the success rate in two models under
malicious attacks. The faulty probability determined (FPD) model
is used when the probability of every single faulty node is fixed,
and the faulty number determined (FND) model is used when
the number of faulty nodes in the system is fixed. In these two
models, we are given different initial conditions to analyze the
security performance of the system. More specifically, we assume
the faulty nodes in the FPD model are independent with each other,
and they have the same faulty probability. Conversely, in the FND
model, the probability of whether one node is faulty depends on
other nodes because the total number of faulty nodes is fixed. In
addition, these two models have different application scenarios.
The FND model, which is more similar with the traditional PBFT,
is suitable for small systems where the number of faulty nodes can
be easily estimated. However, it is more appropriate to use FPD
model to evaluate the performance of large systems where node
failure is estimated by probability. For example, in manufacture,
we are often given the reject rate of one product instead of the
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specific number. Finally, though FPD and FND models have many
differences, the security performances of them approach the same
as the system scaling up, which will be shown in Section 4.2.

TABLE 1
Frequently used notations

Notation Definition

Pp consensus success rate in FPD model

Py faulty probability of nodes

P(A) probability of Event A

P(B|A) probability of Event B under the condition of Event
A happening

Py consensus success rate in FND model

K total number of faulty nodes

Pa consensus success rate in advanced model

Zx total number of nodes in X -layer system

Cx communication complexity of X -layer system

Tx threshold to guarantee success in X -layer system

4.1.1 Faulty probability determined

Let’s assume P is the faulty probability of each node. To find
out the relationship between the success rate Pp and Pf, we shall
first define two important conditions, under which consensus can
be reached.

o no more than | 2 | faulty nodes in the first layer (EVENT

3
A)
e 1o more than L%J groups fail in the second layer (EVENT
B)

In addition, Event A and Event B are not independent. If one
replica in the first layer is faulty, it will be impossible for the
corresponding sub-group to reach consensus. Therefore, we have
Pp = P(A)xP(B|A). Assume that there are 4 faulty nodes in
the first layer and 0 < ¢ < |2]. According to the cumulative
distribution function [31], we can get

PA) =S o (1 - ppymd pi @

i=0 ™ : f
The value of P(B|A) depends on the value of P(A). Equation
(4) indicates there are already % faulty nodes in the first layer. It
means ¢ out of m groups in the second layer share no chance
to reach consensus as they have a faulty leader. Therefore, there
can be at most | %5 | failed groups in the second layer. We assume
there are j groups, which do not have a faulty leader, fail to reach
m

consensus. 0 < j < | 2] — i. We have

P(B|A) = Pi(1— P (5)

0

<.
Il

P, represents the probability of a group, with a non-faulty leader,
failing to reach consensus. We assume there are g faulty nodes in
one single group. To make this group fail, L%J +1 < g < nsince
PBFT group tolerates up to L%J faulty nodes. Therefore, we have

— " g n—g
PQ_ZQZL%JHCsz (1_Pf) . (6)



We can get the function of the system consensus success rate Pp
against Py as follows

L] ) m—1i) pi
PP :Zi:O (O7n(1_Pf)( )Pf

L3l-i o M
> Pi(1— Py)mimd)),
j=0

To verify the closed-form expression derived, a simulation
is performed based on random sampling in MATLAB. In the
simulation process, we take the faulty probability Pr and node
number m, n as the input and use a random array consisting
m + mn numbers to represent the status of nodes. Each number
in this random array is either 1 or 0, representing faulty and non-
faulty node respectively. On top of that, we set that each array
element has a probability of P, to be 1 (faulty), otherwise it is
0 (non-faulty). In this case, by counting the faulty nodes in each
layer and sub-group and comparing the results with the thresholds,
we can determine whether the consensus can be reached or not.
Then, the above mentioned process is repeated over 10000 times
and the simulation success rate for one value of Py can be obtained
by taking the ration of success times to the total repeating times.
Finally, by increasing Py from 0 to 1, we can easily get the
simulation curve and compare it to the analytical result of the
closed-form expression. The simulation design of the FND model
is similar while the only difference is that FND takes the faulty
node number instead of faulty probability as the input.

Note that, the purpose of the simulation is to examine the
correctness of the derivations. Therefore, the complex peer-to-peer
communication process is temporarily ignored in the simulation
performed. However, we are also working on a system simulation,
which takes every communication and view change into consider-
ation, to further test the multi-layer PBFT system.

Fig. 4 shows clearly that the two curves match well, which
verifies the effectiveness of the analytical result.

T T

+  Simulation Result
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Probability of faulty nodes

Fig. 4. Analytical and simulation results for success rate in FPD model.
(m =n = 30)

4.1.2 Faulty number determined

In the FND model, we assume that there are K faulty nodes in
the whole system and aim to find the relationship between K and
the success rate Py. Meanwhile, we can use the same assumption
of event A and event B to calculate Py, Py = P(A)xP(B|A).
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Unlike the FPD model, P(A) and P(B|A) are calculated
using the hypergeometric model [32] since the FND model is
based on the prerequisite of a fixed number of faulty nodes. Thus,
we have 1 =

P(A) = ok 1.:30 C,.Ch . (8

m-+mn

Also, there should be at most |3 | — i failed sub-groups with

non-faulty leaders, which means at most | % | — i sub-groups have

more than L%J faulty nodes. However, in the FND model, the
number of faulty nodes in each group affects situations in the
other groups so that it will be extremely complicated to consider
m groups together. Therefore, a simplified binomial distribution
model on the group level is adopted, assuming every group has
the same faulty probability of FPs.

