
A scale space theory based
motion correction approach for
dynamic PET brain imaging
studies

Sebastian Gutschmayer1, Otto Muzik2*,
Zacharias Chalampalakis3, Daria Ferrara1, Josef Yu1,
Kilian Kluge4, Ivo Rausch1, Ronald Boellaard5,
Sandeep S.V. Golla5, Sven Zuehlsdorff6, Hartwig Newiger7,
Thomas Beyer1 and Lalith Kumar Shiyam Sundar1

1QIMP Team, Medical University of Vienna, Vienna, Vienna, Austria, 2Department of Pediatrics, Wayne
State University, Detroit, MI, United States, 3Laboratoire d’Imagerie Biomédicale Multimodale
(BioMaps), Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Université Paris-Saclay, Orsay,
France, 4Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear
Medicine, Medical University of Vienna, Vienna, Vienna, Austria, 5Department of Radiology and Nuclear
Medicine, AmsterdamUMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands, 6Siemens
Medical Solutions USA, Inc, IL, United States, 7Siemens Healthineers, Erlangen, Germany

Aim/Introduction: Patient head motion poses a significant challenge when

performing dynamic PET brain studies. In response, we developed a fast, robust,

easily implementable and tracer-independent brain motion correction

technique that facilitates accurate alignment of dynamic PET images.

Materials and methods: Correction of head motion was performed using

motion vectors derived by the application of Gaussian scale-space theory. A

multiscale pyramid consisting of three different resolution levels (1/4x: coarse,

1/2x: medium, and 1x: fine) was applied to all image frames (37 frames, framing

of 12 × 10s, 15 × 30s, 10 × 300s) of the dynamic PET sequence. Frame image

alignment was initially performed at the coarse scale, which was subsequently

used to initialise coregistration at the next finer scale, a process repeated until

the finest possible scale, that is, the original resolution was reached. In addition,

as tracer distribution changes during the dynamic frame sequence, a mutual

information (MI) score was used to identify the starting frame for motion

correction that is characterised by a sufficiently similar tracer distribution

with the reference (last) frame. Validation of the approach was performed

based on a simulated F18-fluoro-deoxy-glucose (FDG) dynamic sequence

synthesised from the digital Zubal phantom. Inter-frame motion was added

to each dynamic frame (except the reference frame). Total brain voxel

displacement based on the added motion was constrained to 25 mm, which

included both translation (0–15 mm in x, y and z) and rotation (0–0.3 rad for

each Euler angle). Twenty repetitions were performed for each dataset with

arbitrarily simulated motion, resulting in 20 synthetic datasets, each consisting

of 36 dynamic frames (frame 37 was the reference frame). Assessment of

motion correction accuracy across the dynamic sequence was performed

based on the uncorrected/residual displacement remaining after the
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application of our algorithm. To investigate the clinical utility of the developed

algorithm, three clinically cases that underwent list-mode PET imaging utilising

different tracers ([18F]-fluoro-deoxy-glucose [18F]FDG [18F]-fluoroethyl-

L-tyrosine [18F]FET [11C]-alpha-methyl-tryptophan [11C]AMT), each

characterised by a different temporal tracer distribution were included in this

study. Improvements in the Dice score coefficient (DSC) following frame

alignment were evaluated as the correlation significance between the

identified displacement for each frame of the clinical FDG, FET and AMT

dynamic sequences.

Results: Sub-millimetre accuracy (0.4 ± 0.2 mm) was achieved in the Zubal

phantom for all frames after 5 min p. i., with early frames (30 s–180 s) displaying

a higher residual displacement of ~3 mm (3.2 ± 0.6 mm) due to differences in

tracer distribution relative to the reference frame. The effect of these

differences was also seen in MI scores; the MI plateau phase was reached at

35s p. i., 2.0 and 2.5 min p. i. At the coarse, medium and fine resolution levels,

respectively. For the clinical images, a significant correlation between the

identified (and corrected) displacement and the improvement in DSC score

was seen in all dynamic studies (FET: R = 0.49, p < 0.001; FDG: R = 0.82, p <
0.001; AMT: R = 0.92, p < 0.001).

