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Short-term synaptic plasticity is found in many areas of the central nervous system.

In the inhibitory half-center central pattern generators involved in locomotion, synaptic

depression is believed to act as a burst termination mechanism, allowing networks to

generate anti-phase bursting patterns of varying periods. To better understand burst

generation in these central pattern generators, we study a minimal network of two

neurons coupled through depressing synapses. Depending on the strength of the

synaptic conductance between the two neurons, this network can produce symmetric

n : n anti-phase bursts, where neurons fire n spikes in alternation, with the period of

such solutions increasing with the strength of the synaptic conductance. Relying on the

timescale disparity in the model, we reduce the eight-dimensional network equations

to a fully-explicit scalar Poincaré burst map. This map tracks the state of synaptic

depression from one burst to the next and captures the complex bursting dynamics of

the network. Fixed points of this map are associated with stable burst solutions of the full

network model, and are created through fold bifurcations of maps. We derive conditions

that predict the bifurcations between n : n and (n + 1) : (n + 1) solutions, producing a

full bifurcation diagram of the burst cycle period. Predictions of the Poincaré map fit

excellently with numerical simulations of the full network model and allow the study of

parameter sensitivity for rhythm generation.

Keywords: Poincaré map, neuronal bursting, dynamical system (DS), synaptic depression, central pattern

generator

1. INTRODUCTION

Short-term synaptic plasticity may have a role in burst activity in central pattern generators
(CPGs). Short-term synaptic depression is commonly found in neuronal networks involved in
the generation of rhythmic movements, such as in the pyloric CPG of the spiny lobster [1, 2],
or in the lumbosacral cord of the chick embryo [3]. Synaptic depression modulates the strength
of synapses in response to changes to the presynaptic firing frequency. At a high neuronal firing
frequency, depression weakens the strength of synapses and therefore reduces the magnitude of
the postsynaptic response. At low firing frequency, it allows sufficient time for the synapse to
recover from depression between spikes, leading to a stronger postsynaptic response. In reciprocal
networks, synaptic depression has been shown to act as a “switch,” giving rise to a wide range
of network dynamics such as synchronous and multi-stable rhythms, as well as fine tuning the
frequency of network oscillations [4–6].
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Brown [7] pioneered the idea that synaptic depression
acts as a burst termination mechanism in CPGs composed
of reciprocally inhibitory neurons and involved in rhythm
generation of locomotion. When one side is firing during a
burst the other, antagonistic side, is prevented from firing by
synaptic inhibition. However, the weakening of inhibition as a
result of synaptic depression eventually releases the antagonistic
side so that it starts firing, terminating the burst on the side
that had originally been firing. This rhythmogenesis hypothesis
has been considered one of a handful of standard mechanisms
for generating locomotion rhythms in vertebrates [8–10]. It has
been proposed as an explanation of the antiphase burst rhythm
in struggling in Xenopus tadpoles [11].

Bose and Booth [6] investigated burst generation in a
generic half-center CPG that consists of two identical, tonically
active Morris-Lecar [12] neurons coupled through inhibitory
depressing synapses. Numerical simulations showed that when
the reciprocal synaptic conductance between the two neurons is
varied, the network produces symmetric n : n anti-phase bursts,
with stronger synaptic coupling leading to longer bursts. They
used methods from geometric singular perturbation theory to
separate the timescales of the fast membrane, and the slow
synaptic dynamics of the network to derive one-dimensional
conditions necessary for the existence of stable n : n solutions (for
n ≤ 2). According to these conditions the type of firing pattern
largely depends on the slow depression dynamics of the synapses
between the two neurons, and can therefore be predicted by
knowing the strengths of the synaptic conductances of the two
synapses. Thus, the scalar conditions derived in Bose and Booth
[6] provide a method to numerically identify the type of stable
n : n pattern for any given value of the coupling strength and
n ≤ 2. However, they do not predict the exact period of such
solutions. Furthermore, while they provide good arguments for
the validity of their reduction assumptions and the resulting
scalar conditions, they do not verify them numerically.

Here we extend the previous analysis by providing a Poincaré
map of the slow depression dynamics. This allows us not only
to predict the types of stable n : n solutions the full network
can produce, (for any n), but also to study how varying the
coupling strength affects the period of such solutions. To do
this, we build on, and numerically test, the assumptions on
the fast-slow timescale disparity made in Bose and Booth [6].
We reduce the two-cell model to a scalar Poincaré map that
tracks the evolution of the depression from the beginning of
one burst to the beginning of the next burst. Stable fixed points
of our map are associated with stable n : n burst solutions. Our
map construction is motivated by the burst length map of a
T-type calcium current, utilized by Matveev et al. [13], which
approximates the anti-phase bursting dynamics of a network of
two coupled Morris-Lecar neurons. In contrast to our model,
the network described in the Matveev et al. [13] paper does not
contain short-term synaptic depression, and burst termination
is instead accomplished through the dynamics of a slow T-type
calcium current.

The Poincaré map derived here replicates the results from
numerical simulations of the full two-cell ODE system: Given
the strength of maximum conductance between the two neurons,

fixed points of our map predict the type and period of n : n
patterns, the switch between burst solutions of different periods,
as well as the occurrence of co-existent solutions. In addition
to proving the existence and stability of fixed points, our map
shows that fixed points are created via a fold bifurcation of maps.
Finally, we use our map to derive algebraic conditions that allow
us to predict parameter values of the maximum conductance at
which n : n solutions bifurcate to (n + 1) : (n + 1) solutions,
and vice versa. Because our map is fully explicit, it lays the
framework for studying the effects of other model parameters on
network dynamics without the need to run expensive numerical
integrations of the ODEs.

This paper is organized as follows. First, we introduce the
network of two neurons, and describe the properties of single
cell and synapse dynamics. We use numerical simulations of
the network to provide an intuition for the range of possible
burst dynamics the system can produce. Next, we state and
justify the simplifying assumptions that are necessary for the
map construction. Finally, we analytically derive the first return
map of the depression variable as well as the conditions that
are required for stable n : n solutions. We end this work with a
discussion.