Py represents the probability of a group with a non-faulty

leader failing in the second layer. It can be calculated as follows

P(B|A) ~ Ply(1— Pp)™ 77, 9)

K—

g g

Cncmn—n—l
CcK

m+mn—1

Po2 = Zgztgm (10

Then we can get the probability Py against K as

K - m~mn
Cm+mn =0

(== m—i—j
Sy Pp(-Pp)mT),

Py =
1)

In equation (11), ZZLEOJ C? CE =i requires K — i > 0 since the
combinatorics of a combination number must be positive. When
K —1i>0,ie, K < [Z], the success rate can be simply

3
calculated as
1 K . .
o 2O CEL (12)

m~mn
m-+mn

T T

+  Simulation Result
Analytical Result | |

Success rate
o
o
T

I
IS
T

0 L L L
0.1 0.15 0.2 0.25 0.3 0.35 0.4

Proportion of faulty nodes

Fig. 5. Analytical and simulation curves for success rate in the FND
model. (m = n = 30)

The curves in Fig. 5 show that, in the high success region
where (Py > 0.85), the analytical curve matches the simulation
curve. When the success rate of the system is lower, there is a
slight difference between our calculation and simulation results.
The rationale behind this is that a part of the model (group level



in the second layer) is simplified from hypergeometric distribution
to the binomial distribution by using Py as a failure rate for
every group in equation (10). However, the error is negligible
and will approach zero as the total number of the nodes in the
system increases since the hypergeometric distribution approaches
the binomial distribution in large systems [32].

4.2 Fault tolerance evaluation

Comparing the FPD model and the FND model with different
network sizes, Fig. 6 shows that the curves of the two models
gradually concur as m and 7 increase.
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Fig. 6. FPD and FND models’ analytical results with different m and n.

From Fig. 6, it can also be observed that as m and n get larger,
the slope of the success rate curve approaches infinity around x =
% in both models. If we increase m and n to 500, the curve shows
a more obvious trend to step around Py = %, as in Fig. 7. The
rationale behind this is that for a scaled-up system, faulty nodes
are approximately evenly distributed. In this case, the proportion
of faulty nodes in the whole system and that in each sub-group are
very close. In other words, with the proportion of faulty nodes in
the whole system reaching around %, the corresponding proportion
within each consensus group also approximates % which is the
security threshold in original single-layer PBFT. Therefore, the
success rate steps to zero when the proportion of faulty nodes or
the faulty probability exceeds % Therefore, we have the following
proposition.

Proposition 5. The system tolerates a larger proportion of faulty
nodes when scaling up. The fault tolerance of two-layer PBFT
converges to % when Z goes to infinite.

Fig. 6 only compares the situations where m and n are
multiples of 3. We choose these special circumstances because
when the m and n are multiples of 3, the system provides better
security performance compared with others. This can be explained
by considering the threshold of faulty nodes within each group.
For example, two PBFT groups with 3f + 1 and 3f + 3 nodes
can both tolerate f faulty nodes at most based on the conclusion
in [11]. However, the ratio of maximum faulty nodes to the total
nodes in the first group is bigger than that in the second one.
Therefore, assigning m and n to be multiple of three makes the
ratio reaches its maximum. Bringing these groups together, the
whole system also shows better security performance. Moreover,
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Fig. 7. Analytical result of FPD model with m = n = 500.

when m is a multiple of 6, the security performance is even better
since we require at least half of the sub-groups to reach consensus.
This means two systems with m = 18 and m = 19, for example,
both tolerate 9 failed sub-groups at most. In this way, systems with
an even integer m hold a larger ratio of faulty nodes. Based on
these, we have the following Remark.

Remark. By assigning m and n to be multiples of 6 and 3
respectively, the fault tolerance performance can be improved.

4.3 Advanced system and security optimization

In this subsection, the advanced system is proposed as an
ideal and ultimate situation where the nodes in the two layers
are classified. We assume that nodes in the first layer are always
non-faulty, while nodes in the second layer have a probability of
Pf to be faulty. Note that, this is built under the assumption that,
by implementing view change whenever vulnerability is detected
in the first layer, after a long period, the nodes left in the first layer
are the ones with higher reliability. These nodes show more stable
performance and remain faithful for a certain period of time. The
consensus success rate of the advanced system can be calculated
as

%]

Pi=Y Pl(1-Pp)" 7, (13)
j=0

n
ng = ZQZL%J-&-IC%P]? (1 — Pf)n 97 (14)
where Py represents the faulty probability of second-layer nodes
and P, represents the consensus success rate of the advanced
system. Comparing the analytical result with the simulation results
in Fig. 8, we can see that the two curves concur. This proves the
analytical result is valid.

