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A Scalar Expression for Matrices

With Symplectic Involution*

By Louis Halle Rowen and Uri Schild

Abstract.   Various algebraic reductions are made to facilitate computer verification of

the following result:   If x and y are 8X8 matrices such that [x, y] is regular, tr(x) =

0, and, with respect to the canonical symplectic involution, x is symmetric and y is an-
—1 2

tisymmetric, then the element (x + [x, y[x[x, v)     )    satisfies a minimal equation of

degree < 2.

The purpose of this paper is to show how the computer can be used in conjunc-

tion with various algebraic tools, to prove nice results in the theory of rings.   One

fundamental concept in ring theory is a simple ring, a ring having no proper nonzero

ideals.   Recall that the center of a ring R is {c E R\cr = re for all r in /?}.  The center

F of a simple ring R is obviously a field, over which R can be viewed as a vector space;

if the dimension of R over F is finite, R is called a central simple F-algebra.   The ob-

vious example is Mn(F), the ring of n x n matrices over a field F, which clearly has

dimension n2 over F.  In fact, the dimension of any central simple algebra (over its

center) is a perfect square, cf. Albert [1], which is the standard reference on central

simple algebras.  (Albert calls them "normal simple".)  Thus, if R is central simple of

dimension n2, we call n the degree of R.  For n = 2,3, 4, 6, and 12, the nature of

central simple F-algebras has been very well understood for 40 years (cf. [1]).   For

other n, very little positive information is known unless some arithmetic assumption is

made about F.  There is another piece of structure intrinsic to Mn(F)-the transpose,

which we denote as the map x —* xf.

Algebraically, the transpose is an anti-automorphism of degree 2 which fixes the

elements of the center; in general, such a map is called an involution.   Another ex-

ample of ring with involution is any ring of generalized quaternions.   Of course, the

transpose gives rise to many different involutions on Mn(F), via change of basis. However,

if n is even (and if 1 + 1 =£ 0 in F), then there is another involution not realizable in

this way.  Namely, given a matrix x partitioned into (n/2) x (n/2) matrices (¡Í ^),

we define the canonical symplectic involution^), by

/D'      -Br\
xs = ( I = yx*y l,

\-C'     A' /

where y = ( °7 '0),I denoting the identity (n/2) x (n/2) matrix.  This involution has
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some very nice properties, and is often more useful than the transpose in proving

theorems; the reason will become clearer later (cf. Lemma 5).  Using symplectic involu-

tions, one can prove

Theorem A(Rowen  [5]). If R is a division algebra of degree 8 with involu-

tion, then R has a subfield which is a Galois extension of dimension 8 over the center,

having Galois group Z2 © Z2 © Z2.

Theorem A is nice, because there are ways of characterizing central simple alge-

bras of degree n if we know they contain a Galois extension of the center of dimen-

sion n (cf. [1, Chapter V]). The key step in the proof of Theorem A was, interest-

ingly, a statement about matrices which could be verified formally on the computer.

We shall present this theorem, and spend the rest of the paper simplifying the state-

ment to the stage where it can be verified formally by a computer. The actual pro-

gram was carried out at Bar-Iian; the details of the run are given at the end of the

paper.

In what follows, we shall assume that F is a field in which 1 + 1 ¥= 0.   (This

assumption can be removed at the end, using well-known but somewhat intricate

methods.)  The symbol [a, b] means ab - ba.

Theorem 1. Ifx, y E M8(F), such that [x, y] is invertible, tx(x) = 0, xs = x,

and ys = -y, then z = (x + [x, j]x[x, y]~x)2 satisfies a minimal equation of degree

< 2 over F.

Proof.   This is mostly a sequence of reductions.   If

* = (*'    '')     a„d   „fr   M.
\CX    Dx) \C2    Dj

then the hypotheses on x and y are equivalent to tx(Ax) = 0, Dx = A\, Bx = -B\,

C\ = -Cx, D2 = -A\, B2 = B2, and C2 = C\.

Consider the field F(%) generated over F by commuting indeterminates %\¡k', 1 <

i, /' < 8, 1 < k < 2.   Letting {ef/-11 < i, / < 4} be a set of usual matrix units for

M4(F), the most general situation is clearly achieved when we replace the entries of

x and j' by indeterminates %\k), subject to the hypotheses on x and y.   In other words

write

g,   M M,   M\CX    A\J \C2    -A\/

where

¿X = Z &\ - «IV   + £V + «iV>44 + ZÜJ% + * V'
i= 1 '</'

Bi = L t/Ue« - eJ¿>      Ci = T.$l\/'V - e,i)>
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A2 = h ¿4%  B2 = aew* + efi\
1=1 7=1 i<j

C2 = Ze+\Mj + eft).
i<J

N.B.   In all of the sums taken over "i < /'", we mean all (/, /) such that 1 </'</< 4.

