
A Scalable Parallel Genetic Algorithm for the

Generalized Assignment Problem

Yan Y. Liua,b,c,d,∗, Shaowen Wanga,b,c,d,e,f

aCyberGIS Center for Advanced Digital and Spatial Studies, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, United States

bCyberInfrastructure and Geospatial Information Laboratory (CIGI), University of Illinois
at Urbana-Champaign, Urbana, IL 61801, United States

cDepartment of Geography and Geographic Information Science, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, United States

dNational Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, United States

eDepartment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
61801, United States

fDepartment of Urban and Regional Planning, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, United States

Abstract

Known as an effective heuristic for finding optimal or near-optimal solutions to
difficult optimization problems, a genetic algorithm (GA) is inherently parallel
for exploiting high performance and parallel computing resources for random-
ized iterative evolutionary computation. It remains to be a significant chal-
lenge, however, to devise parallel genetic algorithms (PGAs) that can scale to
massively parallel computer architecture (also known as the mainstream super-
computer architecture) primarily because: 1) a common PGA design adopts
synchronized migration, which becomes increasingly costly as more processor
cores are involved in global synchronization in each iteration; and 2) asyn-
chronous PGA design and associated performance evaluation are intricate due
to the fact that PGA is a type of stochastic algorithm and the amount of compu-
tation work needed to solve a problem is not simply dependent on the problem
size. To address the challenge, this paper describes a scalable coarse-grained
PGA - PGAP, for a well-known NP -hard optimization problem: Generalized
Assignment Problem (GAP). Specifically, an asynchronous migration strategy
is developed to enable efficient deme interactions and significantly improve the
overlapping of computation and communication. Buffer overflow and its rela-
tionship with migration parameters were investigated to resolve the issues of
observed message buffer overflow and the loss of good solutions obtained from
migration. Two algorithmic conditions were then established to detect these is-
sues caused by communication delays and improper configuration of migration

∗Corresponding author
Email addresses: yanliu@illinois.edu (Yan Y. Liu), shaowen@illinois.edu (Shaowen

Wang)

Preprint submitted to Parallel Computing December 4, 2013

© 2014. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/

http://ees.elsevier.com/parco/viewRCResults.aspx?pdf=1&docID=1790&rev=1&fileID=94806&msid={C556FE6A-0709-455A-83A5-DFE8D82BBBA8}

parameters and, thus, guide the dynamic tuning of PGA parameters to detect
and avoid these issues. A set of computational experiments is designed to eval-
uate the scalability and numerical performance of PGAP. These experiments
were conducted for large GAP instances on multiple supercomputers as part
of the National Science Foundation Extreme Science and Engineering Discov-
ery Environment. Results showed that, PGAP exhibited desirable scalability
by achieving low communication cost when using up to 16,384 processor cores.
Near-linear and super-linear speedups on large GAP instances were obtained in
strong scaling tests. Desirable scalability to both population size and the num-
ber of processor cores were observed in weak scaling tests. The design strategies
applied in PGAP are applicable to general asynchronous PGA development.

Keywords: Generalized Assignment Problem, Genetic algorithm, Heuristics,
Parallel and distributed computing, Scalability

1. Introduction

Inspired by natural selection, Genetic Algorithm (GA) represents a generic
heuristic method for finding near-optimal or optimal solutions to difficult search
and optimization problems [1]. GA mimics iterative evolutionary processes with
a set of solutions encoded into a population at the initialization stage. Through
GA operators (e.g., selection, crossover, mutation, and replacement) that are
often stochastic, the population evolves based on the rule of “survival of the
fittest” [2, 3]. Such an evolutionary process stops when the population con-
verges to solutions of specified quality. The computational challenges of GA
are attributed to both problem-specific characteristics (e.g., problem ’difficulty’
(e.g., NP -hard), problem size, the complexity of fitness function, and distribu-
tion characteristics of solution space specific to problem instances), and runtime
efficiency of stochastic search [4].

High performance and parallel computing has been extensively studied to
tackle the aforementioned computational challenges in GA as GA has inherent
parallelism embedded in the evolutionary process [5]. For example, a population
can be naturally divided into a set of sub-populations (also called demes) that
evolve and converge with a significant level of independence. Various types of
parallel genetic algorithms (PGAs) have been developed and broadly applied in
a rich set of application domains [5, 6, 7, 8]. More interestingly, previous work by
Alba et al. [9] showed that PGA computation not only improves computational
efficiency over sequential GAs, but also facilitates parallel exploration of solution
space for obtaining more and better solutions. In fact, Hart et al. [10] showed
that running PGA even on a single processor core outperformed its sequential
counterpart. Therefore, PGA is often considered and evaluated as a different
algorithm rather than just the parallelization of its corresponding sequential
GA.

This paper describes a scalable PGA (PGAP) to exploit massively paral-
lel high-end computing resources for solving large problem instances of a clas-
sic combinatorial optimization problem - the Generalized Assignment Problem

2

(GAP). GAP belongs to the class of NP -hard 0-1 Knapsack problems [11, 12, 13].
Numerous capacity-constrained problems in a wide variety of domains can be
abstracted as GAP instances [14] such as the job-scheduling problem in com-
puter science [15] and land use optimization in geographic information science
and regional planning [16]. Various exact and heuristic algorithms have been
developed to solve GAP instances of modest sizes [17]. However, in practice,
problem instances often have larger sizes while the problem solving requires
quick solution time and the capability for finding a set of feasible solutions of
specified quality, which compounds the computational challenges.

Our PGA approach focuses on the scalability to massively parallel proces-
sor cores (referred to as cores hereafter) available from high-end computing
resources such as those provided by the National Science Foundation XSEDE
[18] cyberinfrastructure. PGAP is a coarse-grained steady-state [19] PGA that
searches solution space in parallel based on independent deme evolution and
periodical migrations among connected demes. Scalability is a key to efficiently
exploiting a large number of cores in parallel. Previous PGA implementa-
tions mostly rely on synchronization to coordiate parallelized operations (e.g.,
the migration operation in coarse-grained PGAs and the selection operation in
fine-grained PGAs), primarily because the computation of PGA is an iterative
process and it is straightforward to implement iteration-based synchronization.
Synchronization is often needed at two places: 1) waiting for all PGA processes
to rendezvous before migration operations; and 2) using synchronous commu-
nication to exchange data. While success on scaling PGA to many cores has
been achieved based on hardware instruction-level synchronization supported
by SIMD architectures [20], we argue that the computational performance of
PGA is under-achieved through synchronizing iterations across massively par-
allel computing resources with MIMD architecture [21].

Therefore, an asynchronous migration strategy is designed to achieve scal-
able PGA computation through a suite of non-blocking migration operators (i.e.,
export and import) and buffer-based communications among a large number of
demes connected through regular grid topology. The asynchrony of migration
is effective to not only remove the costly global synchronization on deme inter-
actions, but also allows for the overlapping of GA computation and migration
communication. Addressing buffer overflow issues caused by inter-processor
communications and understanding their relationship to the configuration of
asynchronous PGA parameters are crucial to design scalable PGA on high-end
parallel computing systems. Through algorithmic analysis on PGAP, we identi-
fied two buffer overflow problems in exporting and importing migrated solutions,
respectively. In export operations, the overflow of the outgoing message buffer
used by the underlying message-passing library may cause runtime failure and
abort the PGA computation. In import operations, the overflow of the import
pool maintained for receiving solutions from neighboring demes may cause the
loss of good solutions. Through algorithmic analysis, we derive two conditions to
guide the setting of PGAP parameters, including migration parameters, topol-
ogy, and buffer sizes based on the underlying message passing communication
library in order to detect and/or avoid aforementioned buffer overflows. To the

3

best of our knowledge, our work is the first to explicitly consider the relation-
ship between the configuration of asynchronous PGA parameters and underlying
system characteristics so as to improve the reliability of asynchronous PGAs.

Experiment results showed that, with the asynchronous migration strategy,
our scalable PGA is able to efficiently utilize 16,384 cores with significantly
reduced communication cost. Specific strong and weak scaling tests were de-
signed to evaluate the scalability and numerical performance of PGAP because
conventional weak and strong scaling methods are not directly applicable to
PGA. For example, the problem size used in conventional weak scaling is not
a good indicator of the amount of computation needed to achieve a certain so-
lution quality in PGA. PGA and sequential GA also have different algorithmic
behaviors. More importantly, population size plays a crucial role in PGA perfor-
mance as the number of cores increases. Therefore, instead of problem size, we
chose population size to study PGAP scalability and compared its performance
with the corresponding sequential algorithm. In strong scaling tests, linear and
super-linear speedups were observed in solving large GAP instances. PGAP also
outperforms the best-so-far sequential GA in solving modest problem instances.
Numerical performance study on large instances showed promising results on
the capability of PGAP to exploit massive computing power for more effective
exploration of search space for finding alternative solutions, faster convergence,
and obtaining improved solution quality.

The reminder of the paper is organized as follows. Section 2 reviews related
work on PGA and GAP. Section 3 describes the design and implementation of
PGAP for solving computationally intensive GAP instances. Section 4 details
computational experiments designed for evaluating PGAP scalability and nu-
merical performance and analyzes experiment results. Section 5 summarizes the
findings of the research and discusses future work.

2. Related work

The generalized assignment problem (GAP) is defined to find an optimal
assignment of n items to m bins (knapsacks) such that the total cost of the as-
signment is minimized and the weight capacity constraint of each bin is satisfied.
The cost and weight of an item depend on both the item itself and the assigned
bin [13]. GAP belongs to the class of NP -hard 0-1 Knapsack problems [12]. It is
the generalization of the well-known Knapsack problem (single bin) and Multiple
Knapsack Problem (MKP) [13]. A detailed survey of sequential algorithms for
solving GAP can be found in [17]. Canonical work on GAP heuristic algorithms
include genetic algorithms [22, 23, 24, 25, 26], simulated annealing [27], tabu
search [28], and hybrid search that combines heuristics and local search strate-
gies [29, 30, 31]. Previous work on GA approach to GAP showed that standard
GA operations (i.e., selection, crossover, mutation, and replacement) often pro-
duce infeasible solutions that violate the capacity constraint of GAP, therefore
needs additional processing. For example, Chu and Beasley [22] developed two
additional operators, feasibility improvement and quality improvement, to con-
vert infeasible solutions to feasible ones and attempt to improve each resulted

4

feasible solution, respectively. Wilson’s method [23] allows for infeasible solu-
tions in GA computation, but improves the feasibility of all solutions after GA
stops. The method by Feltl and Raidl [24] also allows for infeasible solutions,
but with a penalty-based mechanism for adjusting the fitness value of infeasible
solutions.