Conclusion: The developed motion correction method is insensitive to any

specific tracer distribution pattern, thus enabling improved correction of

motion artefacts in a variety of clinical applications of extended PET imaging

of the brain without the need for fiducial markers.

KEYWORDS

brain motion correction, scale-space, dynamic PET imaging, frame-based algorithm,
gaussian pyramid algorithms

Introduction

Molecular imaging using positron emission tomography

(PET) is currently the most sensitive methodology to non-

invasively study human brain function [1]. Owing to a large

number of molecular substrates and receptor ligands that can be

labelled using positron emitters, PET imaging can help untangle

the complex molecular processes that take place in spatially

localised and strongly interacting neural networks of the brain

[2]. Recent advances in PET imaging technology that leverage

large axial-FOV data acquisition technology [3,4] further

increase the volume sensitivity of this imaging method,

making high-temporal resolution dynamic PET studies

feasible routinely. The achievable temporal resolution

decreased to the order of 2–5 s, rivalling the temporal

resolution of fMRI studies [5]. However, similar to

methodological challenges associated with fMRI studies, the

accurate extraction of time series from small regions of the

brain in PET imaging is impaired by involuntary subject

motion, which is of the same magnitude as the spatial

resolution of the imaging device (~4 mm FWHM) [6].

However, unlike fMRI brain sequences, dynamic PET

sequences exhibit stark changes in activity distribution as a

function of time due to the inherent tracer kinetics. The

resulting time-based activity variance renders motion

correction in the early frames (<10 min), in particular, a

challenge.

In light of the importance of removing motion artefacts

from regional time-activity curves to allow the accurate

quantification of physiological processes in the brain, several

strategies have been implemented to minimise involuntary

head motion. The most straightforward approach is to

restrict the subject’s head motion using a mechanical

restraint, such as a vacuum-lock bag [7] or moulded plastic

mask [8]. However, given the confining nature of this method, it

grows highly uncomfortable after a short time, increasing the

likelihood of remedial head motion [9]. A better approach is to

maximise patient comfort and accept small (<5 mm) head

motion, which can be relatively easily corrected either by

means of frame-by-frame post-processing realignment [10]

or by hardware motion tracking systems using an external

measurement device [11,12]. The hardware-based method

performs event-by-event motion compensation on raw list-

mode data and is considered to be more accurate than the

image-based motion compensation techniques [13]. Likewise,

data-driven approaches, as described by [14,15], try to extract

motion vectors by the centroid of distribution from list-mode

data. Although image-based methods might be conceptually

Frontiers in Physics frontiersin.org02

Gutschmayer et al. 10.3389/fphy.2022.1034783

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1034783


inferior to hardware-based and data-driven methods, they are

significantly more practical, are easily applicable to clinical

studies and can be applied retrospectively as they do not

require dedicated external online tracking devices that

acquire motion information during the scan and are not

manufacturer specific.

Given the practical advantages of image-based methods, a

handful of methods have been proposed to measure accurate

motion vectors from the rapidly changing activity distribution of

the dynamic PET. Mukherjee et al. [16] suggested a method,

similar to the one proposed here, consisting of a series of

preprocessing steps followed by a multi-resolution pyramid

filter framework. The investigators showed that image frames

from PET acquisitions using F18-fluorodeoxyglucose (FDG) as

short as 5s could be reliably aligned. However, the preprocessing

steps were based on heuristics and were manually set. In prior

work (Sundar et al., 2021), we employed conditional generative

adversarial network (cGAN) methodology to automatically

derive PET navigators, which in turn was used to derive an

accurate motion vector from dynamic FDG-PET images.

However, despite its excellent performance, this method

was limited by the requirement of, first, a high-end

workstation and, second, model retraining for application

to dynamic PET brain studies involving other tracers.

Therefore, it appears unlikely that such a complex

methodology will find widespread adoption in the field due

to the bottlenecks mentioned above. This is especially true in

the clinical realm where patient motion is frequently

encountered due to the limited cooperative ability of

neurologically impaired patients. Thus, in order to achieve

the best diagnostic performance in this target group, a

clinically feasible motion compensation strategy needs to be

implemented.

