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A SCALING LIMIT FOR QUEUES IN SERIES

By Timo Seppäläinen

Iowa State University

We derive a law of large numbers for a tagged particle in the one-
dimensional totally asymmetric simple exclusion process under a scaling
different from the usual Euler scaling. By interpreting the particles as the
servers of a series of queues we use this result to verify an open conjecture
about the scaling behavior of the departure times from a long series of
queues.

1. Introduction. Consider a sequence of n servers each with unlimited
waiting space for customers. At time zero, k customers are in queue at the first
server, and all the other servers have empty queues. The service discipline is
first-in first-out at each server, and service times are i.i.d. Customers move
through the system in an orderly fashion, joining the queue at server i + 1
as soon as service with server i is completed. Let T�k�n� denote the time
when the kth customer leaves the nth server. We are interested in the scaling
behavior of T�k�n� when both k and n become large.

Let V�i� j� be the service time of the ith customer at server j. Then it is
not hard to see by induction that

�1�1� T�k�n� = max
π∈
�k�n�

∑
�i� j�∈π

V�i� j��

where 
�k�n� is the collection of upright paths from �1�1� to �k�n� along
points of the lattice N2. This representation is suited for an application of the
subadditive ergodic theorem. The result is that for all x�y > 0, the determin-
istic limit

�1�2� γ�x�y� = lim
n→∞

1
n
T��nx	� �ny	�

exists in probability. Only in the case where V�i� j� are Exp(1)-distributed has
γ�x�y� been explicitly computed: γ�x�y� = x+y+2

√
xy. This is a consequence

of a hydrodynamic limit for the totally asymmetric simple exclusion process,
first proved by Rost (1981). Bounds on γ�x�y� for more general distributions
have been derived by Glynn and Whitt (1991).

A limit in a different scaling is also due to Glynn and Whitt (1991): assume
that the common distribution of the V�i� j� has mean and variance one and
an exponentially decaying tail. Let a ∈ �0�1� be a fixed parameter. Then there
is a constant α > 0, independent of the distribution and of the particular value
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of the parameter a, such that for all x�y > 0,

�1�3� lim
n→∞

T��nx	� �nay	� − nx

n�1+a�/2 = α
√
xy in probability.

Greenberg, Schlunk, and Whitt (1993) have conjectured that α = 2, on the
basis of computer simulations and a related limit theorem. Our first result is
a verification of this conjecture.

Theorem 1.1. The constant α = 2.

To prove this theorem, we convert the limit (1.3) into a statement about the
position of a tagged particle in the totally asymmetric simple exclusion pro-
cess. The key to the proof is a variational equality that couples the exclusion
process with infinitely many copies of the queuing system (Lemma 3.1). This
variational formula can be regarded as a particle version of the well-known
Lax–Oleinik formula that gives viscosity solutions of Hamilton–Jacobi equa-
tions [Bardi and Evans (1984), Lions (1982)]. The variational coupling leads
to a general scaling theorem for an infinite series of queues, stated in Section
2. This is a hydrodynamic scaling limit, but the scaling is the one determined
by (1.3) which is different from the usual Euler scaling of the hydrodynamic
limits of asymmetric particle systems. In the end, the value α = 2 is identified
by applying the scaling theorem to an equilibrium system with i.i.d. geometric
queues.

The representation of the queues in terms of the exclusion process is ex-
plained in Section 2. The variational coupling is described in Section 3. Section
4 contains two technical lemmas and Section 5 the proofs of the theorems.

It is fruitful to look at the phenomena from both the particle system and
the queuing point of view. Examples of this are the papers by Kipnis (1986)
and Ferrari and Fontes (1994). Srinivasan (1991, 1993) provides a system-
atic interpretation of the hydrodynamic limits of the exclusion and zero-range
processes in the language of queues. These results are originally due to Rost
(1981), Andjel and Kipnis (1984), Andjel and Vares (1987) and Benassi and
Fouque (1987, 1988). Recent extensions of these results, especially to more
than one space dimension, appear in Landim (1991a, b) and Rezakhanlou
(1991), and a review can be found in Ferrari (1994). Let us also mention that,
even though the limit (1.3) requires exponentially decaying service time tails,
the constant α = 2 is relevant for more general distributions (with mean and
variance one) via a functional central limit theorem for �T�k�n�
. The reader
should consult Theorems 3.1 and 7.1 in Glynn and Whitt (1991).