2. MATERIALS AND METHODS

We consider a pair of identical Morris-Lecar neurons [12],
with parameters from Bose and Booth [6]. The Morris-Lecar
model is a set of two first-order differential equations that
describe the membrane dynamics of a spiking neuron. The
depolarisation is modeled by an instantaneous calcium current,
and the hyperpolarisation by a slow potassium current and a leak
current. The membrane potential vi and potassium activation wi

of neuron i (i, j = 1, 2) is described by:

v̇i = f (vi,wi)− ḡsj(vi − vs), (1)

ẇi = h(vi,wi). (2)

Here vs is the inhibitory reversal potential, and ḡ and sj are
the maximal synaptic conductance and the synaptic gating,
respectively, constituting the total inhibitory conductance ḡsj
from neuron j to neuron i. Function f (vi,wi) describes the
membrane currents of a single cell:

f (vi,wi) = −gCam∞(vi)(vi − vCa)− gKwi(vi − vK)

− gL(vi − vL)+ I. (3)

The currents include a constant current I, and three ionic
currents: an instantaneous calcium current, a potassium current,
and a leak current, with respective reversal potentials vCa, vK,
and vL, as well as maximum conductances gCa, gK, and gL. The
function h(vi,wi) models the kinetics of the potassium gating
variable wi, and is given by

h(vi,wi) =
w∞(vi)− wi

τw
. (4)
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The steady-state activation functions m∞ and w∞ as
well as the default model parameters are described in the
Supplementary Material 1.

The dynamics of the synaptic interactions between the
neurons are governed by a synaptic gating variable si and a
depression variable di:

ḋi =

{

(1− di)/τa if vi < vθ ,

−di/τb if vi > vθ ,
(5)

ṡi =

{

−si/τκ if vi < vθ ,

0 if vi > vθ .
(6)

Variable di describes a firing rate dependent depletion
mechanism that governs the amount of depression acting
on the synapse. The model is agnostic with respect to the exact
mechanism of this depletion, be it pre- or post-synaptic. When
the voltage of cell i is above firing threshold (vi > vθ ), variable
di decays with time constant τb, and recovers with time constant
τa when voltage is below firing threshold (vi < vθ ). Since the
synaptic inhibition occurs on a much faster timescale than
synaptic depression, we assume that si is instantaneously reset to
di whenever vi increases above vθ , where it remains throughout
vi > vθ . Whenever vi < vθ , the synaptic variable decays
exponentially with time constant τκ . The equations for the
depression model are identical to the Bose and Booth [14] model.
These equations are a mathematically tractable simplification of
the established phenomenological depression model previously
described by Tsodyks and Markram [15].

When the total inhibitory conductance ḡsj is constant, the
membrane dynamics are determined by the cubic v-nullcline
v∞(vi) and the sigmoid w-nullcline w∞(vi), satisfying v̇i = 0
and ẇi = 0, respectively. In case of no inhibition (ḡ = 0),
the two curves intersect near the local minimum of v∞ to the
left of vθ (commonly referred to as “left knee” of v∞), creating
an unstable fixed point pf with a surrounding stable limit cycle
of period T = Ta + Ts (Figure 1A). Here Ta is the amount
of time the membrane potential spends above firing threshold
(vi > vθ ), while Ts is the time it spends below firing threshold
(vi < vθ ). Trajectories along that limit cycle have the familiar
shape of the action potential (Figure 1B). Applying a constant
nonzero inhibition, e.g., by letting sj = 1 and ḡ > 0, moves the
cubic v∞ with the ensuing unstable fixed point down w∞ in the
(vi,wi) -plane.When ḡ is large enough, the fixed point moves past
the left knee and becomes stable via a subcritical Andoronov-
Hopf bifurcation, attracting all previously periodic trajectories.
In the following section we will refer to the value of the total
conductance ḡsj at the bifurcation point as gbif .

The two-cell network model is numerically integrated using
an adaptive step-size integrator for stiff differential equations
implemented with XPPAUT [16] and controlled through the
Python packages SciPy [17] and PyXPP [18]. The following
mathematical analysis is performed on the equations of a single
cell. Unless required for clarity, we will therefore omit the
subscripts i, j from here on.

3. RESULTS

3.1. Anti-phase Burst Solutions
Short-term synaptic depression of inhibition in a half-center
oscillator acts as a burst terminationmechanism [7] and is known
to produce n : n anti-phase burst solutions of varying period.
Such n : n solutions consist of cells firing bursts of n spikes in
alternation. Figure 2D shows the timecourse of a typical 4 : 4
burst. While one cell is firing a burst it provides an inhibitory
conductance to the other cell, preventing it from firing.

Therefore, at any given moment one cell is spiking while the
other is suppressed and does not spike. We will refer to the
currently firing cell as “active” and we will call the suppressed
cell “silent.” Additionally, we will distinguish between two phases
of a n : n solution: We will refer to the time interval when
a cell is firing as the “active phase,” and we will call the
remaining duration of a cycle, when a cell is not firing, the
“silent phase.”

With each action potential of the active cell, short-term
depression leads to a decrease of d, and consequently of s.
If d depresses faster at spike time than it can recover in the
inter-spike-intervals (ISIs), the total synaptic conductance ḡs will
eventually become sufficiently small to allow for the silent cell to
be released [19, 20] and start firing, thus inhibiting the previously
active cell.While a cell is silent its depression variable can recover.
Once the silent cell becomes active again its synaptic inhibition
will be sufficient to terminate the burst of the previously active
cell and commence a new cycle. As previously demonstrated by
Bose and Booth [6], in a two-cell reciprocally inhibitory network
with synaptic depression the coupling strength ḡ determines the
type of n : n solution. Increasing ḡ produces higher n : n burst
solutions with more spikes per burst and a longer cycle period.
Figure 2 shows numerically stable n : n solutions for varying
values of ḡ. For small values of ḡ the network produces anti-phase
spiking 1 : 1 solutions (Figure 2A). As ḡ is increased the network
generates solutions of increasing n, that is 2 : 2 (Figure 2B), 3 : 3
(Figure 2C), and 4 : 4 (Figure 2D). When ḡ is sufficiently large
(Figure 2E), one of the cells continuously spikes at its uncoupled
periodT while the other cell remains fully suppressed. Depending
on the initial conditions either of the two cells can become
the suppressed cell, which is why the suppressed solution is
numerically bistable.