Thus, the question of proving this theorem is equivalent to evaluating our ex-

pression on x0 axidy0.  Indeed, writingz0 = (x0 + [x0, y0]x0[xQ, y0]~x)2, we

need to show z0 is not scalar, but that zQ satisfies some equation of degree 2 over

F(£).   First we want an easily computable characterization of this property.  The fol-

lowing result can be found in [1, Theorem 8.13].

Lemma 1.   Suppose K is a subfield (containing F) of Mn(F). For any element

r in K, the characteristic polynomial of r is a power of the minimal polynomial of r.

Let tr( ) denote the trace function of a matrix.

Lemma 2.   Suppose K is a subfield (containing F) of Mn(F), \/n E F, and K

is generated algebraically by the element r over F.   Then the minimal polynomial of

r has degree 2, if and only if n is even and (r - (\/n)tx(r))2 is scalar.

Proof.   If (r - (\/n)tx(r))2  =aEF, then r2 - ((2/n)tx(r))r + ((l/n)tx(r))2 - a

= 0, so r satisfies a polynomial of degree 2.   Conversely, if r2 + ßxr + ß2■ = 0 for

suitable elements ßx,ß2, of F, then, from Lemma 1, n is even and (X2 + ßjX + ß2)"^2

is the characteristic polynomial of r.  Hence ~(ßxn)/2 = tx(r), so (r - (l/«)tr(r))2 =

(r 4- 0,/2)2 = r2 + ßxr + ß2/4 = ß2/4 - ß2, a scalar matrix.

Note that l/n E F if and only n • 1 =£ 0, if and only if p ■ 1 =/= 0 for every

prime number dividing n.  A nontrivial fact which can be culled from [4, Theorem

29] is that our element zQ generates a field over F(%).  (This kind of result can be

stated in very general terms.)  Thus, we have

Reduction 1.  Theorem 1 is true if and only if (zQ - (l/8)tr(zQ))2 is scalar.

Now we have a problem which, in theory, can be verified via a computer.   In-

deed, all we need to show is that the matrix zQ (of M%(F(%))) is not scalar and

(z0 - (l/8)tr(z0))2 is scalar.   The rest of this paper comprises simplification of the

computation, in order to make the problem manageable for the computer.

First, note that the verification in Reduction 1 does not depend on the field of

coefficients, so we could replace F(£) by its algebraic closure, which we call F.

Lemma 3.   There is a nonsingular matrix a in Mg(F), such that 0s = a"x and

0x0s is diagonal.

Proof.   An easy induction argument on the number of nondiagonal terms, which

we omit.

Reduction 2.  On the definition of z0, we may replace x0 by

3

Xo =  2- %ii    (eH + e! + 4,( + 4 ~ e44 ~ e8g)-
1=1

Proof.   (z0 - (l/8)tr(z0))2 is scalar if and only if (az0as - (l/8)tr(í7z0í7í))2 is

scalar, where a is as in Lemma 3, and az^ = x  + [x, y']x'[x', y']~x, where x =
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ax^ and y' = ay^.  But clearly tr(x') = 0, (x')s = x', and (y'f — -y .   Moreover,

x is diagonal.  Thus, in view of Reduction 1, we can prove Theorem 1 if we can

verify the case when x is diagonal.   Now, once again, to prove this, we need only

check the situation where the nonzero entries of x and y are replaced by indeter-

minates.   In other words, since x is now diagonal, we can replace x0 by x'0 of the

form (i 1 A°t), where Ax = S?^/^« " (?(iV + &¥ + S&K^o remaim 3S pre"

viously stated. This proves Reduction 2.

Write |f for $>, 1 < Í < 3, and write g4 for -X^,^.   Set w0 = [x'0, y0] =

(c¡ D3). where^l3 = [X,,^],^ = Mp^], C3 = [^„ C2],andD3 = [Ax,-A2]

= [-A2, AXY = [Ax, A2Y = A3.  Note that

A3=Í ¿<& - */$/%      *3 = £(& - «P igU«* - «*>■
i= 1 /'= 1 /</

c3 = Za,-?/)?l+4,/(^-^)-

Let us define a set of commuting indeterminates p¡., and set w'0 = (c4 ^i*),

where

^4 = X^ifij + HeJ¿>        54 = E Hi+¿eü ~ eji>'        c4 = Z M/+4 ,<*,/ - e.7).
¡<; '</ *</

Reduction 3.   Let z^ = (x¡j + w¡jX0(w0)-1)2.   Theorem 1 is true if and only

if z¡j is not scalar and (z'0 - (l/8)tr(z0))2 is scalar.

