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Abstract
We present a new algorithm for minimizing a
convex loss-function subject to regularization.
Our framework applies to numerous problems
in machine learning and statistics; notably, for
sparsity-promoting regularizers such as `1 or
`1,∞ norms, it enables efficient computation of
sparse solutions. Our approach is based on the
trust-region framework with nonsmooth objec-
tives, which allows us to build on known re-
sults to provide convergence analysis. We avoid
the computational overheads associated with the
conventional Hessian approximation used by
trust-region methods by instead using a simple
separable quadratic approximation. This approx-
imation also enables use of proximity operators
for tackling nonsmooth regularizers. We illus-
trate the versatility of our resulting algorithm
by specializing it to three mixed-norm regres-
sion problems: group lasso [36], group logistic
regression [21], and multi-task lasso [19]. We
experiment with both synthetic and real-world
large-scale data—our method is seen to be com-
petitive, robust, and scalable.

1. Introduction
We present a new algorithm for solving optimization prob-
lems of the form

min
w

Φ(w) = L(w) +R(w), (1.1)

where L is a continuously differentiable, convex loss-
function, and R is a convex and continuous, usually non-
differentiable regularizer. This generic setup enjoys great
importance as it encompasses several basic problems in
machine learning and statistics: e.g., Lasso [29], Group
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Lasso [36], `1-logistic regression [16], and multi-task fea-
ture selection [25].

Since Φ is convex, a variety of methods can be used to
solve (1.1)—ranging from the subgradient method [5] to
sophisticated interior point methods [24]; we summarize
several approaches in §2. Standard methods, however, do
not always scale to problem sizes encountered in machine
learning, where datasets with several million points are not
uncommon. Lack of scalability is even more pronounced
when R is non-differentiable, so that many otherwise scal-
able methods can also become unbearably slow. To over-
come some of the challenges posed by (1.1), we design and
analyze a new trust-region (TR) algorithm, which we call
TRIP. For concrete instances of (1.1), TRIP has a worst-
case runtime bounded by O(1/ε) where ε denotes the de-
sired solution accuracy (Theorem 3.5).

In contrast to conventional trust-region setups, TRIP attains
greater scalability by using only first-order information at
the current iteration to build a scalar approximation to the
Hessian. This strategy enables the use of proximity oper-
ators (§3.2), which allow tackling nonsmooth regularizers
efficiently. As a result, TRIP is highly competitive with
state-of-the-art methods. We illustrate TRIP’s empirical
effectiveness by applying it to three important regression
problems regularized by mixed-norms (e.g., `1,2, `1,∞):
group lasso (GLASSO) [3, 36]; group lasso for logistic re-
gression (GL-LR) [21]; and multi-task lasso (MTL) [19].
These three problems are not only widely applicable but
also representative of modern challenging problems that
are solvable via our method—see §4 for details.

In summary, our algorithm TRIP is (i) scalable, as it uses
separable quadratic approximation; (ii) flexible, as it de-
pends only on proximity operators for solving subprob-
lems; and (iii) robust, because despite using several trust-
region parameters, it requires minimal tuning. Empirical
results (see §4) on both synthetic and real-world data cor-
roborate these claims.
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2. Related Work & Background
The simplest approach to solving (1.1) is perhaps the sub-
gradient method [5]. Here one iterateswt+1 = wt − ηtgt;
ηt is a step-size and gt is a subgradient in ∂Φ(wt). This
method is, however, overly simple: its iterates are hardly
ever at the points of non-differentiability [28, 11], which
are usually the actual points of interest as they tend to re-
veal problem structure such as sparsity [37, 2]. As noted
in [28], a similar fate is met by stochastic gradient descent.

