2011 International Conference on Parallel Processing

A Scalable Tridiagonal Solver for GPUs

Hee-Seok Kim, Shengzhao Wu, Li-wen Chang and Wen-mei W. Hwu
Electrical and Computer Engineering
University of Illlinois at Urbana-Champaign
Urbana, Illinois, USA
{kim868,wul4,lchang20,w-hwu} @illinois.edu

Abstract—We present the design and evaluation of a scalable
tridiagonal solver targeted for GPU architectures. We observed
that two distinct steps are required to solve a large tridiagonal
system in parallel: 1) breaking down a problem into multiple
subproblems each of which is independent of other, and 2) solv-
ing the subproblems using an efficient algorithm. We propose a
hybrid method of tiled parallel cyclic reduction(tiled PCR) and
thread-level parallel Thomas algorithm(p-Thomas). Algorithm
transition from tiled PCR to p-Thomas is determined by input
system size and hardware capability in order to achieve optimal
performance. The proposed method is scalable as it can cope
with various input system sizes by properly adjusting algorithm
trasition point. Our method on a NVidia GTX480 shows up
to 8.3x and 49x speedups over multithreaded and sequential
MKL implementations on a 3.33GHz Intel i7 975 in double
precision, respectively.

Keywords-GPU Computing, GPGPU, Tridiagonal solver,
Tridiagonal systems

I. INTRODUCTION

The tridiagonal solver is an important core tool in wide
range of engineering and scientific applications. Some ap-
plications of tridiagonal solvers include computer graph-
ics [1][2][3], fluid dynamics [2][4][5], Poisson solvers [6],
preconditioner in iterative solvers [7], cubic spline calcula-
tion [8] and semi-coarsening for multi-grid method [9][10].

Recent technological evolution of GPUs has lifted many
scientific and engineering applications to a level that was
only possible with room-sized supercomputers in the past.
The enormous performance improvements are largely due to
the inherent parallelism and regular memory access patterns
of the scientific applications that GPUs can efficiently deal
with. Specifically, GPUs can run many threads in parallel
that fulfill high computation demand, and provide large
memory bandwidth to serve parallel memory access re-
quests.

Accelerating tridiagonal solvers with parallel execution,
however, brings significant challenges as it requires breaking
inherent sequential dependencies of classic Thomas algo-
rithm [11]. Also, low computation-to-memory ratio of the
problem leads us to develop a desired memory layout for
efficient parallel execution. Moreover, the parallel imple-
mentation needs to keep computational complexity of the
algorithm low enough to be competitive against sequential
counterparts when input size grows.
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While the Thomas algorithm is widely used on sequential
machines, several parallel algorithms have been studied.
Notable among these parallel algorithms are cyclic re-
duction(CR) [12], parallel cyclic reduction(PCR) [12] and
recursive doubling (RD) [13]. Sengupta et al. [3] first
implemented CR on the GPU for water simulation. Goddeke
et al. [10] proposed a bank-conflicts-free CR implementation
on the GPU for a smoother in multi-grid. Egloff [14][15] de-
veloped a PCR implementation to solve large size tridiagonal
systems for finite difference PDE solvers. Sakharnykh used
p-Thomas algorithm [4] and a hybrid of PCR-Thomas [5]
for fluid simulation. Yao Zhang et al. [16][17] proposed a
hybrid technique among Thomas, CR, PCR and RD along
with a comprehensive performance analysis among various
algorithms and hybrid techniques. CR is further optimized
with register packing by Davidson et al. [18]. A hybrid of
PCR-Thomas, first proposed by Sakharnykh [S] and also
studied by [17], is similar to our work but both approaches
can only solve small sized systems as their methods store
an entire input system in shared memory. As a result, the
limited capacity of shared memory considerably limits their
availability for real use. Davidson et al. [19] also proposed a
scalable PCR-Thomas hybrid to handle large systems. While
their work has the most similarity to our method, there are
key implementation techniques and decisions that result in
different performance that is scrutinized later in this paper.