Branches of numerically stable n : n solutions and their
associated limit cycle period for varying values of ḡ are depicted
in Figure 3 (see Supplementary Material 2 for algorithm
description). Not only do higher n : n solutions branches require
stronger coupling ḡ, but also within n : n branches the period
increases with ḡ. In line with Bose and Booth [6] we find
small overlaps between solution branches indicating numerical
bistability, for example such as between the 2 : 2 and 3 : 3 solution
branches. Branches of higher n : n burst solutions occur on
increasingly smaller intervals of ḡ, for instance is the ḡ interval
of the 5 : 5 branch shorter than that of the 4 : 4 branch and so on.
The interval between the 5 : 5 branch and the suppressed solution
(region between dotted lines in Figure 3) not only contains even
higher numerically stable n : n solutions, such as 11 : 11 bursts,
but also other non-symmetric n :m solutions as well as irregular,
non-periodic solutions. However, the analysis in the following
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FIGURE 1 | Periodic solution of ML model neuron. (A) Projection of limit cycle onto (v,w)-phase plane with v-nullcline (blue, v∞) and w-nullcline (orange, w∞).

Unstable fixed point pf is indicated by an orange dot; firing threshold vθ is denoted by a dashed line. (B) Corresponding voltage trace v(t) of an action potential.

sections will only be concerned with the numerically stable and
symmetric n : n solutions.

3.2. Mathematical Analysis of Two-Cell
Network
The goal of the following mathematical analysis is to reduce the
complexity of the eight-dimensional system to a more tractable
problem. As we will explain, we do this by approximating the full
dynamics by a reduced system that describes the evolution of the
depression variable d of either of the two cells. We will construct
the solution of d in a piecewise manner from one spike to the
next, first during the active phase, and then during the silent
phase. This construction will require two assumptions about the
membrane and synaptic dynamics. The first assumption states
that during a burst the active cell fires at its uncoupled period
T, which simplifies the construction of the solution of d. The
second assumption states that once the inhibitory conductance
acting on the silent cell drops below a critical threshold, the
cell is immediately released and fires. The second assumption
is necessary to predict the release time of the silent cell, which
allows us to model the recovery of d during the silent phase. In
other words, the second assumption requires that the release of
the silent cell from inhibition depends only on the timecourse
of the inhibition, and not on the membrane dynamics of the
silent cell. The approximate validity of both assumptions can
be observed in coupled relaxation-oscillator types of neurons
such as the Morris-Lecar model we use, and will be numerically
verified below. Both assumptions were first used in Bose and
Booth [6] to derive algebraic conditions that guarantee the
periodicity of the depression variable for different n : n solutions.
However, here we will use these assumptions to construct a
Poincaré map of d, which will provide a geometric intuition for
the dynamics of the full two-cell network and its dependence on
model parameters.

Our first assumption about the model states that the active cell
fires at its uncoupled period T, that is, during the active phase of
a burst we have ISI = T. Solution profiles in Figure 2 suggest
that the ISIs are indeed approximately constant. Numerically
computing ISIs for all stable n : n solutions in Figure 3 reveals
that ISIs differ by at most 1ms from the intrinsic firing period
T ≈ 376ms. Assuming ISI = T seems reasonable given that
inhibition acting on the silent cell decays exponentially on a
much shorter timescale τκ than the duration of the ISI. Therefore,
once the silent cell is released its trajectory quickly approaches
the spiking limit cycle. Naturally the above assumption requires
a sufficiently small τκ , and fails when τκ is large. In the
Supplementary Material 3we numerically explore how different
values of τκ affect the ISIs of the active cell. Finally, assuming
ISI = T allows us to ignore the non-linear membrane dynamics
during the active phase, and to construct the evolution of the
synaptic variables iteratively from spike to spike.

Our second assumption states that the silent cell is released
and spikes as soon as the total inhibitory conductance ḡs acting
on it drops below some threshold value. We call this critical
threshold value the “release conductance,” and define it as the
value of ḡs at the time when the voltage of the silent cell first
crosses the firing threshold vθ , that is when that cell is released
and fires its first spike. Recall that when a cell is silent its v- and
w-nullclines intersect at a stable fixed point and ḡs > gbif . A
sufficient condition for the silent cell to be released is therefore
ḡs < gbif . However, depending on the topology of the stable
manifold, the (v,w)-trajectory of the silent cell can escape the
stable fixed point and allow the cell to produce a spike for
ḡs > gbif . In this case the value of the release conductance
depends on the type of n : n solution and the coupling strength
ḡ. For any stable n : n solution in Figure 3 we can compute
an associated release conductance numerically by recording the
value of ḡs at the time of the first spike of the silent cell. Such
values of the release conductance are shown in Figure 4A, and
the graph suggests that as n increases, the value of the release
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FIGURE 2 | Voltage traces of cell 1 (blue) and cell 2 (orange) of numerically

stable solutions. (A–D) 1 : 1, 2 : 2, 3 : 3, and 4 : 4 anti-phase solutions for

increasing values of ḡ. (E) Suppressed solution.

conductance converges to some constant conductance value g⋆ ≈

0.0068mS/cm2. Here g⋆ is the value of ḡs at the end of a cycle
of a suppressed solution, just before the active cell spikes. Using
g⋆ as a constant approximation for the release conductance will
allow us to formulate a scalar condition that predicts the release
time of the silent cell. Moreover, using g⋆ is convenient because
its exact value can be derived explicitly, as will be shown in the
following section.

Assuming a constant release conductance for all n : n solutions
will naturally introduce some error in the prediction of the
release time of the silent cell. We can compute that error for any
associated solution in Figure 4A by calculating the time interval
between the first spike of the silent cell and the time when ḡs
first crosses g⋆. We will call this time interval the “release delay.”
Figure 4B shows the numerically computed graph of such release
delays. For n > 1 the absolute delays are smaller than 2ms.
Therefore, using

ḡs = g⋆ (7)

as a constant release condition for all n : n solutions allows us
to accurately predict the timing of the release of the silent cell.
And to simplify the terminology, from now on we will refer to
Equation (7) simply as the “release condition.”

In summary:We assume that the release condition is sufficient
to predict when the silent cell is released. Due to the symmetry of
n : n solutions the release occurs at exactly half the period of the
full cycle. The release time therefore uniquely determines the type
of n : n solution. Furthermore, computation of the release time
does not depend on the membrane nor the synaptic dynamics
of the silent cell. Instead, the solution of the synaptic variable
s of the active cell is sufficient to predict when ḡs = g⋆ is
satisfied. Finally, the value of s at each spike time is determined
by the evolution of the depression variable d of the active cell.
Constructing a solution of d during the active phase of either cell
will therefore uniquely determine the solution of the full eight-
dimensional network. However, finding the solution d requires
us to know the initial value d(0) at the start of a cycle at t =

0. In the next section we will construct a scalar return map
that tracks these initial values d(0) from cycle to cycle of stable
n : n solutions.

