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Data-driven neuroscience research is providing new insights in progression of

neurological disorders and supporting the development of improved treatment

approaches. However, the volume, velocity, and variety of neuroscience data generated

from sophisticated recording instruments and acquisition methods have exacerbated

the limited scalability of existing neuroinformatics tools. This makes it difficult for

neuroscience researchers to effectively leverage the growing multi-modal neuroscience

data to advance research in serious neurological disorders, such as epilepsy. We

describe the development of the Cloudwave data flow that uses new data partitioning

techniques to store and analyze electrophysiological signal in distributed computing

infrastructure. The Cloudwave data flow uses MapReduce parallel programming

algorithm to implement an integrated signal data processing pipeline that scales

with large volume of data generated at high velocity. Using an epilepsy domain

ontology together with an epilepsy focused extensible data representation format

called Cloudwave Signal Format (CSF), the data flow addresses the challenge of data

heterogeneity and is interoperable with existing neuroinformatics data representation

formats, such as HDF5. The scalability of the Cloudwave data flow is evaluated using

a 30-node cluster installed with the open source Hadoop software stack. The results

demonstrate that the Cloudwave data flow can process increasing volume of signal

data by leveraging Hadoop Data Nodes to reduce the total data processing time.

The Cloudwave data flow is a template for developing highly scalable neuroscience

data processing pipelines using MapReduce algorithms to support a variety of user

applications.

Keywords: electrophysiological signal data, epilepsy research, MapReduce, cloudwave signal format, epilepsy

and seizure ontology

Introduction

Electrophysiological signal data, such as electroencephalogram (EEG) and electrocardiogram

(ECG), are critical to both neuroscience research and patient care (Bartolomei et al., 2008;

Wendling et al., 2010). For example, EEG is recorded using electrodes placed on the surface

or inside the brain to record electrical activity, which include detection of seizure events,
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location of seizure, and seizure signal characteristics. EEG

signal data plays a key role in neurological disease treatment,

for example it is used as gold standard for identifying the

seizure onset zone in focal epilepsy patients during presurgical

evaluation (Rosenow and Lüders, 2001). Epilepsy is the most

common serious neurological disorder affecting 65 million

persons worldwide with about 150,000 new cases diagnosed each

year in the United States alone (Epilepsy Foundation, 2014).

EEG data is used to identify the specific brain region that

can be removed to reduce or eliminate seizure occurrences.

In addition to epilepsy, electrophysiological signal data is

also used in sleep and other neurological disorder research

(Redline et al., 2013). The growing sophistication of signal

recording hardware and signal analysis techniques, for example

development of epileptogenicity index using Stereotactic EEG

and MRI data for characterizing seizure onset zone (Bartolomei

et al., 2008), has significantly increased data management

challenges for signal data. The International Neuroinformatics

Coordinating Facility (INCF) aims to address some of these

datamanagement challenges, including development of common

data representation format and use of consistent terminological

system, through collaborative initiatives (INCF). However, the

existing neuroinformatics software tools have limited capability

to address these challenges and do not scale with increasing

volume of signal data to support user requirements (Schlögl,

2010).

For example, epilepsy patients are typically admitted for

a five-day period in an epilepsy monitoring unit (EMU)

to record electrophysiological signals from multiple channels,

which generates about 10--20 gigabytes (GB) of signal data.

The signal data is analyzed by epileptologists using standalone

signal visualization and analysis tools to detect clinical events,

for example start or end of seizures, changes in heart rate,

and signal characteristics during a seizure event (Lüders et al.,

2012). These manually identified clinical events are stored in a

separate text annotation file, whereas the signal data is usually

stored using the European Data Format (EDF; Kemp and Olivan,

2003). EDF is a de-facto standard for storing signal data with

associated metadata, such as recording details (duration of a

data record, transducer type) and the study information (patient

description), in the epilepsy community. However, EDF files

are not suitable for fast access to random segments of signal

data in response to user queries, combining data from different

channels to compose a signal montage, and efficient network

transfer to remote user applications (e.g., signal visualization). In

addition, the separate storage of clinical event annotations makes

it difficult to ensure synchronized changes with signal data,

coordinated data transfer, and integration with user applications

(Schlögl, 2010).

Existing signal data management approaches use multiple

software programs and data processing scripts that: (a) require

manual intervention at each step; (b) are difficult to maintain

and re-use across projects; and (c) have significant limitations

in terms of scalability as well as efficiency. For example, it takes

approximately 8 h to process a single EDF file using existing

signal processing tools and about 3--4 days to process all signal

data recorded during a single patient visit to the EMU. The

limitations of existing data processing tools are exacerbated by

the increasing volume of signal data collected by sophisticated

techniques, for example use of intracranial electrodes to record

signals at a high resolution. The large volume and high velocity

(rate of data generation as well as need for fast analysis) clearly

identify signal data as an example of ‘‘clinical Big Data’’ (Agrawal

et al., 2012). For example, the EMU at the Case Western

Reserve University Neurology Department has generated 20

terabytes (TB) of data in the past 3 years and the rate of data

collection is increasing each year. This requires the development

of highly scalable signal processing and storage techniques using

distributed and parallel computing infrastructure that can keep

pace with signal Big Data.

In addition to the volume and velocity of signal data,

there is a clear need to address the challenge of variety in

signal data, which is often generated at different sites using

disparate recording protocols. The use of heterogeneous terms

to describe clinical events and signal metadata also make

it difficult to ensure consistent interpretation of signal data

annotations and support data sharing or integration. Consistent

use of terminology is specifically important in the epilepsy

community due to the well-known challenges in epilepsy

classification with its inherent complexity and requirements

of different stakeholders (Berg et al., 2010; Lüders et al.,

2012). The role of well-defined terminological system has also

been highlighted to enhance the secondary use of biomedical

data (Holdren and Lander, 2010). A common terminological

system modeled using formal knowledge representation

language, for example domain ontologies, will support easier

data sharing and development of re-usable neuroinformatics

tools.