In this paper, we propose a robust and scalable parallel
tridiagonal solver that uses GPUs effectively. Our method
is a hybrid of the tiled PCR and p-Thomas algorithms.
It implements divide-and-conquer approach as tiled PCR
breaks down a system into multiple independent systems,
then p-Thomas takes over the systems and runs in parallel.
Here, tiled PCR plays an important role in two ways. First,
it transforms a system into multiple independent systems
so that the original problem becomes more manageable for
GPU to work on. Second, it partitions a large system into
small chunks, or tiles, which efficiently overcomes the size
limitation of shared memory without incurring redundant
data loads. The hybrid algorithm determines at runtime
the degree of parallelism that tiled PCR should provide to
match parallelism given in the GPU hardware. The proposed
method not only performs efficiently for large size systems
but also covers arbitrary number of systems.
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Our experiments show that the proposed method on a
NVidia GTX480 can achieve up to 8.3x and 49x speedups
over multithreaded and sequential MKL implementation on
an 3.33GHz Intel i7 975 with double precision arithmetic.
With single precision, we provide up to 12.9x and 82.5x
speedups over the CPU implementations.

The rest of the paper is organized as follows: Section II
describes previous and background material about tridi-
agonal solvers and GPU architectures that is relevant to
this paper. Section III describes the proposed algorithm in
detail. Section IV follows to provide the results. Section V
compares our method to the work by Davidson et al. [19]
and discusses the benefit of the proposed method. Section VI
concludes this paper.

II. PRELIMINARIES

A. Tridiagonal solver

A tridiagonal matrix solver is an algorithm to find a
solution of Ax =d, where A is an n-by-n tridiagonal matrix
and d is an n-element vector as shown in Eq 1.

bl Cl dl
an b2 (&) 0 d2
A= . . d= (1)
0 a1 buo1 cn dp
an by, dy

1) Thomas Algorithm: The Thomas algorithm is a special
case of Gaussian elimination for a tridiagonal matrix. The
algorithm has two phases: forward reduction and backward
substitution. In the forward reduction phase, the lower
diagonal is eliminated by the main diagonal sequentially as
shown in the following equations.

G =23, .01 ()

b 4T 3)

The backward substitution uses the upper and the main
diagonal to solve all remaining unknowns from the last row
to the first row as formulated below.

xp=d,, xi=d,—cxis1, i=n—1,n—2,...,1 (4

The required number of elimination steps of Thomas
algorithm is 2n — 1 and the computational complexity is
O(n).
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2) Cyclic Reduction: CR, also called odd-even reduction,
is a special two-way elimination for tridiagonal matrix. It
also consists of two phases: forward reduction and backward
substitution. In the forward reduction, adjacent equations
in the tridiagonal system are used to eliminate alternating
unknowns and the resulting new equations form a smaller
system with a half number of unknowns. The process
continues recursively until two unknowns are left.
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Figure 1. An example of forward reduction in CR algorithm

Figure 1 shows one step of forward reduction phase using
a 4x4 matrix. In the row ey, a; and ¢, are eliminated by
Egs. 5-6 with e, e; and es, substituting e; with e’z. The
same goes for the row e4 where a4 is eliminated using e3
and e4. After that, ¢} and €} can be compacted by removing
columns with all zeros, yielding a smaller matrix with half
number of unknowns as shown in the final matrix.

The backward elimination can substitute remaining un-
knowns with the solutions of the smaller systems after
successive forward reduction. For instance, e; and e3 in the
previous example can be solved once ¢ and €, are solved,
which can be done easily when the matrix size is 2x2. The
equations involved in this stage are shown in Egs. 5-7.
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Figure 2. Access pattern of CR with 8-element system



Figure 2 shows the access pattern of CR for an 8-element
system. Calculating to the last step of forward reduction
reveals tree-shaped dependency pattern from the rows of the
input system. The computational complexity of CR is O(n)
and the required number of elimination steps is 2logn+ 1.

