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Abstract

A family of scaling corrections aimed to improve the chi-square approxi-

mation of goodness-of-�t test statistics in small samples, large models, and

nonnormal data was proposed in Satorra and Bentler (1994). For structural

equations models, Satorra-Bentler's (SB) scaling corrections are available in

standard computer software. Often, however, the interest is not on the overall

�t of a model, but on a test of the restrictions that a null model sayM0 im-

plies on a less restricted oneM1. If T0 and T1 denote the goodness-of-�t test

statistics associated toM0 andM1, respectively, then typically the di�eren-

ce Td = T0� T1 is used as a chi-square test statistic with degrees of freedom

equal to the di�erence on the number of independent parameters estimated

under the modelsM0 and M1. As in the case of the goodness-of-�t test, it

is of interest to scale the statistic Td in order to improve its chi-square appro-

ximation in realistic, i.e., nonasymptotic and nonnormal, applications. In a

recent paper, Satorra (1999) shows that the di�erence between two Satorra-

Bentler scaled test statistics for overall model �t does not yield the correct

SB scaled di�erence test statistic. Satorra developed an expression that per-

mits scaling the di�erence test statistic, but his formula has some practical

limitations, since it requires heavy computations that are not available in

standard computer software. The purpose of the present paper is to provide

an easy way to compute the scaled di�erence chi-square statistic from the

scaled goodness-of-�t test statistics of modelsM0 and M1. A Monte Carlo

study is provided to illustrate the performance of the competing statistics.

Keywords: Moment-structures, goodness-of-�t test, chi-square di�erence test

statistic, chi-square distribution, non-normality

1



1 Introduction

Moment structure analysis is widely used in behavioural, social and economic

studies to analyse structural relations between variables, some of which may

be latent (i.e., unobservable); see, e.g., Bollen (1989), Bentler and Dudgeon

(1996), Yuan and Bentler (1997), and references therein. Commercial com-

puter programs to carry out such analysis, for a general class of structural

equation models, are available (e.g., LISREL of J�oreskog and S�orbom, 1994;

EQS of Bentler, 1995). In multi-sample analysis, data from several samples

are combined into one analysis, making it possible, among other features, to

test for across-group invariance of speci�c model parameters. Statistics that

are central in moment structure analysis are the overall goodness-of-�t test

of the model and tests of restrictions on parameters.

Asymptotic distribution-free (ADF) methods which do not require dis-

tributional assumptions on the observable variables have been developed

(Browne, 1984). The ADF methods, however, involve fourth-order sample

moments, thus they may lack robustness to small and medium-sized samples.

In the case of non-normal data, an alternative to the ADF approach is to use

a normal-theory estimation method in conjunction with asymptotic robust

standard errors and test statistics (see Satorra, 1992). Asymptotic robust

test statistics, however, may still lack robustness to small and medium-sized

samples. As an alternative to asymptotically robust test statistics, Sator-

ra and Bentler (1994; Satorra and Bentler, 1988a,b) developed a family of

corrected normal-theory test statistics which are easy to implement in prac-

tice, and which have been shown to outperform the asymptotic robust test

statistics in small and medium-sized samples (e.g., Chou, Bentler and Sa-

torra, 1991; Hu, Bentler and Kano, 1992; Curran, West and Finch, 1996).

Bentler and Yuan (1999) provide a recent comparison of alternative test met-

hods for small samples. Extension of Satorra-Bentler (SB)'s corrections to

goodness-of-�t test statistics in the case of the analysis of augmented mo-

ment structures, multi-samples and categorical data, have been discussed

respectively by Satorra (1992) and Muth�en (1993).

Although SB corrections have been available for some time, formal deri-

vations of SB corrections to the case of nested model comparisons have not

been available. The obvious and generally accepted approach of computing

separate SB-corrected test statistics for each of two nested models, and then

computing the di�erence between them (e.g., Byrne and Campbell, 1999),
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turns out to be an incorrect way to obtain a scaled SB di�erence test statis-

tic. The di�erence could be even be negative, which is an improper value for

a chi-square variate. In a recent paper, Satorra (1999) gives speci�c formulae

for extension of SB corrections to score (Lagrange multiplier), di�erence and

Wald test statistics. He showed that the di�erence between two SB-scaled

test statistics does not necessarily correspond to the scaled chi-square di�e-

rence test statistic. The purpose of the present paper is to provide a simple

expression that allows a researcher to correctly compute the SB di�erence

test statistic when the SB-scaled chi-square goodness of �t tests for the cor-

responding two nested models are available. The formula is simple to use and

provides an alternative scaled test for evaluating a speci�c set of restrictions.