A more attractive choice is to tackle non-differentiability
of R via proximity operators (see [6], §3.2). These op-
erators are central to forward-backward splitting meth-
ods (FBS) [6] (FBS includes methods such as iterative
shrinkage-thresholding as special cases), as well as to
methods based on surrogate optimization [13, 10], and
separable approximation [34]. If even the loss is non-
differentiable, then the recent FBS method FOBOS [11] may
be used. A potential drawback of FBS methods is that of-
ten the step-sizes must be carefully tuned. In contrast, our
method TRIP usually succeeds without user intervention.

In recent development for mixed-norm problems, block-
coordinate descent procedures have been popular: e.g., for
separable regularizers [30]; for MTL [19], GLASSO [36],
and GL-LR [22]. However, for large-scale data, coordinate-
wise approaches are often non-competitive [32, 28].

Beyond FBS there are two more noteworthy methods:
SpaRSA [34] and PQN [27]. SpaRSA is a state-of-the-art
framework for solving (1.1); our method shares its sepa-
rable Hessian approximation, but differs significantly with
respect to the convergence analysis. PQN is a limited mem-
ory quasi-Newton method with excellent empirical perfor-
mance, but tackles R by passing to the constrained form
R(w) ≤ γ. We compare TRIP with FBS, SpaRSA, PQN,
and observe highly competitive empirical behavior.

2.1. Nonsmooth Trust-Region Method
Broadly viewed, our method is a variant of the basic trust-
region (TR) method which has been successfully applied to
some machine learning problems [18, 35]. Like the basic
TR method, the TR method for nonsmooth Φ also consists
of three main steps: (i) approximate the objective function
within a trust-region1 via a model function; (ii) minimize
the resulting model; and (iii) update the current iterate and
the trust-region. Here are some details on these steps.

Let the current iterate be wk. The model function m is
designed to satisfy

m(wk,pk, s) ≈ Φ(wk + s), for ‖s‖ ≤ ∆k,

1The trust-region captures a neighborhood of the current iter-
ate where minimizing a model function, more or less guarantees
minimization of the original objective.

where pk parametrizes the model and ∆k defines the trust-
region. Since Φ is non-differentiable a conventional choice
such as a second-order Taylor approximation is not directly
applicable (see [8, Chapter 11] for more technical details).

Once a proper model has been built, we minimize it to ob-
tain a “step” (minimizer) sk, and then test whether this step
is acceptable by computing the ratio

ρk =
Φ(wk)− Φ(wk + sk)

m(wk,pk,0)−m(wk,pk, sk)
, (2.1)

which roughly measures the accuracy of m. When de-
crease in the model m matches that in the objective Φ, then
ρk ≈ 1 and the trust-region can be increased; if ρk is too
small, the trust-region must be shrunk. More formally, let
0 < η1 ≤ η2 < 1, 0 < 1

γ3
≤ γ1 ≤ γ2 < 1 < γ3, and

∆U > 0 be TR parameters [8]. If ρk ≥ η1, then we update
wk+1 ← wk + sk, while the TR is updated via some

∆k+1 ∈


[γ1∆k, γ2∆k], if ρk < η1,

[γ2∆k,∆k], if ρk ∈ [η1, η2),
[γ3∆k,∆U ], if ρk ≥ η2.

(2.2)

3. The Trust-Region Proximal method: TRIP

Now we are ready to present our approach: the Trust-
RegIon Proximal method, or TRIP for short. A crucial fea-
ture of TRIP that differentiates it from other TR methods is
the particular model function that we use.

Normally, the model function captures second-order infor-
mation of the overall objective Φ. We do not approximate
Φ directly, but instead approximate only L, that too using
essentially first-order information. More precisely, we re-
place the Hessian of L by a separable quadratic approx-
imation, which reduces minimization of the model func-
tion to applying a proximity operator. Though our simpli-
fication sacrifices superior theoretical convergence rates of
second-order methods, it does so in exchange for cheaper
per-iteration cost. Such tradeoffs are common to ma-
chine learning applications, and are often crucial to tack-
ling large-scale data.