In recognition of the practical limitation of our previous and

the work of other investigators, we present here a motion

correction method that excels in providing a more practical,

computationally robust and easily implementable method for

brain image alignment by utilising a Gaussian scale space

pyramid, and nonetheless delivers a similar performance to

methods reported previously.

Methods

Alignment strategy

The process of progressive tracer distribution in the brain

yields dynamically changing image patterns that may overlay

similar effects from involuntary patient motion of the head.

Accordingly, a criterion of image pattern similarity needs to

be established that provides an objective measure of whether the

information content in a particular frame is sufficient for

alignment. An approach well suited to address the bespoke

issues is the application of scale space image representation.

Taking advantage of a multiscale signal representation, image

structures are processed at different scales, thereby allowing the

suppression of fine-scale details dependent on the chosen

resolution level [17,18]. By embedding the images in a

Gaussian scale space of coarse-to-fine resolution and hence

removing image details, temporal activity differences in tracer

uptake patterns are removed, resulting in increased image

similarity, which leads to improved detection of motion

artefacts. An early frame corresponding to 1.8 min post-

injection will look very similar to 55 min post-injection when

observed at a coarse scale (Figure 1, 2B). Moreover, starting at a

coarse (low-resolution) level, alignment is performed at

successive finer (high-resolution) levels, akin to the well-

established concept of an image pyramid in computer vision

applications [19]. This method has several advantages that

facilitate a fast and robust alignment of images. First, the

computational load is reduced significantly since most

iterations are performed at the coarser levels of the pyramid.

Secondly, the algorithm is less likely to get trapped in a local

optimum because the initial search is performed on a coarse grid.

We implemented this multi-resolution approach, illustrated

in Figure 3, using spline approximations of image frames at

various scales (polynomial spline pyramid). We employed a

coarse-to-fine updating strategy to compute the rigid

alignment parameters (3D translation and rotation) iteratively,

using a variation of the Levenberg-Marquardt non-linear least-

squares optimisation method [20]. The optimal mapping from

one image onto another at each resolution level was defined as

the one that minimises the Euclidian norm of the difference

between the two images. The transition to the following finer

scale occurs once convergence has been reached at the current

resolution level. The method then repeats the optimisation

procedure until it finally reaches the finest resolution level.

The advantage of this strategy is that most of the motion is

recovered during extensive iterations at the coarser scale; all

subsequent finer scale updates contribute only small adjustments

to the final solution since the previous solution already provides a

relatively close estimate. This scheme is displayed in Figure 3,

with Figure 1 showing the difference in images at fines and coarse

resolution.

Software implementation

In order to maximise user flexibility when applying the

developed motion correction software in both research and

clinical applications, the developed software incorporates two

distinct tasks: an initial processing step that calculates the mutual

information (MI) across the whole dynamic frame sequence [21]

with respect to a specified frame and resolution level, followed by

a multi-resolution frame alignment step that results in the

creation of a motion-corrected time-activity frame sequence
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(see Figure 4 for a schematic sketch of the functionality).

Specifically, the software determines the starting frame from

which motion correction can be performed based on MI between

images at the lowest resolution as a pre-computational step. In

our implementation, images are processed at three different

resolution levels: coarse (1/4th resolution), medium (1/2nd

resolution) and fine (original resolution). The user can select

the number of iterations at each resolution level with values of

100/50/25 (coarse/medium/fine) iterations set as the default,

which proved to be a solid choice upon testing during

development to compromise speed and robustness. These

default values yielded excellent alignment performance over a

large range of studies during our testing phase. The average time

to perform alignment of one frame is < 1s on a laptop computer

with 8 GB of RAM.

The software is built around Kitware’s Insight Segmentation

and Registration Toolkit [22,23] and command line tools.