Related Work
The existing work on electrophysiological signal data

management can be divided into two categories: (a) Data

Representation Formats; and (b) Data Processing Tools.

Although there is no existing standard for signal data

representation, there are a large number of data formats

developed by instrument vendors, researchers, and different

neuroscience projects (Schlögl, 2010; Sobolev et al., 2014a). Signal

data representation formats need to meet the requirements of

multiple stakeholders and address multiple challenges, including

the inherent complexity of signal data such as different sampling

rates and scaling factors (Schlögl, 2010). The General Data

Format (GDF), which is part of the BioSig platform (Vidaurre

et al., 2011), was proposed to meet several of these requirements,

such as representing all physical units of the signal and multiple

binary data types (Schlögl, 2006). Similarly, the Neuroscience

Electrophysiology Object (NEO) is a well-known object-

oriented data representation format with extensive Application

Program Interface (API) support implemented in the Python

programming language (Garcia et al., 2014). The NEO format

supports representation of both signal metadata, for example

sampling intervals and brain location for signal recording

together with the signal data.

The German Neuroinformatics Node (G-Node) integrates

the NEO format with the open metadata Markup Language
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(odML; Grewe et al., 2011) to define the GNData format for

use in a data management platform (Sobolev et al., 2014b).

In addition to the data format, the GNData signal data

management platform aims to develop a common storage

layer with a generic API based on Representation State

Transfer (REST) web services for signal data annotation and

access control (Sobolev et al., 2014a). The GNData platform

also uses the Hierarchical Data Format (HDF5) (Hierarchical

Data Format (HDF5), 2014), which has generated a lot of

interest in the neuroinformatics community as a potential

common representation standard, to store the signal data. The

INCF dataspace is a cloud-based signal data storage platform

that supports exchange and storage of signal data using the

Integrated Rule-Oriented Data System (iRODS) software (INCF

International Neuroinformatics Coordination Facility (INCF),

2014). The Carmen project has developed a workflow tool to

support analysis of neuroscience data in a virtual laboratory using

a library of services and tools based on the Neurophysiology Data

translation Format (NDF; Weeks et al., 2013). The Neuroscience

Information Framework (NIF) has created an ontology-based

resource describing many neuroscience terms, for example

diseases and brain anatomy, which can be used as starting

point for reconciling terminological heterogeneity (Imam et al.,

2012).

Some recent projects have identified the need to develop a

neuroscience domain ontology to standardize the terminology

used for signal data annotation (Mouček et al., 2014). Ontologies

are widely used as reference terminology in the biomedical

community to standardize terms and support knowledge

discovery over ontology-annotated data (Ashburner et al., 2000;

The National Center for Biomedical Ontology, 2014). However,

the proposed Ontology for Experimental Neuroscience (OEN)

is not publicly available for review and evaluation at present. In

addition, there is no available documentation demonstrating the

use of OEN in any existing project, including the EEG/ERP portal

(Mouček et al., 2014). At present, we are not aware of any existing

work that uses an ontology-based scalable computing approach

to develop an integrated data flow for signal processing, which

addresses the three challenges of volume, velocity, and variety in

signal data management. We describe the Cloudwave data flow

in this paper that aims to address these challenges by using a

MapReduce-based signal processing algorithm together with an

epilepsy domain ontology for signal data annotation.

Cloudwave Project: Managing
Electrophysiological Signal Big Data
The Cloudwave project is being developed as part of a

multi-center epilepsy research project to study the potential

biomarkers of sudden unexpected death in epilepsy (SUDEP;

Lhatoo, 2014) The three primary aims of the Cloudwave

project are to: (a) develop scalable neuroinformatics data

processing and storage approaches using parallel programming

over distributed computing infrastructure; (b) use domain

ontology together with flexible data representation format for

data integration and analysis; and (c) develop a Web browser-

based visualization and query interface to support multi-

center collaborative research. The Center for SUDEP Research

(CSR) has been funded by the U.S. National Institutes of

Neurological Disorders and Stroke (NINDS), which brings

together domain expertize in human and animal models of

epilepsy to advance SUDEP research (Lhatoo, 2014). The CSR

builds on the earlier Prevention and Risk Identification of

SUDEP Mortality (PRISM) project, which involved EMUs at the

University Hospitals Case Western Reserve University (CWRU),

the Ronald Reagan Medical Center (University of California, Los

Angeles), the Northwestern Memorial Hospital (Chicago), and

the National Hospital for Neurology and Neurosurgery (London,

UK) (Lhatoo, 2011).

In earlier work, we have described the development of

the Cloudwave signal visualization user interface (Jayapandian

et al., 2013b) and initial results from using parallel computing

approach to extract channel-specific signal data from EDF files

(Jayapandian et al., 2013a). In this paper, we describe:

1. Development and evaluation of an integrated signal

data processing pipeline implemented using MapReduce

programming approach to support user application, such as

signal visualization;

2. Define a flexible signal data partitioning technique that

support processing and transfer of large volume of signal data

in a distributed computing environment; and

3. Development of a new epilepsy-focused Cloudwave Signal

Format (CSF) that uses domain ontology for signal data

annotation and is compatible with existing representation

formats, such as HDF5 and NEO.

The rest of the paper is organized as follows: Section Material

and methods describes the components of the Cloudwave

data flow, including data partitioning technique, MapReduce

algorithm, the CSF, and the epilepsy domain ontology.