3.1. The model function

For differentiable Φ, a typical second-order model is

m(wk,Hk, s) = Φ(wk) +
〈
s,∇Φ(wk)

〉
+ 1

2

〈
s,Hks

〉
,

whereHk is a positive-definite matrix that captures curva-
ture information (e.g., for twice-differentiable Φ, one could
have Hk = ∇2Φ(wk)). Since Φ = L + R where only L
is differentiable, a second-order model could be

m(wk,Hk, s) = L(wk) +
〈
s,∇L(wk)

〉
+

1
2

〈
s,Hks

〉
+R(wk + s),

(3.1)
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whereHk now captures curvature information for L(wk).
However, the matrix Hk makes minimizing (3.1) non-
trivial, so we wish to replace it with a simpler choice.

An immediate choice is inspired by quasi-Newton methods
that seek a matrixHk which satisfies the secant equation

Hkuk = vk, or equivalently, uk =
(
Hk
)−1

vk, (3.2)

where the difference vectors uk and vk are defined as

uk = wk −wk−1 and vk = ∇L(wk)−∇L(wk−1).

The secant equation (3.2) can be solved in various ways.
One extreme, but surprisingly effective choice is to use the
spectral formulae proposed by [4] which yield scalar solu-
tions to (3.2) by computing

αk = argminα ‖αuk − vk‖22, or

αk = argminα ‖uk − α−1vk‖22,

which result in the closed form solutions

αk = 〈uk,vk〉/‖uk‖2, and αk = ‖vk‖2/〈uk,vk〉.
(3.3)

The scalars αk yield diagonal Hessian approximations
αkI . This is one of the key features of SpaRSA [34] and we
too adopt it in our method. However, we note that this αk

might be unbounded for our problem (1.1), hence we im-
pose a pre-specified lower bound αL to keep αkI positive-
definite, and an upper bound αU to prevent degeneracy.

Finally, we plug either choice of αk into (3.1) to obtain our
separable quadratic model,

m(wk, αk, s) = L(wk) +
〈
s,∇L(wk)

〉
+

1
2α

k‖s‖22 +R(wk + s).
(3.4)

Minimization of (3.4) can be written as

argmins m(wk, αk, s)

= argmins
1
2‖s+ 1

αk∇L(wk)‖22 + 1
αkR(wk + s),

(3.5)

Problem (3.5) is recognized to be a proximity operator (for
R) [7, 6], and since it plays a crucial role in our method, let
us look at proximity operators in more detail.

3.2. Proximity operators

Let R : X ⊆ Rd → (−∞,∞] be a lower semicontinuous,
proper convex function. For a point v ∈ X , the proximity
operator for R applied to v is defined as

ProxR v = argmin
s∈X

1
2‖s− v‖

2
2 +R(s). (3.6)

Several examples of proximity operators are also discussed
in [11], and some additional details on proximity operators
may be found in [7]; one important property that we use is
Moreau’s decomposition:

v = ProxR v + ProxR∗ v, (3.7)

where R∗ is the Fenchel conjugate to R. For R equal to `1,
`2, or `∞ norms, after simple algebra (3.7) yields

Proxλ‖·‖1 v = sgn(v)� (|v| − λ)+, (3.8)

Proxλ‖·‖2 v = (1− ‖v‖−1
2 λ)+v, (3.9)

Proxλ‖·‖∞ v = v − P‖·‖1≤λ v, (3.10)

where (x)+ = max(x, 0). The first two can be computed
in O(n) time; (3.10) too can be computed in O(n) time by
using the algorithm of [12] for the projection P‖·‖1≤λ(v).

3.3. The Algorithm

We now have all the basic ingredients needed to present
TRIP—Algorithm 1 provides the pseudo-code.