In the practical systems, it is always worth to know what the
determined security threshold is, i.e., to achieve 100% success
rate, what is the maximum faulty nodes. Unlike the single-layer
PBFT, the double-layer PBFT can be vulnerable if the faulty nodes
are randomly distributed. This is because that the first layer is
made up of one PBFT group consisting of a limited number of
nodes, and the system has no chance to reach consensus if more
than one-third of them are faulty nodes. In this case, as long as
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there are more L%J faulty nodes in the system, some specific

faulty node distributions will cause the system to fail. In other
words, the first-layer nodes have more weights than the second for
the final decision. However, as we mentioned in the introduction,
this topology is very useful in decentralized systems to balance
efficiency and security performance.

Fortunately, the determined security threshold can be improved
over the operation time. In the advanced system where there is no
faulty node in the first layer, the success rate stays at 100% until
the number of faulty nodes increases to [ 5 | x| 5 |. Note that the
intermediate states exist but not presented. Therefore, we have the
following proposition.

Proposition 6. To achieve 100% success rate, the maximum num-
ber of faulty nodes tolerated increases from | 73| to | 5| x| 5] if
the advanced system can be achieved.

However, this does not indicate that the consensus rate falls
immediately to O when this threshold is exceeded. As shown in
Fig. 8, the curve does not show a rapid decline until the probability
of faulty nodes reaches around 0.3. To guarantees 100% success
of consensus, number of faulty nodes can not be more than 1/6
of overall nodes. However, in practical deployments, especially
with wireless communication uncertainty in large systems, it is
very costly (and even impossible) to achieve a 100% success
of consensus. Thus, fault tolerance of the double-layer system
depends on the reliability requirement in different scenarios. For
example, in 5G where the reliability requirement is lowered to
99.999% [33], the statistical fault tolerance is much higher than %
according to Fig. 8.

5 X-LAYER PBFT SYSTEM

5.1 Communication complexity analysis of X-layer
system

X-layer PBFT system represents a general situation where
nodes in a network are allocated to more than 2 layers. The
consensus algorithm of ¢-th (¢ < X)) layer is inserted between the
commit and reply phase in ¢ — 1-th layer so that communication
complexity can be further lowered. Suppose in an X -layer system,
where every layer is full, the number of nodes in each subgroup

8

in the i-th of X-layer is m; + 1 (mg = 1). The total number of
nodes Zx in this X -layer system is

X a
a=1 \i=1

The communication complexity C'x of this X -layer PBFT system
is

15)

X
Cx =Y mi_ami_1(m; + 1)°,

=1

(16)

where m _1 is defined to be 1.

In this case, the minimum communication complexity of X-
layer system can also be transformed into a typical optimization
problem, which aims to solve the minimum value of equation (16)
under the restriction of equation (15). The method is similar to
Proposition 9, which is omitted here. Fig. 9 compares the com-
munication complexity of systems with the same number of nodes
but different network depth. It shows that lower communication
complexity can be obtained by dividing a system into more layers.
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Fig. 9. Communication complexity of PBFT and multi-layer systems.

Therefore, we infer that the minimum communication com-
plexity Cxmin will be reached if a system is divided into
maximum network depth X4, i.e., by allocating the minimum
number of 3 replicas into every sub-group. In other words, the
X'th layer contains 3% nodes in total. For given Z, X,,,qe can be
expressed as

Xmaz = logg (2Z +1)| — 1.

To analyze the communication complexity of this limiting case,
we suppose that Z is an integer that satisfies Z = 1 + 3 + 32 +
... + 3Xma=_This is to say, there are exactly 3 replicas in each
sub-group in each layer. In this case, C'x 4, can be calculated as

an

X’VYLG/T
Cxmin= »_ 37'(3+1) (18)
i=1
1 — 3Xmaz
167 — 16
= —3 (20)

So far, we have analyzed the communication complexity of multi-
layer PBFT when the network depth is maximized. During this



process, we make an assumption about the number of replicas in
each sub-group to explore the what the communication complexity
would approach when X continues to increase. The analytical
result shows the communication complexity of the X, -layer
system is lowered to 152=16 4 Jinear relationship with the node
number Z. Therefore, we have the following proposition.

Proposition 7. The communication complexity is further lowered
by increasing network depth and is in the range ofl.QZ% >C>
Lg_lﬁ. In other words, multi-layer PBFT system provides better
node scalability compared with the original PBFT.

However, It is worth mentioning that other performances such
as security and latency serve as a trade-off when reducing the
communication complexity. Detailed analysis is provide in Section
5.2 and Section 5.3 as follows.

5.2 Security analysis of X-layer system

Like the double-layer system, the security performance of the
X-layer PBFT system can also be optimized over operation time
by a proper protocol. In this case, the threshold T'x to maintain
the success rate at 100% is

X1
Tx = | 1% x LH’L‘=1 i

3 2

From equation (21), it can be seen that Tx < % and it drops

as X increases. In other words, by increasing the network depth,

the security performance is weakened while the communication

complexity is improved. This is because increasing layer number

leads to fewer node number in each layer, which makes the

system more vulnerable to randomly distributed faulty nodes. In

the practical scenarios, this trade-off should be considered when
designing multi-layer PBFT systems.