3) Parallel Cyclic Reduction: PCR is a modification of
CR but it only has a forward reduction phase in contrast to
CR. While CR performs forward reduction on only odd or
even rows in each step, PCR performs reduction on both
odd rows and even rows. A system is transformed into
two smaller systems, each of which has half the number
of unknowns in PCR.
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Figure 3. An example of forward reduction phase of PCR algorithm

Figure 3 shows one step of forward reduction of PCR
algorithm. While the forward reduction in CR transforms e;
and e4 in the previous example, PCR does another forward
reduction for e; and ez, which results in producing two
small matrices as shown in the figure. The computational
complexity of PCR is O(nlogn) and the required number of
elimination steps is logn + 1.
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Figure 4. Access pattern of PCR with 8-element system

Figure 4 illustrates the data access pattern of PCR al-
gorithm, showing multiple tree-shaped dependency toward
the final solution from the input rows. In this particular
example, two boxes from the top represent two systems
after one PCR step, each of which is 4-element system.
Then two boxes go through one more PCR step to produce
four 2-element systems, depicted as four boxes from the
bottom. Arrows for the second PCR step is omitted due to
complexity of drawing, though it can easily be inferred such
as e consumes ¢, and €5, e} requires ¢, ¢, and eg, and so
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on. Two-element systems then can be directly solved and
each box produces solutions completing the whole solution.

B. GPU Architecture
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Figure 5. An overview of the GPU Architecture

As shown in Figure 5, modern GPUs typically consist
of vector processors each of which contains several mul-
tithreaded execution units, one or more special function
units, on-chip L1 data cache and/or scratchpad memory,
and read-only memory. GPU architectures directly reflect
a set of GPU programming primitives. In NVIDIA’s CUDA
programming model, for instance, a kernel function is the
main venue for expressing parallel computation, which
runs simultaneously by many threads. Multiple threads are
grouped into a thread block. All of the threads in a thread
block will run on a Streaming Multiprocessor(SM) which
is an instance of the vector processor. Programmers can
use fast synchronization and shared memory among threads
within a thread block. All thread blocks together form a grid.
OpenCL’s programming model also has similar mapping be-
tween programming primitives to architecture components.

III. PROPOSED METHOD

Our method is a multi-stage algorithm of tiled PCR and p-
Thomas. The algorithm starts with tiled PCR and moves on
to p-Thomas. The algorithm switching point is determined
by the size of input system and underlaying hardware, as
efficiency of both algorithms differs. Figure 6 illustrates how
one 8-element system is solved using the proposed method,
with a focus on the data access pattern as we have shown
previously in Figure 2 and Figure 4. At first, PCR breaks
down the input system into two 4-element systems. In this
particular example, after one step of PCR, p-Thomas takes
over the two systems where two threads solve two matrices
in parallel.

The rest of this section describes each part of the proposed
method: tiled PCR, p-Thomas and the algorithm switching
logic between two implementations.



Figure 6. An example of the proposed method with one PCR step for one
8-element system

A. Tiled PCR

The tiled PCR is proposed as a variant of incomplete PCR
in a sense that it stops breaking down the systems before
the algorithm reaches the smallest possible matrices. Unlike
previous implementations on GPUs, our tiled PCR works
with small fixed-sized arrays, called files, to handle a large
system in which multiple tiles are processed concurrently.
With tiling, instead of loading the whole system, a large
system is loaded chunk by chunk into a tile which is
allocated in shared memory.

. @D @DT_I@D -. <] ><]><] \

(a) 1-step PCR
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(b) 2-step PCR

Figure 7. Redundancy of naive tiling of PCR

One major performance limiting factor of naive tiling of
PCR is halo elements due to dependency spanning a across
tile boundary as shown in Figure 7, illustrating tile 7 being
processed. In (a), processing one-step PCR for tile T requires
loading e3 from tile 7 — 1, depicted as grey circles, which
becomes redundant as e3 is also loaded when processing tile
T — 1. The redundancy grows quickly with larger k as shown
in (b), where two-step PCR is performed for tile 7. In this
case, e] to e3 must be brought in from memory to make
all dependencies available in order to produce ¢} and eX.
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Moreover, €5 and ¢}, depicted as dark grey circles, need to
be calculated which reveals another type of redundancy as
they will also be computed while tile 7 — 1 is processed.
In general, when performing k-step PCR, the number of
redundant memory accesses per tile boundary, denoted as
f(k), is formulated as