Digital brain phantom

In order to accurately evaluate the performance of the

developed motion correction method, the Zubal digital brain

phantom [24] was used to simulate realistic tracer distribution

patterns of a dynamic FDG brain study. The simulated

dynamic sequence consisted of 37 frames (12 × 10s, 15 ×

30s, 10 × 300s) for a total duration of 60min using a 344 ×

344 × 127 image matrix with voxel size of 2.086 × 2.086 ×

2.031 mm. Dynamic tracer uptake patterns were generated

using a patient-derived input function and the two-tissue

compartment model with preset realistic kinetic

microparameters to estimate the time course of tracer

concentration in 20 distinct brain regions of the Zubal

phantom, similar to previous simulations [25]. These

uptake patterns were then used to generate raw PET data

with an analytical PET simulator [26], for which the

characteristics of the Siemens mMR PET/MR system

(Biograph mMR, Siemens Healthineers, Germany) were

considered along with a realistic calibration factor (ECF),

derived by comparison to real FDG clinical scans. The

simulated raw data included the simulation of scatter and

random events. Image reconstruction of the raw data was

performed using the open source fully quantitative

reconstruction platform CASToR [27], with the iterative

OSEM algorithm run for six iterations with 21 subsets.

Figure 1 and Figure 2A show representative reconstructed

tracer distribution patterns during various phases of the

dynamic sequence.

FIGURE 1
The differences between the coarsest and finest resolution for selected frames over the scan duration are displayed. It is clearly noticeable that
for early frames, the fine resolution images yield almost no structural information in contrast to the coarse resolution, where contours of the brain
and the general shape are already visible.
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Clinical image data

The developed motion correction method was applied to

three different clinical dynamic tracer studies that included both

F18-labeled fluorodeoxyglucose (FDG) and fluoroethyl-

L-tyrosine (FET) and C11-labeled (alpha-methyl-tryptophan

(AMT)) tracers. In addition to tracer variability, these datasets

were also acquired from three different PET systems (Table 1).

The AMT data included six studies to examine tryptophan

metabolism in adult patients and was performed on a

Discovery STE PET/CT system (General Electric Healthcare,

United States). The study consisted of a 7 × 5 min dynamic

frame sequence initiated at 25 min p. i. All images were

reconstructed using a standard OSEM reconstruction routine,

yielding image frames with 128 × 128 × 47matrix size and a voxel

size of 2.0 × 2.0 × 3.27 mm. The FET study was acquired by a

Biograph mMR system (Siemens Healthineers, Germany) and

reconstructed into eight frames for a scan time of 40 min (2 × 2,

4 × 4, 2 × 10 min) with a standard OP-OSEM reconstruction with

a size of 172 × 172 × 127 and spacing of 2.086 × 2.086 × 2.031 mm

each. Lastly, the FDG images were also acquired using a Biograph

mMR system (Siemens Healthineers) and reconstructed into

37 frames (24 × 5 s, 1 × 1 min, 1 × 2 min, 11 × 5 min). The

size and spacing of each frame are 344 × 344 × 127 voxels and

2.086 × 2.086 × 2.031 mm, respectively. FDG scans obtained

using a Philips Ingenuity TF PET/CT were reconstructed into

21 frames with a volume size of 128 × 128 × 90 and pixel spacing

of 2 × 2 × 2 mm using BLOB-OS-TF reconstruction.

Performance assessment

The performance of our software was assessed based on both

the digital phantom and the clinical image data. First, 20 random

motion vectors, including both translation (0mm–15 mm) and

rotation (0rad–0.3rad), were added to each frame (except the last

reference frame, considered as the reference for motion

correction) of the generated dynamic sequences (digital

phantom), resulting in 20 dynamic frame sequences with

36 frames that included motion. Frames with sufficient

information for accurate alignment were determined based on

the beginning of the plateau phase of the MI measure across

frames. Specifically, in order to increase similarity across the

dynamic frame sequence, all images were initially converted to a

coarse resolution level (Figure 1), and the MI between the last

frame and all preceding frames was calculated at this level

FIGURE 2
(A) Representative images showing tracer distribution of the digital phantom at 20 s, 2, 20, and 60 min p. i. (reference frame). (B) The same
images are shown at the coarse resolution level together with automatically derived contours. (C) A plot of the Mutual Information (MI) score
between the reference frame and all earlier frames as a function of frame number. The minimum value of the second derivative of the MI function
defines the start of the plateau phase. This value was used as the starting point for motion correction of frames.
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(Figure 2B). The minimum value of the second derivative of the

MI function was then used to determine the start of the plateau

phase (Figure 2C). Subsequently, frame alignment was only

performed for frames in the MI plateau phase. This feature

was therefore used to identify the starting frame of the

motion correction process, as illustrated in Figure 4.