Section Results describes the results of our evaluation that

demonstrates the flexibility of the Cloudwave data partitioning

technique and scalability of the data flow. Section Discussion

discusses the applicability of the Cloudwave data flow in

existing neuroscience data management projects and the wider

neuroinformatics community followed by conclusion in Section

Conclusion.

Material and Methods

Figure 1 provides an overview of the different phases of

neuroscience data generation and management in an EMU,

which involves data acquisition, storage, and analysis using

multiple informatics tools. As part of the PRISM project, we

have developed an ontology-driven patient information capture

system called OPIC (Sahoo et al., 2012) and a clinical text-

processing tool for clinical documents called EpiDEA (Cui

et al., 2012). The Cloudwave project is complementary to

these tools and aims to process EDF files into self-descriptive

objects, which can be stored in a high performance distributed

file system and support fast access to random segments of

signal data. The data flow is initiated after a user deposits

one or more EDF file in a specified folder location, which is

regularly polled by a ‘‘server process’’. The second phase of

the data flow partitions the signal data into smaller fragment
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FIGURE 1 | Data acquisition and management in Epilepsy Monitoring

Unit (EMU). Multiple modalities of data are generated during patient stay in an

EMU, including electrophysiological signal data. Three neuroinformatics tools

have been developed as part of the PRISM project: (a) OPIC for patient

information collection, (b) EpiDEA for clinical text processing of discharge

summaries and related documents; and (c) Cloudwave for managing signal

data. The Cloudwave data flow uses MapReduce and distributed file system to

store and process signal data for scalability. The data processed and generated

from the Cloudwave data flow is consumed by a Web browser-based signal

visualization interface.

that is used by the MapReduce algorithm to generate CSF data

objects. The CSF data objects consist of signal data, metadata,

and epilepsy domain ontology-based signal annotations. In

the final phase, CSF data objects are stored in a high

performance distributed file system that supports different

user applications, such as the Cloudwave signal visualization

interface.

Scalable Electrophysiological Signal Data
Processing Using MapReduce
MapReduce is a well-known and widely used parallel

programming approach for large-scale data processing and

analytical tasks in Web search engines and scientific data

processing (Dean and Ghemawat, 2010). The MapReduce

approach uses a simple two-step programming model consisting

of the ‘‘map’’ and ‘‘reduce’’ functions for data processing and

aggregation respectively. A map function generates a set of <key,

value> pairs for each input data record, which are grouped into

output records based on a common key. A partition function

assigns each output record with common key to a reducer

function that aggregates all values with common key and

generates the final output record. MapReduce algorithms are

usually implemented with multiple map and reduce functions

that are executed on different computing nodes. A shuffle

function transfers the output records from map functions to

appropriate reduce functions based on the mapping of keys

to reducers by the partition function (Dean and Ghemawat,

2010).

This two-step programming approach can be generalized

to process any type of data and it can be executed multiple

times for multi-step data processing workflows. MapReduce

algorithms are usually implemented over distributed file system,

such as the open source Hadoop Distributed File System

(HDFS; Shvachko et al., 2010). HDFS is a high performance

file system deployed in a distributed computing platform that

uses data replication and parallel file operations to support

reliable storage and fast access to large volumes of data. In

contrast to traditional desktop file system, HDFS is designed

to manage large volumes of heterogeneous data and it can

easily scale with increasing volume of data by adding new

computing nodes as required. The Cloudwave data flow leverages

these features of the open source Hadoop technology stack to

efficiently process large volumes of signal data and support

reliable storage.

Signal Data Processing and Flexible Data Partitioning
Technique
Signal visualization applications usually extract and render

signal data from a single channel or group of channels,

which constitutes a signal montage. For example, six standard

montages (M1 to M6) are used for epilepsy signal data analysis.

However, an EDF file stores signal data in contiguous set

of samples recorded from all channels in a given session

(also called EDF Data Record), which makes it difficult to

access random signal fragments and extract data for specific

channel or montage-specific channel data. In addition, signal

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2015 | Volume 9 | Article 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


Jayapandian et al. Scalable signal processing using MapReduce

FIGURE 2 | Cloudwave data flow. EDF files generated by signal

recording instruments are deposited in pre-specified folder, which is

regularly polled by a daemon process. If one or more EDF files are

detected, the Cloudwave data flow follows multiple steps: (1) in the

pre-processing phase signal data is partitioned into fragments of specific
time duration (epoch) and stored in a new self-descriptive structure called

EDFSegment, (2) in the second phase, an EDFSegment method is invoked

to store signal data in channel-oriented order for easier composition into

signal montages, (3) in the third phase, the signal data are converted from

binary to short integer format and from digital to physical values for use by

the Cloudwave signal visualization interface, (4) in the third phase, the

EDFSegments are transformed in the Cloudwave Signal Format (CSF) data

objects, which are aggregated based on original EDF file identifier in the

last phase. The CSF data objects can be efficiently transferred over the

network to the Cloudwave signal visualization module as compared to the

original EDF files.

analysis and visualization applications often require integrated

access to clinical event annotations, which are stored separately

from the EDF file. The Cloudwave data flow addresses these

challenges as well as supports the use of ontology-based

annotation by implementing data pre-processing, partitioning,

and transformation steps (Figure 2 illustrates the Coudwave data

flow). In the first step, the data flow extracts and integrates

the signal metadata with clinical event annotation into a single

data object. In the next step, the signal data corresponding

to each recording channel is extracted from EDF files and

integrated into a channel-specific signal data fragments. The data

flow transforms these data fragments into CSF with mappings

between the clinical event annotation and terms modeled in the

epilepsy domain ontology.