3.3. Construction of the Scalar Poincaré
Map
In this section we construct the scalar Poincaré map 5n : d

⋆ 7→

d⋆. Here the discrete variable d⋆ tracks the values of the
continuous depression variable d at the beginning of each n : n
burst. The map 5n therefore describes the evolution of d, of
either of the two cells, from the beginning of one cycle to the
beginning of the next cycle. To simplify the map construction
we will assume that an active cell fires exactly n times before it
becomes silent. We will construct 5n by evolving d first during
the active phase and then during the silent phase of the n : n limit
cycle. The terms “active” and “silent” phases will be defined in
terms of the state of the depression variable. During the active
phase the depression variable of the active cell both decays and
recovers, while during the silent phase it only recovers. First, let
us give explicit definitions of the active and silent phases of a
burst. A schematic illustration of both phases is given in Figure 5.

Suppose that at t = 0 cell 1 becomes active with some initial
d(0). Cell 1 then fires n spikes at the uncoupled period T =

Ta + Ts. Let s(t) and d(t) be the corresponding solutions of the
synaptic and depression variables of cell 1. After n spikes the
total conductance ḡs(t) acting on the silent cell 2 has decayed
sufficiently to satisfy the release condition (Equation 7). That is
at some time t = (n − 1)T + Ta + 1t, where 1t < Ts will be
determined below, we have ḡs(t) = g⋆ [6]. Cell 2 is then released
and prevents cell 1 from further spiking. Once released, cell 2 also
fires n spikes until cell 1 becomes active once again. Let Pn denote
the full cycle period of a n : n solution:

Pn = 2
[

(n− 1)T + Ta + 1t
]

. (8)

We can now define the active and silent phases of cell 1 explicitly.
The active phase of a burst is the interval that lasts from the first
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FIGURE 3 | Numerically computed bifurcation diagram of the cycle period of stable n : n solutions for increasing coupling strength ḡ. Regions of bistability are

indicated by light blue vertical stripes. Dashed lines show the interval between the 5 :5 and the suppressed solution, where higher period n : n solutions occur on

increasingly smaller intervals of ḡ.

spike time up until the beginning of the silent phase of the last
spike, that is for time 0 < t < (n − 1)T + Ta. During the active
phase of cell 1, the silent cell 2 is inhibited sufficiently strong to
prevent it from firing, hence ḡs > g⋆. The silent phase of cell 1
is the remaining duration of the cycle when the cell is not firing,
that is for (n − 1)T + Ta < t < Pn. The silent phase lasts for
(n− 1)T + Ta + 21t.

Note that only the silent phase depends on 1t, which will play
a central role in the construction of 5n. From Equation (8) 1t
can be computed as

1t =
1

2
Pn − (n− 1)T − Ta. (9)

We can use Equation (9) and the numerically computed
bifurcation diagram of the period for stable n : n solutions in
Figure 3 to obtain the graph of 1t as a function of ḡ (Figure 6).
Each continuous branch of 1t is monotonically increasing and
corresponds to a n : n burst: Stronger coupling ḡ increases the
total synaptic conductance ḡs that acts on the silent cell, thus
delaying its release. It is easy to see that for any n-branch we have
1t < Ts: Once 1t crosses Ts, the active cell can “squeeze in" an
additional spike and the solutions bifurcate into a (n+1) : (n+1)
burst.

Distinguishing between the active and silent phases of a
n : n cycle allows us to describe the dynamics of the depression
variable d explicitly for each phase. As can be seen from
Figure 5C, during the active phase d depresses when v > vθ

and recovers when v < vθ . In contrast, during the silent phase d
only recovers and does not depress. Given the initial d⋆ = d(0) at

the beginning of the cycle and the number of spikes in the active
phase n, we can now construct the burst map 5n. The map

5n(d
⋆) = Qn

[

Fn(d
⋆
)

] (10)

is a composition of two maps. Map

Fn : d
⋆
7→ 1t (11)

models the evolution of d in the active phase. Fn takes an initial
value d⋆ and calculates 1t. Map

Qn :1t 7→ d⋆ (12)

models the recovery of d in the silent phase. Given some 1t map
Qn computes d⋆ at the start of the next cycle.

Our aim in the following analysis is to elucidate the properties
of 5n and to understand the structure of its parameter space
by exploring how the stable and unstable fixed points of 5n are
created. To that effect it will be useful to include not only positive,
but also negative values of d⋆ to the domain of 5n. But it is
important to add that values d⋆ < 0 are biologically impossible as
the depression variable models a finite pool of neurotransmitters,
and therefore must be positive. Because 5n maps first from d⋆ to
1t, and then back to d⋆, we will also consider negative values of
1t, interpreting them as n : n solutions with partially overlapping
bursts. As will become evident, 1t < 0 is only a formal violation
of the biological realism of themap5n, as numerically stable n : n
solutions of the full system of ODEs only exist for 1t > 0.
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FIGURE 4 | Numerically computed values of the release conductance (A) and

release delay (B) for various n : n solutions and values ḡ. The dashed line

indicates the analytical approximation of the release conductance by g⋆.

We start the construction of 5n by first considering the active
phase and building the map Fn. At each spike time tk where
d(tk) = dk, variable d decays first for the duration of Ta, as
described by the solution to Equation (5). At t = tk + Ta we
have

d(tk + Ta) = dke
−Ta/τb . (13)

The depression variable then recovers for Ts until tk+1, where for
0 < t < Ts:

d(tk+1) = 1− (1− dke
−Ta/τb )e−t/τa . (14)

By substituting t = Ts we can build a linear map that models the
depression of d from spike time tk to the subsequent spike time
tk+1 during the active phase:

dk+1 = λρdk + (1− ρ), (15)

where to keep the notation simple we let

λ : = exp(−Ta/τb), (16)

ρ : = exp(−Ts/τa). (17)

Given constant Ta and Ts, the derived parameter λ determines
how much the synapses depresses when v > vθ , while ρ

FIGURE 5 | Schematic diagram of the active and silent phases for a 3 : 3

solution. (A) Membrane potentials of cell 1 (v1 blue) and cell 2 (v2 orange).

