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Abstract—This paper describes an area and power-efficient
VLSI approach for implementing the discrete wavelet transform
on streaming multielectrode neurophysiological data in real time.
The VLSI implementation is based on the lifting scheme for
wavelet computation using the symmlet4 basis with quantized
coefficients and integer fixed-point data precision to minimize
hardware demands. The proposed design is driven by the need
to compress neural signals recorded with high-density microelec-
trode arrays implanted in the cortex prior to data telemetry. Our
results indicate that signal integrity is not compromised by quan-
tization down to 5-bit filter coefficient and 10-bit data precision at
intermediate stages. Furthermore, results from analog simulation
and modeling show that a hardware-minimized computational
core executing filter steps sequentially is advantageous over the
pipeline approach commonly used in DWT implementations. The
design is compared to that of a B-spline approach that minimizes
the number of multipliers at the expense of increasing the number
of adders. The performance demonstrates that in vivo real-time
DWT computation is feasible prior to data telemetry, permitting
large savings in bandwidth requirements and communication
costs given the severe limitations on size, energy consumption and
power dissipation of an implantable device.

Index Terms—B-spline, brain machine interface, lifting, micro-
electrode arrays, neural signal processing, neuroprosthetic devices,
wavelet transform.

I. INTRODUCTION

V
LSI implementation of the discrete wavelet transform

(DWT) has been widely explored in the literature as a

result of the transform efficiency and applicability to a wide

range of signals, particularly image and video [1], [2]. These

implementations are generally driven by the need to fulfill

certain characteristics such as regularity, smoothness and linear
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phase of the scaling and wavelet filters, as well as perfect

reconstruction of the decomposed signals [3].

In some applications, it is desirable to meet certain design

criteria for VLSI implementation to enhance the overall system

performance. For example, minimizing area and energy con-

sumption of the DWT chip is highly desirable in wireless

sensor network applications where resources are very scarce. In

addition to miniaturized size, minimizing power dissipation is

strongly sought to minimize tissue heating in some biomedical

applications where the chip needs to be implanted subcuta-

neously.

In this paper, we deal primarily with the design of DWT VLSI

architecture for an intracortical implant application. Motivated

by recent advances in microfabrication technology, hundreds

of microelectrodes can be feasibly implanted in the vicinity

of small populations of neurons in the cortex [4], [5], opening

new avenues for neuroscience research to unveil many mysteries

about the connectivity and functionality of the nervous system at

the single cell and population levels. Recent studies have shown

that the activity of ensembles of cortical neurons monitored with

these devices carry important information that can be used to

extract control signals to drive neuroprosthetic limbs, thereby

improving the lifestyle of severely paralyzed patients [6]–[8].

One particular challenge with the implant technology is the

need to transmit the ultra-high bandwidth neural data to the out-

side world for further analysis. For example, a typical recording

experiment with a 100 microelectrode array sampled at 25 kHz

per channel with 12-bit precision yields an aggregate data rate

of 30 Mbps which is well beyond the reach of state-of-the-art

wireless telemetry. Other significant challenges consist of the

need to fit circuitry within cm for the entire signal pro-

cessing system, and operate the chip at very low power (no more

than 8–10 mW) to prevent temperature rise above 1 C that may

cause neural tissue damage. In previous studies, we have shown

that the DWT enables efficient compression of the neural data

while maintaining high signal fidelity [9]–[11]. To be imple-

mented in an actual implanted device, chip size, computational

complexity and signal fidelity must be balanced to create an op-

timal application-specific integrated circuit (ASIC) design tai-

lored to this application.

Generally speaking, the case of computing the DWT for high

throughput streaming data has not been fully explored [12]. It

has been argued that a lifting scheme [13] provides the fewest

arithmetic operations and in-place computations, allowing

larger savings in power consumption but at the expense of

1549-8328/$25.00 © 2007 IEEE
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Fig. 1. Block diagram of an implantable neural system illustrating the mixed
signal processing proposed.

longer critical path than that of convolution-based ones [13].

Recent work by Huang et al. [14] focused on analyzing DWT

architectures with respect to tradeoffs between critical path

and internal buffer implementations. Such critical path can be

shortened using pipelining with additional registers or using a

so-called flipping structure with fixed number of registers [15].

The B-spline approach [16], on the other hand, requires fewer

multipliers than lifting, replacing them with adders that may

permit a smaller chip area [17]. Nonetheless, most of the re-

ported hardware approaches focus on computational speed and

do not adequately address severe power and area constraints.

By comparing with other implementations of the DWT in this

paper, we demonstrate that the appropriate compromise among

power, size and speed of computations is achieved with a se-

quential implementation of integer arithmetic lifting approach.

The paper is organized as follows. In Section II, the classical

single channel one-dimensional (1-D) DWT and lifting DWT

are introduced. Section III describes the motivation for integer

lifting DWT and approaches to efficiently map the algorithm

to hardware for a single channel, single level DWT decomposi-

tion. In Section IV, proposed architectures for integer lifting are

described and analysed. Section V describes hardware consid-

erations of the proposed architecture for multiple channels and

multiple levels of decomposition, and Section VI describes per-

formance comparisons and overall results.

