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ABSTRACT Research interests spanning numerous domains increasingly rely upon computational systems 
which can store and process a large volume of variable data that is stored at high velocity – representing a 
big data problem. This is particularly notable within the domain of ubiquitous and pervasive computing. 
This domain increasingly relies on storage and retrieval of sensor data to enable outcomes such as predic-
tive analytics and activity recognition. Several current big data platforms exist; however, they have a range 
of deficiencies including lack of generic interoperability with agnostic sensors and an absence of features 
supporting academic research. Due to these deficiencies a custom, research oriented, high performance, big 
data platform was devised and implemented. This platform is called SensorCentral and is presented within 
this manuscript. SensorCentral provides a framework which enables interoperability with a large range of 
agnostic sensor devices whilst simultaneously providing features which support research. Research support-
ing features include; facility to define experiments, ability to annotate experimental instances via purpose-
built mobile applications, integrated machine learning functionality, facility to export data sets, rule-based 
classification and an extensible platform. The flagship implementation of this platform has been in opera-
tion for over 28 months within a University research group and has been successfully integrated with a 
range of sensors from a variety of manufacturers. This implementation currently stores over 850 million 
records and has been central to several research and industrial projects. Future work will integrate this plat-
form into the Open Data Initiative enabling collaboration with the international community of researchers. 

INDEX TERMS Data analysis, Data storage systems, Database systems, Internet of Things, Machine learn-
ing, Sensor systems, Wireless sensor networks, LoRa, Open Data Initiative, Research tools

I. INTRODUCTION 
Large volumes of data are increasingly becoming central to 
a variety of research interests. Notably the domain of ubiq-
uitous and pervasive computing is reliant on data generated 
from sensing elements [1]–[3]. Research interests in these 
domains include: activity recognition, sensor-based sup-
ported safety solutions, environmental monitoring and ena-
bling industry 4.0. Storing, processing, exploiting and pre-
senting such sensor data is a big data problem. Big data 
problems carry three key characteristics, which are summa-
rized as the three V’s [4], [5]. These three V’s are: 

 Variety: the data to be stored varies greatly 
 Volume: a large quantity of data is present 

 Velocity: data records are stored at a high sample 
rate 

 
Typically, the research interests in these domains incorpo-
rate a range of sensor device types from a range of vendors. 
These heterogenous devices produce data dictated by what 
they sense. This represents the variety characteristic in data 
generated. Current sensor solutions can generate a great 
volume of data which must be adequately catered for. In 
addition, sensor data is ideally sampled at the highest pos-
sible rate in order to provide a more valuable data set for 
research efforts – this represents the high velocity aspect of 
this problem.  
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    This big data problem is best illustrated by discussing 
two research efforts within these domains. Specifically, the 
studies described in [6], [7]. These studies have produced 
behavioral and fall detection services that achieve their 
goals via environmentally deployed thermal vison sensors. 
These thermal vison sensors perceive the world through a 
low-resolution grid of emissive thermal readings. In their 
current configuration, these sensors employ a sample rate of 
10Hz. Each sampled thermal frame is on average 4 kilo-
bytes in size. Given the frame size and the sample rate, a 
single thermal vison sensor can generate 144 megabytes of 
data an hour and approximately 3.5 gigabytes a day.   
    In order to provide adequate coverage of a domicile, the 
intended deployment environment, multiple sensors are 
required – compounding the problem. In addition, these 
solutions require other sensor records, such as those 
representing annotations, to be stored. Furthermore, 
processed sensor data, describing the persons detected in the 
scene need to be stored in conjunction with the raw thermal 
frames and annotation data. Additionally, during the 
development of these solutions sensor data from a smart floor 
was used as a ground truth for models and computer vison 
processing modules. As such, this solution incorporates a 
variety of sensors which produce a large volume of data at 
high velocity.  
    A number of solutions to store, exploit and process such 
data exists, however, they are not research oriented and so 
have some limitations. As determined by the requirements of 
the research group which originated this platform, research-
oriented solutions require several features including: 

1. agnostic sensor integration  
2. the ability to define experiments, related infor-

mation and researchers  
3. the ability record instances of experiments 
4. annotation interfaces for experiments 
5. the ability to export records from experiments and 

experimental instances 
6. integration of machine learning functionality 
7. the ability to forward sensor data to independent 

processes 
8. a flexible, extensible platform with a modular in-

terface 
 

A sensor data platform was devised and developed to ad-
dress these deficiencies. This platform is called SensorCen-
tral and aims to offer features and functions which will aid 
research efforts.  
    The remainder of this paper adopts the following struc-
ture: related works are explored in Section II, the developed 
platform is presented in Section III, some current use cases 
are presented in Section IV, and Section V provides con-
cludes the paper and presents some planned future work. 