Gray patches depict 1t intervals. (B) Total synaptic conductance of cell 1 (ḡs1)

as it crosses the release conductance g⋆. (C) Solution d1(t) of depression

variable of cell 1, during active (blue) and silent phases (orange).

determines how much it recovers when v < vθ . Since 0 < λ, ρ <

1, the map in Equation (15) is increasing and contracting, with a
fixed point at

ds =
1− ρ

1− λρ
, (18)

where 0 < ds < 1. The value ds is the maximum depression
value that can be observed in the suppressed solution where the
active cell fires at its uncoupled period T (see Figure 2E). Using
the release condition in Equation (7) allows us to derive the value
of the minimum coupling strength that will produce the full
suppressed solution, denoted as ḡs. Solving Equation (7) for s(t)
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FIGURE 6 | Numerically computed bifurcation diagram of 1t for varying ḡ.

Each continuous branch is associated with a stable n : n burst solution.

Increasing ḡ increases 1t until the solutions bifurcate at 1t ≈ Ts.

with t = Ts and setting the initial value s(0) = dsλ then gives us
the aforementioned approximation of the release conductance g⋆:

ḡsdsλe
−Ts/τκ = g⋆

≈ 0.0068mS/cm2. (19)

By substituting the definition of ds in Equation (18) and
rearranging, we can also write ḡs as a function of λ and ρ:

ḡs(λ, ρ) =
1/λ − ρ

1− ρ
eTs/τκ g⋆. (20)

Note that the above dependence of ḡs on λ is linear and
monotonically decreasing. Increasing λ reduces the strength of
the depression of the active cell. This in turn allows the active cell
to fully suppress the silent cell at smaller values of ḡ.

Solving Equation (15) gives us the linear map δn, that for some
initial d⋆ computes the depression at the nth spike time, that is
d(tn):

δn(d
⋆) = (λρ)n−1d⋆

+ (1− ρ)

n−2
∑

i=0

(λρ)i. (21)

Since λ < 1, function δn is a linearly increasing function of
d⋆ with a fixed point at ds for all n. Having identified d after n
spikes, we can now use the release condition ḡs = g⋆ (Equation
7) to find 1t. At the last (nth) spike of the active phase at time
tn = (n− 1)T the synapse variable s is set to the respective value
of d(tn) = δn(d

⋆), and mirrors the value of d for the duration of

Ta. At the end of the active phase at time tn + Ta variable d has
decayed to δn(d

⋆)λ, therefore

s(tn + Ta) = δn(d
⋆)λ. (22)

Finally s decays exponentially for 1t < Ts. Solving (Equation 6)
with initial condition s(0) = δn(d

⋆)λ yields:

s(1t) = δn(d
⋆)λe−1t/τκ . (23)

Substituting s(1t) into s of the release condition (Equation 7)
gives then

ḡδn(d
⋆)λe−1t/τκ = g⋆. (24)

Our assumption of the release condition guarantees that the silent
cell 2 spikes and becomes active when ḡs−g⋆ crosses zero. Solving
(Equation 24) for 1t allows us to compute 1t as a function of d⋆,
which defines the map Fn:

Fn(d
⋆) : = τκ ln

(
ḡ

g⋆
λδn(d

⋆)

)

= 1t. (25)

Figure 7A shows Fn for various n, which is a strict monotonically
increasing function of d⋆ as well as ḡ. Larger values of d⋆ and
ḡ, respectively, cause stronger inhibition of the silent cell, and
therefore prolong its release time and the associated 1t. Map Fn
is defined on d⋆ > da, where da is a vertical asymptote found by
solving δn(d

⋆) = 0 in Equation (21) for d⋆, which yields

da(n) = −
(1− ρ)

∑n−2
i=0 (λρ)

i

(λρ)n−1
≤ 0 . (26)

We now turn to the construction of map Qn, which describes the
recovery of the depression variable during the silent phase. As we
have identified earlier, the recovery of d in the silent phase of a
n : n solution starts at time tn + Ta and lasts for the duration of
(n− 1)T+Ta+ 21t. Substituting that duration into the solution
of d (Equation 5) with the initial condition d(0) = δn(d

⋆)λ yields
the map Qn:

Qn(1t) : = 1− [1− δn(d
⋆)λ]e−[(n−1)T+Ta+21t]/τa . (27)

We can find δn(d
⋆), i.e., the value of d at the nth spike time, by

rearranging the release condition in Equation (24):

δn(d
⋆) =

1

ḡλ
g⋆e1t/τκ . (28)

Map Qn is shown in Figure 7B for various values n. Note that
Qn is monotonically increasing as larger values1t imply a longer
recovery time, and henceQn grows without bound. All curvesQn

intersect at some 1t = τκ ln
[

ḡ/g⋆
]

where

Qn

[

τκ ln

(
ḡ

g⋆

)]

= 1. (29)

As we will show in the next section, all fixed points of the full
map 5n occur for d

⋆ < 1. We will therefore restrict the domain
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FIGURE 7 | Maps Fn (A) and Qn (B) for ḡ = 0.5 mS/cm2 and n = 1, 2, 3, 4. Curves Fn intersect at d⋆ = ds which is indicated by a dashed vertical line. Curves Qn

intersect at 1t = τκ ln
(

ḡ/g⋆
)

.

FIGURE 8 | Map 5n :d
⋆ 7→ d⋆. (A) 5n for n = 1, 2, 3, 4 at ḡ = 0.5 mS/cm2. (B) 52 with n = 2 for various ḡ. The identity function is illustrated by a diagonal line.

of Qn to (−∞, τκ ln
[

ḡ/(g⋆)
]

) and the codomain to (−∞, 1).
Additionally, while values 1t > T will be helpful in exploring
the geometry of 5n, recall from Figure 6 that in the flow system
n : n solutions bifurcate into (n + 1) : (n + 1) solutions exactly
when 1t = Ts, and we will address this concern in the last part
of our map analysis.

Having found Fn and Qn, we can now construct the full map
5n(d

⋆) = Qn

[

Fn(d
⋆)

]

:

5n(d
⋆) = 1−

[

1− δn(d
⋆)λ

][ ḡ

g⋆
δn(d

⋆)λ
]−τ

e−[(n−1)T+Ta]/τa ,

(30)
where we substituted τ = 2τk/τa. Recall that δn(d

⋆) and g⋆

are obtained from Equations (21) and (19), respectively. Since d
is the slowest variable of the system and τa ≫ τκ , we will also
assume τ < 1. Figure 8A depicts 5n for various n. Intersections

of 5n with the diagonal are fixed points of the map. Figure 8B
shows 52 with n = 2. Varying the synaptic strength ḡ moves
the curves 5n up and down the (d⋆,5n)-plane. For ḡ < 0.0015
mS/cm2 map 52 has no fixed points. As ḡ is increased to
ḡ ≈ 0.0015 mS/cm2, curve 52 coalesces with the diagonal
tangentially. When ḡ > 0.0015 mS/cm2, a pair of fixed points
emerge, one stable and one unstable fixed point, indicating the
occurrence of a fold bifurcation of maps.