II. THEORY

A typical state-of-the-art implantable neural interface system

as depicted in Fig. 1 contains an analog front end consisting

of pre-amplification, multiplexing and A/D conversion prior to

extra-cutaneous transmission. An analog front end integrated

onto a 64-electrode array would occupy 4.3 mm in 3 m tech-

nology and would dissipate 0.8 mW of power [5]. This tradi-

tional approach is not well suited for wireless data transmis-

sion due to power demands associated with the resulting large

data throughput. In the proposed approach, the power and chip

area of the analog front end is reduced by using contemporary

mixed-signal VLSI design approaches and more modern fabri-

cation processes (e.g., 0.18 m), allowing advanced signal pro-

cessing to take place within the implanted system without sig-

nificant increase in the chip size. Power- and area-efficient im-

plementations of the spatial filter, the DWT, and the encoder

blocks would provide on-chip signal processing and data com-

pression, enabling wireless transmission by reducing bandwidth

requirements. In this paper, we only discuss VLSI implementa-

tion of the DWT block.

Fig. 2. 4-level DWT of a single channel noisy neural trace (blue) using
symmlet4 basis. The original signal labeled A0 is in the top trace. The largest
transform coefficients (in red) that survive the denoising threshold are used to
approximate the original signal shown in red in the top trace [11]. The original
data length is 1024 samples (� 40 ms at 25-kHz sampling frequency).

A. Pyramidal Single Channel DWT

The classical, convolution-based, dual-band DWT of a given

signal involves recursively convolving the signal through two

decomposition filters and , and decimating the re-

sult to obtain the approximation and detail coefficients at every

decomposition level . These filters are derived from a scaling

function and a wavelet function that satisfy subspace decompo-

sition completeness constraints [18]. A typical FIR low pass and

high pass 3-tap filter is expressed as

(1)

(2)

So that the approximation and detail coefficients and ,

respectively, at the th level can be computed as

(3)

(4)

where is the number of filter taps. The obtained coefficient

vectors and are -dimensional, where is the length

of the original input sequence. Equation (3) and (4) describe the

original pyramidal algorithm reported by Mallat [18]. Recon-

struction of the original sequence from the DWT coefficients is

achieved through

(5)

(6)

where and are the coefficients of the synthesis filters, re-

spectively. These are related to the analysis filters through the

2-scale equation [18].

An example of the DWT decomposition of a single channel

neural trace is illustrated in Fig. 2. The useful information is
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Fig. 3. Lifting-scheme for computing a single level DWT decomposition [13].
The polynomials T (z) and S (z) are obtained through factorization of the
wavelet filters L(z) and H(z), respectively.

mostly contained in the short transients -or spikes- above the

noise level that result from the activity of an unknown number

of neurons. It can be observed that the sparsity introduced by

the DWT compaction property enables very few “large” co-

efficients to capture most of the spikes’ energy, while leaving

many “small” coefficients attributed to noise. This property per-

mits the later ones to be thresholded [19], yielding the denoised

signal shown.

For near-optimal data compression, a wavelet basis needs to

be selected to best approximate the neural signal waveform with

the minimal number of data coefficients. A compromise be-

tween signal fidelity and ease of hardware implementation has

to be made. A near-optimal choice was proposed in [9] from

a compression standpoint and demonstrated that the biorthog-

onal and the symmlet4 wavelet functions are advantageous over

other wavelet basis families for processing neural signals. From

a hardware implementation viewpoint, the symmlet4 family has

much smaller support size for similar number of vanishing mo-

ments compared to the biorthogonal basis [20]. In addition, they

can be implemented in operations.

B. Single Channel Lifting-Based Wavelet Transform

The lifting scheme [12] illustrated in Fig. 3 is an alternative

approach to computing the DWT. It is based on three steps: First,

splitting the data at level into even and odd samples and ,

respectively; Second, predicting the odd samples from the even

samples such that the prediction error becomes the high pass

coefficients ; and third, updating the even samples with

to obtain the approximation coefficients . This process is

repeated times. At an arbitrary prediction and update step ,

the prediction and update filters and , respectively,

are obtained by factorizing the wavelet filters and

into lifting steps. The data at each step, after applying the

new filters are labeled as and ,

respectively. The last step is a multiplication by a scaling factor

to obtain the approximation and details and of the

next level.

A lifting factorization of the symmlet4 wavelet basis amounts

to the following filtering steps:

(7)

TABLE I
SYMMLET-4 DWT LIFTING COEFFICIENTS AND THEIR 6-BIT (5-BIT + SIGN)

INTEGER APPROXIMATIONS

TABLE II
SYMMLET-4 DWT B-SPLINE COEFFICIENTS AND THEIR 6-BIT (5-BIT + SIGN)

INTEGER APPROXIMATIONS

where the intermediate values , , and are dis-

carded after being used, is the resulting approxi-

mation coefficient, is the resulting detail, and

through are the coefficients of the prediction and update fil-

ters listed in Table I.

C. Single Channel B-Spline Based Wavelet Transform

Alternatively, a B-spline approach for DWT computation [16]

is based on factorizing the filters as

(8)

where and are known as the distributed parts, and

are normalization factors [17], and are the orders of the

B-spline parts, respectively. For the symmlet4, this factorization

can be expressed as

(9)

where the coefficients through are listed in Table II. Since

the B-spline parts in both filters can be expressed as

(10)

they can be typically implemented using simple shifting and ad-

dition. The polyphase decomposition similar to lifting can there-

fore be performed on the distributed parts and [16].