. Q1)

5.3 Latency analysis

Another trade-off when reducing the communication complex-
ity is latency, which will be analyzed in this subsection. In the
proposed multi-layer PBFT, we construct a hierarchical structure
to limit the peer-to-peer communication within each group or
layer. Meanwhile, it is inevitable that the system confirmation
delay is prolonged since the consensus reaching process is carried
out in each layer successively.

In fact, the confirmation delay would keep increase with
increasing network depth X. Assuming that each layer takes
average 4.4 seconds to reach consensus and propagate to the
next layer, the average propagation delay t,,q holds a linear
relationship with the network depth X, ie., t,pq = Xtgug.
Fortunately, if the protocol is used in the Internet, we can use
parallel routes and distribute different information through differ-
ent paths. In this way, though the consensus-reaching process still
goes through different layers, the delay within groups is reduced,
contributing to a lowered overall latency [34].

Conclusively, compared with original PBFT, the multi-layer
PBFT sacrifices certain system delay while providing low com-
plexity. Even though, compared with other consensus algorithms
such as PoW that has good scalability, the latency of multi-layer
PBFT is significantly lower. Therefore, the proposed system can
be regarded as a trade-off between system delay and scalability of
the existing protocols. Table 2 is provided to compare the perfor-
mances of different protocols and the proposed multi-layer PBFT.
As such, Considering the different demands of practical scenarios,
different consensus protocols could be adopted to provide optimal
performance accordingly.

6 THE PROTOCOL

In this section, we propose a practical protocol dedicated to the
double-layer PBFT, where replicas in the first layer are denoted as
r} (superscript 1 for layer number, subscript i for replica index).
7“} act as leaders for corresponding second-layer replicas (r?).
One leading ril and its corresponding Tfs, all together, form a
consensus group, resulting in a tree-like topology structure.

When each group reaches consensus, group members reply to
their leader instead of the client. Then the leader collects replies
and sends it to the client on behalf of that consensus group. The
client accepts the results only agreed by more than half consensus
groups. The protocol overview is illustrated in Fig. 10. Meanwhile,
there is a group configuration G P that describes the allocation
group members and their leader. It will be updated when the
network structure is changed. In brief, the new protocol inserts
successive pre — prepare, prepare, and commiat phases before
starting the commit phase in the upper layer.

6.1 Consensus flow
6.1.1 The client

A client c sends a request message [07 t, c]request to primary.
This request invokes an operation o with timestamp ¢. Timestamps
are ordered by time, so the stamp of later operation contains higher
values. The request is sent to the replica. The identity of the replica
is extracted from the view number contained in replies from
previous operations. On receiving the request, primary multicasts
messages using the protocol stated below.

All group leaders reply results to the client directly. The
poset — reply has the form [o,t,c,i,7, ¢, v, GPlposet—reply
where v is the current view number, ¢ is the replica number, 7
is the result of the execution, rc is the reply certificate and GP
describes the replicas allocation.

Assuming there are a number of m replicas in the first layer
and n in the second, and the number of faulty replicas in a
consensus group is f9 (to distinguish from f). If leaders have
received f9 + 1 matching valid replies from the same consensus
group, this group is said to have reached consensus. The network
reaches consensus when more than half of the groups have the
same replies. The client only accepts results replied from group
leaders when at least half of them are consistent.

6.1.2 First-layer protocol

In the first layer, the primary and m replicas form a consensus
group. When primary p receives a request M = [o,t, c]request
from client, it authenticates the request and client’s identity.
Then primary assigns a sequence number « to M. After that,
the primary steps into pre — prepare phase by multicasting
[M, d, o, V]pre—preparer Where d is the digest of M (super-
script is to distinguish pre — prepare! in the first layer from
pre—prepare? in the second layer). Primary multicasts messages
only among r'. Thus, only 7! reacts on pre — prepare'. The
propagation is restricted since the protocol runs layer by layer.

For pre—prepare, prepare and commsat messages, a replica
r} accepts the one with the same view v; the authenticity is
then verified; « is between watermark h and H. The watermark
is introduced to ensure a weak synchronization and defined in
Section 6.4.

With conditions above, a replica ¢ in the first layer accepts a
pre — prepare’ message from primary only when there is none
different request with the same view v and sequence number « is
accepted. Then it multicasts [d, «, 7, V]prepaml messages to all 7’2»1
in the first layer. It records both pre — prepare! and prepare’
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TABLE 2
Performance comparisons of the proposed and state of the art consensuses

Byzantine Communication
fault Security Latency . Scalability
complexity
tolerance
Original PBFT [11] Yes 3 Low 0(Z?) Low
RAFT [8] No i Low 0(Z) High
Hotstuff [30] Yes 3 Medium 0(2) High
Double-layer PBFT Yes equaFlon @) Medium 1.97% Medium
(proposed) equation (11)
Z
073 > > 162=16
Multi-layer PBFT . High (Increases with 1.923 2 C._ 3 .
Yes equation (21) (decreases with network High
(proposed) network depth) depth)

messages to its log. During the prepare phase, each r} replica
collects 2 f messages with matching sequence number «, view v,
and request M. With the received pre — prepare’ messages, they
form prepared — certificate!, which indicates a particular r}
replica has prepared the request.