The paper is structured as follows. In Section 2 we describe goodness-of-

�t tests in weighted least squares analysis, and the corresponding SB scaling

corrections. In Section 3 we describe the proposed procedure for computing

the SB scaled di�erence test statistic. Section 4 concludes with an illustrati-

on.

2 Goodness-of-�t tests

Let � and s be p-dimensional vectors of population and sample moments

respectively, where s tends in probability to � as sample size n! +1. Letp
ns be asymptotically normally distributed with a �nite asymptotic variance

matrix � (p�p). Consider the modelM0 : � = �(�) for the moment vector �,

where �(:) is a twice-continuously di�erentiable vector-valued function of �,

a q-dimensional parameter vector. Consider a WLS estimator �̂ of � de�ned

as the minimizer of

FV (�) := (s� �)0V̂ (s� �)

over the parameter space, where V̂ (p � p ), converges in probability to

V , a positive de�nite matrix. A typical test statistic used for testing the

goodness-of �t-of the model M0 is T0 := nFV (s; �̂), where �̂ := �(�̂). It is

widely known that, when the modelM0 holds and V satis�es the asymptotic

optimality (AO) condition of V = ��1, then T0 is asymptotically chi-square

distributed with degrees of freedom (df) r0 = p�q. In practice, however, AO

may not hold, and concern on the quality of the chi-square approximation do

arise. For general types of distributions, i.e., when AO does not necessarily

hold, T0 is asymptotically distributed as a mixture of chi-square distributions
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of 1 degree of freedom (df) (see Satorra and Bentler, 1986); that is

T0
L!

rX
j=1

�j�
2

j ; (1)

as n ! 1, where the �2j are independent chi-square variables of 1 df, and

the �j are the non-null eigenvalues of the matrix U0�, with

U0 := V � V�(�0V�)�1�0V

and � := (@=@�0)�(�). When AO holds, then of course the �j's are equal to

1 and the asymptotic exact chi-square distribution applies. In the context of

structural models and for general types of distributions, Satorra and Bentler

(1994; Satorra and Bentler, 1988a,b) proposed replacing T by the scaled

statistic

T = T=ĉ; (2)

where ĉ denotes a consistent estimator of

c :=
1

r
trU0� =

1

r
tr fV �g � 1

r
tr
n
(�0V�)�1�0V �V�

o
: (3)

Note that the SB scaled test statistic has the same mean as the corresponding

�2r variate. The SB scaled goodness-of-�t test has been shown to outperform

alternative test statistics in a variety of models and non-normal distributions

(e.g., Chou, Bentler and Satorra, 1991; Hu, Bentler and Kano, 1992; Curran,

West and Finch, 1996). Of course, when asymptotic optimality holds, this

statistic will have the same asymptotic distribution as the unscaled statistic

T0. Note that a consistent estimator �̂ of � under general distribution con-

ditions is required to compute the scaling factor ĉ. In structural equation

models, a consistent estimator of � is readily available from the raw data

(e.g., Satorra and Bentler, 1994). A goodness-of-�t statistic which can be

used given any estimation method, is given by

T ? = n(s� �̂)0f�̂�1 � �̂�1�̂(�̂0�̂�1�̂)�1�̂0�̂�1g(s� �̂); (4)

When �̂ is the (distribution-free) consistent estimator of � in (16) below,

then T ? will be called the asymptotic robust goodness-of-�t test statistic,

since it is an asymptotic chi-square statistic regardless of the distribution

of observable variables. In the context of single-sample covariance structure
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analysis, this statistic was �rst introduced by Browne (1984). Its performance

was studied by Yuan and Bentler (1998), who found that very large samples

are required to obtain acceptable performance in models with intermediate

to large degrees of freedom.

3 Testing a set of restrictions

Consider now the case of testing a speci�c set of restrictions on the model.