This is achieved by splitting the distributed parts into odd and

even components and , and , respec-

tively. For example, the low-pass even distributed part can be

represented as , and likewise for the re-

maining components. The benefit in the B-spline method is a

reduction in the number of floating point multiplications at the

expense of more additions [17]. Table III compares the compu-

tational requirements of lifting and B-spline DWT implemen-

tations along with traditional convolution. In B-spline, four x4

multiplications are replaced by shifts and two x6 multiplications

are replaced by shifts and additions . Relative to lifting,
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TABLE III
COMPARISON OF DWT COMPUTATIONAL LOAD

B-spline requires two fewer multiplications at the expense of ten

more additions for one level of decomposition. Nevertheless, as

the detailed low-power/area DWT implementation below will

show, any benefit to B-spline is diminished for multilevel mul-

tichannel decomposition.

D. Hardware Considerations

Power and area requirements of the DWT hardware are

determined largely by the complexity of the computational

circuitry and the required memory. To systematically reduce

hardware requirements, we have explored different options to

reduce computation and memory requirements at the algorithm

level and analyzed their impact on signal integrity to determine

an optimal approach. We summarize below two key ideas

that contribute largely to the reduction of circuit complexity

and memory requirements that are discussed in subsequent

sections, while more details of this analysis are further provided

in Section V.

1) Integer Approximation: Fixed-point integer approxima-

tion limits the range and precision of data values but greatly re-

duces the computational demand and memory requirements for

processing and storage. To explore the potential of utilizing in-

teger approximation in the proposed system, we observed that

neural signal data will be entering the system through an A/D

converter and will thus inherently be integer valued within a pre-

scribed range. The data is first scaled to obtain data samples

within a 10-bit integer precision. The integer approximation is

then computed for the scaled data. The integer-to-integer trans-

formation [22] involves rounding-off the result of the lifting fil-

ters and that are used to filter odd and even data samples,

respectively. The last step that requires scaling by and

is omitted. Hence, the dynamic range of the transform at each

level will now change by . As our results will demonstrate

(Section V), the minimized circuit complexity associated with

integer representation should be well suited to this application

provided that data precision is sufficient to maintain signal in-

tegrity.

2) Quantization of the Filter Coefficients: Rounding-off

wavelet filter coefficient values to yield a fixed point integer

precision format can further reduce the computation and

memory requirements. Implementing lifting-based wavelet

transform with only integer computational hardware requires

the filter coefficients be represented as integers along with the

sampled data. Tables I and II show the scaled filter coefficients

- and - for the symmlet4 basis. These

coefficients are further quantized into integer values. The level

of quantization has a significant impact on the complexity of

computational hardware. We quantified the effect of the round

off and quantization errors on the signal fidelity as a function of

multiplier complexity [21]. Our results (Section V) demonstrate

that 6 bits (5 bits 1 sign bit) coefficient quantization can

adequately preserve signal integrity.

III. SINGLE-CHANNEL SINGLE-LEVEL HARDWARE DESIGN

In a first-order analysis, the area of a CMOS integrated circuit

is proportional to the number of transistors required, and power

consumption is proportional to the product of the number of

transistors and the clocking frequency. Through transistor-level

custom circuit design, circuit area and power consumption can

be further reduced, with significant improvement in efficiency

over field-programmable gate arrays (FPGA) or standard cell

ASIC implementations.

Parallel execution of the DWT filter steps using a pipelined

implementation is known to provide efficient hardware utiliza-

tion and fast computation. In fact, a vast majority of the re-

ported hardware implementations for lifting-based DWT rely

on pipeline structures [20], [23], [24]. However, these circuits

target image and video applications where speed has highest pri-

ority and the wavelet basis is chosen to optimize signal repre-

sentation. A different approach is required to meet the power

and area constraints imposed by implantability requirements,

the low bandwidth of neural signals, and the type of signals ob-

served. Two promising integer lifting DWT implementations, a

pipeline approach and a sequential scheme, have been optimized

and compared for the symmlet4 factorization and data/coeffi-

cient quantization described above. Furthermore, the hardware

requirements for lifting DWT have been compared to a B-spline

implementation to verify the advantage of lifting in the applica-

tion at hand.

A. Computation Core Design

To begin, notice that the arithmetic operations in the lifting

scheme in (7) have a noticeable regularity that permits any ar-

bitrary step to be defined as

(11)

where , , , and take the values of and in (7), and

and are the quantized filter coefficients given in Table I.

The regularity of this repeated operation indicates that an opti-

mized integer DWT implementation would include a hardware

unit specifically designed to evaluate (11). By tailoring this cir-

cuit to the near-optimal data and coefficient bit width described

above, a single computation core (CC) suitable for all lifting

filter steps in (7) can be obtained.