As a well-known approach to increasing the computational efficiency of GA,
PGAs differ in where parallelization is exploited: fine-grained PGAs [32] (also
referred to as cellular GA (cGA) or Diffusion Models [33]) parallelize the se-
lection operator to select parents from directly connected neighbors on a PGA
topology in each iteration; coarse-grained PGAs (also referred to as island model
GA (iGA)) migrate a portion of local solutions to connected demes periodically
[34]; global parallelization-based PGAs parallelize the computation of the fitness
evaluation function if the function is computing intensive [35]. PGA surveys can
be found in literature [36, 37, 38, 9, 5, 39]. Tanese [40] showed that a PGA ex-
hibits different algorithmic behavior than its corresponding sequential GA. In-
terestingly, even without communications, PGA could improve GA performance
with independent deme evolution. This is because multiple independent run-
ning instances of the same GA likely produce different quality results because
of different randomness introduced by each instance for GA operations. Given
a fixed solution quality requirement, the probability that at least one instance
finds a solution of designated quality earlier would increase as more cores are
used. Even without communications among demes, therefore, running multi-
ple demes on a single core often performs better than running a single deme
with the same global population size. On the other hand, communications, i.e.,
migration of a portion of local solutions to other demes, greatly improves the
effectiveness of GA computation through the propagation of good solutions and
the injection of new randomness.

Previous work on designing scalable PGAs often employs the fine-grained
PGA model on SIMD architecture [20, 41, 42, 43, 44, 45, 46]. For example,
Shapiro et al. [20] implemented a PGA for RNA folding on the MasPar SIMD
supercomputer with 16,384 processing units. Chen et al. [41] developed a hybrid
cellular GA on the same machine. These fine-grained PGA implementations ex-
hibit good performance on gene diffusion, i.e., the propagation of high-quality
genes across the entire population. Hart et al. [10], Alba et al. [19], and Prabhu
et al. [45] pointed out that SIMD architecture is suitable for the development of
fine-grained PGAs because fine-grained PGAs require synchronization in each
iteration to select parents from directly connected demes and SIMD systems
provide hardware- and/or system-level synchronization support that can be di-
rectly adopted to coordinate the selection operation within each iteration. It
is more challenging to synchronize GA iterations on MIMD systems in which
processors are often connected through network. On MIMD architecture, syn-
chronization can be a costly task at system level, especially when it involves
a large number of connected cores. In message passing models which MIMD
systems often use for communications, the overhead of synchronization has been
well studied [47, 48]. Such synchronization cost can cause serious performance
degradation on PGAs. In the synchronous mode, a PGA iteration can be consid-

5

ered as a sequence of computations followed by a global barrier to rendezvous all
processes. Any delay at one process, caused from various sources (e.g., network,
operating system, memory, I/O, or computation itself in GA) is propagated
to all of the participating processes, and the probability and duration of such
delay increases as the number of processes increases. In fact, the evolutionary
process in PGA may not require synchronization because: 1) a PGA process
can evolve independently; 2) communications with other processes only involve
neighboring processes, without the need for global-level synchronization; and 3)
sending information to and receiving information from neighboring processes do
not need to be coupled.

In general, GA, as a type of stochastic computing model, exhibits massive
parallelism and holds tremendous potential to reap the benefits of large-scale
parallel computation [49]. As massively parallel computing resources become
available [21, 50] as a consequence of active development of multi-core/many-
core computing and extreme-scale supercomputing [51], it is promising to har-
ness an unprecedented amount of parallel computing resources for scalable GA
computation.

It has been recognized that asynchronous inter-deme interactions are desir-
able for designing scalable PGAs [52, 19, 10, 53]. Most of previous PGA work
chose to synchronize GA computation primarily for the purpose of straight-
forward parallel programming implementation. Early work by Hart et al. [10]
showed that delays exhibited in asynchronous fine-grained PGAs helped achieve
better solution quality because some demes were allowed more time for the local
evolution to be more convergent toward better solutions. Lin et al. [53] observed
the effectiveness of exchanging solutions asynchronously and proposed a solution
exchange strategy based on population similarity instead of the fixed connec-
tion topology on coarse-grained PGAs. The CAGE framework [54] employed
non-blocking message passing functions for the development of fine-grained GA
programming library on MIMD clusters configured with up to 256 computing
nodes. We argue that the availability of massively parallel computing resources
now offers a major driver toward the design and development of asynchronous
PGAs. In this paper, an asynchronous migration strategy is developed as the
mainstay for enabling scalable PGA for GAP.

As a complex and dynamic process, PGA computation is sensitive to a set of
algorithmic and computational factors. Alba and Troya [19] and Hart et al. [10]
pointed out that conventional parallel computing performance measures such
as speedup and efficiency, need careful consideration when applied to computa-
tional performance evaluation of PGA. Since PGA and GA are algorithmically
different, direct performance comparison between PGA and sequential GA may
not lead to appropriate conclusions. Alba et al. [19] further suggest using the
same parallel version on different number of cores for speedup measurement.
Also, a sufficient number of trials should be conducted to yield statistically
confident evidence on obtained results [10, 37]. Identifying the sources of per-
formance variation in asynchronous PGA is another issue. Gordon and Whitley
[55] observed that even on a single core, emulated PGAs were often more ef-
ficient than many sequential GAs for solving various types of problems. In

6

addition, injected computational noise changes asynchronous PGA algorithmic
performance [10], making performance measurement more complicated.

In high-performance computing, weak and strong scaling are two typical
ways to measure scalability of high-performance computing algorithms [56, 57].
As for weak scaling, problem size per core is kept constant as the number of
cores increases. Therefore, weak scaling allows us to look at the capability of
an algorithm to solve larger or more complicated problems in conjunction with
the use of more cores. Strong scaling keeps the overall problem size a constant
as the number of cores varies, and measures speedup, calculated by dividing the
execution time of the best sequential algorithm by that of the parallel algorithm.
However, neither of them can be directly applied to analyze the scalability of
PGAs for solving combinatorial optimization problems (elaborated in 4.2). This
research, therefore, has designed specific scaling test methods for the compre-
hensive evaluation of the performance of PGAP.

3. Algorithm

The mathematical formulation of GAP is as follows:

Objective: min

m∑

i=1

n∑

j=1

cijxij

such that:
n∑

j=1

wijxij 6 bi, i = 1, 2, ...,m (1)

m∑

i=1

xij = 1, j = 1, 2, ..., n (2)

xij ∈ {0, 1}, i = 1, 2, ...,m, j = 1, 2, ..., n

Where matrix Cm×n and Wm×n denote the cost and weight requirements of
assigning each item j, j = 1, 2, ..., n, to each bin i, i = 1, 2, ...,m, respectively.
Constraint (1) represents the weight capacity constraint indicating that the total
weights of the items assigned to a bin cannot exceed the bin’s capacity. Xm×n

is the assignment matrix with each entry valued either 0 or 1. Constraint (2) is
the assignment constraint that allows an item to be assigned to exactly one bin.
Each problem instance has the cost and weight matrices as input. The output
is the assignment matrix Xm×n that minimizes the cost defined in the objective
function.

3.1. Sequential genetic algorithm

The sequential GA developed for this GAP formulation is an extension to the
GA developed by Chu and Beasley [22]. A solution is encoded as a chromosome
that is represented as a binary string s of size n, where the value of sj denotes
the index of the bin to which item j is assigned (Figure 1). A population is
formed by a set of encoded solutions. Population size is a runtime parameter.
This GA follows a steady-state [3] reproduction process in which each iteration

7

selects two parents to generate one child for replacement. The GA operators to
be performed within each iteration are adapted from Chu and Beasley [22] and
listed below for the completeness of this paper:

• Selection. Two parents are selected based on selection strategies such as
binary tournament selection or rank-based tournament selection [58].

• Crossover. The simple single cut-point crossover operator randomly de-
cides a cut point at which the first part of a parent is combined with the
second part of the other to form the child solution.

• Mutation. The mutation operator is performed on the child solution ob-
tained from the crossover operator to exchange the bin assignment of two
randomly chosen items.

• Feasibility improvement. This operator looks at those over weighted bins
after fitness evaluation for a reassignment that could keep the weight sum
of the bin below its capacity. This is done by moving an item in an over
weighted bin to an under weighted bin.

• Quality improvement. This operator looks at each item for a possible
reassignment (to another bin) such that the solution’s fitness value could
be improved.

The fitness of a solution is evaluated as two values: fitness value that is
equivalent to the value of GAP objective function, and ’unfitness’ value which
is the sum of exceeded weights in each bin. For feasible solutions, the unfitness
value is always zero. Replacement strategies use the unfitness value to choose
the solutions to be replaced. The execution of GA is stopped if its stopping
criterion is met. The stopping criterion can be a fixed number of iterations, a
time limit, or a given solution quality threshold.

Chu and Beasley [22] and Feltl and Raidl [24] indicate that the feasibility and
quality improvement operators are critical to keep the search close to feasible
regions in the solution space and help GA converge to near-optimal or optimal
solutions quickly. We further refine these two operators for better lookup effi-
ciency. Both operators include a linear scan of bins to look up for either over
weighted bins for feasibility improvement or an under weighted bin for reas-
signing an item to improve solution quality. In [22], the order in which bins are
checked is fixed, which means that the capacity of each bin is also examined in a
fixed order. Considering capacity variations among bins, such examination with
the fixed order may limit the search efficiency for possible candidate choices for
item reassignment. For example, bins checked first are always considered for
reassignment first despite of the existence of alternatives. Such limitation be-
comes significant in PGA, as the size of global population is often large. In our
algorithm, the bin lookup sequence is randomly decided to make the bin lookup
operation independent of the order of bins coded in problem instances. The
performance impact of this technique is discussed in section 4.

8

3.2. Parallel genetic algorithm

Our coarse-grain PGA - PGAP - is designed based on asynchronous migra-
tion because: 1) synchronizing each GA iteration is not necessary in a coarse-
grained PGA; 2) overhead of synchronization gets worse when more cores are
used (see section 2); and 3) non-blocking migration operators increase the over-
lapping of computation and communication (local evolution can go to the next
iteration without waiting for response messages from receiving demes before the
next round of migration) and, thus, may significantly improve the computational
performance of PGAP.

In PGAP, each deme initializes and maintains a local population. The size
of a local population is referred to as deme size. The number of demes is
determined based on the number of cores available at runtime. Demes are
connected with a regular 2-D toroidal grid topology (Figure 2). On the grid,
the start and end of a row/column are connected. Therefore, the connectivity
degree, d, is four for each deme. The algorithm runs concurrently on all cores
until a stopping criterion is satisfied at any of the cores.

The following PGA operators are designed to exchange a portion of a deme’s
population with its directly connected neighbors.