For prepared 77, it multicasts [d, v, 1, V] commist and waits for
more than 2f + 1 matching commit' messages with the same
view, sequence and digest from different r! replicas. Received
messages form commit — certificate® (cct) and this request is
said to be committed on replica r}. Then the replica pauses the
execution and initiates another round of protocol in the second
layer as described in Section 6.1.3.

The committed replicas send [0,,%, 7, V] cpiy1 to their group
leader, i.e., the primary in the first layer. The primary confirms
that this group has reached consensus by checking more than half
of group members reply consistent reply' messages, including
itself. The group leader collects 7eply' and forms a reply-
certificate rc!. After that, this primary replies to the client with
[0,t,¢,i,7, 7!, v, GP)poset—repiy- Notice that it is not necessary
for primary to reply to the client on behalf of consensus, but we
require primary to do so to keep the algorithm the same on all
replicas in case a massive deployment.

6.1.3 Second-layer protocol

A committed ril multicasts new pre — prepare message to 2
within the same consensus group, where another round of PBFT
protocol is implemented. All group members reply to the leader in
a similar manner in Section 6.1.2 when the request is committed
again. For a replica 7"11, which acts as primary, it multicasts a similar
(M, d, a,v, cc]pre—preparez to 72 replicas in same consensus
group, where cc! is the commit—certi ficate!. The v, o, and M
are inherited from the previous process. A replica 77 in consensus
group will accept the request if the condition mentioned in the
first-layer protocol is satisfied, in addition to the presence of cc'.

On receiving valid pre — prepare® message, the pre-prepared
T? multicasts [d, a, 4, V]p,.epaTez messages to all T? in same
consensus group. It adds both pre — prepare? and prepare?
messages to its log. In the prepare? phase, each 72 replica
collects 2f messages with matching sequence number «, view
v, and request M. With received pre — prepare? message, it
forms a quorum prepared certi ficate?, which indicates that this
7‘? replica has prepared the request.

Then the prepared replicas 72 and their r} leader multicast
[d, @, i, V] eommir> and collect 2f + 1 matching commit? mes-
sages with the same view, sequence and digest form different ri2

replicas. These commit? form commit — certi fz'cateQ, and this
request is said to be committed. Replica then executes the message
which has been committed. After the execution, all group members
reply to the result to their group leader, and the leader replies to
the client in a similar manner in Section 6.1.2. The pseudocode
for protocol are described in algorithms 1, 2 and 3.

Algorithm 1 Primary Normal-case Pseudocode

while valid request! received=True do
if client identity authenticated=True then
mé—n.
multicasts pre — prepare! to r'.
end if
end while
while valid prepare! received=True do
if number of valid prepare! > 2f then
forms prepared — certi ficate®.
multicasts commit! to r!.
end if
end while
while valid commiit! received=True do
if number of valid commit! > 2f then
forms commit — certi ficate!.
end if
end while
while valid reply’ received=True do
if number of valid reply! >half of members then
forms rc'.
reply client with post — reply®.
end if
end while

6.2 Faulty primary elimination
6.2.1 Faulty primary detection

The most commonly applied condition for initiating a view-
change is by detecting whether the primary is responding, i.e., the
replicas keep a timer which will be reset each time a new request
is received. However, a faulty primary that assigns different
pre—prepare to different replicas will not trigger time-out. Thus,
we present a possible mechanism without a timer to detect faulty
primary nodes that multicast random messages during prepare
phase. Since one replica may skip several operations when the



Algorithm 2 7! Normal-case Pseudocode

while valid pre — prepare! received=True do
multicasts prepare! to p r.
end while
while valid prepare! received=True do
if number of valid prepare! > 2f then
forms prepared — certificate®.
multicasts commit! to .
end if
end while
while valid commit! received=True do
if number of valid commit' > 2f then
forms commit — certi ficate!.
multicasts pre — prepare? to subordinate 72.
end if
end while
while valid prepare? received=True do
if number of valid prepare? > 2f then
forms prepared — certificate?.
multicasts commit? to r2.
end if
end while
while valid commiit? received=True do
if number of valid commit? > 2f then
forms commit — certi ficate?.
reply primary with reply®.
end if
end while
while valid reply? received=True do
if number of valid reply? >half of members then
forms rc?.
reply client with post — reply?.
end if
end while

Algorithm 3 72 Normal-case Pseudocode

while valid pre — prepare? received=True do
multicasts prepare? to r! r? in same consensus group.
end while
while valid prepare? received=True do
if number of valid prepare? > 2f then
forms prepared — certi ficate?.
multicasts commit? to r? in same consensus group.
end if
end while
while valid commiit? received=True do
if number of valid commit? > 2f then
Forms a quorum commit — certi ficate?.
Send reply? to group leader.
end if
end while
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Fig. 10. Implementation flow chart for double-layer PBFT model.

connection is lost, we want the detection to be independent without
the prerequisite of total order and continuous sequence number «,
i.e., replicas accept discrete «v as long as it is consistently increas-
ing/decreasing. To facilitate understanding of the mechanism, we
first assume that the primary is not faulty. Since there are at most
f faulty replicas, the collected 2f + 1 messages contain f faulty
messages in the worst situation. And the rest f + 1 messages must
be obtained from non-faulty replicas; thus, those f + 1 messages
are identical. Those faulty messages (or the digest of the messages)
could be unmatched with each other. Or, the faulty messages
are identical, but those faulty messages are different from those



matching messages among non-faulty nodes. For simplicity, we
say that in the latter case, there are two versions of messages
in 2f + 1 collections, one kept among non-faulty replicas, and
another version is kept among faulty replicas.