k=1
fll =32, ®)
i=0
and subsequent number of elimination steps, denoted as
g(k), can be formulated as

k
g(k) = k- f(k) =} f(0), ©)
i=0
, both of which grow exponentially as k grows.
Fine-grained tiling in an effort to achieve more parallelism
thus will be challenged by a massive amount of redun-
dant memory access and computation as shown previously.
Since each tile boundary introduces redundancy, one way to
mitigate such redundancy is to use larger tiles. However,
it prohibits exploiting parallelism causing the benefit of
parallelization to quickly diminish.

(a) 2-step PCR using cached dependency from both sides

computation direction
T2

(b) 2-step PCR using cached dependency from lefthand side

Figure 8. Dependency caching for tiled PCR

Another way to reduce the redundancy, which we propose,
is caching dependent values that would otherwise be redun-
dant, as shown in Figure 8. The figure illustrates a tile being
computed to produce €} to ¢; with cached dependencies
in which a grey box represents a set of elements being an
object of PCR operation, and dark circles indicate cached
results. The caching reduces expensive memory access and
elimination costs that are necessary to produce immediate
dependency. For instance, in (a), loading e; and e; as well
as one elimination step to generate ¢, can be avoided if
¢, is cached from processing tile 7 — 1. Implementing the
idea in (a) is impractical, however, as getting the cache
contents for both side could also bring about the redundancy
as we discussed before. We modified the scheme so that



all dependencies are cached and available from previously
computed tiles, by processing through tiles sequentially as
shown in (b). While conceptually the same as (a), in this
figure es and eg are cached from processing tile 7 — 1 and
used for the first step of PCR. After the PCR operation, eg
and ejq substitute the contents of the cache so that they can
be used the same way for a following tile. Likewise, upon
completion of the second PCR step, ¢ to e take place of
¢, to e5. The same logic works for further steps of PCR
with different cache sizes. Assuming k-step PCR, the overall
cache size requirement is 2- f(k) and it remains constant
for the same k. As long as the cache has the required size,
several tiles can be processed without redundancy.This leads
us to a two-level approach where the first level is the unit
of parallel execution and each of the tiles has multiple sub
tiles that are processed sequentially using caching. The tile
size in this approach is no longer bound to shared memory
size and as a result the method is adaptable as the sizes
of tile and sub tile can be determined by other significant
factors such as available degree of parallelism. Therefore,
exploiting more parallelism becomes possible compared to
the naive approach that only increases tile size.
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Figure 9. Illustration of the buffered sliding window

We used a technique called buffered sliding window for
using shared memory to process a tile efficiently as shown
in Figure 9. While different tiles are processed in parallel,
each tile manages the buffered sliding window and processes
sub tiles with the cached dependency. The buffered sliding
window is composed of three parts: top and bottom buffers,
each of which has sub tile size, and a middle buffer whose
size is twice of that of a sub tile. The top buffer, in which
the input elements have gone through full PCR steps, caches
elements from the middle buffer for the last step of PCR.
The middle buffer mostly interacts with the elements in
the bottom buffer by providing dependency to them at the
same time referring them. In the bottom buffer, the input
elements are just loaded from global memory and ready to
be processed. A single memory object is allocated on shared
memory in order to host these buffers, though logically
segmented as such. Having one big memory block over
separate blocks for cache contents is desired as it allows
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the PCR elimination kernel to work across logical buffer
boundaries.

Figure 10 illustrates an example of how the buffered
sliding window is used to generate € to € out of two-step
PCR. In (a), dependency to generate the output is shown,
where cached immediate dependency is depicted as grey
circles. After lead-in stage to fill the cache, e5 to e; are
located at the end of the middle buffer and the first PCR step
can work with es to ejo. Its output, ¢ to e;, are written back
right next to €% so that the next PCR step can also work on
linear address space. The last PCR step, the second PCR in
this particular case, can be done using ¢, to e, where the top
buffer contributes by providing second half of its contents,
¢, and ¢4. Note that the final output, €} to €/, are not cached
as they are not used as dependency for later computations.
In (c), it shows the contents of the sliding buffered window
ready to process the next sub tile and this is simply done by
shifting the contents of the buffers by the size of sub tile.