Export. A deme exports a fixed number of solutions to its neighbors periodically.
The export operator defines two parameters: migration rate r (i.e., the number
of solutions to be exported) and export interval Mexpt (defined as the number
of iterations). Our strategy for exporting solutions considers both elitism and
diversifying deme population by exporting random solutions. When choosing
r solutions for exporting, elite solutions generated during the previous export
interval are always included. Remaining spots, if any, are filled by randomly
picked solutions from local population. If no elite solutions were found in the
previous export interval, a holding strategy is applied to probabilistically delay
the export.

Import. Each deme maintains an import pool, implemented as a cyclic first-
in-first-out (FIFO) queue with the queue header pointing to the first imported
solution and queue tail pointing to the next available buffer space, to hold exter-
nal solutions migrated from neighboring demes. A parameter, import interval
Mimpt (defined as the number of iterations), is used to control how often an im-
port operation is performed. An import operation copies all incoming solutions
from the underlying communication system to the import pool. When the pool
is full, new incoming solutions override older ones. The size of the import pool
is determined by a buffer management method described later (see section 3.3)
to avoid this overriding scenario.

Inject. The inject operator merges migrated solutions from the import pool into
local population. Elite solutions from neighboring demes are alway incorporated
into local population if they are superior than local elite solutions. Random
solutions from outside are considered as candidates to be selected as one of the
two parents for standard GA operations.

9

Figure 3 illustrates above PGA operators and their interactions with local
GA and network. The pseudo code of PGAP is provided in Figure 4. The
introduction of PGA operators affect the selection and replacement operators
in the sequential algorithm. After the inject operator is performed, the selec-
tion operator takes an injected random solution as one of the two parents to
subsequent GA operators. The replacement operator directly merges a remote
elite solution into local population. By doing so, local population at a deme
is able to evolve with better solutions already found by other demes, therefore
saving local computation to reach the same level of solution quality. Further-
more, combined with the selection strategy in the export operator for sending
out local elite solutions, good solutions can be propagated to other demes in a
hop-by-hop fashion until they are overtaken by better solutions. This is similar
to the diffusion model in fine-grained PGAs [59]. The reason to export random
solutions is that these solutions appear as noise to local evolution on the receiv-
ing deme and may influence local evolution paths in a positive way [10]. When
a local evolution process is trapped in local optima or stays within a premature
state, such ’noise’ from outside may help jump-start the evolution process to
search new solution space, therefore providing the diversification effect for local
evolution. On the other hand, the probability of holding is kept sufficiently low
to avoid excessive interference on any receiving deme’s evolution process.

Compared to synchronous PGA design in which all demes need to stop for
communication within the selection operator (in the case of fine-grained PGA)
or export and import operators (in the case of coarse-grained PGA), there is no
global communication barrier for migration-related communication in PGAP.
On each deme, an export operation starts every Mexpt iterations, returns imme-
diately without waiting for acknowledgement messages from receiving demes,
and completes when exported solutions are passed to the underlying communi-
cation system. The import operator on each deme checks for incoming solutions
every Mimpt iterations. If no incoming solutions are found, the deme proceeds
to the next iteration without waiting. The check operation, called probe, is
lightweight. The inject operator injects imported solutions from the import
pool into the local evolution process, one at a time. The benefit of using asyn-
chronous migration is two-fold as follows. Globally, asynchronous migration
eliminates the costly global coordination among all demes. Locally, the overlap
between computation and communication, enabled by the non-blocking export
and import operators and buffer-based export communication, increases signif-
icantly to allow for better computational performance. Figure 2 illustrates a
runtime topology of PGAP on which migration events and computation take
place at the same time.

3.3. Buffer management for asynchronous migration

Buffer-based migration was used before for developing asynchronous PGAs.
For example, Andre and Koza [60] implemented an asynchronous PGA by
separating export, import, and other GA operators as independent processes
and used per-neighbor buffers to receive exported solutions from corresponding
neighbors. To the best of our knowledge, no previous work has considered the

10

issue of buffer overflow and its relationships with PGA parameters. In PGAP,
buffer-based communication and non-blocking communication functions are ap-
plied together to implement the asynchronous migration strategy and achieve
desirable overlapping of computation and communication in export and import.
Buffer is used at two places: 1) the import pool is implemented as a cyclic buffer;
and 2) PGAP allocates memory to the underlying communication system as out-
going message buffer (referred to as sending buffer hereafter) for buffer-based
non-blocking export operation. Buffer overflow at both places must be consid-
ered and avoided whenever possible to make PGAP reliable. The overflow of
the import pool will override solutions received in previous import operations,
and thus cause the loss of imported neighbor solutions if they have not been
injected yet. The overflow of the sending buffer has more severe impact: the un-
derlying message-passing library often terminates the execution of all processes
even when the overflow occurs within one process. We argue that inappropriate
configuration of PGA parameters may lead to serious buffer overflow issues. An
algorithmic analysis is conducted on PGAP to study the two buffer overflow
issues caused by communication delays. Two algorithmic conditions are then
derived to detect and avoid buffer overflow issues by setting PGAP parameters
appropriately.

PGAP uses message passing (specifically, MPI [61]) as underlying parallel
programming model and implements the buffer-based non-blocking communi-
cation as follows, which is a common choice suggested in [61]:

• Message send operation completes without the need to wait for the post
of matching receive at destination process. Instead, the sending operation
is considered complete after the message is handed to the sending buffer.
Send operation is implemented as non-blocking function;

• The buffered send operation calls a non-blocking non-buffered send for
sending each message queued in the buffer, which will not complete until
the matching receive is posted or the receiving process starts receiving.
This is suggested by MPI standard (see chapter 3 in [61]);

• The sending buffer is managed by the underlying communication system,
but the memory of this buffer is allocated explicitly by PGAP;

• Before the message receive operation starts, a probe operation is called to
check new messages. Probing introduces negligible cost. If probing does
not find new messages, the receive operation is postponed. A receive is
considered complete when an incoming solution is copied into the import
pool. The receive operation is implemented as blocking function;

• A import operation, if called, receives all of incoming solutions into the
import pool.

Table 1 lists the PGAP parameters considered in our analysis of buffer
overflow. Our analysis is based on a common PGA execution environment
where each deme has the same setting for PGAP parameters listed on Table

11

1. This analysis focuses on the overflow scenarios caused by communication
delays among demes. For simplicity purpose, the holding strategy mentioned in
section 3 is not considered. Computing time for an iteration is assumed to be
consistent across all demes. This assumption indicates that each participating
core may have similar CPU and memory characteristics, which is the case for
the supercomputers we used for experiments.

3.3.1. Sending buffer overflow analysis

The sending buffer overflows when there are too many pending send opera-
tions to handle (Figure 3). In PGAP, communication delays in the underlying
communication system and/or a long import interval (Mimpt) on receiving end
can prevent a send operation from being compelete. Communication delays are
caused by network congestion or communication system resource limitations,
which we have no control of in algorithm design. Allocating a large Ksendbuf

helps, but does not guaranttee the avoidance of overflow. The purpose of our
analysis is to avoid the overflow scenarios caused by inappropriate configuration
of PGAP parameters.

We consider the worst case scenario in which no send operation can be
completed. Suppose it takes x iterations for export operations to fill the sending
buffer with Ksendbuf solutions. The rate of buffer filling is r

Mexpt
per iteration.

By letting x × r
Mexpt

= Ksendbuf , we have x =
Ksendbuf

r
×Mexpt. If Mimpt at

receiving deme is set to be less or equal to x, we can then avoid the sending
buffer overflows caused by inappropriate configuration of PGAP. Equivalently,
this condition can be written as:

Mimpt

Mexpt

6
Ksendbuf

r
(1)

Ksendbuf is usually fixed for a PGAP run. Condition (1) can then be used
to guide the appropriate configrations of Mimpt, Mexpt, and r.

3.3.2. Import pool overflow analysis

If the solutions in the import pool of a deme are not injected into local
population in time because of computational noise or outpaced communication
between the deme and its neighbors, the pool may overflow. In this overflow
situation, one strategy is to allow solution overriding. Such overriding is ’harm-
less’ if new solutions are elite solutions from the same neighbor because a newly
arrived elite solution always has equal or better quality. However, since we al-
low random solutions to be exported and elite solutions from different neighbors
may have different quality, overriding current solutions in the import pool may
result in overriding better solutions that have not been injected into local pop-
ulation. Sophisticated methods can be developed for import pool management
to handle such overriding, but at the price of slowing down the processing of
the import operator. By looking at overflow scenarios and their relationship to
PGAP parameters, a sufficent condition is derived to guide the configuration of
Kimpt, Mexpt, d, and r in order to avoid the overflow of the import pool.

The import pool will overflow if and only if:

12

1. The rate of producing solutions to the pool is faster than the rate of
consuming from it, if we consider the import operator as the producer
and the inject operator as the consumer; or

2. The import pool is not large enough to hold imported solutions received
in a single import operation.

The first condition means if the rate of import operations (in iterations),
denoted by Rimpt, is larger than the rate of inject operations (in iterations),
denoted by Rinject, the import pool will overflow eventually, regardless of the
size of the pool (Kimpt). Let us denote the event of import pool overflow as O,
the number of received solutions in a single import operation as kimpt, and the
number solutions remained in the import pool at the beginning of an iteration
as k. Therefore, when an import operation is complete, there are k + kimpt

solutions in the import pool. From the notations defined in Table 1, Above
overflow conditions can be written equivalently as:

A : Rimpt 6 Rinject,
B : k + kimpt 6 Kimpt,

A ∧B ←→ ¬O

The left part (A ∧B) is the sufficent and necessary condition to avoid over-
flow. An exporting deme sends r solutions every Mexpt iterations to a receiving
deme. The receiving rate Rimpt is the same as sending rate d×r

Mexpt
, otherwise

the sending buffer from at least one neighoring deme will overfollow eventually.
PGAP algorithm (Figure 4) injects one imported solution per iteration if the
import pool is not empty, indicating Rinject = 1. A is then equivalent to:

d×r
Mexpt

6 1 (a)

Condition (a) indicates that, in each iteration, there is at most one incom-
ing solution sent by neighboring demes. Note that condition (a) is implied in
B because Kimpt is a constant. For B, between any two consecutive import
operations, neighboring demes constantly sends d× r

Mexpt
×Mimpt solutions to

the receiving deme. Communication delays could hold the receiving of these
solutions to later import operations. However, since we must avoid the overflow
of any sending buffers, the receive operation cannot be postponed infinitely. In
fact, by applying condition (1) derived in section 3.3.1, we get an upper bound
for Kimpt:

kimpt 6 Ksendbuf × d (b)

Furthermore, Ksendbuf × d is the largest possible number of solutions in
the impool pool. This is simply because Rimpt 6 Rinject = 1, meaning that
the inject operator consumes solutions in the import pool no slower than the
import operator producing solutions into the pool. Therefore, delayed receive
operations in an import operation is the only possible scenario to make the
number of solutions in the import pool following an import operation to be
larger than that of the previous import. An import operation with delayed

13

receive operations can receive up to Ksendbuf × d solutions. Meanwhile, since
it takes at least Ksendbuf × d iterations to gather these many receiving requests
(condition (a)), by the time the import operation eventually happens, there will
be zero solutions in the pool. Thus, condition Kimpt > Ksendbuf ×d satisfies B.