When primary is non-faulty and each replica collects 2 f + 1
messages, the number of different versions 7, falls in the interval
2 and f + 1. That is because, in the worst case mentioned above,
each faulty replica multicasts different versions of messages,
resulting in f different versions among faulty replicas. Besides,
there is an additional version kept by f + 1 non-faulty replicas. At
the presence of faulty primary that multicasts random messages,
the messages in pre—prepare that received by non-faulty replicas
differ. In other words, n,, exceeds the upper bound f + 1, and the
primary is detected to be faulty. This condition, along with time
out, triggers the view — change phase.

6.2.2 View change

In conventional PBFT [11], replicas invoke view change in
prepare phase. Changes are made to adapt to our multi-layer
model. As shown in Fig. 1, a replica is the primary of its sub-
layer replicas. Thus, in this protocol, replicas in a specific layer
detect their faulty primary in the upper layer and invoke cross-
layer view change. Each replica, which suspects the primary to
be faulty, multicasts a view — change messages with the stable
checkpoint to new primary (the new primary may be determined
by election mechanism based on current view number). The new
primary decides whether to lunch new — view.

Suppose a replica is in layer L as a member for group K,
and notice the group leader is the group member of group in
layer L — 1. If it suspects the group leader is faulty for not
responding or deliver pre — prepare messages with invalid
sequence number, it stops accepting requests and starts view
change that moves the view of this group from v into v + 1
by multicasting [v + 1, o, C, P, t]yicw—change, Where ¢ is the
sequence number for the latest checkpoint for this replica and
C is the 2f matching certificate for this checkpoint. P is the
collection of prepare — certificate (2f + 1 matching prepare
requests) for each pre — prepare request that higher than a. 7 is
the identification of the sender.

If the new primary p in new view v + 1 has received 2f — 1
valid view — change messages from other group members. It
multicasts [v + 1, GP,, Olnew—view, Where the v is a set of
2 f matching viewChange — certi ficates, and O is the set of
pre — prepare messages than need to be multicasted for they
are failed to reach consensus in last view v. The sequence of
pre — prepare in O is ranging from the latest checkpoint know
to the new leader and the latest o in P. G P is the update of itself.
describes how p allocate its group member in layer L — 1 to the
rest members in group K. Member replicas accept and execute
a valid new view. Those mentioned above are similar to original
view-change protocol.

However, taking over the leader of group K in layer L
implies that this replica becomes the member of a group in layer
L — 1 (for instance, group .J). Thus, the primary p multicasts
[join,v,7, oin to group J after the view — change. The v
is view number for group J since it should remain unchanged
if there is no view change in J. p extracts view in J from the
commit — certificate that passed by the original group leader
from group K. Matching v and <y prove the validity. Then this
replica directly commits the current operation since it must have
been committed in layer L — 1, otherwise the consensus protocol
will not be executed in layer L. This join message informs the
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member in group J that there is a change of replica and group J
update local GP.

Also, a member in layer L is the leader in layer L + 1. To
reallocate its former members (since p is no longer their leader), it
multicasts [v+1, G, 7, i, T]redistribute to replica r where G is the
new designated group in layer L — 1 for replica . The replica r
then redirects itself to group G and update local G P. The replicas
governed by group K in layer deeper than L — 1 are reaching
consensus in seam sequence since they are (indirectly) lead by
group K. The effect of view change is limited.

To reduce the extra communication complexity and latency
introduced by this modified protocol, the redistribute messages
are embedded into GP in new — view message. Then it is
extracted by current members of group K and pass to their former
group in layer L + 1 by piggybacking in pre — prepare. Those
replicas in layer L + 1 redirect themselves before responding to
new pre — prepare. Thus, only the join message attributes to
extra communication expenditure which, in the two layer case, the
size m of layer 1.

To facilitate the assessment of view change complexity of our
double-layer scenario, suppose that the number of replicas in the
first layer is m, and for each group in the second layer is n (as
depicted in Fig. 1). Note that the view change can be triggered
from either the first layer or the second layer. First, we consider
the case that the view change is triggered in the first layer. As
described in the protocol, the first part of our view change process
runs within this layer (which is similar to original PBFT). For
this part, the complexity is O(m?). As one of the members in the
first layer is selected as the new primary, the extra complexity is
introduced by multicasting the redistribute messages to its group
in the second layer. Since the certificate is generated in the first
layer, the complexity of this part is O(m?n). The total complexity
is O(m3 +m?n).