The sufficiency of Reduction 3 to prove the theorem is clear when we com-

pare w>0 and w'0 (since the entries of w'0 axe indeterminates).   Conversely, w'Q can be

obtained as [x'0, y], where y = (¡í _J*t) with

A = Z(0Vf/ ~Wn>l% - */»•      B = ZZ(PU+M - y)(e# + e}i),
i<j i<i

C=JL(ßi+4M-^)(eiJ+eji).
i<j

This shows the condition on Reduction 3 is a special case of the assertion of Theo-

rem 1.

Definition.   Say r has degree 2 if and only if r is not scalar and (r - (l/8)tr(r))2

is scalar.

Remark 1.   An element r has degree 2 if and only if for some nonzero scalar

a, or has degree 2.

In view of Remark 1, our strategy was to find a matrix wx, such that w'0wx is

a scalar a, and to prove that az'Q = (ax'0 + wJjXqWj)2 has degree 2.   The obvious

choice for wx was the adjoint matrix of w'Q.   However, a straightforward computation

of cofactors was out of the question, due to the sheer size of the algebraic expressions,
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the real memory of our computer (1000 Ä"-bytes of memory) and the not-so-efficient

storage schemes of the FORMAC system.

In such cases a common approach is to use the explicit block structure of w'0

and to define a similar structure on w'^1.  Indeed, it is a simple matter to compute

(Wq)_1 in terms of A4, B4, C4, and (B4 - A4C4lAty~l, and, noting that B4 -

A4C~XA4 is antisymmetric (with respect to (t)), we can easily compute

(B4 - A4C4 1At4)~i. This observation enabled us to find an expression for

(z'0 - (l/8)tr(zó))2, but we could not open the expression (in order to cancel terms) be-

cause of limitations of memory.

At this point, we resorted to use of the Pfaffian, a well-known tool to Jordan

algebraists, but not very well known in general.   Let a be a matrix of the form

S1<(</<„ aJetj - e--), i.e. a* = -a.    Our first goal is to find a formal square root of

det(a).   If n is odd, then det(a) = 0, so assume n is even and define Pf(a) =

Ssg(7r)flw(1)77(2) . . . <!„(„_,)„(„), summed over all permutations of {1, 2.h)

satisfying it(2i - 1) < 7r(2/') for all / between 1 and n/2, and 7r(2/ - 1) < v(2i + 1)

for all i between 1 and (n/2) - 1.   For example, if n - 2, then Pf(a) = ax 2 ; if n = 4,

then Pf(a) = (ax2a34 ~~ ai3a24 + ai4a23)-   An easy induction based on [3, p. 394]

yields the following fact:

Lemma 4.  det(a) = (Pf(a))2.

(Proof omitted.)

Lemma 5.   Suppose b E Mn(F), n is even, and bs = b.   Let T denote the

matrix (°7 ¿), where I is the (n/2) x (n/2) identity matrix. Thenpx(X) = PfiTX- Tb)

is a polynomial (in X) with coefficients in F, whose square is the characteristic poly-

nomial of b, and px(b) = 0.  (Here X is a commuting indeterminate over Mn(F).)

Proof.   Tk - Tb E Mn(F[K]) and is easily seen to be antisymmetric under (t).

Thus Pf(FX - Tb) E F[X], i.e. Pf(fX - Tb) is a polynomial pxÇK) with coefficients in

F (px(\))2 = det(TX -Tb) = (det 7)det(X - b) = det(X- b), the characteristic polyno-

mial of b, which we call p(X). Thus (px(b))2 = p(b) = 0. At this point we would like to

conclude px(b) = 0, and this can in fact be argued, through [4, Theorem 29]. However,

a more palatable method for most people would be to mimic the usual proof of the

Hamilton-Cayley Theorem [2, p. 101]. Q.E.D.

As mentioned above, Lemma 5 is an important tool in the study of Jordan al-

gebras.   One advantage of having an equation from the Pfaffian is that whenever b is

nonsingular and bm + ¿Z^T^afi' = 0 for suitable i, we have a0b~x = - (bm~l +

~Z^L~xaib,~l).  Now (w'0f = w'0, as is obvious.  Therefore, in the notation of Lemma

5, px(w'0) = 0, where px(X) = Pf(TX - Tw'0), a polynomial of the form X4 + a3X3 +

a2X2 + ûjX1 + a0, which is easy to compute.   Moreover, 2a3 = tx(w'0) = 0,

seen by the fact (px(r\))2 is the characteristic polynomial of w'0, implying a3 = 0.

Thus, setting wx = (w3 + a2w + ax), we have w'0wx = - a0.