In the final step, the data flow converts the signal data

stored in binary format to short integer and from ‘‘digital

values’’ (generated by analog to digital signal converter) to

‘‘physical values’’ (physiological values) to meet the requirements

of the Cloudwave signal visualization interface. These data

flow steps are parallelized using MapReduce programming

approach. An initial implementation of the data flow used a

single EDF file as input to the MapReduce algorithm, which

could not be processed on the CWRU Hadoop cluster due to

lack of adequate memory in the computing nodes. A Hadoop

cluster consists of a single Master Node and multiple Data

Nodes, which execute the computational tasks in a MapReduce

algorithm (based on a master-slave configuration). The large

volume of signal data in an EDF file (about 1 GB) exhausted

the available memory on individual Data Nodes leading to

memory error. The Hadoop Java API allows partitioning the

input data into smaller sized datasets, which can be distributed

and processed in multiple Hadoop Data Nodes. However,

there is no existing technique to partition EDF files, which

requires partitioning the signal data into appropriate sized

fragments with the associated signal metadata and clinical event

annotations.

The Cloudwave data flow implemented a new ‘‘EDFSegment’’

data structure to address this requirement. An EDFSegment

object (Figure 3) consists of the clinical event annotations, study

metadata, and metadata corresponding to each channel together

with the fragments of signal data. Each fragment of signal data

corresponds to a single ‘‘epoch’’ of specific time duration, which
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FIGURE 3 | EDFSegment and CSF object. During the pre-processing

phase, the signal data from study metadata, channel-specific metadata

from EDF file is integrated with clinical event annotations and stored with

partitioned signal data (fragments corresponding to 30 s epochs). The

total number of fragments per EDFSegment is a configurable parameter

in Cloudwave data flow that can be adjusted according to available

memory in the Hadoop Data Data Nodes. In the first phase of the

MapReduce algorithm, the signal data stored as EDF Data Records are

transformed into channel oriented data. After additional data processing

steps to support the Cloudwave signal visualization module, the CSF

data objects are created using the signal data partitioning scheme of the

EDFSegments.

is a configurable parameter in Cloudwave data flow (30 s is

the default duration). A signal fragment consists of multiple

EDF Data Records (a Data Record is usually of 0.1 s duration

Kemp and Olivan, 2003). The number of signal fragments in a

single EDFSegment object is also a configurable parameter in

Cloudwave, which is specified according to the available memory

resources on individual Hadoop Data Nodes. The EDF Segment

objects are generated from EDF files during the pre-processing

phase, which allows the Cloudwave data flow to flexibly change

the volume of data assigned to each Data Node for successful

execution of the MapReduce algorithm.

MapReduce Algorithm for Processing Signal Data
The map and reduce functions require input data to be

structured as <key, value> pairs. The Cloudwave data flow

generates a unique key for each EDFSegment object based

on the file identifier and the fragment identifier with the

EDFSegment object as value. The map function implements the

data processing steps in the Cloudwave data flow over multiple

Hadoop Data Nodes, which have one or more EDFSegment

objects. The EDFSegment object keeps track of the EDF Data

Records, the order of signal fragments, and the order of channel

recording, which is converted into structural metadata in the CSF

data objects. The Cloudwave data flow uses the EDFSegment

object to store and transfer signal data across intermediate

processing steps (Figure 3 illustrates the internal structure of

the EDFSegment object before (a) and after the data processing

steps (b)). The output record of the map function uses the

channel identifier and the EDFSegment identifier as the key and

the CSF file as the value, which is used as the <key, value>

pair for the next phase of reduce function. The reduce function

uses the channel identifier as the key to aggregate all fragments

of signal data corresponding to each channel and generates a

single CSF object (the details of CSF are described in the next

section).

The use of MapReduce algorithm together with HDFS to

implement the Cloudwave data flow has multiple advantages,

including:

1. Scalability: The use of effective data partitioning techniques

and MapReduce algorithm allows the Cloudwave data flow

to leverage multiple Hadoop Data Nodes and scale with

increasing volume of data.

2. Speedup: The parallelization of the data processing steps also

allows the Cloudwave data flow to significantly reduce the

total time taken to process signal data.

3. Reliable storage and fast access: The use of HDFS for storing

the CSF files allows the Cloudwave data flow to use the HDFS

data replication feature for reliable storage and parallelized

read feature for fast access.

We demonstrate the scalability of the Cloudwave data flow

in Section 3 (Results) using de-identified signal data generated

at the CWRU EMU. In the next section, we describe the

CSF that uses the epilepsy domain ontology for signal data

annotation.

The Cloudwave Signal Format (CSF) with
Ontology-Based Semantic Annotation
The CSF is an extensible representation format based on

the Javascript Object Model (JSON; Crockford, 1999) that

is designed to address the specific data storage and analysis

requirements of the epilepsy research community. In addition
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to epilepsy, CSF can be extended with new data and metadata

fields to meet the requirements of other neuroscience and

clinical research domains, for example CSF can be used to store

polysomnography (PSG) data in sleep research. CSF consists

of two primary information elements: (1) signal metadata; and

(2) signal data, where the metadata element is divided into

three sub-elements, namely: (a) study-specific metadata, (b)

channel-specific metadata; and (c) clinical event annotations.

Each information element in the signal metadata section uses a

nested object structure of ‘‘attribute-value’’ pairs with arbitrary

levels of nesting based on application requirements. A CSF

object may be composed of additional CSF objects to support

multiple-levels of granularity (e.g., all signal recording of patient

over multiple visits), which is not supported in many existing

signal data representation formats. CSF objects can be processed

by both object model-based parsers and streaming JSON API

parsers, which are now part of standard Java (EE 7) specifications

(Java API for JSON Processing (JSR 353), 2014). The JSON

format is similar to the eXtensible Markup Language (XML) with

the flexibility to represented complex nested data but it requires

significantly less space as compared to XML (Crockford, 1999).