To obtain a measure of spatial displacement associated with a

particular motion vector, we used a location of ~6 cm away from

the centre of rotation (brain centre) as a representative average

point within the brain that is displaced by motion. Application of

a motion vector to such a point will displace this point by a

certain distance, allowing the assessment of the amount of

displacement that can be recovered using the developed

motion correction software. The same translation and rotation

values retrieved from themotion correction were applied, and the

new, displaced point coordinates were retrieved. The

displacement distance as a function of the coordinates of the

reference point and coordinates of the displaced point was

calculated as

d(pref, pmoved) �
����������������������������(xmoved − xref)2 + (ymoved − yref)2

√

+(zmoved − zref) (1)

and only motion parameter combinations that did not

exceed a total displacement of 25 mm were accepted to be

imposed on the dynamic frames to remove outliers that would

have imposed unrealistic head motion. Due to the selection of

a point around 6 cm off the brain centre, the selected metric

(Eq. 1) considers all six motion parameters (translation and

rotation). The accuracy of the motion correction method was

assessed based on the amount of residual displacement

distance (i.e. the displacement error) that was not recovered

by the algorithm as a function of the known superimposed

displacement distance.

To assess the accuracy of the developed method in a

clinical context where the actual displacement distance is

unknown, motion correction parameters were determined

for all frames in the FDG, FET and AMT studies, and the

Dice Score Coefficient (DSC) across all frames was compared

before and after motion correction. To compute the DSC,

total-head masks of all frames in each study were retrieved

with 3D Slicer [28]. Motion correction parameters from our

software were applied to the corresponding labels. The

improvement in DSC for each individual frame was then

correlated with the displacement distance calculated from

the identified motion vector. A significant correlation

between these measures would indicate that the applied

motion correction resulted in an increased spatial

agreement between image frames, consistent with removing

motion artefacts. In addition to the DSC and displacement

evaluation, summed images were inspected by a medical

FIGURE 3
Concept of the multi-resolution-registration approach. Registration of an image to a reference image starts with the creation of a Gaussian
pyramid for both images and resampling them to¼ and½ of their original resolution. The first registration will then be carried out at the coarsest (1/
4 x) level and set up the initial state for the next level (1/2x). Likewise, the last registration step at full resolution is initialised by the result of the previous.
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FIGURE 4
Concept of the proposed motion correction: Before registration starts, all frames are converted into their coarsest scale (1/4x) variant. To
determine the starting frame, the MI between each frame and the reference frame is computed, and the coarse resolution level, as registration
initially starts at that level. The MI determines which frame is selected as the starting frame. Once determined, the original images are then handed to
the registration pipeline, starting with the just detected first frame to align. All frames, starting from the determined starting frame, are then
registered to the last frame, the reference frame.
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doctor specialised in nuclear medicine to ensure valid clinical

quality after applied motion correction.

Statistical analysis

All values were expressed as mean ± SD. Significance in the

correlation between variables was assessed using Person’s rho.

Significance was set to p < 0.05.

Results

Digital phantom

Figure 5 shows the mean and standard deviation of the

imposed displacement across the frame sequence (blue

graph), which was derived from all 100 simulated dynamic

curves. The graph indicates a displacement across the

dynamic sequence between 10mm and 25 mm (16 ± 5 mm,

TABLE 1 The details of all four clinical datasets are listed to provide an overview of important information, such as the system and frame durations. It
also summarises the variety of data by using three different tracers and four different devices with which the data was captured.