TRIP operates in two phases: null and monotonic. In
the null phase, we solve (3.5) using appropriate proxim-
ity operators. But the null phase relies on the separable
model (3.4), which is based on spectral formulae that ex-
hibit a characteristic non-monotonic behavior [4]. This
non-monotonicity, while empirically very effective, makes
it extremely difficult to analyze and prove convergence.
The difficulty essentially stems from potential violation of
the following descent condition:
Definition 3.1 (Descent). Let m(wk,pk, sk) be the model
function, and g∗ the minimum norm generalized gradient2

at wk. The descent condition requires sk to satisfy

m(wk,pk,0)−m(wk,pk, sk)

> σ‖g∗‖min{∆L,∆k},
(3.11)

where σ ∈ (0, 1), and ∆L, ∆k denote a pre-specified
lower-bound and the current trust-region size, respectively.

The monotonic phase of the algorithm ensures (3.11), so
that the adverse null iterations can be “corrected.” To this
end, we limit the number of allowable consecutive non-
monotonic iterations. At any moment, the algorithm main-
tains a reference iteration wr, for which the last descent
occurred. Fromwr onwards the algorithm may move non-
monotonically for at most r̄ iterations. If there is descent,
the reference iteration is reset, while if for r̄ iterations the
method fails to descend, it enters the monotonic phase that
guarantees (3.11). Consequently, we can guarantee conver-
gence of the overall algorithm, as shown below.

2Defined as g∗ = argming∈∂GΦ(w) ‖g‖, where ∂GΦ(w) is
the set of generalized gradients at w, i.e., vectors g ∈ ∂GΦ(w),
s.t., ∀d ∈ Rn, 〈g,d〉 ≤ limt→0+ supy→w

Φ(y+td)−Φ(y)
t
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Algorithm 1 Trust-RegIon Proximal method (TRIP).
input TR parameters (2.2), descent parameters (3.11),

model parameters αL, αU (3.4) and τ ∈ (0, 1)
Initialize k ← 0, r ← 0, ∆← ∆0, and

wk,wk−1 ∈ Rn such that Φ(wk) < Φ(wk−1)
repeat
sk ← −wk + ProxR/αk

[
wk − (αk)−1∇L(wk)

]
if k − r < r̄ then
{Potential non-monotonic descent}
wk+1 ← wk + sk; Compute αk+1;
if Φ(wk + sk) < Φ(wr) then
r ← k; {Update reference iterate}

end if
k ← k + 1; Continue;

end if
{Enforce monotonicity}
repeat
sk ← −P‖·‖≤∆k

[
(αk)−1g∗

]
; αk ← ταk

until (3.11) is satisfied
Compute ρk and update TR using (2.2);
Update αk+1; r ← k; k ← k + 1

until Stopping criteria met

3.4. Convergence Analysis of TRIP

Before we state the main convergence theorem for TRIP,
we need to prove a technical but crucial proposition.

Proposition 3.2. The following properties hold:

(1) The set of model parameters Λ is closed and bounded.
(2) The function Φ(w) from (1.1) is locally Lipschitz con-

tinuous and regular on Rn.
(3) The model m(w, α, s) from (3.4) is locally Lips-

chitz continuous and regular with respect to s for all
(w, α) ∈ Rn × Λ, and continuous in (w, α) for all
s ∈ Rn.

(4) The values of the objective function and of the model
coincide when s = 0, i.e., m(w, α,0) = Φ(w) for all
(w, α) ∈ Rn × Λ.

(5) The generalized directional derivatives of the model
and of the objective function coincide in every nonzero
direction d when s = 0 for all (w, α) ∈ Rn × Λ.

Proof: 3.2 (1). Immediate because Λ = [αL, αU ].

Proof: 3.2 (2). Since by definition both L and R are con-
vex, continuous, the objective Φ = L + R is locally Lips-
chitz continuous [26], and also regular [1].