Figure 3 illustrates an example of CSF object with signal

metadata fields, epilepsy ontology annotations used to represent

clinical events, and fragments of signal data. Further, the

CSF object stores ‘‘structural’’ information (derived from the

EDFSegment class) for the each fragment of signal data,

including the start and end time of recording, the sequential

order of each fragment, and data type of the signal (binary or

integer). CSF supports random access to specific fragments of

signal data (based on the associated clinical events) by using

the structural information, the signal metadata, and the clinical

annotation fields. The CSF object can be used to store a single

EDF file or can be partitioned into smaller-sized CSF objects with

a variable number of signal fragments per CSF object (similar

to EDFSegment) based on the requirements of user applications

or available storage resources in HDFS. The ordering of signal

fragments in a CSF object is flexible, for example it can be

ordered in channel-oriented order or record-oriented order

(similar to EDF Data Records). The structural information in

CSF keeps track of the ordering format. The CSF representation

model is designed to be compatible with existing signal data

representation formats, specifically the HDF5 representation

format.

Interoperability Between CSF and Existing Signal
Representation Formats
The nested representation mode of CSF is similar to the

hierarchical representationmodel used inHDF5, which is rapidly

emerging as a popular representation format for neuroscience

data. It is important to note that CSF is not proposed to be

a generic neuroscience data model and is designed to address

specific data annotation, storage, and query requirements for

epilepsy and related neurological disorders. For example, CSF

supports combining random signal fragment from specific set

of signal channels to construct a customized montage, which

may not be required in other neurological disease domains.

HDF5 consists of two primary structures namely, groups and

datasets, which may have a list of attributes that describes user-

defined information about the groups or datasets. Similar to the

CSF model, the HDF5 attributes use a <name, value> structure

to represent the attribute (although CSF uses this approach

to represent the data objects also). The HDF5 structure stores

multiple-levels of metadata information that can be used to

interpret the data stored in a HDF5 file and pointers to other

metadata that may include data annotations. This integrated

storage of different types of metadata together with data is also

similar to the approach used in CSF, which stores three categories

of signal metadata together with signal data (described in the

previous section).

The HDF5 specification describes three storage layout

schemes to store the data on disk namely, contiguous, compact,

and chunked. The CSF data model does not specify a data

storage layout scheme as it relies on the underlying file system,

such as HDFS, to store the data. The use of ontology-based

terminology to annotate signal data in CSF is an important

feature, which makes it easier for software applications to

accurately and consistently interpret signal annotations. In

contrast to traditional use of free text annotation of signal data,

the ontology terms are well defined in a formal knowledge

representation language. The HDF5 does not describe the use

of ontology terms for data annotation, although it is possible

to re-use and add CSF <name, value> pairs to HDF5. Hence,

this comparison of the HDF5 and CSF structures demonstrates

that CSF can be considered as a specialization of HDF5 for the

epilepsy domain and it will allow the Cloudwave platform to

interoperate with tools that support HDF5.

The NEO initiative is developing an object-oriented memory-

based model with APIs to add and update neurological data

using python libraries (Garcia et al., 2014). The NEO object

model consists of 14 classes that are categorized as ‘‘data

objects’’, ‘‘containers’’, and ‘‘grouping objects’’. However, unlike

CSF the NEO APIs are implemented in Python and are

focused on Python libraries for generic neuroscience data. In

addition, the default NEO model does not support ontology-

based annotation and data partitioning, which is necessary for

use in distributed computing infrastructure. Similar to HDF5,

the NEO model consists of both data and metadata elements

with <key-value> pairs and it clusters together data into

‘‘segments’’ and ‘‘blocks’’ (types of containers), which make it

interoperable with CSF. Similar to CSF structural information,

the NEO model also supports assertions of links between

objects and implicit structural links between ‘‘container’’ and

‘‘objects’’. The NEO API currently supports interoperability

with HDF5, which can be extended to support CSF objects for

epilepsy focused applications and parallelized data processing

workflows.

Semantic Annotation Using Clinical Events Modeled
in the Epilepsy and Seizure Ontology
A domain ontology uses formal knowledge representation

language to model domain-specific terms that can be used

as a standard reference terminology for annotating data and

allow software tools to accurately interpret the annotations

(Bodenreider and Burgun, 2009). Biomedical ontologies modeled
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FIGURE 4 | Epilepsy and Seizure Ontology (EpSO) class hierarchy.

EpSO models 1350 classes related to epilepsy neurological disorders,

including the clinical event terms used to annotate signal data. The class

hierarchy of EpSO allows software application to use reasoning to improve

the quality of query results and is used in cohort query user interface called

Multi-Modality Epilepsy Data Capture and Integration System (MEDCIS).

The EpSO classes are used as reference terminology for signal data

annotation in the Cloudwave data flow, which reduces terminological

heterogeneity and facilitates data sharing and integration across epilepsy

informatics tools.

using the description logic-based Web Ontology Language

(OWL2; Hitzler et al., 2009) have been widely used for

consistent annotation of data, support data integration, and

enable knowledge discovery (Bodenreider and Stevens, 2006).

We have developed the Epilepsy and Seizure Ontology

(EpSO) as a reference terminology for epilepsy domain that

can reduce terminological heterogeneity in epilepsy-focused

neuroinformatics software tools. The EpSO domain ontology

was developed to model multiple aspects of epilepsy, including

the epilepsy syndromes, etiology, medication, seizure features,

paroxysmal events, and clinical events used to annotate signal

data (Sahoo et al., 2014). EpSO currently models 1350 classes

with properties to represent domain-specific constraints and

metadata information about the classes, which can be used

by neuroinformatics tools. For example, EpSO classes are

extensively annotated with free text labels describing user-

friendly description of the classes, commonly used alternate

labels of the class, and acronyms (e.g., ‘‘Generalized Epilepsy

with Febrile Seizure Plus’’ is annotated with its acronym

‘‘GEFS+’’).