Then we consider that a view change is triggered in one of the
groups in the second layer. Similarly, the complexity is O(n?) for
the first part. The extra complexity is introduced by multicasting
the join messages to the first layer. However, the certificate is now
generated in one of the groups in the second layer. For this reason,
the additional complexity is O(n?m). Then the total complexity
is O(n® + n?m).

For comparison, the complexities are O((m + mn)?) for the
original PBFT and O(m + mn) for HotStuff when considering
the same total number of replicas. It can be seen that in both first
layer or second layer triggered cases, the complexity of proposed
double layer PBFT is not as good as HotStuff, however, it reduces
the complexity in large scale when compared with original PBFT.

6.3 Operation synchronization

The precondition for entering the next phase does not require
synchronization across all replicas. Due to the loss of connection
or other reasons, one replica may skip some operations. Though
the consensus is still reached, the sequence number « is not
necessarily continuous.

But for clients who also access data from the network, oper-
ations are preferably synced on each replica. The asynchronous
replica can be detected by the discrete sequence number and the
reached watermark. A replica may extract the missing operations
by inquiring them from other replicas in real-time or at a constant
interval.

Once the replica decides to extract a missing operation from
the rest of the network, it multicasts [nc, 7, V]egiract—request-
If there are no fewer than 2f + 1 valid extract — reply, the
replica accepts the reply as its missing operation. For replica who



received extract — request, it replies [O, ¢, @, V]extract—reply if
the request is valid.

6.4 Garbage collection

The data recorded on replicas increase its size as the protocol
run. To discard unnecessary operations that have already reached
a consensus, we implement Castro’s [11] garbage collection.

Replicas multicast checkpoint messages with the sequence
number of latest committed operations. Sequence number with
f + 1 checkpoint (including its own) is seated as low watermark
h. To prevent a replica who encounters with the transmission delay
from going too far. A logic size L is set that the replica only
executes operation between h and H = L + h.

6.5 Safety and liveness

The group-wide operation is inconsistence with the original
PBFT. The network is weakly synchronised that the time ¢ for
a messaged been received after sending does not go infinity.
The byzantine replica is assumed unable to subvert cryptography.
The safety and liveness are retained within/across groups with
modified view change protocol. Suppose there are no more than
% of the nodes in a group are faulty, and the network is weakly
synchronised that the time ¢ for a messaged been received after
sending does not go infinity.

Since the protocol requires more than % replicas to communi-
ties before advanced into next operation (to ensure the number of
responses from non-faulty replicas is always greater than that from
faulty), there is at least one non-faulty replica overlap for two con-
secutive operations. All non-faulty replicas agree on each other,
then they agree on total order of operations, providing safety.
Also, the bound of faulty replicas indicates the protocol always
collects sufficient responses to proceed for liveness. The consensus
in upper layer is the precondition to invoke protocol in sub-
groups. Thus, safety is guaranteed across groups. The modified
view change protocol replaces faulty group leader. Thus, liveness
is guaranteed across groups. This consistency with PBFT in safety
and liveness within and across groups leads to consistency for the
whole network.

7 CONCLUSION

A scalable multi-layer PBFT mechanism is proposed to re-
duce the communication complexity of the original single-layered
PBFT. This paper proves that the communication complexity of
the proposed double-layer PBFT system is significantly reduced
to a minimum of C' ~ 1.9Z3 at system’s maximum optimized
capacity. To reach the minimum communication complexity, the
optimal values of m and n are proposed in Section 3.3. Moreover,
the analytical results of the security threshold show that the
success rate sinks significantly when the proportion of faulty nodes
exceeds % of the total. Also, the threshold which keeps success rate
at 100% rises from | % | to | 5 | x| | in advanced model. These
results show that the security performance of the double-layer
system is largely determined by the first layer and is improved over
operation time. Latency performance is also a trade-off. The con-
firmation delay increases with increasing network depth. Finally,
we expand the double-layer system to the multi-layer. We have
compared security performance and communication complexity
between double-layer and multi-layer systems. Results show that
communication complexity can be further lowered to a minimum
of 18Z2=16 3¢ the network depth is maximized to X4, at the

3
expense of certain security performance degradation.
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This paper provides guidance for multi-layer PBFT system de-
sign and performance analysis, which would serve as a foundation
for future research. Meanwhile, there are also limitations to be
improved. For example, a system model to differentiate nodes in
the first and second layer could be proposed as a trade-off between
FND/FPD and the advanced model. Also, experimental evaluation
of Proposition 7 would give a further insight into the performance
tradeoffs to help with the system design in different application
scenarios. Another potential topic is the deployment of multi-layer
PBFT system. It is worth to mention that some scenarios such as
in financial, are sensitive to both latency and scalability, thus more
advanced research should be conducted to solve the issue.