The buffered sliding window implements several perfor-
mance optimizations. The overall capacity of the cache,
the top and middle buffers, is 3 - f(k) which is larger than
2. f(k), the minimum requirement as we discussed before.
There are several cases the added margin helps to solve crit-
ical performance limiting factors as follows. First, an issue
with coalesced memory access is revealed from Figure 8 (b),
where the output is not aligned with tile boundary which
could break the coalescing rule provided that each thread is
assigned to produce one output. The buffered sliding window
properly deals with such situation by shifting input or output
within the margin to get them aligned. In this particular
case, it can be solved by shifting the computation boundary
by caching es as shown in Figure 10 (a). Second, the
increased capacity allows the cache layout to have padding,
denoted as x, which enables efficient cache management
when combined with an offset to the start address of where
the output is written to. For instance, the output of the first
PCR overwrites the middle buffer starting from the padding,
and later ¢ and ¢/, will become the top buffer and ¢ and ¢;,
will take place of ¢} and ¢; by shifting the buffer contents
to the left. Actual cost devoted to the cache management is
thus copying buffers from one to another upon completion
of full PCR operation for a sub tile.

Table I shows properties of the buffered sliding window
assuming k steps PCR. A GPU thread block is mapped to
perform PCR steps on each tile in which it iterates k steps
PCR for each of sub tiles. As shown in the Figure 10, an
important optimization is to achieve the maximum paral-
lelism within a thread block in which all the threads perform
full PCR steps together until the final step, which is why
the number of threads per thread block equals to 2%. In
the previous example where two step PCR is assumed, a
thread block is composed of four threads where each thread
performs two elimination steps, and the size of a sub tile is
four, assuming each thread generates one output per a sub
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Figure 10. An example of the buffered sliding window used to produce ¢} to 7

Table I
PROPERTIES OF THE BUFFERED SLIDING WINDOW

number of PCR steps | k

| 02", where ¢ > 1

size of sub tile

k=1

size of intermediate results cache 3. 2! < 3.2k
i=0
number of threads per thread block | 2k
number of elimination steps per thread | ck
number of elimination steps per sub tile | ck2k

tile, when ¢ equals to 1.

The proposed tiled PCR implementation provides several
advantages as follows. First, the tiled PCR has a smaller
footprint than the previous PCR approaches. The tiles can
be easily accommodated by shared memory that comes with
most GPUs available today. Compared to previous works,
it enables higher occupancy and as such larger number of
thread blocks can be scheduled per SM. It also overcomes
the size limitation of shared memory from which conven-
tional PCR implementations on GPUs suffer. Second, with
higher occupancy and finer grained memory accesses from
global memory, tiled PCR exhibits better memory latency
hiding resulting in less idle time of GPU execution units.
Section C shows two strategies for increasing the number of
sliding windows and thus increasing the probability of hav-
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ing at least one bottom buffer ready while others are being
loaded. In contrast, in coarse-grained tiling [16][17][19], a
significant cost of synchronization to manage shared mem-
ory has to be imposed from a large number of threads in a
thread block. Third, maintaining all the required intermediate
values in the buffered sliding window minimizes redundant
global memory accesses. In terms of the number of global
memory access, compared to the coarse-grained tiling, our
method is no worse than loading the whole system to shared
memory at once. Compared to naive fine-grained tiling, our
method can remove a huge amount of redundant global
memory accesses attributed to loading halo elements as
well as redundant elimination steps as we cache and reuse
intermediate values. Finally, tiled PCR can run with a system
of arbitrary size due to the tiling technique. The ability to
keep the number of PCR steps under control expands the
portability of our method to virtually all GPUs.