5n is monotonically increasing with respect to ḡ and also d⋆:

d5n

dḡ
> 0, (31)

d5n

dd⋆
> 0, (32)

The monotonicity of 5n w.r.t. ḡ is evident from Equation (30),
while the monotonicity w.r.t. d⋆ follows from the monotonicity
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of both Qn and Fn. In the following sections we will heavily rely
on this monotonicity property of5n. Just as Fn, curves5n spawn
at the asymptote da (Equation 26), and because

lim
ḡ→∞

5n = 1 for all n, (33)

fixed points of 5n lie in (da, 1).

3.4. Existence and Stability of Fixed Points
We introduce the fixed point notation d⋆

f
with 5n(d

⋆
f
) = d⋆

f
.

The existence of fixed points d⋆
f
for ḡ sufficiently large can be

shown from the strict monotonicity of 5n with respect to ḡ and
d⋆ (Equations 32, 31), as well as the fact that the slope of 5n is
monotonically decreasing,

(
d

dd⋆

)2

5n < 0. (34)

In the limit d⋆ → da the value of5n decreases without bound for
any ḡ > 0. In the limit ḡ → 0, 5n also decreases without bound,
but as ḡ → ∞ values of 5n approach 1. It follows from Equation
(31) and the intermediate value theorem that for some ḡ large
enough 5n intersects the diagonal. Moreover, because5n and its
slope are monotonic with respect to d⋆, there exists some critical
fixed point (d⋆

b
, ḡb) where5n aligns with the diagonal tangentially

with

5n(d
⋆
b, ḡb) = d⋆

b, (35)

d

dd⋆
5n(d

⋆
b, ḡb) = 1. (36)

3.5. Fold Bifurcations of Maps
Fixed points of 5n satisfy the fixed point equation

8n(d
⋆, ḡ) : = 5n(d

⋆, ḡ)− d⋆
= 0. (37)

As we have already shown, for ḡ > ḡb(n) solutions to Equation
(37) exist in pairs of stable and unstable fixed points. Solving
(Equation 37) explicitly for d⋆ is not trivial, but solving for ḡ is
straightforward and given by ḡ = Gn(d

⋆), where

Gn(d
⋆) : =

g⋆

δn(d⋆)λ

( [1− λδn(d
⋆)]

1− d⋆
e−[(n−1)T+Ta]/τa

)1/τ
(38)

is defined for d⋆ < 1 and δn(d
⋆) > 0. Plotting d⋆ against ḡ gives

the fixed point curves, which are shown in Figure 9A. Note the
typical quadratic shape of a fold bifurcation of maps. It is also
evident that the fold bifurcations occur for increasingly smaller
ḡ as n is increased. Moreover, the graph suggests that for n > 1
unstable fixed points have negative values of d⋆.

Equation (38) also allows us to find the critical fixed point
connected with the fold bifurcation, namely

[

d⋆
b
(n), ḡb(n)

]

, which
is the global minimum of Gn(d

⋆
f
):

d⋆
b(n) = argminGn(d

⋆
f ), (39)

ḡb(n) = minGn(d
⋆
f ). (40)

Function Gn is strictly monotonic on the respective intervals of
d⋆
f
that correspond to the stable and unstable fixed points, that is

dGn

dd⋆
f

> 0, for d⋆
f > d⋆

b(n) stable, (41)

dGn

dd⋆
f

< 0, for d⋆
f < d⋆

b(n) unstable, (42)

which allows us to express the stable and unstable fixed points as
the inverse of Gn on their respective intervals of d⋆

f
. Because we

are primarily interested in the stable fixed points d⋆
f

> d⋆
b
(n), we

define the stable fixed point function d⋆
f
= φn(ḡ) as

φn(ḡ) : = G−1
n (ḡ). (43)

Function φn(ḡ) is also monotonic, and is therefore
straightforward to compute numerically. We use the Python
package Pynverse [21] for that purpose.

Having found the stable fixed points d⋆
f
as a function of ḡ,

we can now compute the associated cycle period. Recall that the
period is given by Equation (8), which can be written as a function
of ḡ:

Pn(ḡ) = 2
(

(n− 1)T + Ta + Fn
[

φn(ḡ)
︸ ︷︷ ︸

d⋆
f

, ḡ
]
)

, (44)

where map Fn (Equation 25) calculates 1t given a stable fixed
point d⋆

f
= φn(ḡ). Figure 9B shows the period Pn(ḡ) computed

from Equation (44) versus the cycle period of stable n : n
solutions, computed from numerically integrating the full system
of ODEs. The overlap between blue and orange curves suggests
that stable fixed points of 5n accurately predict the cycle period
of stable solutions of the flow system.

It is evident from Figure 9A that φn is strictly increasing with
ḡ. This property follows directly from the quadratic normal form
of the fold bifurcation, but can also be shown using implicit
differentiation and the fixed point equation 8n[φn(ḡ), ḡ] = 0 in
Equation (37). For d⋆

f
= φn(ḡ) > db(n) we get:

dφn

dḡ
= −

∂8n/∂ ḡ

∂8n/∂d⋆
=

∂5n/∂ ḡ

1− ∂5n/∂d⋆
> 0. (45)

The inequality follows from ∂5n/∂ ḡ > 0 and the fact that
∂5n/∂d

⋆ < 1 for d⋆ > db(n). Equation (45) allows us to
explain why the period Pn increases with ḡ, as seen in Figure 9B.
Differentiating Pn gives:

dPn

dḡ
= 2▽Fn(d

⋆
f , ḡ) ·

[

∂φn/∂ ḡ
1

]

> 0, (46)

where the partial derivatives of Fn(d
⋆
f
, ḡ) are:

∂Fn

∂d⋆
f

= τκ

(λρ)n−1

δn(d
⋆
f
)

> 0. (47)

∂Fn

∂ ḡ
=

τκ

ḡ
> 0. (48)
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FIGURE 9 | (A) Fold bifurcation diagrams of stable (continuous curves) and unstable (dotted curves) fixed points of 5n for varying n. (B) Cycle periods computed from

stable fixed points of 5n (blue), and the corresponding periods from stable n : n solutions acquired via numerical integration of the system of ODEs (orange).