II. RELATED WORK 
A multitude of solutions facilitating storing and querying 
sensor data at the big data scale exist. However, they have 
some technical and functional deficiencies. Notably, the 

majority of solutions have little or no support for research-
oriented functionality [5], [8]–[19]  
    Specifically, no platform adequately supports the eight 
research-oriented features that were identified by the candi-
date researchers and enumerated within the introduction 
Section. 
    Beebotte [15] is a cloud-based platform that supports 
storage and querying of IoT/sensor data. The platform op-
erates on Amazon Web Services, offering redundant and 
scalable hosting. Communication is supported though REp-
resentational State Transfer (REST) [20], Message Queue 
Telemetry Transport interfaces (MQTT) [21], [22] and 
WebSockets [23], [24]. This platform doesn’t provide any 
extensive analysis functionality. Additionally, it requires a 
commercial license, which may not be ideal for use by re-
searchers in all cases. 
    Bonomi et al. [16] proposed a ‘fog computing’ approach 
supporting storing, querying and processing sensor data.  
This approach supports scalable storage in addition to inte-
gration of real-time analytics. Although showing promise, 
this approach stores data within silos. Employing such in-
formation silos greatly reduces the ability to query across 
the entire data set. 
    Cecchinel et al. [17] produced an architecture to store a 
large quantity of sensor data. This approach incorporates 
heterogenous sensors which produce data at a high velocity. 
Data can be accessed via a REST interface by consumer 
applications. The core data storage component of the is 
based upon a document-oriented database, MongoDB. The 
platform has promise but a number of deficiencies related 
to research oriented functionality and carries a potential 
performance bottleneck due to its reliance of MongoDB 
[25]–[29] when considering sensor/time series data only. 
    Cheng et al. [18] produced a sensor data platform, named 
CiDAP, that was designed to support realization of smart 
cities. Specifically, the candidate test smart city has a popu-
lation of over 180,000 people and contains more than 
15,000 sensors. The core data storage component incorpo-
rated a document database, CouchDB, and the Hadoop 
platform. Notably, the authors did not consider incorpora-
tion of any Time-Series DataBase (TSDB), potentially re-
ducing the scalability of their approach [25]–[29]. The sys-
tem, however, is a proven platform that has been success-
fully deployed. Deficiencies include a lack of research-
oriented features.   
    Kx for Sensors [19] is a commercial sensor data platform 
with origins in managing data from the stock market. Kx 
offers a scalable, agnostic, solution that incorporates visual-
ization functions, distributed queries, analytics and incorpo-
ration of machine learning components. The core storage 
engine of Kx for Sensors is a time-series database, kdb+. 
As emphasized by previous evaluations [25]–[29] and con-
sidering the design goals of TSDBs, this is an appropriate 
choice for storing this type of data. Kx does not sufficiently 
support research-oriented features and has limitations relat-
ed to commercial licensing.  
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    Lee et al. [9] produced a sensor data platform which was 
focused on storing data related to railway systems and re-
lated infrastructure. This platform provides real time analy-
sis of this data to offer services such as predictive mainte-
nance and asset tracking. Although this is called a “univer-
sal sensor platform”, this name is a misnomer as it only 
supports a set of specific sensors and does not offer agnos-
tic function. Furthermore, there is limited discussion of the 
storage strategy or its scalability as a big data platform. 
    openHAB [10] is an open source sensor platform which 
offers agnostic device integration. It was initially devised as 
a solution to converge differing home automation standards 
and technologies. openHAB supports integration of a large 
array of sensors, actuation interfaces, protocols and online 
services. Whilst primarily focused on automation and con-
trol, it supports persistence of sensor data within a variety 
of storage engines, including TSDBs. Although this plat-
form supports an extensive array of sensors/technologies 
and is extremely mature, it has some deficiencies, particu-
larly when applied to research activities. 
    Sowe et al. [12] proposed a platform to enable storage of 
a large quantity of sensor data from a variety of hetero-
genous devices. The core data storage component of this 
platform is based upon a document-oriented database and a 
relational database, MongoDB and MySQL respectively. 
The technologies incorporated into the data storage compo-
nent have, however, do not offer adequate performance or 
scalability when processing large quantities of sensor data 
[25]–[29].   
    Thingspeak [11] is a cloud-based platform that supports 
storage and querying of IoT/sensor data. This platform 
provides agnostic integration with sensors and communi-
cates via REST or MQTT. This platform incorporates a 
MatLAB based component facilitating analysis and presen-
tation of data. This component is a reduced functionality, 
web based, implementation of MatLAB. These MatLAB 
scripts can be scheduled to provide some automated analy-
sis. It is notable that this analysis function is relatively high 
latency. Finally, this platform is a commercial pursuit and 
so may not be suited for research efforts. 
    Notably, the evaluated sensor data platforms do not ade-
quately support the desired research-oriented features iden-
tified by the requirements of the candidate research group. 
In particular, Kx, CiDAP and openHAB lack the ability to 
support definition of experiments, ability to forward da-
tasets to independent process and lack of tools/ability to 
annotate datasets. 
    In order to address the deficiencies, a custom solution 
was produced. This solution has built upon the knowledge 
provided by previous solutions [5], [8]–[19], [25]–[29] to 
provide a sensor agnostic, research oriented and scalable 
platform. This platform is called SensorCentral and is de-
tailed in Section III. 