APPENDIX A
PROOF OF PROPOSITIONS

Proposition 8. For a double-layer PBFT system with m replicas
in the first layer and n sub-layer replicas in each sub-group, the
communication complexity C' to reach consensus is

C=(m+12%+mn+1)> (22)

Proof. In the consensus reaching process, every node in the
double-layer PBFT communicates within its group. As a result,
this system can be regarded as m + 1 separated PBFT groups.
Among them, m groups have n 4+ 1 nodes and 1 group has
m + 1 nodes. Based on the conclusion that O(Z?) times of
communications are needed for original single-layer PBFT with
Z nodes, the communication complexity of double-layer PBFT is
(m+1)2+m(n+1)=% O

Proposition 9. For a double-layer system containing Z nodes in
total, the minimum communication complexity can be achieved
when n equals to the nearest integer to the real positive root of
following equation:

nd 4302 4+n=27-1, 3<n< Z;4). (23)
Proof. The relationship among Z, n and m is
Z =14+m+mn. (24)
LetY = Z — 1, we have
Y
m:1+n, (n>3,m>3). (25)

n > 3,m > 3 because a PBFT group requires a minimum of 4
nodes. The communication complexity C' can be expressed as

Y 2

C (1+n+1) +Y(1+mn).
As Y is a constant, C is a function of n. AIZSO, The second-order
derivative of equation (26) equals to % + ﬁ, which
is always positive. The first-order derivative has a zero point.
Therefore, the value of C' decreases when n is small and increases
afterwards. The minimum value of C' can be reached at that zero
point of the first-order derivative.

Simplifying the equations, the optimal solution of n to obtain
the minimum communication complexity can be calculated by
equation (23). It can be proven that equation (23) has three real
roots, one of which is positive. Moreover, a solution which satisfies
3<n< % —1 exists when Z > 29. Therefore, the system has its
minimum communication complexity if n is the nearest integer to
the positive root of this cubic equation when Z > 29. Otherwise,
n = 3 is the solution. O

(26)



Proposition 10. When m and n are fixed by optimal allocation
and the system is full, the relationship between communication
complexity C and total node number Z can be written as

C~1975. 27

Proof. When a system is optimally setup, both C' and Z can be
expressed by polynomials containing m and n. However, it is
difficult to find out the relationship between C' and Z directly. To
solve this problem, intuitively, we first calculate the ratio of C' to
Z. Divide equation (22) by equation (24)

C _ (m+1)*+mn+1)?

= 28
7 1+m+mn (28)
~ mn? +m? + 2mn + 3m (29)
m 4+ mn
2 2 3
:n +m—+2n + (30)
1+n
m
~n+2+ —, 31
n

where m and n are allocated according to Proposition 9. To
simplify this ratio, we use equation (24) and equation (23) to

substitute “* by an algebraic expression of n only. Therefore, %
can be expressed as
AL +2 (32)
z" 2 "

In this calculating process, some constant terms are ignored. All
of the approximations hold when m > 3 and n > 3.

So far, we know that Z is a cubic function of n and C' =~
( ‘57” + 2)Z, so the function of C' vs Z can then be simplified
as C = kZ3, where k is a constant. By estimating k& according
to equation (23), the final relationship between C' and Z can be
written as equation (27). O

Proposition 11. [f the double-layer system is not full, the commu-
nication complexity reaches a smaller value when the vacancies
are equally distributed into the sub-groups. The minimum value
can be reached by distributing vacancies to the minimum number
of sub-groups.

Proof. Once n is determined according to Proposition 9, m is then
solvable by equation (25). Possibly the result is not an integer. In
this case, we round m up to the nearest integer and suppose that

Y +r=m(l+n), (33)

where 7 is the smallest positive integer to satisfy equation (33).
Note that, r also represents the vacancies to be distributed in
the system which is not full. In this way, since n is determined,
the problem of how to allocate the nodes into the sub-groups is
transformed into how to allocate these vacancies in the second
layer. To facilitate the subsequent derivation, we need to compare
the value of 7, n+ 1 and m first. Since r = [H—an x(14+n)-Y,
r < 1+ n. Also, by calculating the optimal solutions for m and
n, we have m > n + 1 for large systems, i.e., systems with more
than 100 nodes. Therefore, r < n +1 < m.

To begin with, we calculate the communication complexity
when the vacancies are equally distributed. Suppose that r va-
cancies are assigned into ry groups evenly (r = kri, k € D).
Then m — ry groups with n 4+ 1 nodes are generated, so are 71
groups with n + 1 — % nodes in the second layer. Hence, the
communication complexity C; will be

Cr=(m+1)2+m-r)n+1)2+rn+1- ri)?. (34)
1
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The difference between C; and C' in equation (22) is

C'—Cl:rl(n—i-l)Q—rl(n—i—l—rL)Q (35)
7'2 '
=2(n+1)r——. (36)
T1

From equations above, the difference between C and C' increases
as rp increases. In order to obtain the minimum value of C1, 71
should be as small as possible under the condition of n+1 — T’—l >
3.

However, if the vacancies are not equally distributed. For
example, when one of the 71 groups contains ﬁ +b@®B el

vacancies and another group contains TL — b vacancies. In this

case, the total communication complexity of these two groups
will be (n +1 — = — b2+ (n+1-— =+ b)? rather than
2(n+1— })2 where vacancies are equally allocated. By cal-
culating the élifference, the communication complexity result is
increased by 2b% compared with the situation where vacancies
are evenly distributed into sub-groups. This result also applies
when there are more than two groups with a different number of
vacancies. Therefore, assigning the vacancies into the sub-groups
equally gains lower communication complexity. O
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