2. Representations in terms of interacting particle systems. To rep-
resent the queuing system by Markovian interacting particle processes, from
now on we assume that the service times V�i� j� are i.i.d. Exp(1)-distributed.
We generalize the problem described in the Introduction and work with a dou-
bly infinite sequence of servers, indexed by j ∈ Z. The servers are placed on
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the sites of the integer lattice Z and the location of server j is denoted by
σ�j�. This is done so that

�2�1� σ�j− 1� + 1 ≤ σ�j� for all j�
in other words, there is at most one server per site. The number of empty sites
between σ�j − 1� and σ�j� equals the number of customers in the queue at
server j:

�2�2� η�j� = σ�j� − σ�j− 1� − 1 for all j�

where η�j� ∈ �0�1�2� � � �
 denotes the length of the queue at server j. If
η�j� ≥ 1, completion of a service at server j entails that a customer jumps
from the queue at j to the queue at j+1, and the equivalent transition is that
server j jumps one step to the left. Thus, to capture the queuing dynamics,
the rule of evolution for the �σ�j��j∈Z is the following.

Each server j waits an Exp(1)-distributed random amount of time, inde-
pendently of the other servers, and then attempts to jump one step to the left.
If the next site to the left is occupied [equivalently, σ�j− 1� = σ�j� − 1], the
jump is suppressed and σ�j� does not move. But if the site is vacant [equiv-
alently, σ�j − 1� ≤ σ�j� − 2], the jump is executed and σ�j� decreases by
one. In either case, the server resumes waiting for another Exp(1)-distributed
random duration.

Additionally, it will be convenient to allow for the possibility that, for some
j0, σ�j� = −∞ for all j ≤ j0. This simply means that the servers �σ�j��j≤j0

do not take any customers and in no way influence the evolution of �σ�j��j>j0
.

This convention does not contradict (2.1), and (2.2) is irrelevant for servers at
−∞. Notice that if σ�j0� = −∞ < σ�j0 + 1�, then at all times there will be
infinitely many customers at server j0+1. In particular, this convention allows
us to represent the situation described in the introduction, with infinitely
many customers initially at server 1 and no customers at servers j ≥ 2.

Write σ�t� = �σ�j� t��j∈Z for the stochastic process thus defined, where t ≥ 0
is the time variable. If we set Xk = 1 if site k ∈ Z is occupied by a server and
Xk = 0 otherwise, then X�t� = �Xk�t��k∈Z is commonly known as the totally
asymmetric simple exclusion process. The individual servers can be regarded
as tagged particles in this exclusion process.

The result that generalizes Theorem 1.1 is a law of large numbers for
a tagged particle in the exclusion process. Let v0�x� be a nondecreasing
�−∞�+∞�-valued function on R. Let σn = �σn�j��j∈Z, n = 1�2�3� � � �, be
a sequence of (possibly) random initial server configurations, and write
σn�t� = �σn�j� t��j∈Z for the process started at σn. We make the following two
assumptions:

For each y ∈ R, the limit

lim
n→∞n−�1+a�/2σn��nay	� = v0�y�

holds in probability.

(2.3)
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There are constants β0 > 0 and C0 > 0 such that

lim
n→∞P

{
σn�k� ≤ β0n

�1−a�/2k for all k ≤ −C0n
a
} = 1�

(2.4)

Theorem 2.1. Under assumptions (2.3) and (2.4), the limit

�2�5� lim
n→∞

σn��nax	� nt� + nt

n�1+a�/2 = v�x� t�

holds in probability for all t > 0 and all x ∈ R, where the function v�x� t� is
defined by

�2�6� v�x� t� = sup
y≤x

{
v0�y� + 2

√
t�x− y�

}
�

Some remarks are in order: assumptions (2.3) and (2.4) imply that v0�y� ≤
β0y for y ≤ −C0, and consequently (2.6) defines a number v�x� t� ∈ �−∞�+∞�.
The function v�·� t� is nondecreasing for each fixed t. Example 5.1 in Section
5 shows that Theorem 2.1 may fail without an assumption such as (2.4). Here
are two examples that satisfy assumptions (2.3) and (2.4).

Example 2.1. Suppose v0 is continuous and satisfies

�2�7� lim sup
y→−∞

v0�y�
�y� < 0�

Let �σn�0�
 be any sequence of random variables that satisfies (2.3) for y = 0,
and independently of σn�0�, let �ηn�i� = σn�i� − σn�i − 1� − 1� i ∈ Z
 be
independent geometrically distributed random variables with expectations

E�ηn�i�	 = n�1+a�/2�v0�in−a� − v0��i− 1�n−a�	�

Example 2.2. Without the continuity assumption, the independent geo-
metric queues of Example 2.1 may fail assumption (2.3). However, as long as
(2.7) holds and v0 is left-continuous at discontinuities, the deterministic initial
locations σn�i� = �n�1+a�/2v0�in−a�	 + i, i ∈ Z, satisfy (2.3) and (2.4). The +i is
added to satisfy the exclusion rule (2.1) and does not affect (2.3) or (2.4).