EpSO re-uses classes from many existing biomedical

ontologies and terminology systems, such as the Foundational

Model of Anatomy (FMA; Rosse and Mejino, 2003), RxNorm

(Nelson et al., 2011), and the Neural ElectroMagnetic Ontologies

(NEMO; Dou et al., 2007). This allows EpSO to be interoperable

with existing biomedical ontologies. The current version

of EpSO models about twenty clinical events that are used

to annotate signal data, which can be broadly divided into

categories of epileptic seizures, lateralizing signs, and EEG

patterns. The clinical and EEG onset/end of seizures, EEG

suppression, pre-baseline and return to baseline are modeled

as subclasses of epso:EEGEvent (epso: represent the EpSO

namespace and resolves to the Uniform Resource Identifier

(URI)).1 The classes describing the onset and end of specific

EEG patterns, such as epso:ContinuousSlowAcitivity and

epso:IntermittentSlowActivity, are modeled as subclasses

of the epso:EEGPattern, which is also the parent class of

epso:EEGEvent.
The occurrence of lateralizing signs (e.g., ‘‘Sign of Four’’)

and motor seizure events (e.g., ‘‘Clonic Seizure’’ and ‘‘Tonic

Seizure’’) are modeled as subclasses of epso:ParoxysmalEvent

and epso:SeizureFeature respectively. Figure 4 illustrates a part

1http://www.case.edu/EpSO.owl
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of the EpSO class hierarchy modeling the clinical events. The

EpSO class URI is used in the CSF files as signal annotations

and describe the clinical events associated with the signal

recordings. The EpSO class definition together with annotation

properties, such as synonyms and text description (e.g., GEFS

+ described above), enable the Cloudwave signal visualization

interface to reconcile terminological heterogeneity in signal data

generated from disparate sources. EpSO can be extended to

model additional neurological disorders for annotating HDF5

objects, which will ensure use of standardized terminology

instead of unstructured text in neurological data annotation.

In addition, the OEN ontology can be mapped to EpSO and

re-use epilepsy-specific terms to facilitate interoperability of

OEN compliant tools with existing EpSO compliant software

tools.

Integration of Cloudwave Data Flow with Storage
and Signal Visualization Application
The primary use of the Cloudwave data flow is to support

integrated processing of signal data generated from recording

instruments and generation of CSF objects that can be

directly used by user applications, such as the Cloudwave

signal visualization module. The Cloudwave signal visualization

interface is implemented in a Web browser that can be used

by researchers from multiple institutions to access and visualize

signal data in collaborative research projects. In contrast to

existing signal visualization tools that need to be installed on

individual computers, the Cloudwave visualization interface can

be accessed over any Web browser (client side computation).

However, a Web browser is a resource constrained platform

and cannot store or process large volume of signal data (e.g.,

converting binary to integer format and digital to physical

values), which will lead to significant delay in the response time

of the visualization interface. These challenges are effectively

addressed by using CSF objects (consisting of fragments of signal

data) instead of EDF files. The configurable parameters of the

Cloudwave data flow in terms of number of signal fragments

per CSF object and duration of an epoch enable the signal

visualization interface to modify the volume of signal data

transferred to Web browser.

In previous work, we have demonstrated the advantages

of transferring fragments of signal data corresponding to the

six standard montages over the network as compared to an

unpartitioned EDF file (Jayapandian et al., 2014). In addition,

the CSF object stores signal data in integer format as physical

values (described in Section Signal Data Processing and Flexible

Data Partitioning Technique), which significantly reduces the

data processing task of the Web browser. The processing of

EDF files to generate channel-specific CSF objects was found

to improve the response time of the Cloudwave visualization

interface. In addition, the total time taken to transfer the signal

data fragments with associated metadata as well as clinical

event annotation and rendering of the signal data on the Web

browser interface was found to be consistently less for signal

data fragments (stored in CSF objects) in comparison to EDF

files (Jayapandian et al., 2014). The signal visualization interface

also used the annotation properties of EpSO classes to display

clinical events as human readable text on the signal data. As

part of our ongoing work, we are evaluating the performance

of the ontology-driven query approach in the Cloudwave signal

visualization module.

In addition to its use in the signal visualization application, the

CSF objects generated by the Cloudwave data flow is important

to address the issue of scalable storage and random access to

segments of signal data. CSF objects are well suited for storage in

distributed storage systems, such as HDFS, due to the storage of

signal data as partitioned signal fragments. As discussed earlier,

HDFS has a number of advantages as compared to traditional

file systems, including ability to scale with increasing volume of

data, support for multi-modal data types, and reliability through

use of data replication (Shvachko et al., 2010). The Cloudwave

platform can scale and reliably store the signal data as CSF objects

by adding new Hadoop Data Nodes as the volume of signal

data increases without disrupting the functioning of existing user

application. The storage of CSF in HDFS can potentially improve

the rate of data access in Cloudwave by leveraging the parallel

read feature of HDFS (Shvachko et al., 2010) and we propose to

evaluate this feature in our future work. In the next section, we

demonstrate the scalability and performance of the Cloudwave

data flow using a 30-node Hadoop cluster.