Proof: 3.2(3). Recall that the model m(w, α, s) is

m(w, α, s) = L(w)+ 〈s,∇L(w)〉+ 1
2α‖s‖

2
2 +R(w+s)

Each of the above terms on the right hand side of m is con-
vex and continuous w.r.t. s. Thus, m(w, α, s) is convex

and continuous, and thereby also locally Lipschitz continu-
ous and regular [26, 1] in s. Furthermore, given s it is easy
to check that all the terms are continuous in (w, α) (recall
that L is continuously differentiable), whereby m itself is
continuous in (w, α) for all s ∈ Rn.

To prove 3.2(4) and 3.2(5) we use the following lemma.
Lemma 3.3 ([8, Lemma 11.2.1]). If 3.2(2) and 3.2(3) hold,
then the following limit

lim
‖s‖→0

Φ(w + s)−m(w, α, s)
‖s‖

= 0, (3.12)

is equivalent to the combination of 3.2(4) and 3.2(5).

We now prove 3.2(4), 3.2(5) by showing that (3.12) holds.

Proof: 3.2(4,5). By definition of m(w, α, s) we have

lim
‖s‖→0

Φ(w + s)−m(w, α, s)

‖s‖

= lim
‖s‖→0

L(w + s) +R(w + s)

‖s‖

−
L(w) + 〈s,∇L(w)〉+ 1

2
α‖s‖22 +R(w + s)

‖s‖

= lim
‖s‖→0

L(w + s)− L(w)

‖s‖ − lim
‖s‖→0

〈s,∇L(w)〉
‖s‖

− lim
‖s‖→0

α‖s‖22
2‖s‖ . (3.13)

Let {sk} be a sequence converging to zero; let hk = ‖sk‖,
and dk = sk/hk. Then,

lim
k→∞

hk = 0 while ‖dk‖ = 1, ∀k.

Using this notation we rewrite (3.13) as

lim
k→∞

L(w + hkdk)− L(w)

hk‖dk‖ − lim
k→∞

hk
˙
dk,∇L(w)

¸
hk‖dk‖

− lim
k→∞

hkα‖dk‖22
2‖dk‖ .

Since L is continuously differentiable we obtain

lim
k→∞

˙
dk,∇L(w)

¸
‖dk‖ − lim

k→∞

˙
dk,∇L(w)

¸
‖dk‖ − lim

k→∞
hk ·C = 0,

where C = α‖dk‖22
/

2‖dk‖. Thus (3.12) holds.

With Proposition 3.2 in hand, the global convergence of
TRIP can be established provided that the sequence {wr}
of reference iterations has a limit point. This can be en-
sured using some additional assumptions on Φ, for in-
stance, when Φ is bounded below and has a bounded level
set. In this paper, we assume the existence of a limit point
and show that it is first-order critical.



A scalable trust-region algorithm with application to mixed-norm regression

Theorem 3.4 (Convergence). Suppose w∗ is a limit point
of the sequence {wr} generated by Algorithm 1. Then w∗

is a first-order critical point of Φ(w).

Proof. Since Proposition 3.2 holds, the TR framework of
Theorem 11.2.5 in [8] yields the proof.

Let us now look at TRIP’s convergence rate.
Theorem 3.5 (Convergence rate). The sequence {Φ(wr)}
generated by Algorithm 1 converges at the rate O(1/r).

Proof sketch. Suppose w∗ is the solution to (1.1). For
brevity, denote Φ(wr) by Φr, and m(wr, αr, sr) by mr.
Since Φr+1 < Φr, there exists a constant ξ such that
‖wr −w∗‖ ≤ ξ for all wr. From (2.1), the computation
of ρ, and from the trust-region update (2.2), we have

Φr − Φr+1

Φr −mr
≥ η1, that is Φr+1 ≤ (1−η1)Φr +η1m

r.