To get an interpretation of Theorem 2.1 for a series of queues, notice that
the number of customers served by server �nax	 in the nth system during the
time interval �0� nt	 equals the displacement σn��nax	�−σn��nax	� nt�. Then,
if the hypotheses of Theorem 2.1 hold and n is large, this server will have
served

nt− n�1+a�/2�v�x� t� − v0�x�	 + o�n�1+a�/2�
customers in time �0� nt	, with high probability. Since the service rate is 1,
the term n�1+a�/2�v�x� t� − v0�x�	 + o�n�1+a�/2� represents the total idle time of
server �nax	 up to time nt.
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Let us specialize this to the situation described in the introduction, with
infinitely many customers initially at server 1 and no customers elsewhere.
This initial queue situation is represented by the initial particle configuration
σn�i� = −∞ for i ≤ 0 and σn�i� = �+ i− 1 for i ≥ 1, for any fixed site �. The
corresponding initial macroscopic profile that satisfies (2.3) is v0�x� = −∞
for x ≤ 0 and v0�x� = 0 for x > 0. By (2.6), v�x� t� = −∞ for x ≤ 0 and
v�x� t� = 2

√
tx for x > 0, for all t > 0. Then server �nax	, x > 0, will have

served

nt− 2n�1+a�/2√tx+ o�n�1+a�/2�
customers in time �0� nt	, with high probability. Compare this with the result
under Euler scaling: for 0 < x < t, server �nx	 will have served

nt− 2n
√
tx+ nx+ o�n� = nt− 2n

√
xt

(
1 −

√
xt−1/2

)+ o�n�
customers in time �0� nt	, with high probability. [This can be inferred from
Rost (1981) or from Section 4.2 in Srinivasan (1993).] The following rough
conclusion emerges: for large times t, a server with label of order ta (0 < a < 1)
has idle time of order t�1+a�/2, while a server with label of order t has idle time
of order t.

Theorem 2.1 also implies that, macroscopically, the motion of a server is
governed by a differential equation. Assume that v0 is uniformly Lipschitz and
inf v′0�x� > 0. Then by Theorem 2.1 in Bardi and Evans (1984), v�x� t� defined
by (2.6) is the unique viscosity solution of the Hamilton–Jacobi equation

vt − �vx�−1 = 0� v�x�0� = v0�x��
Several authors have treated laws of large numbers for tagged particles

in the exclusion process under Euler scaling. Spitzer’s (1970) paper contains
remarks that amount to such a result [see Example 3.2 on page 281]. Kip-
nis (1986) and Saada (1987) prove results for equilibrium processes, but for
exclusion processes more general than the totally asymmetric one. Rezakhan-
lou (1994) partially relaxes the equilibrium assumption. Completely general
initial conditions are allowed in Seppäläinen (1996), but the results are valid
only for the one-dimensional totally asymmetric process, just as in the present
paper.

We conclude this section by stating a hydrodynamic limit for the zero-range
process as a corollary of Theorem 2.1. The zero-range process provides an
alternative natural way to represent the series of queues as an interacting
particle system. The point of view is opposite to that used above: now servers
are fixed in space and represented by the sites of the lattice Z, and customers
are particles that jump from site to site. The process is η�t� = �η�j� t��j∈Z

and is �Z+�Z-valued. The rule for the evolution is this: at each site j, after an
Exp(1)-distributed random amount of time, if η�j� ≥ 1, then η�j� decreases
by one and η�j + 1� increases by one. After each jump or jump attempt the
cycle is repeated, independently at each site and independently of the past.
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To state a hydrodynamic scaling limit for this process, we follow the evolu-
tion of the empirical measure defined by

µn�t� dx� = n−�1+a�/2 ∑
j∈Z

η�j� t�δjn−a�dx��

This is a random Radon measure on R, and the integral of a compactly sup-
ported test function φ is given by

µn�t�φ� = n−�1+a�/2 ∑
j∈Z

φ�jn−a�η�j� t��

Corollary 2.1. Under assumptions (2.3) and (2.4), the measures µn�nt�dx�
converge in probability to the Lebesgue–Stieltjes measure of the function v�x� t�
as n → ∞, in the vague topology of Radon measures on R. Equivalently, the
limit

lim
n→∞µn�nt�φ� =

∫
R
φ�x�dv�x� t�

holds in probability for any compactly supported, continuous test function φ
on R.

This follows from Theorem 2.1 by noting that for an interval �x�y	,

µn�nt� �x�y	� = σn��nay	� nt� + nt

n�1+a�/2 − σn��nax	� nt� + nt

n�1+a�/2

which converges to v�y� t� − v�x� t� in probability.