Equation (46) and (47) have an intuitive biological interpretation:
Increasing the coupling strength between the neurons leads to
overall stronger inhibition of the silent cell, which delays its
release and leads to a longer cycle period. The latter allows more
time for the synapse to depress in the active phase and recover
in the silent phase, resulting in overall larger values of d⋆

f
, that is

weaker depression at the burst onset.
While fixed points of our Poincaré map predict the cycle

period of the flow system excellently, its construction relies on
the strong assumption that the active phase contains exactly n
spikes. As is evident from Figure 9B this assumption is clearly
violated in the flow system, as stable n : n bursts exists only
on certain parameter intervals of ḡ. The multi-stability of fixed
points of maps 5n in Figure 9B does therefore not imply a
similar multi-stability of the flow system. In the last sub-section
we will analyze the mechanisms that guide how the stable n : n
are created and destroyed, and use our previous analysis to derive
the corresponding parameter intervals of ḡ where such solutions
exist.

3.6. Stable Solution Branch Borders
Let ḡL(n) and ḡR(n) denote the left and right parameter

borders on ḡ where stable n : n solutions exist. That is, as
ḡ is increased stable n : n solutions are created at ḡL(n) and
destroyed at ḡR(n). When ḡ is reduced beyond ḡL(n), n : n
solutions bifurcate into (n − 1) : (n − 1) solutions, while
when ḡ is increased beyond ḡR(n), n : n solutions bifurcate
into (n + 1) : (n + 1) solutions. Let us briefly recap our
observations regarding ḡL(n) and ḡR(n) from the numerical
bifurcation diagram in Figure 9B. For n > 1 there are the
following relations:

ḡL(n) < ḡR(n), (49)

ḡL(n) < ḡR(n+ 1) and ḡR(n) < ḡL(n+ 1), (50)

ḡL(n) < ḡR(n) (51)

ḡL(n) < ḡL(n+ 1) and ḡR(n) < ḡR(n+ 1) (52)

Equations (49, 50) are self-explanatory. Equation (51) formally
describes occurrence of co-existence between stable n : n and (n+
1) : (n + 1) solutions. Equation (52) implies that the parameter
interval on ḡ of n : n solutions decreases with n, in other words,
bursts with more spikes occur on increasingly smaller intervals of
the coupling strength. All of the above relations are reminiscent
of the bifurcation scenario of type period increment with co-
existent attractors, first described for piecewise-linear scalarmaps
with a single discontinuity by Avrutin and colleagues [e.g., see
22–24]. While our maps 5n are fully continuous, the above
observation suggests that a different piecewise-linear scalar map
that captures such period increment dynamics of the full system
might exist. We will explore what such a map might look like in
the discussion.

Let us now find algebraic equations that will allow us to
calculate the critical parameters ḡL(n) and ḡR(n) associated with
the left and right n : n branch borders. Recall that the period Pn
derived from the fixed points of 5n is an increasing function of
ḡ (Equation 46). That is, as the coupling strength increases, it
takes longer for the total synaptic conductance to fall below the
value of the release conductance, which delays the release of the
silent cell, and 1t becomes larger. When 1t > Ts, the active
cell can produce another spike and the solution bifurcates into
a (n + 1) : (n + 1) solution. Note, however, that at ḡL(n) the
bifurcation into a (n−1) : (n−1) does not occur at1t = 0. Here
the mechanism is different: A sufficient reduction of ḡ causes the
total synaptic conductance to drop below the release conductance
in the previous ISI, which allows the silent cell to be released one
spike earlier.

Using the above reasoning we can now formulate the
conditions for both bifurcations at ḡL(n) and ḡR(n). As in the
previous sections, we will only restrict ourselves to the analysis of
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FIGURE 10 | Bifurcation diagram of the period of stable n : n solutions computed analytically from fixed points of 5n, plotted on the respective intervals of

ḡ ∈ [ḡL(n), ḡR(n)] (blue), and computed from numerical integrations of the ODEs (orange).

the stable fixed points given implicitly by d⋆
f
= φn(ḡ) (Equation

43). At the right bifurcation border ḡR(n) we have 1t = Ts, and
after substituting our Fn map (Equation 25) this translates into

ḡL(n+ 1) < ḡR(n) (53)

which lets us define a function

ḡR(n+ 1)− ḡL(n+ 1) < ḡR(n)− ḡL(n) (54)

whose root is the desired right bifurcation border ḡR(n). In case
of the left bifurcation border at ḡL(n), the release condition is
satisfied just before the active cell has produced its nth spike,
where total synaptic conductance is given by

ḡδn−1

[

φn(ḡ)
]

λe−Ts/τκ = g⋆, (55)

which can be rewritten as a function

Ln(ḡ) : = ḡδn−1

[

φn(ḡ)
]

λe−Ts/τκ − g⋆, (56)

whose root is ḡL(n). Both Rn and Ln are increasing with
respect to ḡ, which makes finding their roots numerically
straightforward.

Figure 10 shows the period Pn(ḡ) as predicted by the fixed
points of 5n (Equation 44) plotted on their respective intervals
ḡ ∈ [ḡL(n), ḡR(n)] (blue), as well as the cycle period acquired
from numerical integration of the full system of ODEs (orange).

Here gL(n) and ḡR(n) were computed from Equations (56) and
(54), respectively. Note that the width of n : n branches decreases
with n, which confirms the inequality in Equation (52). That is,
bursts with more spikes occur on increasingly smaller intervals
of ḡ, which can be interpreted as a lost of robustness with respect
to the coupling strength of long-cyclic solutions. We also note
the occurrence of bistability between pairs of n : n and (n +

1) : (n+ 1) branches, which also confirms our initial observation
in Equation (51). As previously observed in Figure 9B our maps
prediction of the cycle period is accurate. However, the mismatch
in the left and right branch borders is significant. This mismatch
might be due to the millisecond release delay error (Figure 4B)
induced by our assumption of a constant release conductance
for all n : n solutions (see Equation 7). Another explanation for
the border mismatch could be that our assumptions on the
time scales of (v,w) vs s- and d-dynamics do not hold near
the stability borders, and that they can only be captured by
more complex approximations. Nevertheless, our map allows
approximate extrapolation of the cycle period and the respective
bifurcation borders where numerical integration of the ODEs
would require a very small time step.