Clearly, this is a huge improvement over the use of the determinant, since a0 is

Pf(w-Q), a polynomial of degree 4 in the /i(-.   (Using the determinant, one had a poly-

nomial of degree 8 in the ß„).  Using this notation, we need to check r =

(-a0x'0 + w'0x'0wx)2 has degree 2. Note that r is a polynomial of degree 2 in the £(- and
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degree 8 in the u,-,-, and is homogeneous in % and in p.  Thus (r - (l/8)tr(r))2 = r2 -

(\¡4)rtx(r) + ((1 /8)tr(r))2 is a polynomial of degree 4 in the £(. and degree 16 in the

p¡j, which is still rather large for the computer.   Since (( 1/8)tr(r))2 is scalar, it suffices

to check that r2 - (l/4)rtr(r) is scalar.

Another simplification is possible,when we write out r = a2(x¡j)2 - agXOw^xovVj

- û^wJjXqWjxJj + WqXqWjWqXqW,; since wxw'0 = w'0wx = -a0, we have r =

"o^o)2 " íVcoH'o;cowi ~ aowóxowi*o ~ aowo^o)2H,i ' so we can replace r by r,

= ra^1 = a0(xjj)2 ~ x^w'^'qW x - w^XqW^Jj - w'0(x'0)2wx.  Now rx has degree 2 in

the |j. and degree 4 in the //,-■.  Also tx(rx) = 2a0tr(xQ2) - 2tr(xJjW0XQWj), which is

very easy to compute.

Now let   b = r2 - (\/4)rxtx(rx).  The question arose as to how many of the 64

entries of the matrix b must be checked before we can conclude that b is scalar.   Let

b = HfjS.j^bfjey.  Arguing by symmetry, it is easy to see that if bx2 =0 then b¡, —

0 for each i, /, such that (i - j) is not a multiple of 4.

Similarly, if bx x - b22 =0, then bu - bj = 0 if (/ - /) is not a multiple of 4,

implying bxx = b22 = b33 = b44 = b55 = b66 = b17 = ¿>88 (by iteration). Thus,

if bxx = b22 and bX2 =0, we conclude b has the form

8 4 4

bllZZeii +  ¿2bV+4eU+4  +  T.bi+4,iei + 4,i-
1=1 1=1 1=1       "

Reduction 4.  Theorem 1 is true if and only if, in the above notation, bxx =

b22 and bx2 =0.

Indeed, all we need to show is that bi i+4 = bi+4 ¡ = 0 for all i, 1 < i < 4.   So

assume bx x - b22, bx2 =0, and some b¡ i±4 ¥= 0.  We may as well assume b5x i= 0,

by symmetry. Let d = (2?=1e/I) + e,5. Thencfs= d~~ 'so, lettingxQ = dx'0<f and w'q =

dw^tf, we see that tx(x"0) = 0, (x^)* = x"0, (w"QY = w"Q, x"0 is diagonal, and, for each

i between 1 and 4, the coefficients in w" of e¡¡, e,,.., e¡. . ,-, and e,,. ... are 0.

Thus, we have a special case of the set-up of Reduction 4; letting r'x = x"Q +

w"0x"0(w"0)~l and b' = r\ - (i/4)r'xtx(r'x), and writing b' = ¿Zb'^e-., we have b'¡- = 0

if / and / are not congruent modulo 4, and also b'x x = b'22 = • ■ ■ = b'gs.  On the

other hand, b' = dbds = b + ex5b - bex5 - ex5bex 5 = b + (b5xex x + bS5ex5) -

(¿5ie5S  +feliei5)-è5iei5  =* + è5ieil  - 65ie55 "051*15  (SÍnCe b 1 1   =*5S)

so bxx + b5x = b\, =055 = ¿>55 - b%x = bxx - b5x ; we conclude bsx =0, con-

trary to assumption.  Thus, all the b¡ i±4 are 0, verifying Reduction 4.

Thus, in the notation of Reduction 4, we need to show the terms (bx x ~ bx2)

and bx2 are 0.  Viewing bx, - bx2 and bx2 as polynomials in £,, t2, and 53 of total

degree 4 (with coefficients in F[p]), we calculated each coefficient of £"l;2£3~u

separately, in order to save computer memory.   (Clearly, if each coefficient is 0, then

the whole polynomial is 0.)  Since 0 < u < 4 and 0<u<4-«in each monomial,

the number of coefficients is 5+4 + 3 + 2+1 = 15.

Even with these reductions, calculating the 15 coefficients individually, the

program (written in FORMAC) used 820 A'-bytes of memory (and ran for approxi-

mately 30 minutes under VS), on the IBM 370/168 computer at the Bar-Ilan
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University computer center.  This concludes the proof of Theorem 1.

Incidentally, the four reductions used in the proof of Theorem 1, as well as

Lemma 5, are valid in much more general computations.   Also, in retrospect, we see

why the involution^) on 8 x 8 matrices was preferable to the transpose ; every sym-

metric element has degree < 4.

Bar-Ilan University

Ramat-Gan, Israel
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