3. The variational formulation. The approach of this paper is based on
a variational formula by which we couple the exclusion process σ�t� with an
infinite collection of queuing systems of the type described in the introduction.
For this queuing system, where at time 0 infinitely many customers are in
queue at server 1 and the queues for servers 2�3�4� � � � are empty, let ξ�j� t�
be the number of customers that have left server j by time t. In terms of the
departure times T�k� j�,
�3�1� ξ�j� t� = min�k ≥ 0� T�k+ 1� j� > t
�

Fix a site � ∈ Z for the moment. As explained in Section 2, this queuing
system can be constructed in terms of a totally asymmetric simple exclusion
process where initially the sites ��� �+ 1� �+ 2� � � �
 are all occupied, the sites
�� � � � �−3� �−2� �−1
 are vacant, and particles jump to the left at exponential
rate 1, respecting the exclusion rule. The particles are interpreted as servers
jumping past customers, and are labeled by j = 1�2�3� � � � from left to right.
Write χ��j� t� for the position of server j ∈ N at time t ≥ 0. We shall use
the symbol χ� for the process in place of the σ of Section 2 when the process
starts from the special initial configuration χ��j�0� = �+ j− 1, j ∈ N. Write
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ξ��j� t� for the number of customers that have left server j by time t in the
χ�-system. We have the identity

�3�2� χ��j� t� = �+ j− 1 − ξ��j� t��
Now assume given an initial configuration �σ�i��i∈Z on �−∞
 ∪ Z that sat-

isfies the exclusion and ordering rule (2.1). The servers at −∞ do not par-
ticipate in the dynamics, so we simply ignore them in the following discus-
sion. The process σ�t� = �σ�i� t��i∈Z is constructed by the standard graphical
representation [see Griffeath (1979) or Liggett (1985), especially the notes
on page 176 of Liggett (1985) for historical references]. Pictorially, the con-
struction takes place on Z × �0�∞�. Put independent Poisson(1) processes on
the time lines �m
 × �0�∞�, m ∈ Z. The points of the Poisson processes are
event times. The rule of evolution is this: suppose �m�τ� is an event time and
σ�j� τ−� = m. If there is no server at site m− 1 at time τ, server j jumps to
site m − 1� σ�j� τ� = m − 1. Otherwise the jump is suppressed and server j
remains at site m� σ�j� τ� = m. All event times are distinct with probability 1
so conflicts do not arise. From the queuing perspective, the event times repre-
sent potential service completions, and a server who encounters an event time
jumps if there is a customer in his queue, whose service is then completed.

For each initial server location σ�i� > −∞ construct a process χσ�i��t�,
whose server particles start off from the locations χσ�i��j�0� = σ�i� + j − 1,
j = 1�2�3� � � � � All these processes are coupled through a common realization
of Poisson event times. However, they are invisible to each other in the sense
that the exclusion interaction (2.1) is valid only between servers of the same
process. In other words, each site contains at most one σ-server, and at most
one χσ�i�-server for each i. The key fact is described in the following lemma.

Lemma 3.1. For almost all realizations of the Poisson event times, the fol-
lowing holds for all k ∈ Z and t ≥ 0:

�3�3� σ�k� t� = sup
i≤k

χσ�i��k− i+ 1� t��

Proof. Fix t1 < ∞, arbitrarily large. With probability 1, we can pick sites
m0 << 0 << m1 arbitrarily far away so that the intervals �m0
 × �0� t1	 and
�m1 + 1
 × �0� t1	 contain no event times. Thus the evolution of the server
particles in the block �m0� � � � �m1
 of sites is isolated from the evolution of
the rest of the process, up to time t1. Equation (3.3) holds at time t = 0 [the
supremum is attained at i = k and at any other i < k such that σ�k�−σ�i� =
k − i]. Since a.s. there are only finitely many event times in the space–time
block

�3�4� �m0� � � � �m1
 × �0� t1	�
it suffices to prove inductively that (3.3) holds right after each event time.

Thus assume that �m�τ� is an event time in the space–time block (3.4), and
that (3.3) holds for all servers σ�k� t� in the block, with 0 ≤ t < τ. If there is
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no σ-server at site m at time τ−, the event time �m�τ� has no effect on (3.3).
So let σ�k� τ−� = m. Two cases need to be considered.

Suppose first that σ�k� does not jump at time τ. Then it must be that
σ�k−1� τ−� = m−1. By the induction assumption (3.3) holds for k−1 at time
τ−, and the supremum is attained at some i ≤ k − 1. Then by the exclusion
rule and the induction assumption again,

m = χσ�i��k− i� τ−� + 1 ≤ χσ�i��k− i+ 1� τ−� ≤ σ�k� τ−� = m�

It follows that the supremum in (3.3) for σ�k� τ−� is attained at i, and that
χσ�i��k − i + 1� cannot jump at time τ. Consequently (3.3) continues to hold
for σ�k� τ�, with supremum still attained at i.