B. Thread-level Parallel Thomas Algorithm

This stage solves multiple independent systems using
Thomas algorithm such that each thread solves a different
system. One important concern in this stage is the memory
bandwidth due to low memory-to-computation ratio. In order
to best utilize the memory bandwidth of GPUs, memory
accesses to global memory should be coalesced. This can
be achieved when we interleave multiple systems in global
memory. Fortunately, PCR naturally produces interleaved
results which is perfect match with p-Thomas algorithm.
As shown in Figure 6, the interleaving enables consecutive



memory accesses for threads in a thread block which results
in coalesced memory accesses.

C. Further Optimizations for GPUs
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Figure 11.  Variants of tiled PCR configuration upon mapping systems
onto different number of thread blocks

Several variants of configuration are feasible with the
basic idea of tiled PCR and are summarized in Figure 11.
In Figure 11(a), one system is assigned to a thread block,
and in this case the thread block will need to iterate the
single buffered sliding window. When the whole input can
fit into shared memory, our method no longer manages
the buffered sliding window and it reduces to [16][17].
Another configuration in Figure 11(b) is that one large
system is mapped to a group of thread blocks. With this
configuration, more than one buffered sliding window would
run concurrently. The tradeoff here is that each thread block
needs to load overlapping tiles in the boundary of regions,
which issues redundant global memory accesses. Note that
our method naturally reduces to ’in-shared memory’ PCR
as [19] when the input system fits shared memory. Lastly,
Figure 11(c) shows one thread block processing multiple
systems with multiple window by multiplexing several sys-
tems. The benefit of this configuration is being able to hide
more memory latency with perfectly permutable independent
global memory accesses and computations.

Tiled PCR and p-Thomas can be combined into one kernel
though they are radically different. The idea is progressively
invoking p-Thomas without waiting for tiled PCR kernel
to finish processing the whole data. The resulting effect
is that p-Thomas can work with partial data that becomes
available while tiled PCR kernel executes. In doing so,
results out of the PCR step will be directly consumed by
combining them with the previous results, which are in
registers, using forward reduction in p-Thomas algorithm.
Then the updated partial result is stored in the same registers
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that are used for the previous results, while the previous
results are written to global memory. Register tiling is used
here not only to provide high bandwidth but also save
expensive global memory accesses. Also, the cost due to
prior kernel termination and post kernel invocation can be
removed.

However, kernel fusion does not always improve perfor-
mance. In particular, the tiled PCR kernel tends to have
lower occupancy than the p-Thomas kernel due to its heavier
use of shared memory. Once fused, the number of parallel
threads within a thread block is bound to the lower number
of the two kernels and in turn the parallelism of p-Thomas
might be limited. Thus, kernel fusion should be carefully
used when a large number of parallel workload is envisioned.

D. Algorithm Transition from tiled PCR to p-Thomas

Having observed that one single algorithm cannot cope
with all combinations of hardware and input sizes, we
need to have control over the algorithm to pick the best
combination depending on the situation. This is based on a
relation between the amount of parallelism the hardware can
support and potential workload sizes.

We take the aforementioned criteria and formulate that
into functions of computation cost with respect to several
significant factors. The cost function tells us how many
elimination steps are involved. Here we assume k-step PCR
on M independent systems, each of which being a 2"-
element linear system, running on a P-way parallel machine.
When M is larger than P, the minimum is when k equals
to zero and our hybrid method will directly proceed to p-
Thomas algorithm. In a case where M is smaller than P, the
minimum would be when k is the maximum possible value
such that 2% - M < P. Table II summarizes the computation
cost function of relevant methods with various conditions.

When the input size is 2", the number of elimination steps
in Thomas is 22" — 1. In Thomas, M means degree of
parallelism, which is why for M < P the total execution
time does not change. When M > P, the workload saturates
the parallelism so the total amount of workload can be
amortized. In PCR, the system is broken down as it continues
so the workload can be divided by the number of available
parallelism in any case. Our method is combination of the
two. k-2" indicates elimination cost of PCR and 2-2" % —1)
is due to Thomas. With larger degree of parallelism com-
pared to hardware capability, the computation cost can be
divided by P. However, P-Thomas still underutilizes the
parallelism with the resulting system in case of 28-M < P
after PCR.