Combing (a) and (b), we get:

(
d× r

Mexpt

6 1) ∧ (Kimpt > Ksendbuf × d) −→ ¬O (2)

Condition (2) shows the correlations among PGAP parameters listed on
Table 1 in order to avoid the overflow of the import pool. Based on condition (1)
and (2), buffer overflow issues caused by inappropriate configuration of PGAP
parameters can be avoided.

3.4. Implementation

PGAP is implemented in C. The export and import operators are imple-
mented using the MPI message-passing programming model. MPI’s non-blocking
point-to-point communication functions MPI Ibsend() and MPI Iprobe() are
used for implementing non-blocking features of the export and import, respec-
tively. To enable flexible control of the system outgoing message buffer, we use
MPI’s MPI Buffer attach() to explicitly allocate memory for buffer-based mes-
sage send operations. The communication topology is generated dynamically by
making the sizes of the two dimensions of the 2-D grid as close as possible. The
runtime configuration of PGAP parameters is based on the algorithmic anlay-
sis results in section 3.3. Since severe communication delays can still cause the
overflow of the sending buffer, PGAP implementation skips an export operation
if the sending buffer is full.

A random number generator is used to provide stochastic choices on GA
operators. Given the fact that GA often requires a large amount of iterations
before converging to specified solution quality, the same random number se-
quence cannot be used on all demes even with different initial seeds. A parallel
random point generator, SPRNG, is employed to generate a unique random
number sequence on each deme [62].

4. Performance Evaluation

Experiments were designed to evaluate the scalability of PGAP algorithm
by using up to 16,384 cores. Both strong and weak scaling tests were performed,
but they have to be tailored to PGA performance evaluation. Strong scaling
tests were conducted to measure speedups in a set of large-scale PGAP runs,
each using a different number of cores. However, two issues related to PGA
performance evaluation have to be resolved: defining base case runs and com-
paring speedups in runs that achieve different solution quality. In weak scaling
tests, population size, instead of problem size, is used as scaling factor in order
to appropriately measure the computational effort required in relation to the
increase of computing power. For both tests, results were compared with the

14

corresponding synchronous implementation. PGA algorithmic capabilities such
as numerical performance, solution quality improvement, and convergence were
evaluated to understand the improved problem-solving capabilities by using the
asynchronous migration strategy.

4.1. Experiment design

Two MIMD high-performance computing (HPC) systems on XSEDE (i.e.,
the Lonestar and Ranger clusters at the Texas Advanced Computing Center
(TACC)) were used for the experiments. Lonestar has 22,656 cores with 0.302
petaflop peak performance. Each node on Lonestar has two 3.3GHz Intel Xeon
hexa-core 64-bit Westmere processors (12 cores) and 24GB memory. Ranger
has 62,976 cores with 0.579 petaflop peak performance. Each node on Ranger
contains four 2.3GHz AMD Opteron quad-core processors (16 cores) and 32GB
memory. Both systems use InfiniBand as interconnect. Up to 2,048 cores on
Lonestar were used to study the convergence of PGAP and track the number
of unique solutions found in PGAP runs. Up to 16,384 cores on Ranger were
used for scalability tests and numerical performance evaluation in solving large
GAP instances.

Five types of public GAP benchmark instances available from OR-LIB 1

and Yagiura’s website 2 have been used in literature as benchmark datasets.
Small-sized type D, E, and F instances from OR-LIB are used in small-scale ex-
periments to verify the quality of solutions found by our baseline GA algorithm.
Type D and E instances from Yagiura are large instances and considered more
difficult because costs are inversely correlated with weights [63]. E801600, one
of the largest instances of type E with 1,600 items and 80 bins, was used for
PGAP scaling tests and performance evaluation.

Table 2 shows the default configuration of PGAP parameters based on con-
dition (1) and (2) derived in section 3.3. The ratio Mimpt/Mexpt is configured
to be much smaller than Ksendbuf/r in order to reduce the impact of sporadic
network congestions on the sending buffer. We also follow the guidelines by
Hart et al. [10] and Alba et al. [19] to make sure that results from different
PGAP runs are comparable. For example, the stopping rule for speedup analy-
sis is finding the best solution found by the base case runs, instead of setting a
walltime or the number of iterations. A synchronous PGA is developed based
on PGAP as the reference implementation for performance comparison purpose.
This is done by adding global barriers for export and import operators to PGAP
and using blocking communication functions and synchronous communication
mode in MPI. Therefore, synchronization cost is the only source of performance
difference.

1http://people.brunel.ac.uk/˜mastjjb/jeb/info.html
2http://www-or.amp.i.kyoto-u.ac.jp/˜yagiura/gap/

15

4.2. Scalability analysis

It is not appropriate to directly use conventional weak and strong scaling
testing methods to analyze the scalability of PGAP for the following reasons.
First, the amount of computation work required to solve a combinatorial opti-
mization problem depends as much on the problem difficulty as on the problem
size. For example, a small-size (in terms of the number of items and/or bins)
type E GAP instance may be ’harder’ than a large-size type C instance because
type E instances were generated by inversely correlate the cost and weight of
each item [29]. Therefore, varying problem size only as done in typical weak
scaling experimentation may not be sufficient to reveal how well PGA can solve
large problems using more computational resources. Second, PGA is a type of
randomized algorithm, multiple runs of the same PGA configuration may take
different amount of execution time to achieve the same level of solution quality.
Furthermore, while the overall problem size is fixed in strong scaling, changing
the number of cores also changes deme size and the number of demes handled
by each core. Such changes have profound impact on local evolution and global
migration effect, together complicating the overall evaluation of computational
performance.

4.2.1. Strong scaling test

Our strong scaling experiment measures the speedup of PGAP by increasing
the number of cores, but keeping the size of global population constant. Each
core runs one deme and thus deme size, which is equal to the global population
size divided by the number of cores, varies accordingly. Speedup is calculated as
the ratio of the execution time of two PGAP runs with the denominator being
a reference (referred to as base case) using a small number of cores. The reason
to use PGAP itself as the reference algorithm is that PGA and GA are not suit-
able for direct comparison as they are considered to have different algorithmic
behaviors. Such definition of speedup is referred to as relative speedup by Sun et
al. [64] or type I speedup by Alba et al. [19]. Since the global population size is
kept constant, the increase of the number of cores leads to the decrease of deme
size and the increase of the number of demes. It is known that PGA perfor-
mance is highly influenced by deme size and migration. Specifically, large deme
size makes GA search on a core toward a random search and injects solutions
from fewer demes, while small deme size makes local GA search “premature”
but injects solutions from more demes. Our strong scaling test is designed to
compare the speedup between PGAP and its synchronous implementation.

In the experiment, global population size was kept at 1,638,400. As the num-
ber of cores used in the experiment increased from 512 to 16,384, population
size on each deme decreased from 3,200 to 100. Since comparing with sequential
algorithm performance would produce misleading results, we used 512-core run
of PGAP as the base case for PGAP. 512-core run of its synchronous version
is then used as the base case for speedup calculation for the synchronous ver-
sion. Therefore, perfect linear speedup in our experiment would be 32 when
16,384 cores are used. When a specified solution quality threshold could not

16

be reached within the maximum walltime allowed using 512 cores, the execu-
tion time of the base case run is set to be the maximum walltime (i.e., 16 hours
(57,600 seconds)). In such scenario, using the maximum walltime in base case is
a conservative estimation of the actual speedup in speedup comparison because
the resulted speedup is the lower bound of the actuall speedup. Figure 5(a)
and Figure 5(b) illustrate the speedup measurements against different solution
quality thresholds, quantified as the upper bound of fitness value. Results show
that, for both synchronous and asynchronous runs, using more cores resulted
in better speedup, even superlinear speedups. By looking at speedups achieved
at multiple solution quality thresholds, more comprehensive view of PGAP nu-
merical performance was obtained by examining the relationship between the
levels of difficulty to reach a specified solution quality and the number of cores
used. For example, for the type E instance, both synchronous and asynchronous
runs experienced difficulty to achieve solution quality threshold 188,000, indi-
cated by sublinear speedup achieved. Asynchronous PGAP runs (Figure 5(a))
exhibited superlinear speedup at 8 out of 11 solution quality thresholds when
using 16,384 cores, while 3 out of 8 were observed in synchronous runs (Fig-
ure 5(b)). Synchronous runs could not reach the three tightest solution quality
thresholds reached by PGAP, while asynchronous runs were also able to find so-
lutions better than the tightest threshold 183,500 when using 8,192 and 16,384
cores. Beyond 8,192 cores, speedup increase in the synchronous runs became
insignificant, while PGAP scales well to 16,384 cores.

Note that Figure 5(a) and Figure 5(b) cannot be directly used to compare
speedups between PGAP and its synchronous version. This is because they used
different base cases for speedup calculation (512-core runs of PGAP and its syn-
chronous version, respectively). Instead, we define ratio of speedup as belows for
comparing speedup differences between asynchronous and synchronous migra-
tion strategies. It is measured as the ratio of execution time of the synchronous
version and that of PGAP:

ratio of speedup =
speedupasync
speedupsync

=
Tbase/Tasync

Tbase/Tsync

=
Tsync

Tasync

(3)

where Tbase is the execution time of a common base case. Figure 5(c) shows
the ratio of speedup, calculated based on equation 3 for all of the solution
quality thresholds that the synchronous version achieved in at least one setting
of the given numbers of cores. For all measurable cases, the values of the
ratio are larger than 1, meaning that PGAP achieved better speedup than its
synchronous version. Particularly, when using 16,384 cores, the ratio ranges
from 1.90 to 2.47.

4.2.2. Weak scaling test

Because increasing problem size may alter problem difficulty and the amount
of computation needed to solve the problem, problem size, as used in typical
weak scaling test, is not appropriate to use in weak scaling test of PGAs. In-
stead, our weak scaling test varies the size of global population in order to

17

measure how PGAP leverages larger global population numerically, enabled by
the use of more cores, to diversify the search in solution space and achieve a
designated solution quality more effectively. We refer to this weak scaling test
method as population scaling. The benefit of using a large population is straight-
forward because it provides a much larger sampling solution space for GA. But
using a large population can easily turn a GA evolutionary process into a ran-
dom search that can hardly converge on a single core. With PGA, however, the
evolutionary process can be kept effective at deme level, but much more solution
space can be searched by running a large number of demes simultaneously.