Suppose then that σ�k� does jump at time τ, which happens if σ�k−1� τ−� ≤
m − 2. We wish to argue that χσ�i��k − i + 1� also jumps for any i ≤ k such
that χσ�i��k− i+ 1� τ−� = m. For i = k, this is clear because by construction,
nothing obstructs the jumps of the first server χσ�k��1�. For i ≤ k − 1, the
induction assumption gives

χσ�i��k− i� τ−� ≤ σ�k− 1� τ−� ≤ m− 2�

Thus no χσ�i��k− i+ 1� located at m at time τ− is obstructed by its neighbor,
so they all jump and equation (3.3) continues to hold at time τ. ✷

We shall use (3.3) in the form

�3�5� σ�k� t� = sup
i≤k

{
σ�i� + k− i− ξσ�i��k− i+ 1� t�}�

got by combining (3.2) and (3.3). Under scaling, this identity turns into (2.6);
see (5.2). The interpretation of (3.5) is that the χσ�i�-processes are defined
with the graphical representation, and the random variables ξσ�i��j� t� are
then defined via (3.2) in terms of the χσ�i�-processes. For a fixed i, the process
�ξσ�i��j� t�� j ∈ N� t ≥ 0� is equal in distribution to the process �ξ�j� t�� j ∈
N� t ≥ 0� defined by (3.1), where the departure times �T�k�n�
 are defined
by (1.1) in terms of the i.i.d. Exp(1) variables �V�i� j�
. Both definitions of ξ
are needed in the sequel.

4. Properties of �. Throughout the proofs, we make repeated use of the
fact that 0 < a < 1, without alerting the reader. The first step is to convert
the limit (1.3) into a statement about ξ.

Lemma 4.1. For all t� y > 0,

�4�1� lim
n→∞

ξ��nay	� nt� − nt

n�1+a�/2 = −α
√
ty in probability.

Proof. While one can certainly conjecture this statement from (1.3), it
does not follow without some explicit estimates. Fortunately, Glynn and Whitt
(1991) have provided a strong approximation result adequate for our purposes.
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Theorems 3.1, 4.1 and 7.1 of Glynn and Whitt (1991) give us the following pic-
ture: There is a probability space that supports the departure times �T�k� j�
,
a collection of stochastic processes �D̂j�t�� t ≥ 0
, j ∈ N, and a finite random
variable Y such that

�4�2� max
1≤j≤na

1≤k≤n

�T�k� j� − k−√
nD̂j�k/n�� ≤ Yna log n a.s.

holds for all n. Furthermore, the processes D̂j�·� satisfy

�4�3� �D̂j�nt�� t ≥ 0
 =� �√nD̂j�t�� t ≥ 0
�
and

�4�4� lim
n→∞n−1/2D̂�nx	�1� = α

√
x in probability, for all x > 0.

That α > 0 follows from the superadditivity of D̂n�n� utilized in the proof
of Theorem 7.1 in Glynn and Whitt (1991). We shall employ the following
corollary of (4.2): for a fixed κ ∈ N, there is a finite random variable Y such
that

�4�5� ∣∣T��nx	� �nay	� − �nx	 − √
κnD̂�nay	

(�nx	/κn)∣∣ ≤ Yna log n

holds a.s. for all n, uniformly over x ≤ κ and y ≤ κa.
Now fix y� t > 0, let 0 < ε < α

√
ty, and pick an integer κ > max�t� y1/a
.

Let

sn = t− n�a−1�/2�α
√
yt− ε�

and

Xn = �nsn	 +
√
κnD̂�nay	

(�nsn	/κn)−Yna log n�

a random quantity. By (4.5)

T��nsn	� �nay	� ≥ Xn a.s.

while (4.3) and (4.4), together with some straightforward but lengthy calcula-
tions, show that

lim
n→∞P�Xn > nt
 = 1�

This and (3.1) imply that, with probability tending to 1 as n → ∞,

ξ��nay	� nt� ≤ �nsn	 ≤ nt− n�1+a�/2�α
√
yt− ε��

which in turn implies that, with probability tending to 1 as n → ∞,

ξ��nay	� nt� − nt

n�1+a�/2 ≤ −α
√
ty+ ε�

Since ε > 0 can be made arbitrarily small, this is half the proof of the
lemma. The argument for the other half proceeds along exactly the same lines
and we leave the details to the reader. ✷
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The second fact we need is an estimate on the size of ξ.

Lemma 4.2. Let σn = �σn�i��i∈Z be any sequence of initial server locations.
For any x ∈ R and r0� r1 > 0, the following holds almost surely: for large
enough n,

�4�6� ξσ
n�i���nax	 − i� nt� ≥ (

1 − n�a−1�/2)2(√
nt−

√
�nax	 − i

)2

for all i such that nax− r1n
�1+a�/2 ≤ i ≤ �x− r0�na.