III. A SCALABLE, RESEARCH ORIENTED, GENERIC, 
SENSOR DATA PLATFORM  
The developed, scalable, generic, sensor data platform sup-
ports integration with diverse range of heterogenous sensors 

produced by a variety of manufacturers. Additionally, the 
platform integrates the eight research-oriented features 
indicated by the requirements of the intended research 
group. This platform supports a modular, web-based inter-
face which supports sensor data visualization in addition to 
data and research management. Finally, this platform has 
been developed to offer scalable high performance incorpo-
rating proven, open-source, technologies.  
    Discussion of a range of supported sensors is presented 
in Subsection A. The approach taken to support for generic 
sensors is detailed in Subsection B. The architecture of the 
platform, and modular interface, is presented and discussed 
in Subsection C. The integration and availability of re-
search-oriented features is presented in Subsection D.  
 

A.  CURRENTLY SUPPORTED SENSORS 
Currently, this platform has been integrated with over 20 
classes of device produced by over 20 different 
manufacturers. These sensors communicate over an array of 
communications protocols including Bluetooth, custom 
Radio Frequency (RF), LoRaWAN, Wi-Fi, Ethernet, IEEE 
802.15.4 and Z-wave. A subset of currently supported 
sensors is presented in Table I. Notably, this list reflects the 
sensors that have been fully integrated into the platform, 
therefore it is not exhaustive and can be expanded.   
 

TABLE I 
A SUBSET OF THE SENSORS SUPPORTED BY SENSORCENTRAL 

Sensor Class Manufacturer 
Communication  

Protocol 

Accelerometer 

Bosch 
Microchip 

Sun Microsystems 
Texas Instruments 

I2C with Wi-Fi 
LoRaWAN 

IEEE 802.15.4 
Bluetooth  

Air Quality Elsys LoRaWAN 

Analogue Voltage Adeunis LoRaWAN 
Bluetooth Beacon Various Bluetooth  

Contact Sensor 
Everspring 

Nexa 
Tynetec 

Z-Wave 
Custom RF (433MHz) 
Custom RF (169MHz) 

GPS Location 
Adeunis RF 
GlobalSat 

Ulster University 

LoRaWAN 
LoRaWAN 

Wi-Fi/4G (via App) 

Humidity 

Adeunis RF  
Microchip 

Texas Instruments 
Ulster University 

LoRaWAN 
LoRaWAN 
Bluetooth  

Wi-Fi 
Inertial Measure-

ment Unit 
Slever Technologies Bluetooth/ USB 

Light Intensity 
Meters 

Sun Microsystems 
Texas Instruments 

IEEE 802.15.4 
Bluetooth 

Magnetometer 
Bosch 

Texas Instruments 
Wi-Fi/Bluetooth 

Bluetooth 
NFC Tags Various Wi-Fi/4G/Ethernet 

Passive Infra-Red 
Motion Sensors 

Belkin 
Elsys 
Nexa 

Wi-Fi 
LoRaWAN 

Custom RF (433MHz) 
Power Usage 

Monitor 
Belkin 

NKE Watteco 
Wi-Fi 

LoRaWAN 
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Push button FLIC Bluetooth 
Smart Floor Future-Shape GMBH Custom RF (868MHz) 

Sound Pressure Ulster University Wi-Fi/ Bluetooth 

Temperature: 
Ambient /  
Immersive 

Adeunis RF 
Microchip 

Sun Microsystems 
Texas Instruments 
Ulster University 

LoRaWAN 
LoRaWAN 

IEEE 802.15.4 
Bluetooth  

Wi-Fi 

Thermal Vision 
Heimann GMBH 

IOTTech 
Ulster University 

Ethernet 
USB 

Wi-Fi & Bluetooth 

    Other supported sensors include blood pressure monitors, 
pulse oximeters, water leak detectors, smart watches and 
weight/body fat scales.   
    Notably, two generic sensor connectors have been 
developed to seamlessly support integration of all sensors 
deployed to two complementary platforms. These platforms 
are the things connected network [30] and the RaZberry z-
wave server [31].  
    The things connected is a UK wide, IoT communications 
network. This uses LoRaWAN technology to communicate 
with IoT devices on a wide range (regional/national) scale. 
SensorCentral has a native integration endpoint which 
enables all and any sensors deployed to this national network 
to automatically store data within SensorCentral. Integration 
of these sensors with SensorCentral is a seamless process 
which requires no additional effort beyond what is normally 
required to enroll a device on the things connected network. 
LoRaWAN devices generate a low quantity of data on a per 
device level, however, the base stations support tens of 
thousands of devices, therefore introducing an aggregate 
effect wherein a large volume of variable data is generated at 
a high velocity. 
    The RaZberry z-wave server is a listener for heterogenous 
sensors which communicate locally using the Z-wave 
protocol. A connector has been written for SensorCentral to 
automatically relay all and any data from sensors that are 
enrolled to a RaZberry instance.  
    The approach for generic sensor support that enables 
support of this range of sensors is presented in the following 
subsection. 
 

B.  ENABLING GENERIC SENSOR SUPPORT 
A key feature of this platform is its ability to support a wide 
range of sensor types produced by a variety of manufactur-
ers, as presented in the previous Subsection.  
    This generic sensor support is facilitated through two key 
architectural decisions, these are presented below:  

1. a strategy to assign globally unique sensor IDs was 
devised and incorporated 

2. a generic sensor record format was adopted incor-
porating schema on read principles 

 
A strategy to derive globally unique sensor IDs ensures that 
steams of sensor data do not erroneously contain values 
from unexpected sources, specifically other sensors. 