4. DISCUSSION

Synaptic depression of inhibition is believed to play an important
role in the generation of rhythmic activity involved in many
motor rhythms such as in leech swimming [25] and leech
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heart beat [26], and in the lobster pyloric system [1, 2]. In
inhibitory half-center CPGs, such as believed to be found in the
struggling network of Xenopus tapdoles, synaptic depression can
act as a burst termination mechanism, enabling the alternation
of bursting between the two sides of the CPG [11]. Modeling
can shed light on the underlying mathematical principles that
enable the generation of such anti-phase bursts, and help identify
the components that control this rhythm allowing it to switch
between different patterns.

To study the mechanisms of burst generation in half-
center CPGs we have analyzed a neuronal model network
that consists of a pair of inhibitory neurons that undergo a
frequency dependent synaptic depression. When the strength
of synaptic inhibition between the neurons is varied, such a
simple network can display a range of different n : n burst
patterns. Using the timescale disparity between neuronal and
synaptic dynamics, we have reduced the network model of eight
ODEs to a scalar first return map 5n of the slow depression
variable d. This map 5n is a composition of two maps, Fn
and Qn, that model the evolution of the depression during
the active and silent phases of n : n solutions respectively. Both
Fn and Qn maps are constructed by using the dynamics of
a single uncoupled neuron. Fixed points of 5n are created
in pairs through a fold bifurcation of maps, where the stable
fixed point correspond to stable n : n burst solutions of the
full two-cell system of ODEs. The results from our one-
dimensional map match excellently with numerical simulation
of the full network. Our results are also in line with Brown’s
[7] rhythmogenesis hypothesis, namely that synaptic depression
of inhibition is a mechanism by which anti-phase bursting
may arise.

We have studied n : n solutions assuming that the synaptic
coupling ḡ between the two cells is symmetrical. However,
Bose and Booth [6] have shown that asymmetrical coupling
(ḡ1, ḡ2) can result in network solutions of type m : n, where one
cell fires m spikes, while the other n spikes. It is conceivable
that our map construction can be extended to also capture
such m : n solutions. Remember, in the case of symmetrical
coupling with n : n solutions, the timecourse of the depression
variables d1 and d2 were in anti-phase, and it was therefore
sufficient to track only one of the two variables. To capture
the full network dynamics in case of asymmetrical coupling
one would also have to account for burst patterns of type
m : n, where the solutions of the depression variables d1
and d2 are not simply time-shifted versions of each other.
To do that, one could track the state of both variables by
constructing a two-dimensional Poincaré map 5(d1, d2). While
geometrical interpretation of two-dimensional maps remains
challenging, there exist a number of recent studies which have
employed novel geometrical analysis methods to understand
the dynamics of two-dimensional maps of small neuronal
networks [27–29]. Generally speaking, our map construction
approach is applicable to any small network, even with
more than two neurons. As long as the network dynamics
occur on separable timescales the main challenges to the
map construction lie in identifying the slowest variables, and
finding an appropriate, simplified description of their respective

timecourses. In theory, the reduction approach can be also
applied to neuronal systems with more than two timescales [e.g.,
see 30].

In tadpoles, struggling is believed to be initiated by an increase
in the firing frequency of reciprocally inhibitory commisural
interneurons, which has been hypothesized to lead to stronger
synaptic depression of inhibition and result in the iconic anti-
phase bursting [11]. It would therefore be interesting to study
how varying the cell intrinsic firing period T could affect the
network rhythm. While we have laid out the framework to
perform such an investigation, due to the choice of neural model
we have avoided varying T. Recall that T is a derived parameter in
the Morris and Lecar [12] model, and can therefore not be varied
in isolation of other model parameters. This makes verifying
any analytical results from our map analysis via numerical
integration of the ODEs difficult. A more abstract model such
as the quadratic integrate-and-fire model [31] allows varying T
independently of other model parameters, and could be more
fitting for such an investigation.

Our simulations of the network showed that n : n solutions
lose robustness as their period is increased. That is, solutions
with a larger cycle period occur on increasingly smaller intervals
of the coupling strength. We were able to replicate this finding
by numerically finding the respective left and right borders of
stable n : n branches of fixed points of 5n, and showing that
the distance between these borders shrinks with n. We have also
noted the resemblance of our bifurcation diagram to one where
such n : n branches are created via the bifurcation scenario of type
period-increment with co-existent attractors, first described for
scalar linear maps with a discontinuity [24, 32]. It is worthwhile
noting that the bifurcations of piecewise linear maps studied by
Avrutin et al. [32] result from a “reinjection” mechanism [33].
Here the orbit of a map performs multiple iterations on one
side of the discontinuity, before jumping to the other side and
being reinjected back into the initial side of the discontinuity.
The stark difference of such a map to our map is that reinjection
allows a single scalar map to produce periodic solutions of
varying periods. In contrast, we rely on n different maps 5n

to describe the burst dynamics without explicitly capturing the
period increment dynamics. It is therefore conceivable that
despite the complexity and non-linearity of the dynamics of
our two-cell network, a single piecewise-linear map might be
already sufficient to capture the mechanisms that shape the
parameter space of the full system. In their discussion, Bose and
Booth [6] briefly outline ideas about how such a linear map could
be constructed.

In addition to stable n : n solutions, the numerical
continuation by Bose and Booth [6] also revealed branches
of unstable n : n solutions. While we have identified fold
bifurcations of our burst map, we have not found corresponding
bifurcations of the flow ODE system, and have generally ignored
the significance of unstable map fixed points. However, the
quadratic nature of the period bifurcation curve is reminiscent
of a saddle-node on an invariant circle (SNIC) bifurcation,
where the oscillation period lengthens and finally becomes
infinite as a limit cycle coalesces with a saddle point. SNIC
bifurcations have been studied in great detail [e.g., 34], and a
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next step would be to provide a rigorous explanation of not
only the map dynamics, but also of the flow dynamics of the
ODE system.

We have shown that when the strength of the maximum
synaptic conductance is varied, synaptic depression of
inhibition can enable our two-cell network to produce burst
solutions of different periods. This result is in line with the
idea that one role of synaptic depression in the nervous
system may be to allow a finite size neuronal network to
participate in different tasks by producing a large number of
rhythms [6, 11, 35]. To change from one rhythm to another
would only require a reconfiguration of the network through
changes in synaptic coupling strength. Thus short-term
synaptic depression of inhibition may provide means for a
network to adapt to environmental challenges without changing
its topology, that is without the introduction or removal
of neurons.
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