Fig. 4 describes a CC block that was custom designed to min-

imize transistor count and power consumption while supporting

up to 10-bit data and 6-bit filter coefficients, both in signed

integer formats. The CC employs a simple hardwired shifting

operation to remove the x16 scaling factor from the quantized

coefficients. It generates a 10-bit output and an overflow error

bit, though the lifting scheme should inherently maintain results

within 10-bit magnitude. Several multiplier topologies were ex-

perimentally compared to define the most efficient option for

6 10-bit operations. A Wallace tree multiplier with modified

Booth recoding was implemented along with a custom 3-term

adder optimized for power rather than speed. The fixed x16

scaled integer coefficients were modified for Booth recording

before being stored in on-chip ROM to eliminate the need for
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Fig. 4. Customized computation core for integer-lifting wavelet transform
using binary scaled filter coefficients.

an on-chip encoder. The resulting circuit very efficiently imple-

ments steps 2-4 of (7) and can also compute steps 1 and 5 using

a control signal that shuts off the unused multiplier to eliminate

unnecessary power consumption.

B. Real-Time Integer DWT Processing Architectures

To identify the most efficient architecture for executing the

entire set of lifting equations in real time on a continuous flow

of input data samples, let us first re-define the filter equations

in (7) with a more hardware-friendly notation. Building on the

concept of a fixed three-term computation core described above,

the notation in (11) can be used to rewrite (7) at a specific cycle,

, as

(12)

where and are the input data pair of samples, the outputs

of steps 1–5 are - , coefficients - have been replaced

by - and - to indicate the CC input to which they will

be applied, and the superscripts represent the computation cycle

in which the data value was generated. The 2nd and 3rd terms

in step 2 have been swapped to maintain a regular data flow

described further below. Steps 2 and 5 require data from future

computation cycles. Thus, in order to compute the five filter

steps in real time, where all inputs must be available from prior

computations, execution must span three computation cycles.

During cycle the following five steps can be executed in

real time:

(13)

Notice that each step in (13) relies only on previously calculated

data, provided these steps are performed sequentially. Having

rearranged the terms in step 2 of (7), the output of each step in

(13) becomes the 2nd term input to the subsequent step, which

is useful for efficient hardware implementation. Notice also that

most of the data values needed are generated within the same

cycle; only the four values in (13) with boldface type (two are re-

peated twice) are generated in a previous cycle. Thus, if the filter

steps are implemented sequentially, only four storage/delay reg-

isters are required.

Although (13) does allow real time computation of the filter

steps in sequence, dependencies within the steps in (13) pre-

clude parallel execution necessary for a pipeline implementa-

tion. To make each filter step dependent only on data from prior

cycles, execution must span seven data samples. During cycle

the following sequence could be computed without any

dependency on current or future cycle results:

(14)

Here, the second term of each computation relies on the output

from the preceding step during the previous computation cycle.

In a pipeline, these four second-term data inputs could be held in

a memory with one-cycle delay. The first and third terms require

seven additional data values from prior cycles, one of which is

needed twice, resulting in six independent values. One of the

values ( in step 2) needs a two-cycle delay, requiring an extra

delay register. Thus, a total of 11 storage/delay registers would

be required to hold all of the necessary values from prior cycles

for a pipeline implementation.

C. Pipeline Design

The integer DWT filter equations in (14) can be implemented

simultaneously in a pipeline structure that permits real time,

continuous signal processing to take place. Fig. 5(a) illustrates

a pipeline structure designed around the customized three-term

computation core from Fig. 4. The output of each of the five

filter stages is held by a darkly shaded pipeline register, and

other registers provide the necessary delays. By clocking all of

the registers out of phase from the CC blocks, continuous oper-

ation is provided. The computation latency is seven cycles, due

to the five pipeline stages and the two delay cycles built into

(14). The temporal latency for detail and approximation

results is 14 samples because each computation cycle op-

erates on a pair of data samples. The overall pipelined computa-

tional node consists of five CC blocks, 15 10-bit registers, and

an 8 6b coefficient ROM. An additional delay phase could be

added at the output to synchronize the latency of the detail

and approximation outputs.

D. Sequential Design

Although the pipeline structure achieves fast integer DWT

processing via a large hardware overhead, it is very resource-ef-

ficient and thus well suited for low-power, single channel, neural

signal processing. However, as discussed below, scaling the

pipeline for multiple data channels and/or multiple decomposi-

tion levels begins to break down the efficiency of the pipeline

structure. An alternative approach is to process each of the

filter steps (or pipeline stages) sequentially using a single CC
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Fig. 5. (a) Pipeline structure for integer-lifting wavelet transform with data notations to match filter equations in (11) at a single point in time. (b) Sequential
structure over five operation phases for comparison to the pipeline structure.

block and a fraction of the registers required by the pipeline.

This approach takes advantage of the low bandwidth of neural

signals that permits the CC to be clocked much faster than the

input data sampling frequency (typically in the range of 25–40

kHz).

Sequential processing of the integer DWT filter steps can be

achieved using (13), where each stage depends only on data

from previous cycles or from same-cycle outputs generated in

a preceding step. The simplicity of data dependencies relative

to the pipeline structure can be observed from Fig. 5(b), which

illustrates the sequential structure in a format comparable to the

pipeline. Here, each section of the circuit represents a temporal

phase rather than a physical stage. An important observation is

that significantly fewer registers are needed because the inputs

of subsequent phases rely largely on preceding outputs from the

same computation cycle. Therefore, it can be shown that the

overall sequential DWT circuit can be efficiently implemented

with six 10-bit registers to manage data flow between computa-

tion cycles, a single CC block, an 8 6b coefficient ROM, and

a simple control block to direct data from memory to the appro-

priate CC input during each phase of operation. Sequential exe-

cution has a computation latency of two cycles, and the temporal

latency for detail and approximation results is four samples.