    Typically, sensor manufacturers provide ‘unique’ identi-
fiers for sensors they produce. However, due to lack of 
global coordination, these identifiers may conflict with 
those assigned by other sensor manufacturers. It is feasible 
that manufacturer X could produce a contact switch sensor 
with an identifier of 000001 and manufacturer Y could also 
produce a contact switch sensor with that same ID. If these 
sensors were both deployed to an environment, there would 
be no way to discern data that they generate based upon the 
manufacturer assigned ‘unique’ identifier alone.  
    To address this limitation and cater for potential con-
flicts, a derived global identifier would need to be pro-
duced. It is assumed that identifiers are unique within spe-
cific classes of sensors produced by a manufacturer. There-
fore, it is possible to leverage this assumption to create a 
derived Universally Unique IDentifier (UUID).  
    These UUIDs would extend the ‘unique’ identifier pro-
vided by the sensor manufacturer by appending sensor class 
and manufacturer identifiers. For example, a thermal vision 
sensor produced by Heimann GMBH has the UUID of 
t0097ff000758_1_2. In this example the manufacturer as-
signed sensor ID is t0097ff000758, the sensor class is 1 
indicating a thermal vison sensor and the sensor manufac-
turer is 2 indicating Heimann GMBH.  
    Typically, such UUIDs are generated through sensor 
listener software. These sensor listeners enroll sensors to 
the SensorCentral platform by producing a sensor metadata 
record. After sensors are enrolled these listeners then pro-
ceed to relay sensor data.  
    Generally, these listeners read sensor data and convert it 
to the sensor record format which is used by SensorCentral. 
Typically, this transmits sensor metadata and sensor data 
via REST through a JavaScript Object Notation (JSON) 
formatted message. The sensor metadata used to enroll and 
represent enrolled sensors is presented in Table II below.  
 

TABLE II 
THE FORMAT OF SENSOR METADATA RECORDS WITHIN THE PLATFORM 

Value 
Data 
type 

Description 

associatedEnv 
64-bit 
Integer 

Optional: A value indicating the associated 
environment, this is a pointer to the ID of a 
record within the associated environments 
roster. 

deviceMfg 
64-bit 
Integer 

A value indicating the associated manufac-
turer, this is a pointer to the ID of record 
within the manufacturers roster. 

exampleData String 
Optional: Some example data, this pro-
vides a reference to end users. 

forwardParam
sList 

Array 
of 

objects 

Optional: This is an array of forwarding 
rules. These indicate a target system to 
forward sensor data to. Each rule details 
transmission protocols, authentication 
options and destination parameters. 

label String 
Recommended: This is a relatable label 
identifying a sensor, such as “Front door”  

location String 
Recommended: This is a relatable label 
identifying the location of a sensor, such 
as “Apartment 23 – BT6 A92” 
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relatedMime
Resources 

String 

Optional: This is a field which indicates if 
the sensor provides some standard mime 
media types as output, such as audio/x-
mpeg-3. 

sensorClass 
64-bit 
Integer 

A value indicating the associated sensor 
class, this is a pointer to the ID of a record 
within the sensor class roster. 

sensorID String The manufacturer provided sensor ID. 

UUID String The globally unique UUID of the sensor. 

 
Generally, such metadata records are transmitted and ma-
nipulated as JSON representations. The JSON representa-
tion of the metadata for a contact sensor stored within this 
system is presented in Figure 1. This sensor has its associ-
ated environment set to a “do not associate” record (-1) and 
has no example data, related mime type or forwarding rule. 
 
{ 
    "associatedEnv":-1, 
    "deviceMfg":10, 
    "exampleData":null, 
    "forwardParamsList":[], 
    "label":"J27/Kitchen Door", 
    "location":"16J27 - Jordanstown", 
    "relatedMimeResources":"", 
    "sensorClass":3, 
    "sensorID":"19804566", 
    "UUID":"19804566_3_10" 
} 

FIGURE 1.  A sensor metadata record, represented in JSON, as con-
sumed and produced by the SensorCentral platform. 

 
In addition to the metadata, samples generated from sensors 
are stored. The sensor data format used within the platform 
is presented in Table III below.  
 

TABLE III 
THE FORMAT OF SENSOR DATA STORED WITHIN THE PLATFORM 

Value 
Data 
type 

Description 

blobJson String 

An escaped string containing a JSON 
based representation of the sensor data. 
This is typically used when sensor data is 
non-binary. This is to be processed on a 
Schema on Read basis. 

deviceMfg 
64-bit 
Integer 

A value indicating the associated manufac-
turer, this is a pointer to the ID a of record 
within the manufacturers roster. 

eventCode 
64-bit 
Integer 

An enumeration indicating the state of the 
sensor. For simple binary sensors, this may 
be 0 or 1, indicating off or on. For more 
complex sensors this may be 101, indicat-
ing that the blobJson should be referred to.  

sensorClass 
64-bit 
Integer 

A value indicating the associated sensor 
class, this is a pointer to the ID of a record 
within the sensor class roster. 

sensorUUID String The manufacturer provided sensor ID. 

timeStamp Float 
The “UNIX-time” based timestamp of the 
sensor reading. This is a high-resolution 
value in nanoseconds. 

uID String The globally unique UUID of the sensor. 