Following Nesterov [23] we see that if Φ0−Φ∗ ≥ η1αUξ
2,

then Φ1 − Φ∗ ≤ η1αUξ
2/2, otherwise

Φr+1 − Φ∗ ≤ Φr − Φ∗ − η1
(Φr − Φ∗)2

2αUξ2
. (3.14)

Using the shorthand θr = 1/(Φr − Φ∗), (3.14) yields

1
θr+1

≤ 1
θr
− η1

2αUξ2(θr)2
=

2αUξ2θr − η1

2αUξ2(θr)2
,

which further implies that

θr+1 ≥ 2αUξ2(θr)2

2αUξ2θr − η1
= θr +

η1θ
r

2αUξ2θr − η1

> θr +
η1θ

r

2αUξ2θr
= θr +

η1

2αUξ2
.

Repeating the argument for all t we immediately obtain

θr ≥ θr−1 +
η1

2αUξ2
≥ · · · ≥ θ0 +

η1r

2αUξ2
>
η1r + 2
2αUξ2

,

which yields the desired convergence rate

Φr − Φ∗ <
2αUξ2

η1r + 2
<

2αUξ2

η1
· 1
r

= O(1/r).

3.5. Implementation

At each iteration of TRIP, we need to apply proximity oper-
ators for mixed-norms (null phase) or compute minimum-
norm generalized gradients (monotonic phase). Proximity
operators can be applied efficiently as the task breaks down
into n separate operators for GLASSO and GL-LR (d for
MTL)—a point also noticed by [34, 11]. The monotonic
phase requires minimizing the generalized gradients ‖g‖1,
‖g‖2 or ‖g‖∞—a task that is easy but having a somewhat
technical derivation, so we defer it to [15, §2.1] for brevity.

4. Experiments
In this section we apply TRIP to the following three mixed-
norm3 regression problems:

1. Group lasso (GLASSO) [36]. LetXj ∈ Rm×dj ,wj ∈
Rdj (1 ≤ j ≤ n), y ∈ Rm, and λ > 0. Then, the
GLASSO problem (`1,2-regularized) is:

min
w1,...,wn

1
2
‖y −

Xn

j=1
Xjwj‖22 + λ

Xn

j=1
‖wj‖2.

(4.1)
Formulation (4.1) is the most frequently studied vari-
ant of GLASSO; see for instance [36, 2].

2. Group-lasso for logistic regression (GL-LR) [21].
Same as GLASSO except that instead of a quadratic
loss, the logistic loss

L(w) = yTη −
Xm

i=1
log
`
1 + eηi

´
, (4.2)

is used; η = b1 +
∑n
j=1Xjwj for a bias term b.

3. Multi-task lasso (MTL) [19]. Let Xj ∈ Rmj×d, and
parameter matrixW ∈ Rd×n. Each columnwj ofW
corresponds to a task, but the mixed-norm is applied
over the rowswi ofW . The optimization problem is:

min
w1,...,wn

Xn

j=1

1
2
‖yj −Xjwj‖22 + λ

Xd

i=1
‖wi‖∞,

(4.3)
A more general setup is described in [25].

These three problems and their variations have attracted
a lot of attention. Notable applications include: feature-
selection [36]; groupwise, multi-task feature-selection [25,
31, 38]; cognitive neuroscience [19]; bioinformatics [20];
computer vision [33]. We conduct experiments on both
synthetic and real-world datasets and compare four algo-
rithms:4 TRIP, PQN,5 SpaRSA,6 and FBS7. Though we fo-
cus on the three applications listed above, we remark in
passing that TRIP also easily applies to other problems
such as lasso, `1-penalized logistic-regression [16], Elastic-
net [39], and sparse group lasso [14].

4.1. Synthetic Data

Table 1 summarizes the synthetic datasets used. Due to
space limitations, we include only a few of our results

3Let w ∈ Rd be partitioned into subvectors w1, . . . ,wn, where wj ∈ Rdj

for 1 ≤ j ≤ n. The `p,q mixed-norm (aka group-norm) for w is defined as

‖w‖p,q =
‚‚ ˆ
‖w1‖q ; ‖w2‖q ; . . . , ‖wn‖q

˜ ‚‚
p
.