E. Analysis and Comparison

As stated above, the sequential approach requires only one

CC unit and six 10-bit memory registers compared to five CC

units and 15 registers for the pipeline circuit. The sequential de-

sign does, however, require additional multiplexers and control

logic to redirect data and coefficients to CC inputs, which are not

necessary in the inherently hardware-efficient pipeline design.

This added circuitry will make the critical path of the sequential

circuit longer than that of the pipeline structure. Furthermore,

to maintain the same throughput, the sequential design must be

operated at five times the clock rate of the pipeline. Because data

is processed in a real-time streaming mode, neither approach re-

quires a large input data buffer.

Both architectures have been thoroughly analyzed to deter-

mine which approach is best suited to the power and area re-

quirements of an implantable neural signal processor. To first

validate that both approaches can achieve the application speed

requirements, a custom computation core has been implemented

in CMOS, and analog simulations show the critical path delay is

6.5 ns in 0.5- m technology. Thus, approximately 6000 compu-

tation cycles could be preformed within a nominal 25-kHz sam-

pling frequency for neural signals. This indicates that speed is

not a critical design constraint and that circuit optimization can

focus on chip area and power consumption.

Using custom design techniques, the chip area, , required to

implement both approaches will be roughly proportional to the

number of transistors in the circuit

(15)

where is the area per transistor and is the number of tran-

sistors in the th circuit block. Empirical observations of several

custom circuit layouts shows that a single value for reason-

ably approximates all of the integer DWT blocks, especially for

comparing two similar circuits. Conservative values of 80 m

per transistor for 0.5- m technology and 5 m per transistor

for 0.13- m technology have been selected to estimate the re-

quired chip real estate.
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TABLE IV
CHARACTERISTICS OF SINGLE-LEVEL, SINGLE-CHANNEL INTEGER DWT
HARDWARE FOR PIPELINE AND SEQUENTIAL CONFIGURATIONS AT TWO

TECHNOLOGY NODES

Although absolute power consumption is inherently difficult

to estimate, for the purpose of comparing the two design alter-

natives, dynamic power can be determined as

(16)

where VDD is the supply voltage and is the data sampling fre-

quency (nominally 25 kHz). The parameter accounts for the

average output load capacitance, the average number of tran-

sistors per output transition, and the average output transitions

per clock cycle. This parameter is a function of both fabrication

process and circuit topology and has been derived empirically

as 3 and 0.75 fF for 0.5- m and 0.13- m technology, respec-

tively. The variable is the clock rate scaling factor relative to

for each block such that the clocking frequency of each cir-

cuit block is . For example, in the pipeline configuration,

the computation core will be clocked only every other cycle, i.e.,

, so that the first of the pair of samples to be processed can

be acquired in the idle cycle. Correspondingly, because the se-

quential configuration must be clocked at five times the rate of

the pipeline, it will have an average clocking rate of . In

the pipeline approach, all of the blocks are clocked at the same

frequency, except the coefficient memory that is static in both

designs. In the sequential implementation, one of the multipliers

is idle during two of the five stages, so we estimate the sequen-

tial CC clock scaling factor to be 2. Similarly, in the sequential

controller, most of the circuits are clocked at while others

are clocked at , so we estimate its clock scaling factor to

be 2 as well.

Table IV lists the total number of transistors in each approach

along with the area and power estimated from (15) and (16) for

both 0.5 m and 0.13- m technology. As expected, the pipeline

computation unit requires nearly three times the area of the se-

quential approach and would occupy about 21% of the chip

area on a 3 3 mm chip in 0.5 m technology or 5% of a

1.5 1.5 mm chip in a 0.13- m process. The power model pre-

dicts that the sequential approach will consume only 23% more

power than the pipeline. The larger power consumption of the

sequential approach can be attributed to its requirement for a

more complex controller and the need to move more data around

within the single computation core. Overall, these results show a

tradeoff between area and power consumption between the two

approaches.

F. Lifting Versus B-Spline

As an alternative to lifting, the B-spline method was investi-

gated because it permits a reduction in the number of floating

point multiplications at the expense of more additions. How-

ever, as demonstrated above, for implantable applications, in-

teger processing is preferred. Table III shows that B-spline saves

two multiplications at the cost of 10 additions per cycle com-

pared to lifting. Designs using Verilog synthesized to a custom

library have shown that, for a pipeline implementation, B-spline

requires significantly less 24-bit floating point hardware, but

for integer processing (with 10-bit data and 6-bit coefficients)

B-spline saves only 6% compared to lifting [25]. Furthermore,

B-spline can not be as efficiently implemented in a sequential

structure, where lifting has been shown to require only 53%

of the B-spline hardware resources for integer DWT. While

B-spline implementations do have slightly less delay, speed is

not a design constraint. Relative memory requirements are a

more important issue in multichannel implementations as we

show next.