 
It is notable that this approach integrates a schema on read 
strategy for complex sensor data. This is a common ap-
proach leveraged in big data systems [5], [32] and is exem-
plified by the “data lake” approach to big data storage [14], 
[33].  
    Generally, such sensor data records are transmitted and 
manipulated as JSON representations. The JSON represen-
tation of the sensor data stored within this platform is pre-
sented in Figure 2. This sensor record is a sample generated 
from a power usage monitor. This sensor generates com-
plex data and so uses event code 101 which by convention 
indicates read the blobJson element. The blobJson element, 
in this case, encapsulates the power related metrics, such as:  
current state, IP address and friendly name supplied for 
voice-based assistant, such as an Amazon Echo. 
 
{ 
    "blobJson": 
     "{ 'serialNumber':'221649K1200190', 
        'currentPower': 0, 
        'ipAddress': '192.168.0.101',  
        'todayKWH': 0.057829501156589996,    
        'todayOnTime': 0, 
        'todayStandbyTime': 0,  
        'friendlyName': 'Switch',  
        'currentState': 0}", 
    "deviceMfg":11, 

  "eventCode": 101, 
  "sensorClass": 4, 
  "sensorUUID":"221649K1200190", 
  "timeStamp":1.486063588902671E9, 
  "uID": "221649K1200190_4_11" 

}

FIGURE 2.  A sensor data record of a power usage monitor, represented 
in JSON, as consumed and produced by the SensorCentral platform. 

 
    The generic sensor data records and metadata records are 
stored and presented by the SensorCentral platform. This 
platform provides a high performance, low-latency, scala-
ble storage engine based upon proven open-source technol-
ogies. Additionally, this platform provides a modern, 
modular web interface supporting management and visuali-
zation. Further Information on this platform is presented in 
Subsection C. 
 

C.  SENSORCENTRAL PLATFORM ARCHITECTURE 
Central to the design of this platform is a scalable, high-
performance, low-latency storage engine. This storage en-
gine incorporates two proven and open-source database 
systems - MongoDB [34] and InfluxDB [35].  
    These databases were chosen following a performance 
evaluation process. This process compared several data-
bases including: Apache Cassandra, Apache HBase, In-
fluxDB, MongoDB, Microsoft SQL, Oracle Database and 
Oracle MySQL. During this evaluation, the Hadoop plat-
form was not directly considered as it did not prioritize 
low-latency operation and introduces a complex, heavy-
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weight, distributed solutions beyond what is required for 
this platform [36]–[39]. Additionally, other databases that 
aren’t optimized for performance or are unsuited to storage 
of big sensor data, such as semantic stores and graph data-
bases, were not considered [40]–[42]. 
    The set of database systems were subject to performance 
testing. This testing focused on how quickly sensor metrics 
could be generated from raw sensor data.  
    The sensor metric generation process used a Java pro-
gram which integrated with each database. When testing 
each database only the associated connection logic was 
changed. The construction of these database connectors 
adhered to best practices for each platform, as detailed 
within developer documents.  
    The raw sensor data was a standard set used across all 
testing. This data was generated from two thermal vision 
sensors deployed to simulated kitchen and living room 
environments. These sensors were configured to sample the 
environment at a rate of 10Hz and, across two days, over 
three million samples were captured. 
    These raw sensor data records were loaded into each type 
of database and a standard metric generation request was 
applied. The database was hosted and accessed locally, 
reducing network transmission overhead and related uncer-
tainty/variability. 
    In testing, InfluxDB had shown to have the best average 
performance and MySQL was shown to have the worst 
average performance. When integrated with InfluxDB the 
metric generation took less than 10 seconds. In comparison, 
when integrated with MySQL, the process took longer than 
23 minutes to perform this standard task. 
    InfluxDB is a TSDB, a type of database optimized for 
storage and retrieval of data that uses timestamps as an 
index, such as stock trading records or sensor data [43] . 
The timestamp index is unique and in order to support a 
large volume of data it is high resolution. The indexed 
timestamp within InfluxDB has an accuracy of nanosec-
onds. It is infeasible for there to be a collision between 
records with an index of such high resolution. This class of 
database is designed to handle a high velocity of sequential 
read and write operations in a high-volume manner. Such 
TSDB systems are generally limited by throughput of In-
put/Output interfaces on their hosts opposed to computa-
tional or memory-based limitations.  
    InfluxDB enables arbitrary data to be stored for each 
stored record. Additionally, InfluxDB clustered operation 
therefore enabling scalable operation [44]. These character-
istics of InfluxDB, and TSDBs in general, make it suited to 
storage of sensor data in a purpose built big data platform.  
    TSDB systems are highly sequential and are not opti-
mized to support random insertion, deletion or modification 
of records stored. Considering this limitation an independ-
ent database is needed to store and manipulate non-sensor 
data. Such non-sensor data includes such as sensor metada-
ta, user profiles, API keys and experimental metadata. As 