Results

The Cloudwave data flow was evaluated to demonstrate: (a)

its flexibility to support different partition schemes without

adversely affecting the performance of the data flow; and (b)

the scalability of the data processing algorithm by effectively

leveraging Hadoop Data Nodes. The evaluation experiments

were performed using de-identified signal data generated at

the University Hospital Case Medical Center EMU. The data

flow was executed over a High Performance Compute Cluster

(HPCC) at the Case Western Reserve University (CWRU) using

the open source Hadoop software (version 2.0.0). The HPCC

consists of 30 data nodes and amaster node that are connected by

a 10 Gigabit Ethernet (GigE). The master node has a dual quad-

core Intel Xeon 5150 2.66 GHz processor and the data nodes have

dual quad-core Intel Xeon 5450 3.0 GHz processors with 16 GB

of memory each. The HPCC is within the CWRU firewall, which

allowed the use of de-identified patient data for evaluating the

Cloudwave Data Flow. Due to space limitation on the individual

data nodes of the HPCC, the maximum volume of signal data

used in the experiment is 25 GB, which included the clinical event

annotation and signal metadata.

Performance of Cloudwave Data Flow with
Variable-Sized Signal Data Fragments
The support for signal data partitioning is an important feature

of the Cloudwave data flow that allows it to process large EDF

files using Hadoop Data Nodes with limited memory resources

(described earlier in Section Signal Data Processing and Flexible

Data Partitioning Technique). This evaluation is to validate the

hypothesis that the number of data fragments per EDFSegment

object can be flexibly changed without affecting the overall

performance of the Cloudwave data flow. This flexibility of
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FIGURE 5 | Cloudwave data flow evaluation results with variable-sized

signal data fragments. The number of signal data fragments in an

EDFSegment object can be modified according to available memory in the

Hadoop Data Nodes. The results of this experiment demonstrate that for 25 GB

of EDF files processed on 15 and 30 Data Nodes, the change in total number of

fragments per EDFSegment does not lead to significant variations in

performance of the Cloudwave data flow. This parameter can be tuned to get

maximum improvement in performance of the Cloudwave data flow, for

example 12 and 14 signal fragments per EDFSegment object are optimal values

for 15 and 30 Hadoop Data Nodes respectively.

the data partitioning approach is important to allow the data

flow to be deployed on different types of Hadoop Data Nodes.

We evaluated the effect of different number of fragments per

EDFSegment object on the Cloudwave data flow by partitioning

25 GB of signal data and using two configurations of 15 and 30

Hadoop Data Nodes in the HPCC. Each fragment of 30 s epoch

corresponds to 0.648 MB of signal data (in binary format) and

the number of fragments per EDFSegment object was increased

(from 2 to 16 fragments) until the available memory in the

Hadoop Data Nodes was exhausted during the evaluation.

Figure 5 shows that the performance of the Cloudwave data

flow does not vary significantly with increase in the number of

signal data fragments per EDFSegment object for both the 15 and

30 Data Node configurations. The reported results are an average

of three consecutive runs with the first run executed on a cold

cache. The results demonstrate the Cloudwave data flow can be

configured to use the maximum available memory on a Hadoop

Data Node without affecting its performance. At present, the

configuration parameter is modified manually, however in future

we propose to enable the Cloudwave data flow to dynamically

adjust the fragment per EDFSegment parameter by using an error

logging mechanism. The results show that the available memory

on the CWRU HPCC Data Nodes supported a maximum of

16 signal data fragments (10.94 MB) per EDFSegment object

(although 14 data fragments give better performance results).

The results also demonstrate that the time taken to process the

data is lower for the 30 nodes configuration as compared to the 15

nodes configuration, which shows that the data flow effectively

parallelizes the computations to leverage available Hadoop Data

Nodes. In the next section, we describe amore detailed evaluation

to demonstrate the scalability of the Cloudwave data flow.

Scalability of The Cloudwave Data Flow
We evaluate the scalability of the Cloudwave data flow in

terms of: (a) ability to process increasing volume of signal data

with corresponding change in total time; and (b) ability to

leverage increasing number of Hadoop Data Nodes to reduce

the total data processing time for fixed volume of signal data.

Seven datasets of EDF files with sizes ranging from 100 MB

to 25 GB were created and the complete Cloudwave data flow

was executed during the experiment. Using the Cloudwave

partitioning techniques, two categories of the seven datasets were

generated with 8 and 16 fragments per EDFSegment object.

These 14 datasets were processed using six configurations of

Hadoop Data Nodes ranging from 1 to 30 Data Nodes to

create CSF data objects, each with 8 and 16 signal fragments.

Each combination of dataset and Data Node configurations

(14 datasets and 6 Data Node configurations) was executed

for three consecutive runs (starting with a cold cache) and the

average values are reported.

Figure 6A shows that the Cloudwave data flow scales with

increasing volume of signal data (with 8 signal fragments per

EDFSegment object) and effectively leverages the increasing

number of Hadoop Data Nodes to significantly reduce the

total data processing time. Figure 6B shows similar results

for 16 signal data fragments per EDFSegment object, which is

consistent with previous results that showed that changes in

number of fragments does not affect the performance of the

data flow (Section Performance of Cloudwave Data Flow with

Variable-sized Signal Data Fragments). The increase in Hadoop

Data Nodes from 1 to 30 improves the performance of the

data flow by 64.2% for 100 MB of data with 16 fragments per

EDFSegment object (Figure 6B) and by 63.15% with 8 fragments

per EDFSegment object (Figure 6A). The performance of the

data flow improves by smaller percentage of 27.2% for 25 GB

of data with 16 fragments per EDFSegment object (and 26.6%

for 8 fragments per EDFSegment object, Figure 6A). We are

exploring additional approaches to use greater parallelization to

improve the performance of the data flow for larger sizes of signal

data.
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FIGURE 6 | Scalability of the Cloudwave data flow with increasing size

of data. The Cloudwave data flow effectively uses multiple Hadoop Data Nodes

to scale with increasing amount of data and consistently reduces the total time

taken to process the data. The results also demonstrate that the data

partitioning approach allows the Cloudwave data flow to flexibly modify the

volume of signal data per EDFSegment (total number of signal fragments)

without adversely affecting time performance (EDFSegments with 8 (A) and 16

(B) fragments have comparable performance).