IV. MULTILEVEL AND MULTICHANNEL INTEGER DWT

IMPLEMENTATION

A. Hardware Design

In implantable neuroprosthetic applications where a typical

microelectrode array has many electrodes integrated on a single

device, there is a strong need to support integer DWT computa-

tions with multiple levels of decomposition for multiple signal

channels pseudo-simultaneously (i.e., within one sampling pe-

riod). The lifting scheme and the two integer DWT implementa-

tions described above have been chosen because of their ability

to scale to an arbitrary number of channels and levels. Consid-

ering that both of the single channel, single level, integer DWT

approaches discussed above require a substantial portion of a

small chip, it is unreasonable to pursue a hardware intensive

solution that utilizes a “copy” of the circuit for each channel

and level. This would dramatically increase circuit area beyond

limitations for implantable systems. Given the available com-

putation bandwidth of the CC block, the more appropriate solu-

tion is to scale the clocking frequency as needed to sequentially

compute filter equations for multiple channels and/or levels.

Although clock scaling will still cause power to increase with

channel and level, the circuit area required will be minimized

and the power density can be held within the acceptable appli-

cation limits.

Both the pipeline and sequential architectures can be scaled

to multiple channels and/or levels by reusing the computational

node hardware and increasing the clocking frequency to com-

plete all computations within the input sample period. In both

approaches, registers within the computational node hold data

necessary for the next cycle’s calculation. To sequentially reuse

the computational node, some register values for a specific

channel/level must be saved so they will be available when that

channel/level is next processed in a future cycle. Fig. 6 shows

the multichannel, multilevel, implementations of the pipeline

and sequential configurations.

1) Multichannel Considerations: In scaling the system to

multiple data channels, the computation clock rate is scaled by

the number of channels and a new memory block is added to

save critical register data for each channel. For the pipeline, the

11 registers must be stored, while for the sequential circuit only



OWEISS et al.: SCALABLE WAVELET TRANSFORM VLSI ARCHITECTURE FOR REAL-TIME SIGNAL PROCESSING 1273

Fig. 6. Multilevel, multichannel implementations of (a) pipeline structure and
(b) sequential structure.

four registers need to be saved. These registers are marked with

an “s” in Fig. 4. An on-chip SRAM can be interfaced to the

computational node to store register values, and the size of the

SRAM will grow linearly with the number of channels. Note for

comparison that a sequential B-spline implementation requires

eight register values to be stored.

2) Multilevel Considerations: When expanding the DWT to

multiple levels, notice that each level of dyadic DWT decom-

position introduces only half the number of computations as the

previous level. More explicitly, the number of results, , per

number of samples, , for an arbitrary level can be expressed

as

(17)

which is always less than twice the number of samples. Con-

sider also that, to process multichannel input pairs, before each

computation cycle the system must implement one idle cycle,

wherein the first input of the pair is stored for each channel.

Thus, if the level-one computations are executed in, say, the even

cycles, the higher level computations can be executed in the odd

cycles [26] while input samples (one of the pair) are being stored

for the next level-one computation. This is illustrated in Fig. 7.

If we define the usage rate, , as the average number

of cycles for a single computation to occur, then for the first

decomposition level the usage rate is one half, i.e., ,

and the computational hardware is idle during the other half of

the cycles. Moreover, approaches 1.0 as the number of

levels increase, i.e.,

Fig. 7. Sequential processing scheme for multilevel, multichannel computa-
tion. At the top of this sequence, one DWT result is available at each decompo-
sition level. With the four levels shown, one idle computation cycle will occur
every 16 cycles.

As the number of levels increases, the usage rate will increase

toward maximum utilization without increasing computation

frequency. For each level of decomposition beyond the first,

one memory block per channel is required to store values held

in the computational node registers. The registers to be stored

are the same as those described in the multichannel case above.

B. Area and Power Modeling

For multiple channels/levels, the need to copy the entire set of

pipeline registers to memory effectively negates one of the pri-

mary advantages of the pipeline over the sequential approach.

On the other hand, the sequential processing circuit is inherently

designed to swap new data in/out each clock cycle. To quantita-

tively compare these two approaches, circuit models have been

developed to describe the power and area for each option as a

function of the number of channels and the number of decom-

position levels. The following models assume the hardware (in-

cluding control logic) has been scaled to manage multiple chan-

nels and levels, though they are still valid for single channel,

single level implementations.

A general expression for calculating the area of both the

pipeline and the sequential approaches as a function of channels

and levels is:

(19)

where is the technology-dependent, empirically-derived av-

erage area per transistor, is the number of transistors that

remain constant with level and channel in the th circuit block,

and are the number of transistors that scale with channel

and level, respectively, is the number of channels, and is

the number decomposition levels. Although this equation only

roughly estimates routing area, it is very useful for comparative
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analysis since both approaches consist of similar arithmetic and

memory blocks.

Using (16), a general expression for power consumption as

a function of channels and levels, which is valid for both ap-

proaches being considered, is given by

(20)

where is the channel clock frequency scaling factors,

is a level usage factor, and all other variables are as previously

defined. Recall that the clock scaling factor was chosen to

accommodate the fact that, in single level designs, every other

cycle was idle while the data pair was being collected. To main-

tain a consistent definition of variables in multilevel implemen-

tations, which utilize the idle cycles to process all higher levels,

the factor of 2 is introduced at the beginning of (20).