such, another database would be required to support these 
types of records within the platform [44].  
    To store these other records, MongoDB was selected. 
This database incorporates the document paradigm [27] 
where records are modelled as documents that may be cre-
ated, updated, read and deleted. In MongoDB the docu-
ments are stored in the BSON format [45] and represented 
by JSON. MongoDB has been developed to be scalable and 
so is suited for use within this platform. MongoDB was the 
third best performing database within the environment, 
however, it was chosen due to its proven scalability and 
incorporation of a storage model which is suitable for this 
application. This scalability has been proven and widely 
accepted in recent years, however, early iterations of this 
platform did not scale well especially when write opera-
tions were required.  
    InfluxDB and MongoDB are open source and thus don’t 
require licensing fees to use. Additionally, this reduces risk 
associated with being dependent on a vendor which may 
cease support for the database or surreptitiously change the 
terms of service. Additionally, the royalty free nature of 
these databases enables scalability without any financial 
considerations. However, licensing fees may be paid for 
advanced support and tools [34], [35].  
    This storage engine was subsequently integrated into the 
overall SensorCentral platform. The architecture of this 
platform is presented in Figure 3. 
 

 
FIGURE 3.  The architecture of the SensorCentral platform. 

 
In addition to the storage engine, the SensorCentral plat-
form has a number of notable components, described be-
low.  
    The storage engine is connected to a core logic compo-
nent. This core logic contains a number of elements includ-
ing a security manager, metric generation routines, a rule-
based reasoning engine, a machine learning core and record 
exporters and forwarders. 
    The security manager is used to provide authentica-
tion/verification and offer cryptographic services.  
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Authentication services include: 
1. challenge/handshake authentication 
2. API key provision and verification (512-bit) 
3. user profile management 
4. verification of API/login token rights  

 
 Cryptographic services are offered by the bouncy castle 
library [46]. This primarily provides SensorCentral with a 
high-quality pseudo random number generator and suite of 
cryptographic functions.  
    Server-side metric generation logic is present enabling 
consumer applications to offset their processing to a Sen-
sorCentral node, reducing network traffic and reducing 
processing time due to the benefits of data locality.  
    A rule-based engine may be used to classify windows of 
metrics. Rules support a number of logical operators includ-
ing: greater than, less than and equal to. Additionally, 
negations of these operators are supported. Rules can be 
specified using a web interface [7] or through a Java API.  
    Machine learning services are provided within the Sen-
sorCentral platform using the Neuroph framework [47]. 
This framework offers implementations of algorithms 
which are compatible with those present within the Weka 
tool [48] thus enabling prototyping of compatible and pre-
dictable solutions using a graphical interface.  
    Additionally, this core logic offers sensor forwarding and 
exporting functionality. Sensor forwarding logic enables 
live records for nominated sensor data groups/records to be 
forward to specified external systems. This currently sup-
ports forwarding this data via REST calls or WebSockets. 
The ability to forward such sensor records enables Sensor-
Central to function as a router of sensor data. This facili-
tates independent systems to be produced without affecting 
other efforts, reducing the risk of compromising other sys-
tems and removing a potential route to produce information 
silos. 
    Exporting functionality enables full records of experi-
ments and associated sensor data to be exported into single 
documents/datasets. Currently SensorCentral can produce a 
single JSON document containing all associated sensor and 
experimental data. The ability to directly export such da-
tasets to the Open Data Initiative (ODI) [49] is being ac-
tively investigated and is under development. 
    Finally, this core logic is also available as a Java library. 
This Java library enables external solutions to integrate 
with a SensorCentral instance and process data/exploit data 
within without using shared resources on hosted instances.  
    This core logic is coupled with three endpoints which 
enable integration with other components, such as sensors, 
web interfaces and mobile applications. These endpoints 
are REST based, MQTT based and WebSocket based.  
    The REST based endpoint is the primary web service 
endpoint which enables applications to interact with the 
platform, these applications include web apps, sensor lis-
teners, mobile applications and other consumer software. 
This endpoint is based upon stateless Java EE technology 
and so offers a scalable operation. In addition, end-

points/connectors for MQTT and WebSockets are present-
ed. MQTT is a pub-sub based interface for consumer appli-
cations and integration with sensor listeners. WebSockets 
offer a further interface for consumer applications and sen-
sor listeners. Also, the core logic contains libraries and 
code, to integrate push messaging services for mobile and 
desktop applications through the cross-platform Firebase 
Cloud messaging platform [50]. 
    Sensor listeners read low level sensor data from sensor 
devices, convert the data into the JSON format required by 
SensorCentral and subsequently transfer the JSON repre-
sentation to SensorCentral. 
    Akin to sensor listeners are sensor data connectors. Sen-
sor data connectors facilitate integration with other sensor 
platforms and networks. Currently two of these connectors 
exist, one integrates all sensor data from RaZberry servers 
and the other integrates the things connected network.  
    The RaZberry connector enables seamless integration 
with Z-Wave based sensors. This connector operates by 
relaying all and any data from sensors that are enrolled to a 
RaZberry instance. 
    The things connected network connector seamlessly 
integrates sensor data from the UK-wide things connected 
LoRaWAN IoT network. Current coverage of this network 
in the Northern Ireland region is presented in Figure 4 
where each pushpin represents a LoRaWAN base station 
with up to 25km range. 
 

 
 

FIGURE 4.  A regional deployment of the UK-wide things connected IoT 
network. Each pushpin represents a base station with an interaction 
range of up to 25km. SensorCentral offers seamless integration with 
devices on this network. Base stations in green are active, those in red 
are under maintenance. 