Proof. For simpler notation, let j = �nax	 − i and

J�n� = �j ∈ N� r0n
a ≤ j ≤ r1n

�1+a�/2

be the range of j. Let k = k�n�j� be the smallest integer that satisfies

k ≥ (
1 − n�a−1�/2)2(√

nt−
√
j
)2
�

Since the distribution of ξσ
n�i��j�nt� is independent of the base point σn�i�,

the lemma follows from proving

�4�7� ∑
n

∑
j∈J�n�

P�T�k� j� > nt
 < ∞�

We shall use a coupling argument but describe the coupling only infor-
mally. Pick a parameter ν ∈ �0�1� and consider the equilibrium queuing sys-
tem where customers arrive in a Poisson(1 − ν) stream, the queues are i.i.d.
Geom(ν)-distributed, and the waiting times of an individual customer are i.i.d.
Exp(ν)-distributed. [See Section 2.1 and 2.2 in the monograph of Kelly (1979)
for more details on this.] In the equilibrium system the time when customer
k leaves server j can be represented as S1−ν

k + Sν
j. Here S1−ν

k is a sum of k
i.i.d. Exp(1−ν) variables and represents the time when customer k enters the
system, and Sν

j is a sum of j i.i.d. Exp(ν) variables and represents the waiting
time of customer k in the j first queues. Compared to our original system,
the customers are slowed down in the equilibrium system. Thus T�k� j� is
stochastically dominated by S1−ν

k + Sν
j. This is proved rigorously by coupling

the two systems through common exponential clocks that signal completions
of services. By an elementary scaling property of exponential distributions, we
write

�4�8�
P�T�k� j� > nt
 ≤ P�S1−ν

k +Sν
j > nt


≤ P�S1−ν
k > �1 − ν�nt
 +P�Sν

j > νnt

= P�S1

k > �1 − ν�2nt
 +P�S1
j > ν2nt
�

where S1
m stands for the sum of m i.i.d. Exp(1) variables.

These probabilities will be treated with a simple large deviation bound. For
α�β > 0, Chebyshev’s inequality yields

P�S1
m ≥ m+ β
 ≤ exp�−α�m+ β��E[

exp�αS1
m�

]
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from which optimizing over α gives, for β ≤ m,

�4�9� P�S1
m ≥ m+ β
 ≤ exp�−β2/6m��

Pick and fix γ so that

�4�10� 1
2
< γ <

1
2

(
1 + 3a
1 + a

)
�

and set

�4�11� ν = ν�j�n� =
(
j+ jγ

nt

)1/2

�

Fix a number θ ∈ �0�1�. For large enough n,

k = k�n�j� ≤ �1 + θn�a−1�/2�(1 − n�a−1�/2)2(√
nt−

√
j
)2

holds for all j ∈ J�n�. To bound the first probability on the last line of (4.8),
first check that, by the second inequality in (4.10) and the bound j ≤ r1n

�1+a�/2,
the inequality

�1 − ν�2 ≥ �1 + θn�a−1�/2�(1 − n�a−1�/2)(1 −
√
j/nt

)2

holds for large enough n (no square in the middle factor on the right). From
this conclude that

�4�12�

�1 − ν�2nt− k

≥ k
[�1 − ν�2�1 + θn�a−1�/2�−1(1 − n�a−1�/2)−2(1 −

√
j/nt

)−2 − 1
]

≥ k
[(

1 − n�a−1�/2)−1 − 1
]

≥ n�a−1�/2k/2�

also for large n.
Applying (4.9) and (4.12) leads to

P�S1
k > �1 − ν�2nt
 ≤ P�S1

k > k+ n�a−1�/2k/2

≤ exp�−kna−1/24	�

from which, again for large n,

�4�13�

∑
j∈J�n�

P�S1
k > �1 − ν�2nt
 ≤ ∑

k≥nt/2
exp�−kna−1/24	

≤ c0n
1−a exp�−c1n

a	�

Above, c0 and c1 are constants.
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For the second probability on the last line of (4.8),

�4�14�

∑
j∈J�n�

P�S1
j > ν2nt
 ≤ ∑

j≥r0n
a

P�S1
j > j+ jγ


≤ ∑
j≥r0n

a

exp�−j2γ−1/6	

≤ c2 exp�−c3n
a�2γ−1�	�

This is a summable sequence over n, by virtue of (4.10). Combining (4.8),
(4.13), and (4.14) establishes (4.7) and proves the lemma. ✷

5. Proof of Theorems 1 and 2. We begin by proving an intermediate
version of Theorem 2.1, before we identify the value of α.

Lemma 5.1. Under assumptions (2.3) and (2.4), the limit

�5�1� lim
n→∞

σn��nax	� nt� + nt

n�1+a�/2 = v�x� t� ≡ sup
y≤x

{
v0�y� + α

√
t�x− y�

}
holds in probability for all t > 0 and all x ∈ R.