Both the pipeline and sequential architectures have been de-

veloped to define the model parameters given in Table V, which

are valid for and . The computational node cir-

cuitry, including control logic, has been scaled up to manage

an arbitrary number of levels and channels, with negligible per

channel/level increase in complexity. Thus, only data memory

increases with the number of channels. Clocking frequency of

the computational node circuits must scale with channel, while

each memory block is only accessed once per cycle regardless

of the number of channels. The controller frequency scales lin-

early with channel but is assumed to remain constant with level.

For all other circuit blocks, the usage rate accounts for

inactive computation cycles.

V. RESULTS AND DISCUSSION

A. Signal Integrity

We have assessed the effects of data and filter coefficient ap-

proximations on the quality of the signals obtained after recon-

struction. We quantified the performance in terms of the com-

plexity of hardware required to implement (7) and illustrated the

results in Fig. 8. The wavelet filter coefficients were quantized

to different resolutions ranging from 4 to 12 bits, with the 6-bit

values given in Table I. The data was also quantized in the same

range. The effective signal-to-noise ratio (eSNR), defined as the

log ratio in dB of the peak spike power to the background noise

power is illustrated in Fig. 8(a) versus multiplier complexity in

equivalent bit addition/sample for an average input SNR of 6

dB. These results demonstrate that, with sufficient precision, the

use of integer computations does not result in significant signal

degradation as quantified by the observed output SNR. Specifi-

cally, with quantization of filter coefficients to 6 bits and data to

10 bits, the output SNR is within 1% of its average input value.

In Fig. 8(b), the spectrum of the residual quantization and

round-off noise is also illustrated to demonstrate the loss in the

signal power-spectral density in different cases. In the case of

4-bit quantization of the filter coefficients, the residual noise

frequency content is closest to that of the original signal in the

low frequency range (subband 0–1 kHz), indicating that some

signal loss may have occurred in that band. On the other hand,

Fig. 8. (a) Effect of round off and quantization errors on the signal fidelity as
a function of multiplier complexity. (b) Power-spectral density of the original
data and the residual noise for integer approximated data and quantized wavelet
filter coefficients for various bit widths. (c) Example spike waveforms obtained
in each case.

filter quantization of 6 bit or higher results in residual noise that

consists of high frequency components above 8 kHz, which is

outside the frequency range of neural spike trains and local field
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TABLE V
MODEL PARAMETERS FOR AREA AND POWER CALCULATIONS

Fig. 9. Comparison of multichannel/multilevel pipeline and sequential integer
DWT approaches: relative chip area and relative power consumption versus
number of levels and channels.

potentials (LFPs) [27]. A representative example of spike wave-

forms in each case is illustrated in Fig. 8(c) to demonstrate the

very negligible effect of this process on the quality of the av-

erage spike waveform. Taking these results all together, it is

clear that the choice of 6/10-bit coefficient/data quantization

offers the best compromise among multiplier complexity and

signal fidelity as concluded earlier.

We should emphasize that perfect reconstruction of signals

off chip may not be always needed. Typically, neural signals

contain the activity of multiple neurons that need to be sorted

out, and this information remains in the compressed data at the

output of the DWT block. We have shown elsewhere that sorting

the multi source neuronal signals can be performed directly on

the wavelet transformed data [10], [28], and this topic is outside

the scope of this paper.

B. Multichannel/Level Implementations

Using (19) and Table V, the relative area for pipeline and

sequential architectures as a function of levels and channels is

shown in Fig. 9. These results demonstrate that the pipeline re-

quires significantly more chip area than the sequential approach

and its area needs grow faster with larger number of channels

and levels. This is due primarily to the relatively large number of

registers that must be stored per channel or level (11 for pipeline

compared to 4 for sequential). Fig. 9 also shows the relative

Fig. 10. Power-area product versus level and channel for pipeline and sequen-
tial approaches.

power consumption for the two approaches based on (20). The

linear increase in power per channel is slightly higher with the

sequential design than the pipeline. Although there is a sharp

jump in power from to , further increases in

levels require less and less additional power as the usage rate

approaches one. The most important observation from Fig. 9

is that the power consumption of the two implementations is al-

most similar but the sequential design requires significantly less

chip area.

Due to size and power constraints in implantable systems,

an important figure of merit is the relative area-power product,

which is plotted in Fig. 10 versus both level and channel. Fig. 10

illustrates that the sequential approach is increasingly prefer-

able as the number of channels or the number of decomposi-

tion levels increases. The only significant benefits of the pipeline

within the enforced design constraints are that it can be clocked

at a higher rate and that it takes fewer clock cycles to complete a

computation. Both of these factors result in the pipeline having

a higher threshold on the maximum number of channels that can

be simultaneously processed. However, based on the parameters

defined above, the sequential execution architecture has an esti-

mated maximum of around 500 data channels (at ). Given

the chip area limitations, the area-efficient sequential approach

is best suited for this application. In an example implementa-

tion with 32 channels and 4 levels of decomposition, the models

predict that the sequential approach will require 0.692 mm and

50.1 in 0.13- m CMOS, indicating the feasibility of per-

forming front-end signal processing within the constraints of an

implanted device.