AMT FDG FDG FET

Number of subjects 6 5 5 10

Number of frames 7 37 21 8

Frame duration [s or min] 7 × 5 min 24 × 5 s, 1 × 1 min, 1 × 2 min, 11 × 5 min unknown 2 × 2 min, 4 × 4 min, 2 × 10 min

Vendor General Electrics Healthcare Siemens Healthineers Philips Healthcare Siemens Healthineers

Model Discovery STE PET/CT PET/MR Biograph mMR Vereos PET/CT PET/MR Biograph mMR

Matrix size 128 × 128 × 47 344 × 344 × 127 128 × 128 × 90 172 × 172 × 127

Voxel [mm] 2.0 × 2.0 × 3.27 2.086 × 2.086 × 2.031 2.0 × 2.0 × 2.0 2.086 × 2.086 × 2.031

FIGURE 5
The blue graph displays the average of imposed displacement across all iterations that was added to each frame of the digital phantom as a
function of the mid-frame time, together with the error band (standard deviation) in light blue. The imposed displacement was consistent across the
dynamic frame sequence. The residual (uncorrected) displacement following the application of the motion correction as a function of mid-frame
time is shown in the green graph. The error band is given in light green. To indicate the performance of the motion correction, dotted lines are
drawn at 5, 2, and 1 mm displacement. After 2.5 min, the residual error reaches in average sub-voxel (<2 mm) level.
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rho = 0.10, p = NS) as a result of the imposed motion.

Following the proposed motion correction method, a

residual misalignment of 0.4 ± 0.2 mm was found for all

frames after 5 min p. i. (Figure 5, green graph). Of note,

early frames (30–180 s) displayed a residual displacement of

~3 mm (3.2 ± 0.6 mm), as indicated by the dotted lines,

marking the 5, 2 and 1 mm displacement range.

Figure 6A demonstrates increased MI scores at the coarse

(visually observable in Figure 1) resolution level, with the MI

scores approaching the plateau phase at an earlier time than those

at the medium and fine resolution levels. Specifically, the MI

plateau phase at the coarse level was reached at 35s p. i

(Figure 2C), whereas it was reached at 2.0 and 2.5 min p. i. At

the medium and fine resolution levels, respectively (Figure 6B).

Clinical images

Motion correction performance of clinically obtained

dynamic sequences was assessed based on both visual

assessment of summed images by a nuclear medicine

physician as well as based on improvement in DSC scores

across frames. Figure 7 shows a comparison between

representative summed PET frames before and after motion

correction. One can appreciate the improvement in image

sharpness of the summed images following motion correction

of FET (20–40 min p. i), FDG (20–50 min p. i) and AMT

(25–60 min p. i) PET images together with the line profiles in

Figure 7. The line profiles show the intensities (Magnitude, on

the y-axis of Figure 7) of the summed images along the path (x,

on the x-axis of Figure 7) of the line profile. Figure 8 shows the

relationship between the identified (and corrected)

displacement and the improvement in DSC score for all

dynamic studies. A significant correlation was determined

for all three tracer studies (FET: R = 0.49, p < 0.001; FDG:

R = 0.82, p < 0.001; AMT: R = 0.92, p < 0.001). The average

time for performing motion correction on all frames in a single

dynamic study was <1 min.

Discussion

Our study investigated the accuracy of a computationally

inexpensive, fast and robust motion correction algorithm that

was designed to perform accurate post-acquisition alignment of

dynamic brain PET images. Our proposed method is fully-

automatic, tracer- and system-independent. Results indicate

that the developed algorithm can be easily implemented in a

clinical setting and yields sub-voxel accuracy in compensating for

involuntary head motion over a large range of PET tracer

distribution patterns. Specifically, the method allows

alignment of brain PET images with an accuracy of ~0.5 mm

FIGURE 6
(A) Time course of the Mutual Information (MI) score at the coarse (blue), medium (green) and fine (red) resolution levels for the digital phantom
without imposed motion. The MI score was higher, and the plateau phase was reached earlier at the coarse resolution level when compared to the
other resolution levels. (B) The graph depicts the time points when the plateau phase is reached at themedium (green) and fine (red) resolution levels
based on the discontinuity in MI score as a function of residual displacement. The lack of a fall-off for the coarse resolution (blue) indicates that
an alignment is possible at earlier frames for the coarse resolution.
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FIGURE 7
Representative summed images of three patient studies showing the improvement in image quality following the application of the proposed
motion correction. Regions, where the impact of corrected motion is especially noticeable are indicated with a red arrow. Examples using three
different tracers are used to demonstrate that the approach is insensitive to image characteristics of the underlying tracer distribution. The line
profiles, together with the path fromwhere they were retrieved within the image, are displayed below andmarked in the axial slices of the brain.
The arbitrary values on the x-axis are the locations of the interpolated graph along the line profile inside the axial slice. The magnitude on the y-axis
indicates the intensity at location x along the line profile. A higher magnitude after the summation of the images indicates a proper alignment of the
frames, as areas with high intensities and areas with low intensities are aligned and contribute accordingly.