Consider a re-parameterezation of M0 as � = �?(�) with a(�) = a0, where

� is a (q + m)-dimensional vector of parameters, a0 is an m � 1 vector of

constants, and �?(:) and a(:) are twice-continuously di�erentiable vector-

valued functions of � 2 �1, a compact subset of Rq+m. Our interest now

is in the test of the null hypothesis H0 : a(�) = a0 against the alternative

H1 : a(�) 6= a0. De�ne the Jacobian matrices

� (p� (q +m)) := (@=@�0)�?(�) and A (m� (q +m)) := (@=@�0)a(�);

which we assume to be regular at the value of � associated with �0, say �0,

with A of full row rank. Let P ((q + m) � (q + m)) := �0V� and denote

byM1 the less restricted model � = �?(�). The goodness-of-�t test statistic

associated with M1 is thus T1 = nF (s; ~�), where ~� is the �tted moment

vector in model M1, now with associated degrees of freedom r1 = r0 � m

and scaling factor c1 given by

c1 :=
1

r1
trU1� =

1

r1
tr fV �g � 1

r1
tr
n
P�1�0V �V �

o
(5)

where

U1 := V � V �P�1�0V:

When both modelsM0 and M1 are �tted, then we can test the restrictions

a(�) = a0 using the di�erence test statistic Td = T0�T1, where under the null
hypothesis, it is intended that Td have a chi-square distributed with degrees

of freedom m = r0 � r1.

In order to improve the chi-square approximation in the case of large

values of m and moderate or small sample sizes, we are interested in the SB

scaled di�erence test statistic, say �Td. Extending his earlier work (Satorra,

1989), Satorra (1999) recently provided formulae for computing such scaled
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statistics for the di�erence, Score and Wald test statistics. From Satorra's

formulae it becomes aparent that the SB scaled di�erence test statistic does

not coincide with the di�erence between the two SB scaled goodness-of-�t

test statistics that arise when �tting the two nested models; that is, in general
�Td 6= �T0 � �T1, where by �T0 and �T1 we denote the SB scaled goodness-of-�t

test statistics arising when �tting the models M0 and M1 respectively. In

Satorra (1999), the SB scaled di�erence test statistic is de�ned as �Td = Td=ĉd
where ĉd is a consistent estimator of

cd :=
1

m
trUd� (6)

with

Ud = V�P�1A0(AP�1A0)�1AP�1�0V: (7)

A practical problem with this expression for the scaled di�erence test

statistic is it requires computations that are outside the standard output

of current structural equation modeling programs. Furthermore, di�erence

tests are usually hand computed from di�erent modeling runs. Here we will

show how to combine the scaling corrections c0 and c1 associated to the two

�tted modelsM0 and M1 in order to compute the scaling correction cd for

the di�erence test statistic. It turns out that the computations are extremely

simply and can be carried out using a hand calculator.

First we show that Ud = U0 � U1. Note that the model M0 implies a

speci�c function � = �(�), that by the implicit function theorem is continuous

di�erentiable. Consider thus the matrixH = @�(�)=@�0. Clearly, it holds that

� = �H and AH = 0 (recall that A is a matrix m� (q +m) ), that is, the

matrix A and H are orthogonal complements. We have

U0 � U1 = V �(�0V �)�1�0V � V�H(H 0�0V�H)�1H 0�0V

= V�
n
P�1 �H(H 0PH)�1H 0

o
�0V

since

P�1 �H(H 0PH)�1H 0 = P�1A0(AP�1A0)�1AP�1;

as A and H are orthogonal complements (see Rao, 1973, p. 77). We thus

have the basic result that

Ud = U0 � U1:
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Now, since r0c0 � r1c1 = tr (U0 � U1)� = trUd� = mcd; we obtain cd =

(r0c0�r1c1)=m: This means that consistent estimation of cd is available from

consistent estimates of the scaling corrections c1 and c1 associated with the

null and alternative model respectively.

Thus the proposed practical procedure is as follows. When �tting models

M0 and M1, we obtain the unscaled and scaled goodness-of-�t tests, that

is T0 and �T0 when �tting M0, and T1 and �T1 when �tting M1. Let r0 and

r1 be the associated degrees of freedom of the goodness-of-�t test statistics.