It is worth noting that population scaling adds more cores to do additional
work on the same problem, similar to the ”new-era” weak scaling proposed
by Sarkar et al. [65]. Leveraging larger global population, population scaling
is designed to evaluate the capability of PGAP to obtain better solutions in
a shorter amount of time. The test was done on the Ranger supercomputer.
We use the time taken to achieve a certain solution quality as the measure of
population scaling. Deme size was set to 200. The number of cores used ranges
from 1,024 to 16,384. As the number of cores doubles, global population size
also doubles from 204,800 to 3,287,400. We ran this test on both PGAP and its
synchronous version. Each run was given one hour to finish.

The benefit of using large population PGAP can be shown in Figure 6(a).
The time taken to achieve certain solution quality threshold, quantified again as
the upper bound of fitness value, was measured in accordance to the increase of
the number of cores. Overall, as the bound became tighter, it took more time to
find solutions whose fitness values are equal to or better than the bound. For a
particular bound, it is obvious that using more cores reduces the time taken to
find solutions with equal or better quality. This trend became more significant
for tighter bounds. In fact, for those bounds tighter than 184,000, runs using
smaller number of cores started running out of time to find solutions of specified
quality. For example, solutions with bound 182,500 or better were only found
by using 8,192 and 16,384 cores. For all of the runs, using 16,384 cores signifi-
cantly reduced the time taken to achieve the specified solution quality. This can
be explained as follows: 1) running massive demes simultaneously can greatly
increase the overall probability of finding new elite solutions; and 2) migration
operators are able to propagate good solutions to all demes if they are globally
better, stimulating local evolutionary processes at deme level. There were some
variations observed. For the test problem instance, improving solution quality
from threshold 188,000 to 186,500 was difficult with the given PGA configu-
ration in both asynchronous and synchronous versions. In the asynchronous
version, higher fluctuations were observed in one of the runs of using 2,048 and
4,096 cores, respectively, and had subsequent effect on reaching tighter bounds.
Such variation was due to the dynamics in stochastic computation specific to
each run.

In contrast, Figure 6(b) shows the weak scaling performance of the syn-
chronous version. Consistently, not only the time taken to reach a bound was
longer than PGAP, the synchronous runs could not find solutions better than
184,000 given the same amount of execution time (1 hour). Figure 6(c) shows

18

this trend more clearly by comparing the execution time improvement, mea-
sured as the percentage of

execution timesync−execution timeasync

execution timesync
. When using

16,384 cores, the execution time improvement was consistently around 60%.
In summary, the weak scaling experiment shows that asynchronous migration
was able to exploit large population size more effectively and showed significant
numerical performance advantages over the corresponding synchronous version
as more cores were used.

4.3. Communication to computation ratio

One advantage of using asynchronous migration in PGA is improved com-
munication to computation ratio. Such advantage becomes more obvious when
using a large number of cores. In any synchronous PGA implementation, a
delay at one core could affect all, while such delays in asynchronous migration
only affect direct neighbors (in receiving solutions) and can even be offset by
the overlapping of computation and communication.

In this experiment, the E801600 problem instance was solved by both asyn-
chronous and synchronous versions of PGAP with the same settings as specified
in the weak scaling experiment. Figure 7 shows the communication cost as
percentage of total execution time. PGAP’s communication cost (on average
15.5%) was significantly lower than the synchronous version (on average 54%).
For the synchronous version, the communication cost increased steadily as the
number of cores doubled, mainly due to the increase cost of MPI Barrier() calls.
While for PGAP, the communication cost decreased as more cores were used.
The decrease can be explained as follows. In a GA execution, as the evolutionary
process continues, it becomes harder to find better solutions. Therefore, ran-
dom solutions are more likely to be selected and migrated. A holding strategy
is applied in both PGAP and its corresponding synchronous version to delay
the export operation in this situation in order to avoid excessive injection of
randomness. As more cores are used, PGAP achieves a solution bound ear-
lier, beyond which getting better solutions takes longer time and the holding
strategy is applied more frequently. This scenario applies to the synchronous
version, too. But the expensive MPI Barrier() cost at large scale is more sig-
nificant than the reduction of communication caused by the holding operations.
This observation indicates that optimal search strategies should be employed to
keep searching efficiency at pace with the increase of computing power.

To better understand the communication variation in asynchronous migra-
tion, a snapshot of communication cost on each core is plotted for a run using
16,384 cores, shown in Figure 8. Most of cores’ communication cost was around
13%, with a few cores ranging between 8.5% and 18%. This means that commu-
nication cost in this large-scale PGAP run was consistent across cores despite
that migration operations were not synchronized. Also, the asynchronous mi-
gration strategy was able to manage the 9.5% communication cost variation.
This experiment further illustrated that asynchronous PGA, if designed prop-
erly, can also be reliable while introducing significantly lower communication
cost than synchronous PGAs.

19

4.4. Solution quality and numerical performance

4.4.1. Solution quality of baseline GA

This experiment was designed to evaluate solution quality of the baseline se-
quential GA of PGAP, which enhanced the feasibility and quality improvement
operators used in Chu and Beasley [22]. As mentioned in section 3, randomness
was introduced in the feasibility and solution quality improvement operators as
a way to diversify search patterns for item reassignment as PGAP scales to use
large amount of demes. This algorithmic change improves PGA performance in
both spatial and temporal contexts. For all of the demes spatially distributed in
PGA computation, the improved operators enable more flexible search patterns
on all demes with additional help from using a unique random number sequence
per deme. Temporally, they allow each iteration to use a different search order
from previous iterations for finding alternative item reassignments. Therefore,
the change we made to introduce more randomness also improves the baseline
sequential GA. In this experiment, GA parameters were set as the same as in
[22], i.e., population size was 100 and the stopping rule was without improve-
ment in consecutive 500,000 iterations. We ran the baseline algorithm and the
two-deme PGAP cases only once. Results were compared with the best-so-far
GA results [24] to the authors’ knowledge. Table 3 lists the best solutions found
and compares the gap to the maximum lower bounds (found by the linear pro-
gramming package (IP/LP Copt)) found among CPLEX commercial software
[66], CRH-GA algorithm [24], and our baseline GA. Experiment results showed
that our baseline GA outperforms Feltl’s GA in 31 out of 39 small-scale type
D, E, and F instances. The solution quality improvement is significant because
results reported in [24] show the best among multiple runs.

Table 3 also illustrates the immediate benefit of using two demes with mi-
gration on a single core (column ’Two-deme PGAP’). In the two-deme case, the
single core take turns to run two demes with migration. Each deme is assigned
with a different random number sequence that generates different solution search
paths. The benefit of using multiple demes with migration is obvious for the
GAP problem. Even though the two demes ran on a single core, Table 3 shows
that it effectively improved solution quality and outperformed Feltl’s GA in 37
instances, and our sequential GA in 31 instances.

4.4.2. Numerical performance

Using asynchronous migration has two major impacts on the numerical per-
formance of PGA: 1) reduced communication cost allows PGA to run more
iterations within the same amount of time; and 2) migration intervals become
more dynamic among spatially distributed demes. In the case of synchronous
migration, a migration operation is followed by a ’silent’ time among all demes,
the length of which is determined by the parameters of migration interval. But
in the case of asynchronous migration, as computation goes on, the timing for
migration shifts gradually among demes because of runtime dynamics such as
system clock and communication delays. Hart et al. [10] demonstrated the
benefits of such dynamics on improving PGA performance in terms of the to-
tal number of function evaluations required to achieve a designated solution

20

quality. Alba et al. [67] demonstrated the effect of network latency of LAN
(local area network) and WAN (wide area network) on PGA efficiency when
they found that WAN executions could be more efficient due to longer isolation
times. We used the result of the weak scaling experiment to evaluate numerical
performance of PGAP.

To understand the benefit of reduced communication cost, we use the number
of iterations performed per second as a measure (referred to as iteration rate)
to evaluate PGAP’s numerical efficiency. In a multi-deme case, iteration rate
is measured as the average value across all demes. Figure 9 shows the result
of using 1,024 - 16,384 cores. The result on the synchronous version is easy
to understand. The decrease of iteration rate is due to the increasing cost of
MPI Barrier() as more cores are involved. Additionally, because of the use of
global barrier, the standard deviation is marginal. Compared to the synchronous
case, the benefit of using asynchronous migration is significant, indicated by
much higher iteration rate. We also observed that, as more cores were used, the
iteration rate did not decrease. Instead, the rate increased from 441.84 to 471.84.
Such increase was due to more frequent invocations of the holding strategy. The
standard deviation for the asynchronous case decreased from 25.39 to 18.14 as
the number of cores increases from 1,024 to 16,384. This may not suggest to use
more cores in order to get more stable iteration rate. Instead, the decreasing
standard deviation was, again, due to more frequent holding operations caused
by earlier PGA convergence in asynchronous runs. In summary, the iteration
rate analysis clearly shows that the asynchronous migration strategy in PGAP
is highly scalable to the number of cores and the consistent iteration rate allows
PGAP to finish more evolution iterations collectively by using more computing
power.

By performing more iterations on a problem instance, the improvement of
solution quality is expected for PGAP. Figure 10 shows how much PGAP can
outperform the synchronous version in obtaining better solutions within one
hour of computation. We measured solution quality gain over the synchronous
version as the percentage of

fitness valuesync−fitness valueasync

fitness valuesync
. For all of the

cases we evaluated, solution quality of the asynchronous version is better than
the synchronous one. The largest improvement of 1.08% occurred when using
16,384 cores, which improved fitness value by 1,999. The percentage of improve-
ment increases as the number of cores doubled.

While the improvement of numerical performance from reduced communica-
tion cost is apparent, the influence of the migration strategy itself on PGAP’s
problem-solving capability can be intricate due to the high variation on the
timing of migration operations among a large number of demes. A preliminary
study was conducted to measure such runtime influence in PGAP by calculating
the number of iterations needed to achieve a set of solution quality thresholds
on Ranger, instead of measuring the execution time which is highly correlated
with communication cost. Figure 11 shows the result obained from the weak
scaling experiment. The number of iterations needed in each run is calculated
as the minimum number of iterations taken among all of the demes that reached

21

the solution bound. For the cases of 1,024, 2,048, and 16,384 cores, PGAP took
less number of iterations to reach any of the ten solution quality thresholds.
But for the cases of 4,096 and 8,192 processors, more iterations were needed
than the synchronous version to improve from threshold 188,000 to 186,500.
Combined with figure 6, the numerical performance gain from PGAP seems to
mainly attribute to the significant reduction of communication cost. But for the
case of 16,384, we consistently observed better performance of PGAP in both
execution time and the number of iterations in achieving a specified solution
quality.

The advantage of using asynchronous migration is also illustrated by the
convergence experiment. Figure 12 depicts snapshots of the fitness value of the
best solutions found at each timestamp in a set of runs of PGAP (Figure 12(a))
and its synchronous version (Figure 12(b)) using 64, 256, and 1,024 cores on the
Lonestar supercomputer. PGAP converged much faster in all cases.