The most commonly used mixed-norms are `1,2 and `1,∞.
4We remark again that block-coordinate descent (BCD) methods do not scale

well. For example, the BCD method of [19] requires pre-processing steps that com-
pute XT

j Xj ; these products are prohibitively expensive to compute, and demand
huge storage—e.g., for dataset S3 (Table 1) more than 1800GB would be needed!

5Obtained from: http://people.cs.ubc.ca/ schmidtm/Software/PQN.html
6Obtained from: http://www.lx.it.pt/∼mtf/SpaRSA/
7Carefully implemented ourselves; no reference implementation was available.
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Figure 1. MTL experiments: objective function vs. runtime for datasets S1, S2, and S3. FBS eventually converges (not shown) after a
long time. On S2 PQN is very competitive. SpaRSA is seen to be nonmonotonic. Overall TRIP outperforms the other methods.
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Figure 2. GLASSO experiments: objective function vs. runtime for datasets S1, S2, and S3. FBS eventually converges (not shown) after
a long time; TRIP and PQN behave similarly, except on S3 where TRIP outperforms PQN.

(more may be found in [15]). We first show results for
MTL. Here, the observations are generated following the
model yj = Xjwj + εj , where εj is Gaussian noise. Fig-
ure 1 plots objective values versus runtimes for the four
algorithms. We adjusted the parameters for PQN, SpaRSA,
and FBS, to make them perform competitively; for FBS we
searched over a grid of step-sizes and have reported the best
results obtained. We see that TRIP converges the fastest,
followed by PQN SpaRSA, and FBS. Notice how SpaRSA
exhibits highly non-monotonic behavior.

Next, we show synthetic results for GLASSO. Here the ob-
servation was generated as per y =

∑n
j=1Xjwj + ε. The

data matrices used were the same as for MTL. We again ad-
justed parameters of the other approaches to make them run
competitively. Figure 2 presents objective function versus
runtime plots. Here, as opposed to MTL, we observe that
PQN and TRIP perform similarly on S1 and S2, while for
the larger dataset TRIP converges much faster.

4.2. Real-world Datasets

The main goal of this section is to compare the com-
putational efficiency of the different methods on some
real-world datasets, once again with application to MTL,
GLASSO, and GL-LR. We run all these regressions for per-

Table 1. Dimensions of the various synthetic datasets. The values
correspond to matrices in n groups, X1, . . . ,Xn ∈ Rm×d. The
largest dataset S3 contains over 500 million nonzero elements.

Name m d n # nonzeros

S1 10,000 5,000 500 2.49 · 108

S2 50,000 20,000 100 3.99 · 108

S3 100,000 50,000 100 5.01 · 108

forming explanatory feature selection, a problem for which
fast optimization of the objective function is always bene-
ficial. We begin with a brief demonstrative sample, which
is followed by the main results.

The first experiment solves MTL for the wine quality
dataset [9]. This dataset contains two sub-datasets that
measure physicochemical properties of red wines and white
wines. The response variable is the quality for each wine,
and takes values from 0 to 10.

Table 2 shows the weights of the features selected by lin-
ear regression and by MTL. By applying the linear regres-
sion separately, one obtains (Density, Alcohol) as the most
influential features for red wine, and (Density, Residual
sugar) for white wine. MTL, however, provides a different
explanation: Alcohol is the co-dominating feature to deter-
mine the quality, regardless of the wine type, while Volatile
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Feature Linear Regression MTL MTL
λ = 1e+ 2 λ = 3e+ 3