 
    A modular web application exists to manage SensorCen-
tral functionality, this includes: management of sensors, 
visualization of sensor data, management user access, man-
agement of API keys, management experimental setup and 
experimental instances. This web app has been developed 
using modern technologies, specifically AngularJS [51] and 
the bootstrap [52] front-end frameworks. 
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    The developed web app is extensible and modular ena-
bling researchers and developers to produce modules which 
can be easily integrated into an overall platform. This ex-
tensibility and modularity also offers the capability to adapt 
an existing web app into a smaller module – enabling rapid 
production of a purpose-built interface with reduced com-
plexity. Such a purpose-built interface may allow reuse of 
software to produce a dedicated web app for third parties to 
use.  
    This modular web interface can be delivered from serv-
ers other than the REST endpoint, due to a relaxation of 
Cross-Origin Resource Sharing [53] restrictions on the 
REST endpoint. This can be reenabled for marginally 
stronger security at the expense of greater convenience and 
flexibility.   
    In addition to a scalable, modular platform, SensorCen-
tral offers a number of research-oriented features. The inte-
gration and availability of research-oriented features is 
presented in Subsection D. 
 

D.  SENSORCENTRAL FEATURES SUPPORTING 
RESEARCH ACTIVITIES 
SensorCentral has a number of features which can ease 
research efforts. These features satisfy the 8 requirements 
that were previously outlined in this manuscript.  
    Requirement 1, agnostic sensor integration, has been 
satisfied as detailed previously and within Subsection A 
and B of this Section.  
    Requirement 2 has been satisfied through the ability to 
define metadata related to experiments within the standard 
SensorCentral web app. This interface is shown within 
Figure 5. 
 

 
FIGURE 5.  The experiment definition interface offered by the standard 
SensorCentral web app. 

 
This interface allows researchers to provide labels for ex-
periments, enabling control of sharing data within research 
groups, specification of annotations to be consumed by the 
experiment manager mobile app and web app, association 

of logical sensor groupings, definition of researchers, speci-
fication of funders and specification of associated projects. 
    Once defined, experiments may be used as templates for 
experimental instances. These instances are managed by 
either the web app or experiment manager mobile app. 
These instances clone the experiment metadata on creation 
and store the date and time of an instance being performed. 
These may be shared with other SensorCentral users, if 
desired by the researcher this satisfies requirement 3. 
    In addition to providing management of experimental 
instances, the experiment manager mobile application ena-
bles annotation of these instances through the labels defined 
within the experimental setup. The interface of this app is 
shown in Figure 6. Notably, the SensorCentral experiment 
manager app was developed using the cross platform Ionic 
framework thus supporting most modern smart device plat-
forms. 
  In addition, a separate NFC annotation app exists to sup-
port intuitive annotation. In this method of annotation, NFC 
tags are affixed to an environment. Once deployed the re-
searcher configures them with an associated annotation – 
initializing the tag. Once initialized users/researchers with 
the app installed may simply tap a smart device to the tags 
in order to generate and store an annotation. NFC based 
annotation is further detailed in [54].  
    All annotations are time synchronized to the SensorCen-
tral instance easing an aspect of dataset annotation. These 
annotation features satisfy requirement 4. 
 

 
FIGURE 6. The developed SensorCentral experiment manger app show-
ing the annotation interface.  

     
This platform supports exporting data from experimental 
instances into a single JSON file, facilitating simplified 
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sharing of sensor data with the research community. This 
format is currently bespoke export, however, integration of 
the eXtensible Event Stream format and integration with 
the ODI are actively being explored and pursued [49]. This 
satisfies requirement 5. 
    Machine learning functionality is currently offered 
through integration of the Neuroph library, as detailed pre-
viously satisfying requirement 6. However, future work will 
investigate integration with the TensorFlow platform to 
benefit from its optimized algorithms and rapidly expand-
ing capabilities [55].  
    SensorCentral natively offers the ability to forward sen-
sor data to independent processes and systems, easing pro-
totyping – satisfying requirement 7. Forwarding of such 
sensor data may be reduced via filters. These filters may 
reduce forwarded data to that of logical units, on a sensor, 
experimental or sensor grouping level. In addition to reduc-
ing sensor data to that of logical units, time-based windows 
for these logical units may be specified. Also, a window 
may be specified to filter data to the obtain the most recent 
data generated by such logical units. In addition to support-
ing a reduction of/filtering data when forwarding, the plat-
form enables these filters to be applied when accessing data 
such as when querying via a REST endpoint or leveraging 
the Java based library.  
    SensorCentral is an extensible and modular platform 
offering rapid integration with sensors, supporting other 
integration with other sensor platforms and enabling modu-
lar interfaces – satisfying the eighth requirement.  
    Additionally, SensorCentral enables easier sensor de-
ployment and configuration though use of supplemental 
NFC tags that can be enrolled with a sensors UUID in order 
to modify related parameters, such as location and label. 
    Finally. SensorCentral is a mature project which has been 
used within a number of different projects. These are ex-
plored in Section IV. 