4.4.3. Finding feasible solutions

The capability to find more feasible solutions by leveraging massive com-
puting resources is an important factor to illustrate how large-scale PGAP runs
explore solution space more efficiently than its synchronous version. Obtaining
more feasible solutions of specified solution quality is often one of the problem-
solving goals for a lot of GAP applications. By investigating the landscape
of found feasible solutions, better problem-specific heuristics can be developed
to guide solution space search toward promising directions while avoid being
trapped in local optima. The capability of PGAP for finding feasible solutions
is measured by counting the number of unique solutions found with equal or
better solution quality than the specified quality thresholds within one hour of
weak-scaling test runs. PGAP runs using 16,384 cores were compared with the
runs of its synchronous version. Results showed that, on average, PGAP found
11,093 unique solutions with fitness value better than 194,000, 19.98% more than
the synchronous version. This trend became more obvious as solution quality
thresholds became tighter. At thresholds of 188,000 and 186,000, PGAP found
40.62% and 75.90% more unique solutions than the synchronous version, re-
spectively. Such improvement on problem-solving capability mainly attributes
to the fact that, given the same amount of execution time, the asynchronous
migration strategy allows PGAP to perform significantly more iterations.

5. Concluding discussions

This paper described a scalable parallel genetic algorithm for solving large
GAP instances by leveraging massively parallel computing. Realizing that
synchronizing massive cores imposes significant performance penalty, an asyn-
chronous migration strategy is developed to improve the numerical performance
of PGAP. This strategy has three migration operators: export, import, and in-
ject. By using buffer-based communication and non-blocking message passing
between sending and receiving demes, migration communication can be over-
lapped with GA computation without adding any global barrier to synchronize

22

demes. Compared to corresponding synchronous implementation, experiments
showed significant improvement of PGAP on communication and computation
ratio, speedup, and the capability to explore solution space efficiently. Su-
perlinear speedups were observed in strong-scaling tests against large problem
instances. Parallel efficiency study of PGA is also important to explore how we
can efficiently use computing resources to achieve a specified solution threshold
given a particular problem. Cantu-Paz and Goldberg [?] studied the speedup
and efficiency of a simplified global parallelization-based PGA from theoretical
perspective and found interesting results on how to determine the optimal num-
ber of cores for solving a given problem instance. However, the study of parallel
efficiency in coarse-grained PGA is more complicated and remains to be an open
research problem because an optimal configuration of PGA may depend on the
problem, the difficulty of reaching the specified solution quality, and runtime dy-
namics since PGA is a type of stochastic algorithm. By using the asynchronous
migration strategy, the communication cost of PGAP is greatly reduced. As
a result, each core is efficiently used busy for local evolutionary computation.
But computing resources can still be wasted if one deme largely repeats the
work done by another deme. Similarity analysis on inter-deme populations, as
part of our future work, may help reveal such phenomenon and develop runtime
strategies to avoid it.

Experiment results in the weak scaling experiment showed that PGAP ex-
hibited desirable scalability for leveraging large populationsize enabled by using
massive cores in solving large problem instances. To avoid runtime failure and
the loss of good solutions observed in asynchronous PGAs, two buffer overflow
problems are identified and addressed in PGAP by establishing two sufficient
conditions for appropriate PGAP parameter configuration. The design of the
asynchronous migration strategy is generic and independent of the targeted
GAP problem. Therefore, the two sufficient conditions can be further applied
as general guidelines to the development of asynchronous coarse-grained PGAs.

We will further study PGA algorithmic behaviors using larger scale parallel
computing environments, developing GAP-specific solution space search strate-
gies, and extending the asynchronous PGA design on heterogeneous computing
platforms. We will further analyze migration strategies of PGAP by looking at
alternatives on topology and migration parameters for more efficient GA search
process control. We will continue to study the scalability of PGAP at larger
scale (e.g., exascale [57]). The findings presented in this paper have been in-
corporated in PGAP software library. This library has been deployed on and
tuned for the petascale Blue Waters supercomputer at the National Center for
Supercomputing Applications (NCSA). Desirable scalability up to 131,072 cores,
similar to the results presented in this paper, was obtained in solving very large
problem instances. To further improve PGAP, the feasibility and quality im-
provement operators will be enhanced by exploring neighboring functions such
as described in [68]. Problem characteristics illustrated in [29] will be leveraged
to design GAP instance-specific migration strategies by changing migration in-
tervals, migration rate, and strategies for selection and injection dynamically
at runtime. Hybrid computing resources become increasingly common on su-

23

percomputers, such as Blue Waters (CPU + GPU) and Stampede at TACC
(CPU + MIC + GPU). On these resources, the cost of synchronization may be
more significant due to variations of individual computer nodes and underly-
ing network. Asynchronous migration is a suitable solution for such resources.
However, the migration strategy developed in this paper needs to be extended
to take advantage of hybrid computing resources. The associated algorithmic
analysis needs to consider high variations of computing characteristics on hybrid
computing platforms.

6. Acknowledgements

This work is supported in part by the National Science Foundation (NSF) un-
der Grant Number OCI-1047916. Computational experiments used the Extreme
Science and Engineering Discovery Environment (XSEDE) (resource allocation
Award Number SES090019), which is supported by the National Science Foun-
dation Grant Number OCI-1053575. This research is part of the Blue Waters
sustained-petascale computing project, which is supported by the National Sci-
ence Foundation (award number OCI 07-25070) and the state of Illinois. Blue
Waters is a joint effort of the University of Illinois at Urbana-Champaign and
its National Center for Supercomputing Applications. The authors thank Dr.
Alberto Maria Segre at the University of Iowa for insightful discussions that led
to this research topic and are grateful for the insightful comments received from
CIGI members: Yizhao Gao, Anand Padmanabhan, and Mengyu Guo.

7. References

References

[1] J. H. Holland, Adaptation in natural and artificial systems, MIT Press,
Cambridge, MA, USA, 1992.

[2] S. Wright, The roles of mutation, inbreeding, crossbreeding and selection
in evolution, in: Proc. 6th Int. Cong. Genet., Vol. 1, 1932, pp. 356–366.

[3] D. E. Goldberg, Genetic algorithms in search, optimization and machine
learning, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1989.

[4] P. S. Oliveto, J. He, X. Yao, Time complexity of evolutionary algorithms
for combinatorial optimization: a decade of result, International Journal of
Automation and Computing 4 (3) (2007) 281–293.

[5] E. Alba, M. Tomassini, Parallelism and evolutionary algorithms, IEEE
Transactions on Evolutionary Computation 6 (5) (2002) 443–462.
doi:10.1109/TEVC.2002.800880.

24

[6] Z. Konfrst, Parallel genetic algorithms: advances, comput-
ing trends, applications and perspectives, Parallel and Dis-
tributed Processing Symposium, International 7 (2004) 162b.
doi:http://doi.ieeecomputersociety.org/10.1109/IPDPS.2004.1303155.

[7] C.-H. Huang, S. Rajasekaran, High-performance parallel bio-
computing, Parallel Computing 30 (910) (2004) 999 – 1000.
doi:10.1016/j.parco.2004.01.003.

[8] J. I. Hidalgo, F. Fernandez, J. Lanchares, E. Cant-Paz, A. Zomaya, Paral-
lel architectures and bioinspired algorithms, Parallel Computing 36 (1011)
(2010) 553 – 554. doi:10.1016/j.parco.2010.09.001.

[9] E. Alba, J. M. Troya, A survey of parallel distributed genetic algorithms,
Complexity 4 (4) (1999) 31–52.

[10] W. E. Hart, S. B. Baden, R. K. Belew, S. R. Kohn, Analysis of the nu-
merical effects of parallelism on a parallel genetic algorithm, in: IPPS
’96: Proceedings of the 10th International Parallel Processing Symposium,
IEEE Computer Society, Washington, DC, USA, 1996, pp. 606–612.

[11] M. L. Fisher, R. Jaikumar, L. N. V. Wassenhove, A multiplier adjust-
ment method for the generalized assignment problem, Management Science
32 (9) pp. 1095–1103.

[12] C. Chekuri, S. Khanna, A ptas for the multiple knapsack problem, in:
SODA ’00: Proceedings of the 11th Annual Symposium on Discrete Algo-
rithms, 2000, pp. 213–222.

[13] R. Borndorfer, R. Weismantel, Relations among some combinatorial pro-
grams, Tech. rep., Konrad-Zuse-Zentrum fr Informationstechnik Berlin
(1997).

[14] D. G. Cattrysse, L. N. V. Wassenhove, A survey of algorithms for the gen-
eralized assignment problem, European Journal of Operational Research
60 (3) (1992) 260 – 272. doi:10.1016/0377-2217(92)90077-M.

[15] V. Balachandran, An integer generalized transportation model for optimal
job assignment in computer networks, Operations Research 24 (4) pp. 742–
759.

[16] R. G. Cromley, D. M. Hanink, Coupling land use allocation models with
raster gis, Journal of Geographical Systems 1. doi:10.1007/s101090050009.

[17] A. Freville, The multidimensional 0-1 knapsack problem: An overview,
European Journal of Operational Research 155 (1) (2004) 1–21.

[18] Xsede, http://xsede.org (2013).

[19] E. Alba, J. M. Troya, Improving flexibility and efficiency by adding paral-
lelism to genetic algorithms, Statistics and Computing 12 (2) (2002) 91–114.

25

[20] B. A. Shapiro, J. C. Wu, D. Bengali, The massively parallel genetic al-
gorithm for rna folding: Mimd implementation and population variation,
Bioinformatics 17 (2) (February 2001) 137–148.

[21] M. McCool, Scalable programming models for massively multi-
core processors, Proceedings of the IEEE 96 (5) (2008) 816–831.
doi:10.1109/JPROC.2008.917731.

[22] P. C. Chu, J. E. Beasley, A genetic algorithm for the gener-
alised assignment problem, Comput. Oper. Res. 24 (1) (1997) 17–23.
doi:http://dx.doi.org/10.1016/S0305-0548(96)00032-9.

[23] J. M. Wilson, A genetic algorithm for the generalised assignment problem,
The Journal of the Operational Research Society 48 (8) (1997) 804–809.

[24] H. Feltl, G. R. Raidl, An improved hybrid genetic algorithm for the gen-
eralized assignment problem, in: SAC ’04: Proceedings of the 2004 ACM
symposium on Applied computing, ACM, New York, NY, USA, 2004, pp.
990–995. doi:http://doi.acm.org/10.1145/967900.968102.

[25] T. Lau, E. Tsang, The guided genetic algorithm and its application to the
generalized assignment problem, Tools with Artificial Intelligence, 1998.
Proceedings. Tenth IEEE International Conference on (10-12 Nov 1998)
336–343doi:10.1109/TAI.1998.744862.