In practice, the parallelism a GPU provides is not intu-
itively identifiable as it depends on several factors, some of
which are non-linear due to sharing of hardware resources.
Also, the closed-form solution cannot be easily expressed
and found during runtime. Instead, we present empirical
heuristic values that are optimized on NVidia GTX480



Table II
COMPUTATION COST COMPARISON OF THOMAS, PCR AND THE PROPOSED METHOD

algorithm M >P M<P
Thomas %(2»2"7]) 2.2"—1
M M
PCR S (12" +1) 52" 41)

k-step tiled PCR + p-Thomas

Table III
HEURISTIC VALUES OF K-STEP FOR A VARIOUS RANGES OF INPUT SIZE
ON GTX480

M | k-step | Tile size(2X)
M <16 | 8 | 256
le<mM<32 | 71 | 128
R<M<512 | 6| 64
512<M <1024 | 5 | 32
1024 <M | o | 1

which is shown in Table III. Finding proper values for
different situations can be done only once and the effort
can be quickly amortized afterwards.

IV. PERFORMANCE EVALUATION

The result we provide in this section was generated using a
system with NVidia GTX480 graphics processor with 1.5GB
of memory and a 3.33GHz Intel quad-core i7 975 processor
with hyper-threading enabled, running Fedora 12 Linux as
its operating system. We benchmark our implementation and
compare our result with the multithreaded and sequential
Intel MKL libraries on the same system, with various combi-
nations of number of systems and system sizes, denoted as M
and N, respectively. Our GPU implementation is written in
CUDA and compiled using nvce 3.2, however, it can easily
be ported to OpenCL. The CPU implementation we compare
against is compiled using the Intel C/C++ compiler(icc).
Note that the out of the box tridiagonal solver in Intel
MKL does not support multi-threading. Therefore, the CPU
implementation becomes multi-threaded only when there are
two or more independent systems to be solved (M > 2).

First, we demonstrate scalability with respect to the num-
ber of systems by showing the result from varying M for a
selected N. The result is shown in Figure 12. In the CPU
implementations, an obvious relation can be found between
the execution time and the input size, which is perfectly
linear. In contrast, our method shows close results compared
to the CPU implementations when M is small, however, as
M grows it outperforms demonstrating significant speedups.

%{2(2"—2’<)+k.2"}
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M M ,
ph 2+ 520 — 2Ky, when 2F. M > P

M
220 — 2Ky when 2F. M < P

Our method in double precision achieves up to 8.3x and 49x
speedups over multi-threaded and sequential MKL library,
respectively, when N is 512.

There are points in the performance trend where the curve
of our method changes when M is smaller than 1,024. This
is attributed to the decreased number of PCR steps as M
changes according to Table III. When M is smaller than 512,
the performance is dominated by tiled PCR and even with
increased workloads the execution time growth is sub-linear
due to underutilizing thread level parallelism. Similarly, a
flat region can be found when M is between 512 and 4,096
where additional workload does not actually increase the
execution time much. This is due to the imbalance of the
parallel workload and the processing power of the GPU.
In particular, with smaller number of parallel threads, the
long latency of global memory load is mostly exposed and
it directly adds to the execution time. An increased number
of systems leads to larger number of parallel threads and
consequently long latency of memory loads and arithmetic
operations can be hidden. Once the latency is completely
hidden, which happens M is 4,096 or greater, the execu-
tion time increases linearly and our method shows good
scalability. Saturating the thread level parallelism of GPUs
needs significant amount of independent workloads and this
is a strong advocate to our hybrid method in which the
frontend excavates parallelism and the backend runs with
divided subproblems. With single precision, we achieved
12.9x and 82.5x speedups over the CPU implementations
showing similar performance trend, though this is not shown
in the graph.