Then we compute the scaling corrections ĉ0 = T0= �T0 and ĉ1 = T1= �T1, and

the usual chi-square di�erence Td = T0 � T1. The SB scaled di�erence test

can thus be computed as �Td = T=ĉd; where

ĉd = (r0ĉ0 � r1ĉ1)=m:

When the two scaling corrections are equal, i.e. when c0 = c1 = c then

cd = c and thus �Td = �T0� �T1. This is the case, for example, when c0 = c1 = 1,

i.e., when both goodness-of-�t tests are asymptotically chi-square statistics.

In general, however, c0 6= c1 and then the di�erence between two SB scaled

goodness of �t test statistics does not yield the SB scaled di�erence test

statistic.

Note that the above procedure applies to a general modeling setting. The

vector of parameters � to be modeled may contain various types of moments:

means, product-moments, frequencies (proportions), and so forth. Thus, the

procedure applies to a variety of techniques, such as factor analysis, simulta-

neous equations for continuous variables, log-linear multinomial parametric

models, etc.. It can easily be seen that the procedure applies also in the

case where the matrix � is singular, and when the data is composed of va-

rious samples, as in multi-sample analysis. The results apply also to other

estimation methods, e.g., pseudo ML estimation.

It is important to recognize that a competitor to the statistic �Td will be

the di�erence between the robust goodness-of-�t test statistics associated

with the modelsM0 andM1; that is, an asymptotic chi-square test statistic

for H0 is just T
?
d := T ?

0 � T ?
1 , where T ?

0 and T ?
1 are the goodness-of-�t test

statistics associated to the models M0 and M1 respectively. In the next

section, we will illustrate using Monte Carlo simulation the small sample size

performance of the competing test statistics for the above mentioned null

hypothesis H0.
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4 Illustration

In this section we ilustrate in a simple model context of a regression with

errors in variables the performance in �nite samples of three test statistics.

We consider a regression equation

y?gi = �xgi + vgi; i = 1; : : : ; ng; (8)

where for case i in group g (g = 1; 2), y?gi and xgi are the values of the response

and explanatory variables, respectively, vgi is the value of the disturbance

term, and � is the regression coe�cient. The model assumes that xgi is

unobservable, but there are two observable variables x?
1gi and x?

2gi related to

xgi by the following measurement-error equations

x?
1gi = xgi + u1gi; x?

2gi = xgi + u2gi; (9)

where u1gi and u2gi are mutually independent and also independent of vgi
and xgi. It is assumed that the observations are independent and identically

distributed within each group. Equations (8) and (9) with the associated

assumptions yield an identi�ed model (see Fuller (1987) for a comprehensive

overview of measurement-error models in regression analysis). Inference is

usually carried out in this type of model under the assumption that the

observable variables are normally distributed. Write the model of (8) and

(9) as

zgi = ��gi; i = 1; 2; : : : ; n; (10)

where

zgi :=

0
B@

y?gi
x?1gi
x?2gi

1
CA ; �gi :=

0
BBB@

xgi
vgi
u1gi
u2gi

1
CCCA

and

� :=

0
B@

� 1 0 0

1 0 1 0

1 0 0 1

1
CA : (11)

De�ne

� := E�gi�
0

gi =

0
BBB@

�xx 0 0 0

0 �vv 0 0

0 0 �uu 0

0 0 0 �uu

1
CCCA ; (12)
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and the parameter vector � := (�vv; �xx; �uu; �)
0. Under this set-up, we obtain

the moment structure

� := ���0 = �(�); (13)

where �(:), �(:) and �(:) are (twice-continuously di�erentiable) matrix-

valued functions of �, as deduced from (11), (12) and (13). Note that the

model restricts the variances of u1 and u2 by equality. This is a setting of

two-sample data, where the population and sample vectors � and s are de-

�ned as s = (�0

1; �
0

2)
0 and s = (s01; s

0

2)
0, where �0

g = vecSg and s0g = vecSg,

with

Sg :=
1

ng

ngX
i=1

zgiz
0

gi:

Here \vec" denotes the column-wise vectorisation operator (see Magnus and

Neudecker, 1999, for full details on this operator). We consider the estimation

of the model using weighted least squares under the assumption of normality.