The improvement in performance of the data flow with

increase in parallelization is clear since the total data processing

time decreases as the number of Hadoop Data Nodes is increased

for the larger signal datasets. For example, as the number of Data

Nodes is doubled from 5 to 10 and from 10 to 20 for 25 GB

of data (with 16 fragments per EDFSegment), the performance

of the data flow improves by 12.5% and 14.4% respectively.

However, there is no improvement in performance of the data

flow as the number of Data Nodes is doubled from 5 to 10 and

negligible improvement of 0.02 s for increase in Data Nodes from

10 to 20 for 100 MB data (with 16 fragments per EDFSegment).

We are analyzing our current algorithm to address this issue.

It is interesting to note that there is an order of magnitude

difference between the rate of increase in data size (from 100 MB

to 25 GB) and the rate of increase in data processing time

(from approximately 15 s to 4.4 min). This slower increase in

data processing time (as compared to increase in volume of

data) can be further improved with more effective parallelization

approaches, which is part of our ongoing work in the Cloudwave

project.

Discussion

The increasing complexity of neuroscience data and especially

electrophysiological signal Big Data has made it difficult to

manage data using traditional informatics infrastructure that use

existing database models (e.g., relational database) to store and

retrieve data (Mouček et al., 2014). In addition to storage, there

is an important requirement to develop scalable neurosciences

data processing approaches that can take advantage of parallel

and distributed computing techniques for large volume of data

that is generated at a high velocity. The Cloudwave data flow

is designed to meet these two requirements and uses EpSO to

address the issue of terminological heterogeneity to facilitate data

sharing and integration. The primary features of the Cloudwave

data flow include the use of Hadoop MapReduce and HDFS

together with the flexibility to configure multiple parameters

based on the availability of resources on a Hadoop cluster. This

allows Cloudwave data flow to be deployed on different types

of Hadoop clusters and to be used as a template to develop

scalable neuroscience data processing data flow in many existing

neuroinformatics projects, such as the GNDataPlatform (Sobolev

et al., 2014a).

Similarly, the Cloudwave data flow can be integrated with

existing large data linking and sharing initiatives in neuroscience,

such as the INCF Dataspace and the International Epilepsy

Electrophysiology portal (IEEG; Wagenaar et al., 2013), for high

performance data processing and analysis. The INCF dataspace

may offer the Cloudwave data flow as a service by using the

Software as a Service (SaaS) approach, which will allow users to

process signal data using the instances of Cloudwave data flow

hosted by INCF to generate HDF5 or CSF data objects. This

service will significantly reduce the computational requirements

for users and support standard-based signal data sharing. The

IEEG portal is a large U.S National Institutes of Health (NIH)

project that stores signal data in the cloud and provides Matlab-

based tools to analyze the data (IEEG-Portal). The IEEG portal

uses the Multiscale Electrophysiology Format (MEF; Brinkmann

et al., 2009), which uses data compression, encryption, and

cyclic redundancy check for identifying data errors, to store

the data in cloud. At present, the IEEG-Portal supports the

download of datasets from the Amazon Web Services (AWS)

cloud platform and subsequent analysis using Matlab tools

(Ieeg-Portal, 2014). The integration of the Cloudwave data

flow with the IEEG-Portal will allow greater support for Java-

based signal data analysis tools and use of EpSO classes for

signal data annotation. The ontology-based signal annotation

will significantly improve the query feature of the IEEG portal

for users.

The use of EpSO as an epilepsy domain ontology is a

novel feature of the Cloudwave platform. In addition to its

role in reducing terminological heterogeneity in signal data

annotation, it is also being used to support constructing patient

cohort queries in the PRISM project for clinical research in

epilepsy (Sahoo et al., 2014). A similar functionality to support

querying of signal data based on clinical event annotation, study
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metadata, and signal-specific metadata is under development

in the Cloudwave project. The use of EpSO for querying signal

data will allow use of description logic-based reasoning to

improve the quality of results. For example, existing approaches

to query for signal segments annotated with interictal events

cannot select signal data annotated with ‘‘spike’’ although

‘‘spike’’ is a sub category of interictal event, which is explicitly

modeled in EpSO. Hence, use of EpSO for signal data annotation

(implemented in the Cloudwave data flow) and querying will

address the limitations of lexical matching-based query execution

techniques. In addition, the use of EpSO to model signal

montages can be used to pre-compute these values in Cloudwave

platform using channel-specific signal fragments from CSF

objects. The pre-computed values can be stored as CSF objects

in HDFS and transferred to the signal visualization module to

reduce computational time and improve responsiveness of the

user interface.

Conclusion

The paper describes the development of a MapReduce-based

high performance scalable electrophysiological signal processing

data flow, which was developed as part of the Cloudwave project

to address the challenges of volume and velocity of signal data.

The Cloudwave data flow processes one or more EDF files to

generate CSF data objects, which is an extensible JSON-based

signal data representation format, with partitioned fragments of

signal data for storage and processing in HDFS. The CSF model

is compatible with existing neuroscience data representation

formats, such as HDF5 and NEO object-oriented APIs, with

ontology-based signal annotations to address terminological

heterogeneity in neuroinformatics tools. The evaluation of the

Cloudwave data flow on a 30-node Hadoop Data Nodes validate

the effectiveness of using MapReduce algorithm to scale with

increasing volume of signal data. The Cloudwave data flow

not only meets the requirements of user applications such as

signal visualization, but it can also be integrated with existing

large neuroscience data repositories such as INCF dataspace and

IEEG-Portal.
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