The proof of Lemma 5.1 is essentially this: rewrite (3.5) in the form

�5�2�

σn��nax	� nt� + nt

n�1+a�/2

= sup
i� i≤nax

{
σn�i�
n�1+a�/2 + �nax	 − i

n�1+a�/2 − ξσ
n�i���nax	 − i� nt� − nt

n�1+a�/2

}
�

take i = �nay	, let n → ∞, and utilize assumption (2.3) and Lemma 4.1.
The technical fact needed for carrying out this approach is that, by virtue
of assumption (2.4), we can suitably restrict the range of i in (5.2) without
affecting the supremum, with high probability. This restriction is done in two
steps, in Lemmas 5.2 and 5.3.

Notice from (2.6) that for all x ∈ R and t > 0, v�x� t� > −∞ if and only if
v0�x� > −∞. The case v�x� t� = −∞ will be dealt with separately after the
finite case.

Lemma 5.2. Fix x ∈ R and t > 0, and assume v0�x� > −∞. Under assump-
tions (2.3) and (2.4), there exists a number r1 > 0 such that the following holds
with probability tending to 1 as n → ∞:

�5�3�
σn��nax	� nt� = max

{
σn�i� + �nax	 − i− ξσ

n�i���nax	 − i� nt��
nax− r1n

�1+a�/2 < i ≤ nax
}
�

Proof. Let r1 > t/β0 where β0 is the constant appearing in assumption
(2.4), and then pick r2 and r3 so that

�5�4� β0r1 > r2 > r3 > t�
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By assumptions (2.3) and v0�x� > −∞,

�5�5� lim
n→∞P

{
σn��nax	� ≤ −�r2 − r3�n

} = 0�

Since ξσ
n��nax	��1� nt� is Poisson(nt) distributed,

�5�6� lim
n→∞P

{
ξσ

n��nax	��1� nt� > r3n
} = 0�

Equations (5.5) and (5.6) imply, via (3.5), that

�5�7� lim
n→∞P

{
σn��nax	� nt� > −r2n

} = 1�

Set in0 = �nax− r1n
�1+a�/2 + 1	. Assumption (2.4) implies, via (5.4), that

�5�8� lim
n→∞P

{
σn�in0� + �nax	 − in0 < −r2n

} = 1�

Combining (5.7) and (5.8) establishes the lemma, because for i ≤ in0 ,

σn�i� + �nax	 − i− ξσ
n�i���nax	 − i� nt� ≤ σn�i� + �nax	 − i

≤ σn�in0� + �nax	 − in0 � ✷

Lemma 5.3. For any fixed x ∈ R and t > 0, assumptions v0�x� > −∞, (2.3)
and (2.4) imply this: There exists a number s < 0 such that, with probability
tending to 1 as n → ∞,

�5�9� σn��nax	� nt� = max
{
σn�i� + �nax	 − i− ξσ

n�i���nax	 − i� nt��
nas < i ≤ nax

}
�

Proof. Let Kn�t� count the jump attempts of server σn��nax	� up to time t,
both those actually executed and those suppressed by the exclusion rule (2.1).
Then trivially σn��nax	� nt� ≥ σn��nax	� −Kn�nt�. By assumptions (2.3) and
v0�x� > −∞, and since Kn�nt� is Poisson(nt) distributed, there is a constant
c0 > −∞ such that

�5�10� lim
n→∞P

{
σn��nax	� nt� > c0n

�1+a�/2 − nt
} = 1�

Next we claim that for some s < 0, the inequality

�5�11� β0in
�1−a�/2 − (

1−n�a−1�/2)2(√
nt−

√
�nax	− i

)2
< �c0 − r1�n�1+a�/2 −nt

holds for all i ≤ nas, where r1 is the constant appearing in (5.3). To justify
(5.11), let j = �nax	 − i and divide (5.11) by nt to get

�5�12� c1n
�a−1�/2 + 1 < β0t

−1n−�1+a�/2j+ (
1 − n�a−1�/2)2(1 −

√
j/nt

)2

with c1 = t−1�xβ0 − c0 + r1�. Next use(
1 − n�a−1�/2)2(1 −

√
j/nt

)2 ≥ 1 − 2n�a−1�/2 − 2
√
j/nt

to argue that (5.12) follows from

�c1 + 2�n�a−1�/2 <
√
j/n

(
β0t

−1
√
jn−a − 2/

√
t
)
�
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This last inequality is true for j ≥ r0n
a for a suitable r0 > 0, so (5.11) holds

for i ≤ nas for any choice of s such that s < x−r0. Pick and fix s to satisfy this
and the inequality s < −C0 where C0 is the constant appearing in assumption
(2.4).