That is, the matrix V (see above) has the form

V̂ := block diag(
n1

n
V̂1;

n2

n
V̂2) (14)

and V̂g = 1

2
(Sg

�1 
 Sg
�1), g = 1; 2. Clearly, when there is independence

across samples, the asymptotic variance matrix of
p
ns is of the form

� = block diag(
n

n1
�1;

n

n2
�2); (15)

where �g is the asymptotic variance of
p
ngsg, g = 1; 2. We further assume

that the matrices Sg and �g are positive de�nite, and that ng=n ! fg > 0,

as n ! +1 (g = 1; 2); in this case, a distribution-free consistent estimator

of � is

�̂ := block diag(
n

n1
�̂1;

n

n2
�̂2); (16)

where

�̂g :=
1

ng � 1

ngX
i=1

(dgi � sg)(dgi � sg)
0; (17)

with dgi := vec zgiz
0

gi.

The Monte Carlo study generates two-sample data from the above mo-

del. Two models are �tted. Model M0 has the parameters restricted across

groups, and model M1 has parameters that are unrestricted across groups.
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For each of the estimated models, we compute the goodness-of-�t test sta-

tistics T0 and T1, the SB scaled statistics �T0 and �T1, and the robust test

statistics T ?
0 and T ?

1 . To test the hypothesis of parameter invariance across-

samples, we consider the competing statistics Td = T0 � T1, T
?
d = T ?

0 � T ?
1 ,

d �T = �T0 � �T1 and �nally, the proposed statistic �Td. Note that only T ?
d is

asymptotically an exact chi-square statistic. Our conjecture is that for non-

normal data, small samples and/or models with large degrees of freedom, the

statistic �Td will perform the best.

We obtained replications of the above statistics for various combinations

of sample sizes, ranging from a small sample size to an intermediately large

sample size. Results are reported in Table 1 and also in Figure 1, where the

empirical p-values of the various statistics are �tted against the theoretical

ones corresponding to a uniform distribution. In all the replications we used

�0 = (1; 1; :3; 2)0. The distributions of v and x were independent conveniently

scaled zero mean and unit variance chi-squared of 1 df (i.e., a highly non-

normal distribution); the distribution of u1 and u2 were set to be normal,

mutually independent, and independent of v and x. The normal-theory GLS

estimation method described in Section 2 was used. The restricted model im-

posed across-group invariance of model parameters. In each replication, we

computed the statistics mentioned above, corresponding to the null hypot-

hesis of invariance of cross-sample model parameters. Clearly, in our Monte

Carlo set-up, the null hypothesis holds true, with the null distribution of the

statistics being chi-square with m = 4 degrees of freedom. Note that in our

Monte Carlo set-up, severe non-normality of random constituents of the mo-

del requires the use of robust and/or corrected versions of the di�erence test

statistic. We note that the normal-theory chi-square goodness-of-�t T1 of the

unrestricted model (i.e., the model that does not restrict parameters across

groups) is an asymptotic chi-square statistic despite non-normality of the

data (this follows from the asymptotic robustness theory for multi-samples;

cf., Satorra, 1992). In contrast, the normal-theory chi-square goodness of �t

T0 of the restricted model (i.e., the model that imposes parameter invariance

across-samples) is not necessarily an asymptotic chi-square statistic (since

variances of non-normal constituents of the model are restricted by equality

across-groups; cf., Satorra, 1992).

As shown in Table 1, in our speci�c model context, in the smaller sample,

the SB scaled statistic, �Td, seems to outperform the alternative robust test

statistic T ?
d . As expected from theory, in the case of the large sample, T ?

d

10



Table 1: Monte Carlo results:

empirical signi�cance levels of test statistics

nominal signi�cance levels: 1% 5% 10% 20%

n1 = 100 and n2 = 120

�Td 2.7 8.5 13.7 23.1

T ?
d 3.6 10.6 19.3 32.0

Td 24.8 39.5 50.1 62.1

d �T 76.8 77.5 78.2 78.9

n1 = 800 and n2 = 900

�Td 1.2 7.0 11.4 19.9

T ?
d .5 4.3 11.0 21.7

Td 29.8 43.1 52.5 62.8

d �T 67.5 68.4 69.1 70

outperforms the alternative test statistics. Especially interesting is that the

statistic d �T = �T0� �T1 performs very badly indeed. That is, doing the presu-

mably natural thing, simply computing the di�erence between two SB scaled

chi-square statistics, yields a very poorly performing test when evaluated by

the chi-square distribution.

References

[1] Bentler, P. M. (1995). EQS structural equations program manual. En-

cino, CA: Multivariate Software.