[26] L. Lorena, M. Narciso, J. Beasley, A constructive genetic algorithm for the
generalized assignment problem, Evolutionary Optimization.

[27] F. Qian, R. Ding, Simulated annealing for the 01 multidimensional knap-
sack problem, Journal of Chinese Universities Numerical Mathematics
16 (4) (2007) 320–327.

[28] J. A. Diaz, E. Fernandez, A tabu search heuristic for the generalized assign-
ment problem, European Journal of Operational Research 132 (1) (2001)
22–38.

[29] M. Yagiura, T. Ibaraki, F. Glover, A path relinking approach with ejec-
tion chains for the generalized assignment problem, European Journal of
Operational Research 127 (2) (2006) 548–569.

[30] V. Jeet, E. Kutanoglu, Lagrangian relaxation guided problem space search
heuristics for generalized assignment problems, European Journal of Oper-
ational Research 127 (3) (2007) 1039–1056.

[31] A. P. French, J. M. Wilson, An lp-based heuristic procedure for the gener-
alized assignment problem with special ordered sets, Comput. Oper. Res.
34 (8) (2007) 2359–2369. doi:http://dx.doi.org/10.1016/j.cor.2005.09.008.

[32] L. D. Whitley, Cellular genetic algorithms, in: Proceedings of the 5th In-
ternational Conference on Genetic Algorithms, 1993, pp. 658–.

26

[33] S. E. Eklund, A massively parallel architecture for distributed ge-
netic algorithms, Parallel Computing 30 (56) (2004) 647 – 676.
doi:10.1016/j.parco.2003.12.009.

[34] M. Ruciski, D. Izzo, F. Biscani, On the impact of the migration topol-
ogy on the island model, Parallel Computing 36 (1011) (2010) 555 – 571.
doi:10.1016/j.parco.2010.04.002.

[35] D. DAmbrosio, W. Spataro, Parallel evolutionary modelling of ge-
ological processes, Parallel Computing 33 (3) (2007) 186 – 212.
doi:10.1016/j.parco.2006.12.003.

[36] T. C. Belding, The distributed genetic algorithm revisited, in: Proceed-
ings of the 6th International Conference on Genetic Algorithms, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1995, pp. 114–121.

[37] D. Whitley, An overview of evolutionary algorithms: practical issues and
common pitfalls, Information and Software Technology 43 (14) (2001) 817–
831.

[38] W. Rivera, Scalable parallel genetic algorithms, Artif. Intell. Rev. 16 (2)
(2001) 153–168. doi:http://dx.doi.org/10.1023/A:1011614231837.

[39] E. Cantu-Paz, A survey of parallel genetic algorithms (1997).

[40] R. Tanese, Distributed genetic algorithms, in: Proceedings of the 3rd Inter-
national Conference on Genetic Algorithms, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1989, pp. 434–439.

[41] H. Chen, N. S. Flann, D. W. Watson, Parallel genetic simulated annealing:
A massively parallel simd algorithm, IEEE Trans. Parallel Distrib. Syst.
9 (2) (1998) 126–136. doi:http://dx.doi.org/10.1109/71.663870.

[42] T. Kalinowski, Solving the mapping problem with a genetic algorithm
on the maspar-1, in: Massively Parallel Computing Systems, 1994., Pro-
ceedings of the First International Conference on, 1994, pp. 370 –374.
doi:10.1109/MPCS.1994.367057.

[43] S. Baluja, A massively distributed parallel genetic algorithm (mdpga),
Tech. rep., Carnegie Mellon University (1992).

[44] H. Juille, J. B. Pollack, Co-evolving intertwined spirals, in: in Proceedings
of the Fifth Annual Conference on Evolutionary Programming, MIT Press,
1996, pp. 461–468.

[45] D. Prabhu, B. P. Buckles, F. E. Petry, A simd environment for genetic algo-
rithms with interconnected subpopulations, Scalable Computing: Practice
and Experience 7 (2) (2006) 65–86.

27

[46] J. T. Ngo, J. Marks, Physically realistic motion synthesis in
animation, Evolutionary Computation 1 (3) (1993) 235–268.
doi:10.1162/evco.1993.1.3.235.

[47] W. Jiang, J. Liu, H.-W. Jin, D. Panda, W. Gropp, R. Thakur, High per-
formance mpi-2 one-sided communication over infiniband, Cluster Com-
puting and the Grid, IEEE International Symposium on 0 (2004) 531–538.
doi:http://doi.ieeecomputersociety.org/10.1109/CCGrid.2004.1336648.

[48] A. Faraj, P. Patarasuk, X. Yuan, A study of process arrival patterns for
mpi collective operations, in: ICS ’07: Proceedings of the 21st annual
international conference on Supercomputing, ACM, New York, NY, USA,
2007, pp. 168–179. doi:http://doi.acm.org/10.1145/1274971.1274996.

[49] R. Cledat, T. Kumar, J. Sreeram, S. Pande, Opportunistic com-
puting: A new paradigm for scalable realism on many-cores, in:
HOTPAR ’09: USENIX Workshop on Hot Topics in Parallelism.
doi:10.1109/IPDPS.2008.4536264.

[50] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
K. A. Yelick, The landscape of parallel computing research: A view from
berkeley, Tech. rep., EECS Department, University of California, Berkeley
(Dec 2006).

[51] Petascale Computing: Algorithms and Applications, 1st Edition, Chapman
& Hall/CRC, 2007.

[52] E. Alba, J. M. Troya, An analysis of synchronous and asynchronous parallel
distributed genetic algorithms with structured and panmictic islands, in:
Proceedings of the 11 IPPS/SPDP’99 Workshops Held in Conjunction with
the 13th International Parallel Processing Symposium and 10th Symposium
on Parallel and Distributed Processing, Springer-Verlag, London, UK, 1999,
pp. 248–256.

[53] S.-C. Lin, I. Punch, W.F., E. Goodman, Coarse-grain parallel genetic al-
gorithms: categorization and new approach, Parallel and Distributed Pro-
cessing, 1994. Proceedings. Sixth IEEE Symposium on (26-29 Oct 1994)
28–37doi:10.1109/SPDP.1994.346184.

[54] G. Folino, C. Pizzuti, G. Spezzano, A scalable cellular implementation of
parallel genetic programming, IEEE Transactions on Evolutionary Com-
putation 7 (1) (2003) 37–53. doi:10.1109/TEVC.2002.806168.

[55] V. S. Gordon, L. D. Whitley, Serial and parallel genetic algorithms as
function optimizers, in: Proceedings of the 5th International Conference
on Genetic Algorithms, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993, pp. 177–183.

28

[56] J. R. Clausen, D. A. Reasor, C. K. Aidun, Parallel performance of a lattice-
boltzmann/finite element cellular blood flow solver on the ibm blue gene/p
architecture, Computer Physics Communications 181 (6) (2010) 1013 –
1020. doi:10.1016/j.cpc.2010.02.005.

[57] J. Dongarra, D. Gannon, G. Fox, K. Kennedy, The impact of multicore on
computational science software, CTWatch Quarterly 3 (1) (2007) 817–831.

[58] D. E. Goldberg, K. Deb, A comparative analysis of selection schemes used
in genetic algorithms, in: G. J. E. Rawlins (Ed.), Foundations of Genetic
Algorithms, San Francisco, CA: Morgan Kaufmann, pp. 69–93.

[59] B. Manderick, P. Spiessens, Fine-grained parallel genetic algorithms, in:
Proceedings of the third international conference on Genetic algorithms,
Morgan Kaufmann Publishers Inc., 1989, pp. 428–433.

[60] D. Andre, J. R. Koza, Parallel genetic programming: a scalable implemen-
tation using the transputer network architecture (1996) 317–337.

[61] MPI-Forum, MPI: A Message-Passing Interface Standard, Version 3.0, High
Performance Computing Center Stuttgart (HLRS), Stuttgart, Germany,
2012.

[62] M. Mascagni, A. Srinivasan, Algorithm 806: Sprng: a scalable library for
pseudorandom number generation, ACM Trans. Math. Softw. 26 (3) (2000)
436–461. doi:http://doi.acm.org/10.1145/358407.358427.

[63] M. M. Amini, M. Racer, A rigorous computational comparison of alterna-
tive solution methods for the generalized assignment problem, Management
Science 40 (7) pp. 868–890.

[64] X.-H. Sun, L. M. Ni, Another view on parallel speedup, in: Proceedings of
the 1990 ACM/IEEE conference on Supercomputing, Supercomputing ’90,
IEEE Computer Society Press, Los Alamitos, CA, USA, 1990, pp. 324–333.
URL http://dl.acm.org/citation.cfm?id=110382.110450

[65] V. Sarkar, W. Harrod, A. E. Snavely, Software challenges in extreme scale
systems, Journal of Physics: Conference Series 180 (1) 012045.

[66] Cplex, http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/ (2013).

[67] E. Alba, G. Luque, J. Troya, Parallel lan/wan heuristics for
optimization, Parallel Computing 30 (56) (2004) 611 – 628.
doi:10.1016/j.parco.2003.12.007.

[68] R. K. Ahuja, O. Ergun, J. B. Orlin, A. P. Punnen, A survey of very large-
scale neighborhood search techniques, Discrete Appl. Math. 123 (2002)
75–102.