IV. CURRENT USE CASES 
This platform has been in place for over 28 months and 
holds over 850 million records. This is currently central to 
over 13 projects. Some of these are detailed in this Section. 
    One study [56] has offered a platform to model sensor 
placements within environments. This model is then used to 
simulate data generation. An extension to this has integrat-
ed SensorCentral into its visualization engine, providing a 
real time representation of the state of a sensor as deter-
mined by real sensor data from deployed devices. 
    An ongoing study has used this platform to produce a 
healthcare solution which monitors the egress of at risk care 
home residents via wearable Bluetooth beacons. This has 
been deployed to a real, residential care, environment and 
has shown promising results wherein the solution has accu-
rately identified egress activities. This solution, called 
SafeBeacon, is the subject of an upcoming publication. This 
solution has been n. Leveraging the SensorCentral platform 
reduced time to producing a solution to a number of days 
instead of the otherwise projected weeks. 

    Two studies have used this platform to monitor inhabit-
ants of an environment with thermal vision sensors in order 
to monitor and classify a number of behaviors of interest 
such as wandering in Alzheimer’s Disease sufferers, Melt-
down behavior in Autism Spectrum Disorder sufferers and  
Sedentary behavior within a work place environment [7], 
[57].  
    A recent study [58] used this platform in conjunction 
with Thermal Vision sensing to determine Gait speed of 
individuals within an environment to determine wellbeing 
metrics. This is particularly beneficial when evaluating 
progression of aging related illnesses.   
    An additional ongoing study has integrated instances of 
SensorCentral in a commercial emergency services safety 
assurance project [59]. This study uses a reduced complexi-
ty edition of SensorCentral that is deployed to a single 
board computer therefore supporting a physically portable 
solution.  
    A recent project [60] has used this platform within a 
multi agent system in order to enable research related to 
identification interleaved activities of daily living from 
simple sensors.  
    In all cases, use of this platform has greatly decreased 
development time and has provided portability of projects 
and solutions between environments and solutions.   
 

V. CONCLUDING REMARKS 
This work has produced a big data platform designed to 
enable storage and exploitation of sensor data. This plat-
form has a number of research-oriented features intended to 
reduce overheads and increase the speed of research activi-
ties. These research-oriented features include the ability to 
define experiments, tools to enable swift annotation of data 
sets, and machine learning services.  
    This platform has been integrated into a number of pro-
jects, studies and solutions. In each of these cases the solu-
tion enabled researchers to rapidly integrate with masses of 
sensor data and develop solutions.  
    This sensor data platform is generic and has been shown 
to integrate with over 20 classes of sensor devices which 
were produced by over 20 manufacturers. These sensors 
communicate to the platform using at least 10 different 
protocols. Notably, two connectors with a wide range of 
scope have been produced. These connectors can integrate 
any device connected to a national LoRaWAN network and 
any device on a Z-Wave compatible instance. This integra-
tion is provided with minimal additional effort. The support 
for devices that these connectors offer is innumerable due 
to their wide remit.  
    Notably, this platform is central to a number of research 
interests within its development environment, Ulster Uni-
versity. However, efforts are underway to make this availa-
ble to other research groups and universities. Notably, Uni-



 

VOLUME XX, 2018 10 

versidad de Jaén has made efforts in adopting this platform 
within their research activities [58]  
    In addition, this platform has been installed to servers 
which will provide its functionality within residential care 
giving environments. These servers host a virialized image 
of an implementation of this platform. Additionally, this 
solution has been licensed to a commercial entity to support 
a solution which is based upon it [7]. This instance has been 
deployed to a dedicated platform. 
    Further to impacting and benefiting activities within the 
originating environment, this solution has can assist a 
broader community and commercial entities. Research 
communities can benefit from a common platform integrat-
ing sensor agnostic and research-oriented functions. In 
addition to the previously described benefits derived from 
sensor agnostic function and research-oriented functions. 
Beyond these functions, further research-oriented benefits 
are afforded by the platform. These benefits include pro-
duction of a common platform and a collaborative commu-
nity.  
    Providing a common platform would enable research to 
be portable across research groups. Such portability would 
enable better collaboration within the research community. 
Additionally, targeting a common platform enables re-
searchers to share sensor listener software to integrate sen-
sor devices. Sharing such sensor listener software enables 
communities to reduce the overall effort required to inte-
grate new sensors via code sharing or collaboration. Cur-
rently a number of such efforts are shared in an open source 
fashion on GitHub. The majority of these listeners are oper-
ation across a number of research groups and commercial 
entities.   
    Future works will aim to integrate this platform with the 
TensorFlow platform thereby enabling state of the art scal-
able machine learning services to be leveraged.  
    Integration with TensorFlow will enable the SensorCen-
tral platform to leverage advances in a dedicated machine 
learning platform which is being actively developed by 
Google, who are at the time of writing a world leader in 
machine learning research and application.   
    The SensorCentral platform additionally supports storage 
of multimedia data via an Amazon S3 compatible storage 
platform facilitated by the open source CEPH platform. 
CEPH offers a distributed object storage solution, facilitat-
ing resilient storage of large and varied multimedia data. 
Currently, this functionality has been integrated into a sin-
gle project, upon evaluation of performance this will be 
reflected upon in future manuscripts. 
    Further integration between this project and the ODI will 
be explored to enable seamless sharing of experimental 
datasets to the international community. 
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