[2] Bentler, P. M., and Dudgeon, P. (1996). Covariance structure analysis:

Statistical practice, theory, and directions.Annual Review of Psychology,

47, 541{570.

[3] Bentler, P. M., and Yuan, K. -H. (1999). Structural equation modeling

with small samples: Test statistics. Multivariate Behavioral Research,

34, 183{199.

11



[4] Bollen, K. A. (1989). Structural equations with latent variables. New

York: Wiley.

[5] Browne, M. W. (1984). Asymptotically distribution-free methods for the

analysis of covariance structures. British Journal of Mathematical and

Statistical Psychology, 37, 62{83.

[6] Byrne, B. M. and Campbell, T. L. (1999). Cross-cultural comparisons

and the presumption of equivalent measurement and theoretical struc-

ture: A look beneath the surface. Journal of Cross-cultural Psychology,

30, 557{576.

[7] Chou, C. -P., Bentler, P. M., and Satorra, A. (1991). Scaled test statistics

and robust standard errors for non-normal data in covariance structure

analysis: A Monte Carlo study. British Journal of Mathematical and

Statistical Psychology, 44, 347{357.

[8] Curran, P. J., West, S. G., and Finch, J. F. (1996). The robustness of

test statistics to nonnormality and speci�cation error in con�rmatory

factor analysis. Psychological Methods, 1, 16{29.

[9] Fuller, W. A. (1987). Measurement error models. New York: Wiley.

[10] Hu, L., Bentler, P. M., and Kano, Y. (1992). Can test statistics in

covariance structure analysis be trusted? Psychological Bulletin, 112,

351{362.

[11] J�oreskog, K., and S�orbom, D. (1994). LISREL 8 user's reference guide.

Mooresville, IN: Scienti�c Software.

[12] Magnus, J., and Neudecker, H. (1999). Matrix di�erential calculus with

applications in statistics and econometrics. New York: Wiley.

[13] Muth�en, B. (1993). Goodness of �t test with categorical and other non-

normal variables. In K. A. Bollen and J. S. Long (Eds.), Testing struc-

tural equation models (pp. 205{234). Newbury Park: Sage.

[14] Rao, C.R., (1973). Linear Statistical Inference and Its Applications ,

2nd. edit. New York: Wiley.

12



[15] Satorra, A. (1989). Alternative test criteria in covariance structure

analysis: A uni�ed approach. Psychometrika, 54, 131{151.

[16] Satorra, A. (1992). Asymptotic robust inferences in the analysis of mean

and covariance structures. Sociological Methodology, 22, 249{278.

[17] Satorra, A. (1999). Scaled and adjusted restricted tests in multi-sample

analysis of moment structures. To appear in Innovations in Multivaria-

te Statistical Multivariate Analysis: A Festschrift for Heinz Neudecker

(R.D.H. Heijmans, D.S.G. Pollock, and A. Satorra, edts. ), Dordrecht:

Kluwer Academic Publishers

[18] Satorra, A., and Bentler, P. M. (1986). Some robustness properties of

goodness of �t statistics in covariance structure analysis. 1986 ASA

Proceedings of the Business and Economic Statistics Section, 549{554,

Alexandria, VA: American Statistical Association.

[19] Satorra, A., and Bentler, P. M. (1988a). Scaling corrections for chi-

square statistics in covariance structure analysis. ASA 1988 Proceedings

of the Business and Economic Statistics Section, 308{313, Alexandria,

VA: American Statistical Association.

[20] Satorra, A., and Bentler, P. M. (1988b). Scaling corrections for statistics

in covariance structure analysis. UCLA Statistics Series # 2, Univer-

sity of California, Los Angeles.

[21] Satorra, A., and Bentler, P. M. (1994). Corrections to test statistics and

standard errors in covariance structure analysis. In A. von Eye and C. C.

Clogg (Eds.), Latent variables analysis: Applications for developmental

research (pp. 399-419). Thousand Oaks, CA: Sage.

[22] Yuan, K. -H., and Bentler, P. M. (1997). Mean and covariance struc-

ture analysis: Theoretical and practical improvements. Journal of The

American Statistical Association, 92, 767{774.

[23] Yuan, K. -H., and Bentler, P. M. (1998). Normal theory based test sta-

tistics in structural equation modelling, British Journal of Mathematical

and Statistical Psychology, 51, 289-309.

13