Fixed acidity 0.0253 / 0.0624 0.0386 / -0.0201 0/0
Volatile acidity -0.1104 / -0.2120 0.0193 / -0.2043 0.0768/-0.0768
Citric acid -0.0120 / 0.0030 0.0164 / 0.0013 0/0
Residual sugar 0.0037 / 0.4666 0.0389 / 0.2183 0/0
Chlorides -0.0325 / -0.0061 0.0045 / -0.0045 0/0
Free sulfur dioxide 0.0154 / 0.0717 0.0265 / 0.0521 0/0
Total sulfur dioxide -0.0335 / -0.0137 0 0 0/0
Density 0.6634 / -0.5075 0.1579 / -0.1579 0/0
pH -0.1993 / 0.1170 0.0484 / 0.0484 0/0
Sulphates 0.1070 / 0.0814 0.0833 / 0.0604 0/0
Alcohol 0.5467 / 0.2688 0.5604 / 0.4289 0.3731/0.3731

Table 2. Feature selection via multi-task lasso
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Figure 3. Running time plots. The 20 Newsgroups dataset was
pre-processed to fit into the MTL framework. Five newsgroup
topics (computer, recreation, science, politics, religion) were re-
duced to five different lasso tasks of size 2907 × 53975. The
“forsale” group is omitted since it does not have any subgroups.

acidity contrasts different types. Notice that it can be diffi-
cult to identify such contrasting features via standard lasso,
and it is a unique ability of MTL to be able to do so.

In our next experiment we run MTL on the 20 newsgroups
dataset, using five tasks; each task has data of size 2907 ×
53975. As already seen on synthetic data, TRIP minimizes
the objective function effectively. Here too, from Figure 3
we see that TRIP generates solution comparable with other
methods in a fraction of their elapsed time.

The key difference between MTL and GLASSO is how the
grouping happens. In MTL, each feature is grouped across
multiple tasks, while in GLASSO, features in a single prob-
lem are grouped. To compare the methods for GLASSO,
we chose the MNIST handwritten digits dataset [17] and
formed a GLASSO instance. Specifically, we formulate the
problem as selecting a limited number of row-pixel loca-
tions and computing the weights for pixels in the selected
rows. This setup yields 28 data matrices of size 60, 000×28
with a total of 8,994,516 non-zero entries and an observa-
tion vector of size 60, 000× 1. Figure 4 shows the running
time of various methods on this dataset—we observe that
TRIP significantly outperforms the other methods.
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Figure 4. Running time plots on the MNIST handwritten digits
dataset. Each image in the dataset is partitioned with respect to its
rows, i.e., each 28 × 28 digit image is considered as a collection
of 28 row-pixels. We remark that we had to turn on the ’safe-
guard’ option of SpaRSA to make it converge on this dataset; this
generally results in the prolonged first iteration as shown in the
figure. Considering that FBS requires extensive parameter tuning,
we would still regard SpaRSA as highly competitive, as it rapidly
catches up with other methods in a few “normal” iterations.

We also produced a GL-LR problem on the MNIST dataset.
We, however, simplified the problem to learning a binary
classifier for the digit “1”. The result from this GL-LR
problem is shown in Figure 5. Here we could not show
SpaRSA as the publicly available implementation supports
only quadratic losses. TRIP is seen to outperform PQN and
FBS, both of which are competitive with each other.

5. Conclusions and Future Work

0 5 10 15 20
10

5

10
6

10
7

Running time (secs)

O
b
je

ct
iv

e
 f
n
. 
va

lu
e

 

 

TRIP−GL−LR

PQN−GL−LR

FBS−GL−LR

Figure 5. Running time plots for solving a GL-LR problem on the
MNIST handwritten digits dataset.

We presented a new method based on a nonsmooth trust-
region framework for solving regularized convex problems.
We applied our algorithm to three mixed-norm regularized
regression problems, for which it exhibited highly competi-
tive performance on both synthetic and real-world datasets,
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while enjoying solid theoretical convergence properties.

We emphasize that the applicability of our method is not
limited to the problems presented in this paper. Future chal-
lenges include further algorithmic developments such as
employing better, potentially more sophisticated yet scal-
able models, and developing efficient proximity opera-
tors for more complex regularizers, e.g., tree-regularized
mixed-norms and overlapping mixed-norms.
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