FIGURE 8
Relationship between the identified displacement and the improvement in the absolute dice score coefficient (DSC) following motion
correction of all frames in the FET (left), FDG (middle) and AMT (right) PET studies. A highly significant correlation (p < 0.001) was determined for all
three tracers.
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(Figure 5) that have been acquired as early as 5 min p. i., while

providing still excellent alignment of brain images even at 1 min

p. i. with an accuracy of about one voxel (~3 mm).

The relatively large displacement and, therefore, worse

correction performance during the initial part of a dynamic

study is due to the problem of changing tracer uptake

patterns reflecting physiological processes in brain tissue. In

general, the tracer is initially confined to the vascular

compartment by the blood-brain barrier, followed by gradual

tracer uptake into the brain tissue and washout from the vascular

compartment. The time course of the changing tracer

distribution is specific for each tracer, although for most

tracers, the greatest uptake in grey matter tends to occur at

late time points. Because grey matter tracer uptake is usually of

interest, the last frame of a dynamic sequence is commonly

selected as the reference for alignment of all previous time

frames. However, accurate alignment of the reference frame

with early frames is challenging due to the vastly different

uptake patterns as well as poor count statistics typical of early

frames. Accordingly, a criterion of uptake pattern similarity

needs to be established that provides an objective measure of

whether the information content in a particular frame is

sufficient for alignment. We used the MI score across the

dynamic sequence against the reference frame as an indicator

of the time point when an accurate alignment of image frames

might be possible. Moreover, to increase the similarity between

tracer distribution patterns, the MI score was applied at a low

(coarse) resolution level. Our results using a simulated FDG

tracer uptake time sequence showed that at a coarse level, the

similarity between brain images can be achieved within the first

minute following tracer injection. However, at higher resolution

levels, the sufficient similarity between frames cannot be achieved

prior to about 3min p. i. As a result, the developed motion

correction method performs very well for frames acquired after

the initial 5 min of FDG brain uptake but shows less accuracy

(2–4 mm) in the early frames. Thus, alternative methods need to

be employed if an accurate alignment of very early frames is

required.

Scale-space methodology

We based our method on the scale-space representation of

image data, which decomposes images into information at

multiple scales, each of which emphasises a particular fineness

of detail or scale (Lindberg, 1994 [29]). Using iterative Gaussian

blurring, this process successively attenuates high-frequency

components (i.e. suppresses fine-scale details) in the images

that are associated with either noise or with subtle dynamic

changes in tracer distribution as a consequence of physiological

processes. As illustrated in Figure 2B, MI which characterises

overall brain shape, becomes dominant at low-resolution levels,

allowing robust detection of large motion artefacts apart from

moderate changes in tracer distribution. The so-obtained motion

vector estimate is subsequently refined at each higher resolution

level, as displayed in Figure 6, preventing the algorithm from

being trapped in a local minimum.

There is a close link between scale-space theory and

convolutional neural networks (CNNs). Both methods use

filters and convolution to extract features from images at

different resolution scales in order to detect underlying

features automatically. In short, Gaussian scale space can

be considered as a subset of the filter space used in CNNs.

Furthermore, encoding the scale information explicitly into

the representation learned by a CNN is beneficial for many

computer vision tasks, especially when dealing with

multiscale inputs, as it is possible to obtain scale

covariance/equivariance and scale invariance of the deep

network to handle image structures at different scales in a

theoretically well-founded manner ([30,31]). Such hybrid

approaches between scale-space theory and deep learning

enable deep networks to operate robustly at scales not

spanned by the training data, thus enabling scale

generalisation [32].