29

Table 1: PGAP parameters considered in the algorithmic analysis

d Connectivity: the number of directed connected
neighboring demes

r Migration rate: the number of local solutions se-
lected for each export operation

Mexpt Export interval: the number of iterations between
two consecutive export operations

Mimpt Import interval: the number of iterations between
two consecutive import operations

Ksendbuf Size of the sending buffer allocated as the system
outgoing message buffer. Ksendbuf ≥ r

Kimpt Size of the import pool

3

5

6

4

7

8

1

2

9

1 2 3

2 3 1 2 1 1 2 2 3

1 2 3 4 5 6 7 8 9

a. An assignment of
9 items to 3 bins

b. Chromosome
encoding

Item index:

Figure 1: GAP encoding

30

Table 2: PGAP default configuration

Parameters Settings
Population size per deme 100
Initial population generation Random with feasibility improve-

ment or constraint-based im-
provement [24]

Selection Binary tournament
Crossover 1-point. Probability: 0.8
Mutation 1-item mutation. Probability:

0.2
Replacement Replacing the unfittest or worst
Elitism Yes
Stopping rules No solution improvement,

bounded solution quality
reached, or fixed number of
iterations

Connectivity d 4
Migration rate r 2
Export interval Mexpt 50
Import interval Mimpt 25
Probability of holding 1/20 (the probability to export

when no better solution found
during a previous export interval)

Sending buffer size Ksendbuf 20 solutions. Actual memory
requirement is (20 × n × 4 +
buffer overhead) bytes

Import pool size Kimpt 80 solutions. Actual memory re-
quirement is (80× n× 4)

31

Table 3: Solution quality comparison 3456 among CPLEX software, CRH-GA, the baseline
sequential GA, and 2-deme PGAP

Prob. Size IP/LP CPLEX CRH-GA Baseline GA

Type m n gap (%) gap (%) fitness value gap (%) fitness value gap (%)

D 5 400 25670 opt 0.44 25790 0.47 25737 0.26

D 10 400 25274.8 0.18 1.31 25509 0.93 25435 0.63

D 20 400 24546.8 0.51 1.97 24903 1.45 24855 1.26

D 40 100 6092 3.96 3.72 6327 3.86 6265 2.84

D 40 200 12244.9 2.22 3.06 12561 2.58 12520 2.25

D 40 400 24371.8 1.1 2.81 24851 1.97 24801 1.76

D 80 100 6110.5 6.6 7.01 6526 6.80 6501 6.39

D 80 200 12132.3 2.87 3.76 12490 2.95 12454 2.65

D 80 400 24177 2 3.02 24748 2.36 24587 1.70

E 5 100 7757 opt 0.24 7774 0.22 7760 0.04

E 5 200 15611 opt 0.23 15632 0.13 15626 0.10

E 5 400 30794 opt 0.28 30872 0.25 30826 0.10

E 10 100 7387.8 0.61 0.91 7454 0.90 7436 0.65

E 10 200 15039.8 0.25 0.96 15135 0.63 15126 0.57

E 10 400 29977.9 0.09 0.94 30135 0.52 30142 0.55

E 20 100 7348.2 1.32 1.74 7463 1.56 7448 1.36

E 20 200 14765.2 0.89 1.7 14923 1.07 14918 1.03

E 20 400 29500.3 0.34 1.6 29845 1.17 29810 1.05

E 40 100 7316.1 3.32 3.11 7497 2.47 7522 2.81

E 40 200 14630.4 1.85 2.2 14835 1.40 14858 1.56

E 40 400 29186.6 0.69 2.14 29586 1.37 29593 1.39

E 80 100 7650 opt 0.78 7670 0.26 7668 0.24

E 80 200 14566.7 2.17 2.93 14833 1.83 14846 1.92

E 80 400 29161.3 1.57 2.49 29631 1.61 29567 1.39

F 5 100 2755 opt 0.41 2761 0.22 2761 0.22

F 5 200 5294 opt 0.35 5304 0.19 5315 0.40

F 5 400 10745 opt 0.25 10776 0.29 10765 0.19

F 10 100 2276.8 1.99 3.95 2364 3.83 2348 3.13

F 10 200 4644.6 1.13 3.12 4794 3.22 4759 2.46

F 10 400 9372.7 0.46 2.78 9631 2.76 9604 2.47

F 20 100 2145.1 8.15 8.38 2339 9.04 2301 7.27

F 20 200 4310.1 4.73 6.55 4585 6.38 4552 5.61

F 20 400 8479.4 2.38 7.15 9050 6.73 8950 5.55

F 40 100 2110.1 21.28 18.27 2476 17.34 2501 18.53

F 40 200 4086.5 10.14 12.86 4522 10.66 4578 12.03

F 40 400 8274.3 4.05 10.36 9105 10.04 8907 7.65

F 80 100 2064.4 31.37 26.77 2655 28.61 2583 25.12

F 80 200 4123.4 19.05 17.33 4869 18.08 4837 17.31

F 80 400 8167.1 9.18 12.55 9248 13.23 9127 11.75

Two-deme PGAP

Copt

3Column IP/LP: lower bound found by linear programming
4Column CPLEX: best solutions found by CPLEX. opt : optimal solution found
5gap (%): the percentage of fitness valuebest solution−lower bound

lower bound
6IP/LP, CPLEX, and CRH-GA results are from Feltl et al. [24]. They are included for

comparison purpose

32

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

export

import

Figure 2: Topology of PGAP

GA

Import pool

Local population

import

inject:random
inject:elite

GA operators

export

Deme

Send Receive

Communication system

Sending buffer

Network

Figure 3: PGAP operators and their interactions

33

/* On each deme */:
Individual P [d]; // deme population of size d
Individual p1, p2, c; // parent 1 and 2, and child
Individual Pool[bufsize]; // import buffer
Generate and evaluate initial population P ;
iter := 0;
do /* evolutionary iteration */

c := ∅;
select p1 and p2 from P using binary tournament selection; // selection
if (there are new solutions in Pool) // migration: inject

t := the first unprocessed solution in Pool;
if (t is an elite solution from a neighboring deme)

c := t; // directly-inject this elite solution into local deme
else // a random solution from neighbor

p2 := t; // select as a parent
if (c is empty)

cutpoint := rand(); // randomly select a cutoff point for p1 and p2;
c := combine(p1, p2, cutpoint); // crossover
/* mutation: swap bin assignment of two randomly selected items */
c := swap(c, rand(), rand());

get a random lookup order O;
foreach bin in O // feasibility improvement on c

calculate weight sum for bin in c;
if (bin is overweighted)

try to move one item from bin to another
such that both bins are under capacity;

foreach item in c // quality improvement
try to move the item to another bin such that
the fitness value of c will be less;

calculate the fitness value for c; // fitness evaluation
if (c is feasible and unique) // replacement

if (there exists an individual with unfitness value > 0)
replace the unfit individual;

else replace the individual with the worst fitness value;
if (iter % Mexpt = 0) // migration: export

if no improvement since last export and should hold
skip this export operation;

else wait until previous export operation is finished;
select and send r solutions to direct neighbors;

if (iter % Mimpt = 0) // migration: import

probe incoming solutions;
foreach new incoming solution insoln

Pool[++ bufhead] := insoln;
iter++;

until stopping rule is met;

Figure 4: Parallel genetic algorithm for GAP

34

0
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240
11264

12288
13312

14336
15360

16384
17408

0

5

10

15

20

25

30

35

40

45

50
194000

192000

190000

188000

186500

186000

185500

185000

184500

184000

183500

Linear

Number of processors

S
p

e
e

d
u

p

(a) Asynchronous migration

0
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240
11264

12288
13312

14336
15360

16384
17408

0

5

10

15

20

25

30

35

40

45

50

194000

192000

190000

188000

186500

186000

185500

185000

Linear

Number of processors

S
p

e
e

d
u

p

(b) Synchronous migration

1024 2048 4096 8192 16384
0

0.5

1

1.5

2

2.5

3

194000

192000

190000

188000

186500

186000

185500

185000

Number of processors

R
a
ti
o
 o

f
s
p
e
e
d
u
p

(c) Ratio of speedup comparison

Figure 5: Strong scaling results. Speedups were measured against different solution quality
thresholds. Missing points/columns were the runs exceeding maximum walltime.

35

0
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240
11264

12288
13312

14336
15360

16384
17408

0

500

1000

1500

2000

2500

3000

3500

4000

194000

192000

190000

188000

186500

186000

185500

185000

184500

184000

183500

183000

182500

Number of processors

T
im

e
 i
n

 s
e

c
o

n
d

s

(a) Aynchronous migration

0
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240
11264

12288
13312

14336
15360

16384
17408

0

500

1000

1500

2000

2500

3000

3500

4000

194000

192000

190000

188000

186500

186000

185500

185000

184500

184000

Number of processors

T
im

e
 i
n

 s
e

c
o

n
d

s

(b) Synchronous migration

1024 2048 4096 8192 16384
0%

10%

20%

30%

40%

50%

60%

70%

80%

194000

192000

190000

188000

186500

186000

185500

185000

184500

184000

Number of processors

E
x
e
c
u
ti
o
n
 t

im
e
 i
m

p
ro

v
e
m

e
n
t

(%
)

(c) Execution time improvement

Figure 6: Weak scaling results. Execution times were measured against different solution
quality thresholds. Missing points were the runs exceeding maximum walltime (one hour).

36

1024 2048 4096 8192 16384
0%

10%

20%

30%

40%

50%

60%

70%

19.36%
17.34%

13.68% 13.77% 13.40%

50.57%
52.29%

54.12%
55.69%

57.39%

Asynchronous

Synchronous

Number of processors

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

Figure 7: Distribution of communication cost in weak scaling test.

 0

 5

 10

 15

 20

 25

 30

 0 1
0

2
4

 2
0

4
8

 3
0

7
2

 4
0

9
6

 5
1

2
0

 6
1

4
4

 7
1

6
8

 8
1

9
2

 9
2

1
6

 1
0

2
4

0

 1
1

2
6

4

 1
2

2
8

8

 1
3

3
1

2

 1
4

3
3

6

 1
5

3
6

0

 1
6

3
8

4
C

o
m

m
u

n
ic

a
ti
o

n
 c

o
s
t

(%
)

Processor index

Figure 8: Snapshot of communication cost at each core in a PGAP run using 16,384 cores

37

0
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240
11264

12288
13312

14336
15360

16384

200

250

300

350

400

450

500

268.67

252.69

234.04

217.89

203.89

441.84
452.62

469.95 471.29 471.84

Asynchronous

Synchronous

Number of processors

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s
 p

e
r

s
e

c
o

n
d

Figure 9: Iteration rate comparison. The standard deviation is also plotted.

2048 4096 8192 16384

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

0.60%
0.64%

0.84%

1.09%

Number of processors

F
it

n
e

s
s

 v
a

lu
e

 i
m

p
ro

v
e

m
e

n
t

(%
)

Figure 10: Solution quality comparison, measured as the percentage of fitness value improve-
ment in PGAP over the synchronous version. Each run was given one hour to finish.

38

1024
2048

3072
4096

5120
6144

7168
8192

9216
10240

11264
12288

13312
14336

15360
16384

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

194000

192000

190000

188000

186500

186000

185500

185000

184500

184000

Number of cores

N
u

m
b

e
r
 o

f
it

e
r
a

ti
o

n
s

 t
a

k
e

n

(a) Aynchronous migration

1024
2048

3072
4096

5120
6144

7168
8192

9216
10240

11264
12288

13312
14336

15360
16384

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

194000

192000

190000

188000

186500

186000

185500

185000

184500

184000

Number of cores

N
u

m
b

e
r
 o

f
it

e
r
a

ti
o

n
s

 t
a

k
e

n

(b) Synchronous migration

Figure 11: Number of iterations required to achieve specified solution quality. Missing points
were the runs exceeding maximum walltime (one hour).

39

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800

F
it
n

e
s
s
 v

a
lu

e
 (

in
 t

h
o

u
s
a

n
d

s
)

Time (in seconds)

np=64
np=256

np=1024

(a) Asynchronous migration

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800

F
it
n

e
s
s
 v

a
lu

e
 (

in
 t

h
o

u
s
a

n
d

s
)

Time (in seconds)

np=64
np=256

np=1024

(b) Synchronous migration

Figure 12: PGAP convergence. np: number of cores

40