Next, we changed the benchmark such that it tests scala-
bility regarding the input system size. Figure 13 shows the
performance results in double precision with various matrix
sizes for a few selected input systems. For this experiment,
we picked 1, 16, 256 and 2,048 for M, each of which incurs
different number of PCR steps. With large M, as expected
from the previous experiment, our method performs well
against the CPU counterparts, achieving up to 5x and 30x
speedups over multi-threaded and sequential MKL library,
respectively, when M is 2,048. As M gets smaller, the
performance gap between our implementation and the best
CPU implementation shrinks. This is because the reduced
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Figure 12. Performance results of varying number of systems with fixed input sizes in double precision
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parallelism prompts our method to increase its reliance on
PCR. For M is 2,048 the kernel runs p-Thomas only. Though
it is not shown in the graph, the portion of tiled PCR in total
execution time is 6.25% and 36.2% for M is 256 and 16,
respectively. Even in the worse case with a test on a single
system with a very large input size, our method consistently
shows around 5.5x speedup in all test cases. In this case,
tiled PCR contributes roughly 55% of the total execution
time.

V. COMPARISON AND DISCUSSION
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Figure 14. Execution time comparison between Davidson’s method and
our method. (a) comparison of double precision execution time between the
proposed method (left bar) and our implementation of Davidson et al. (right
bar). Note that Davidson et al. did not report double precision results
(b) comparison of single precision execution time between the proposed
method (left bar), our implementation of Davidson et al. (middle bar) and
that reported in Davidson et al. (right bar)

We compare the performance results of our method
against the work of Davidson et al. [19] as both propose
a hybrid of PCR-Thomas. Our method shows better per-
formance than their implementation, showing 2x to 10x
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Performance results of varying input sizes on a few fixed number of systems in double precision

speedup for most of the cases, as shown in Figure 14, for
the following reasons. First, they divide a large system into
coarse-grained tiles so that each chunk maximally occupies
shared memory for PCR. As discussed in Section IILA,
coarse-grained tiling suffers from large shared memory
requirement, fewer concurrent thread blocks, and exposed
latency for loading data from global memory. Second, in
their work each PCR step is performed in lockstep until
the size of reduced input fits in shared memory so that a
hybrid of PCR and p-Thomas can work with the reduced
input on shared memory. The benefit of this approach is that
in each step of PCR the complete immediate dependency is
available. However, in order to perform a PCR step for a
large input system that is tiled and parallelized on multiple
thread blocks, a kernel must be globally synchronized which
entails expensive kernel termination and relaunch. Similarly,
a moderately divided input system is mapped on a thread
block before the hybrid of PCR and p-Thomas runs, where
synchronization of threads within a thread block is also
required at each step of PCR which hurts the performance.

VI. CONCLUSIONS

In this study we proposed a robust tridiagonal matrix
solver on GPUs. The proposed method is a hybrid of tiled
PCR and p-Thomas algorithm, in which tiled PCR divides
a large system into multiple systems and parallel Thomas
follows. Sophisticatedly designed tiling and the buffered
sliding window in our tiled PCR is the key enabler for it to be
used as a parallelism excavating frontend. In particular, the
value of tiled PCR is not just being able to process a large
system that most of the conventional approaches can not.



It also minimizes redundant global memory access, hides
memory access latency due to independent tiling of a large
system, and provides desirable memory layout so that the
following p-Thomas algorithm can achieve a high rate of
coalesced memory access.

We performed experiments with various combinations of
different input sizes and number of input systems. Our
method shows 8.3x and 49x speedups over multithreaded
and sequential CPU implementations, respectively. The re-
sults indicate that our method is scalable when either the
input size or the number of system changes. The experimen-
tal results justified our view of two phase tridiagonal solver
which combines efficient frontend to divide a system into
multiple parallel sub-systems and a computationally efficient
algorithm to deal with multiple independent systems. We
also found that determining transition point from tiled PCR
to p-Thomas plays very important role to balance the amount
of parallel workloads and the capability of the underlying
hardware.

The buffered sliding window approach can also be ap-
plied to other types of divide-and-conquer type algorithms.
Future work includes further developing the approach into a
generalized strategy and optimizing other applications using
the ideas proposed in this paper.
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