Digital phantom validation studies

Direct assessment of the achieved accuracy of the

developed alignment technique was done using a digital

phantom where the imposed motion vector was precisely

known. As seen in Figure 5, the amount of displacement

imposed was in the range of 10–20 mm, which was slightly

higher than that encountered in our clinical studies [33] but

used to impose highly noticeable motion (Figure 8). The

residual displacement was found to be less than 1 mm for all

frames acquired after 5 min p. i. (Figure 5), with the

alignment accuracy of early (0.5–3 min) frames being in

the range of 1–5 mm. This relatively poor performance in

early frames is the consequence of the greatly different tracer

uptake pattern in these frames, precluding accurate

alignment of images at high-resolution levels.

Nevertheless, as clinical images are usually acquired after

the tracer has reached dynamic equilibrium in brain tissue

(~25 p. i. for the FDG tracer), this result suggests that the

developed methodology might benefit sites that use a

sequence of dynamic frames with a short (1, 2 min) scan

time which are subsequently summed in order to remove

motion artefacts in studies of challenging patient groups (e.g.

pediatric or mentally impaired patients).

Clinical performance

The clinical viability of the developed method was evaluated

based on the alignment of dynamic image sequences with vastly

Frontiers in Physics frontiersin.org11

Gutschmayer et al. 10.3389/fphy.2022.1034783

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1034783


different tracer uptake patterns. Figure 7 shows representative

summed images of three different tracer distribution patterns

comparing the effects of image blurring before and after applying

the developed motion correction technique. Although differences

are relatively subtle, a closer inspection of the images

demonstrates improvement in both image sharpness and

contrast following alignment, independent of the noise

characteristics of images acquired using 18F- or 11C-labeled

tracers (Figure 7). Visual assessment of images was confirmed by

the improvement in DSC as a result of alignment, which

significantly correlated with the identified (and corrected)

displacement (Figure 8). Moreover, the relationship between

DSC improvement and identified displacement was fairly

insensitive to the tracer distribution pattern, further

supporting the notion that the alignment method is highly

robust and, therefore, well suited for routine applications. The

verified robustness of our method is highly relevant for clinical

applications, as one single application can be used for different

tracers and for vastly varying frame sequences. Especially in

pediatric scans which frequently suffer from substantial motion

artefacts the presented approach is likely to result in improved

diagnostic performance.

Limitations

There are several limitations that had to be accepted in the

current implementation. First, we employed a static attenuation

map that is not motion-corrected. Although conceptually more

accurate, extending motion correction to the attenuation map is

laborious. It was shown before that in the case of relatively low-

level motion (<5 mm), the application of a static attenuation map

provides reasonably accurate estimates of local tracer

concentration [34].

Further, intra-frame motion is not addressed in this work.

Nonetheless, our results derived from real-world dynamic studies

indicated that even if intra-frame motion is not considered,

correction of inter-frame motion can contribute significantly

to the quality of both summed images as well as to the quality

of extracted dynamic curves.

Moreover, our methodology does not allow correction for

motion at the very beginning of a dynamic sequence (less than

30s p. i.) when the tracer distribution pattern differs

substantially from that of the reference image. Our

validation studies suggest that the tracer distribution

patterns in image frames acquired during the initial 60s are

significantly different from that of the reference image (even at

the lowest resolution scale), precluding the successful

application of our method in these very early frames.

Although these frames are not important from a clinical

point of view, these frames carry information with respect to

the blood input function, which is often of interest in order to

obtain an image-derived input function for kinetic modelling

[33] and quantification. Consequently, motion correction of

these early frames will require a separate alignment method.

Finally, although we demonstrated a substantial improvement

in DSC as a result of alignment using the proposed method in a

relatively small sample of FDG, FET and AMT images, the

ultimate clinical value of our methodology needs to be verified

in a much larger patient population.

Conclusion

The proposed motion correction software provides a

reasonable alternative to more sophisticated motion

correction approaches of PET images that require either

external online tracking devices in combination with list-

mode data acquisition or additional MR data together with

high-end computing equipment. Due to its simplicity and

ease of implementation, we envision that our method will be

embraced by clinically oriented sites in the field of Nuclear

medicine.[35].
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