Another interesting result of this study is the comparison of

the area required by the computational node circuitry versus the

area required by the memory that holds register values required

for multichannel/multilevel operation. Fig. 11 illustrates this re-

sult for both sequential and pipeline configurations as a func-

tion of channels at . Notice with the pipeline that memory

dominates the area when the number of channels is greater than

four. For the sequential design, memory dominates when the

number of channels is greater than ten. With 10-bit data resolu-

tion, at and , the pipeline requires over 14 000 bits
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Fig. 11. Relative area versus channels of data memory compared to all other
blocks for sequential and pipeline designs, at L = 4.

of SRAM, while the sequential circuit requires only about 5000

bits. Reducing memory requirements becomes increasingly im-

portant in multichannel applications, again highlighting the ad-

vantage of the sequential approach.

C. Lifting versus B-Spline

As illustrated in Fig. 11, the memory required to store

intermediate calculation values will dominate circuit area in

multichannel implementations. Careful analysis of an opti-

mized sequential B-spline implementation [25] has shown

that eight memory registers are required per channel/level,

compared to four for sequential lifting and 11 for pipeline

lifting. Based on this information and the comparisons above,

B-spline has a slight advantage over pipeline lifting but incurs

a significant penalty relative to sequential lifting in terms

of area. Furthermore, the sequential lifting implementation

requires only about 25% of the dynamic power of sequential

B-spline, primarily because B-spline takes 18 cycles to exe-

cute sequentially compared to 5 cycles for lifting [25]. The

advantage of sequential lifting becomes even more profound

when static power is considered, especially in deep submicron

technologies. Fig. 12 provides an additional comparison, where

the number of required gates, synthesized from Verilog descrip-

tions of lifting and B-spline circuits, are plotted. These results

illustrate that lifting is increasingly preferable over B-spline as

the number of channels and levels increase.

D. Multiplication-Free Lifting

The CC unit proposed in this paper uses one multiplier so that

the calculations required per sample are 8 multiplications and 8

additions that can be completed in 5 cycles as listed in Table III.

It is noteworthy that a general purpose lifting approach based

on only shifts and additions was proposed in [3]. For the sake

of completeness, we compared the demands of a CC unit with a

multiplier (proposed in this paper) to a CC unit without a mul-

tiplier, i.e., composed of only a shifter and an adder. The later

approach resulted in 12 shift operations and 21 add operations,

and required 21 cycles per sample. This is because the equa-

tions required to compute multiplication-free lifting DWT did

not show any regular structure such as the ones in (7). There-

fore, substituting another adder and shifter in the data path did

not help in reducing the number of cycles required to complete

the computation. With respect to area demands, we found that

for one sample pair, a CC unit without a multiplier requires

52% less area compared to a CC with multiplier. This obvi-

ously translates into large savings in chip area. However, these

savings were not substantial when the system is scaled up. For

example, a 32-channel/4-level DWT system using a CC with

multiplier would occupy 6.5% of the total chip area as opposed

to 3.3% using a CC without multiplier. So the overall savings in

chip area are only 3.2%. In contrast, the CC without multiplier

requires 13.3% more power than a CC with multiplier for this

specification. We therefore concluded that the reduction in area

using a shift and add strategy in the lifting approach is overshad-

owed by the increase in power dissipation when multichannel/

multilevel decomposition is sought.

VI. CONCLUSION

VLSI architectures to compute a 1-D DWT for real-time

multichannel streaming data under stringent area and power

constraints have been developed. The implementations are

based on the lifting-scheme for wavelet computation and

integer fixed-point precision arithmetic, which minimize com-

putational load and memory requirements. A computational

node has been custom designed for the quantized integer lifting

DWT and characterized to estimate the maximum achievable

computation frequency. Negligible degradation in the signal

fidelity as a result of these approximations has been demon-

strated.

Detailed comparison between the lifting and the B-spline

schemes was presented. It was shown that the lifting approach

is more suited when floating point operations are eliminated,

thereby superseding the gain achieved by the B-spline ap-

proach where adders replace multipliers. Two power and size

efficient hardware alternatives for computing the single-level,

single-channel wavelet transform have been described and

analyzed. The memory management efficiency of the pipeline

design results in slightly less power dissipation, while the se-

quential execution design requires significantly less chip area.

Design considerations for scaling these architectures to multi-

channel and multilevel processing have been discussed. Area

and power consumption models with detailed transistor count

and switching frequency parameters have been described and

used to compare the performance of the two design alternatives

in multichannel and multilevel implementations. The results

show many interesting characteristics of each design when it

scales to an arbitrary number of levels and channels. When the

number of channels is two or more, the sequential execution

architecture was shown to be more efficient than the pipeline

approach in terms of both power and chip area. Furthermore,

results indicate that, using this architecture, multilevel pro-

cessing of many channels simultaneously is
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Fig. 12. Total number of gates as a function of the number of channels and the number of levels for the lifting and B-spline implementation.

feasible within the constraints of a high-density intracortical im-

plant. This work demonstrates that on-chip real-time wavelet

computation is feasible prior to data transmission, permitting

large savings in bandwidth requirements and communication

costs. This can substantially improve the overall performance of

next generation implantable neuroprosthetic devices and brain-

machine interfaces.
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