The intersection of the events in (2.4), (4.6), (5.3) and (5.10) occurs with
probability tending to 1 as n increases. The deterministic inequality (5.11)
implies that the event in (5.9) contains this intersection. This proves the
lemma. ✷

Proof of Lemma 5.1. Let us abbreviate

�5�13� Zn = σn��nax	� nt� + nt

n�1+a�/2 �

(i) The case v�x� t� > −∞ for all x. Equivalently, we are assuming that
v0�x� > −∞ for all x. Given ε > 0, pick y ≤ x so that v0�y� + 2

√
t�x− y� >

v�x� t� − ε. Then taking i = �nay	 on the right-hand side of (5.2) shows, by
assumption (2.3) and Lemma 4.1, that

�5�14� lim
n→∞P

{
Zn ≥ v�x� t� − ε

} = 1�

For the converse, pick a partition

s = r0 < r1 < · · · < rm = x

with mesh δ = max�r�+1 − r�
, where s is the number given by Lemma 5.3.
Since each i appearing on the right-hand side of (5.9) lies in one of the partition
intervals ��nar�	� � � � � �nar�+1	
, (5.9) implies that

�5�15� Zn ≤ max
0≤�≤m−1

{
σn��nar�+1	�

n�1+a�/2 − ξσ
n��nar�+1	�(�nax	 − �nar�	� nt

)− nt

n�1+a�/2

}

+O�n�a−1�/2��
The random variable on the right-hand side of (5.15) converges in probability,
again by (2.3) and Lemma 4.1, to the quantity

max
0≤�≤m−1

{
v0�r�+1� + 2

√
t�x− r��

}
�

This in turn is bounded above by

v�x� t� +ω�δ��
where ω�δ� is the modulus of continuity of the function y �→ 2

√
t�x− y� on

s ≤ y ≤ x, and satisfies limδ→0 ω�δ� = 0. These facts together show that

�5�16� lim
n→∞P

{
Zn ≤ v�x� t� + ε

} = 1�

This completes the proof of Lemma 5.1 for the case v0 > −∞.
(ii) The general case. Now suppose v0�x� is a �−∞�+∞�-valued nondecreas-

ing function, not identically equal to −∞. By (i), we may assume that for some
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x0 > −∞, v0�x� = −∞ for x < x0. Let �σn
 ⊂ ��−∞
 ∪ Z�Z be a sequence of
random initial configurations that satisfy (2.3) and (2.4). Equation (5.14) is
still valid, so we only have to worry about deducing (5.16). For this we use a
sequence of approximating functions u0 = uB

0 , indexed by a parameter B << 0
that tends to −∞. We set

u0�x� =
{
x+B� if y+B ≥ v0�y� for all y ≤ x�

v0�x�� otherwise.

Let

b = sup�x� y+B ≥ v0�y� for all y ≤ x

and consider values of B small enough so that b is finite. Notice that y+B is
never below v0�y� on the entire real line because v0�y� = −∞ for small enough
y. One can see that u0�x� = x+B for x < b, u0�b� = max�b+B�v0�b�
, and
u0�x� = v0�x� for x > b. For a fixed B, define initial configurations ζn = ζn�B

by

�5�17� ζn�i� =
{
σn�i�� for i > �nab	�
max�σn�i�� �n�1+a�/2�in−a +B�	
� for i ≤ �nab	�

Assumptions (2.3) and (2.4) hold again with σn, v0 and β0 replaced by ζn, u0
and β̃0 = min�β0�1
, respectively. Consequently the part proved above gives

�5�18� lim
n→∞

ζn��nax	� nt� + nt

n�1+a�/2 = u�x� t� ≡ sup
y≤x

{
u0�y� + α

√
t�x− y�

}
�

We can couple σn�·� and ζn�·� through a common graphical representation,
and then the inequality

�5�19� σn�i� t� ≤ ζn�i� t� for all i ∈ Z� t > 0�

which holds at time t = 0 by construction (5.17), continues to hold at all
successive times. Thus we get, for any ε > 0,

lim
n→∞P

{
Zn ≤ u�x� t� + ε

} = 1�

It remains to observe that u�x� t� ↘ v�x� t� as B ↘ −∞. This completes the
proof of Lemma 5.1. ✷

For the proof of Theorem 1 we need these large deviation bounds on geo-
metric random variables:

Lemma 5.4. Suppose Sn = X1 + · · · +Xn is a sum of n i.i.d. Geom(p) vari-
ables, in other words, P�Xi = k
 = pqk for k = 0�1�2� � � �, with q = 1 − p.
Then for 0 < ε < 1,

P�Sn ≤ �1 − ε�nq/p
 ≤ exp�−nqε2/2�
and

P�Sn ≥ �1 + ε�nq/p
 ≤ exp�−nqε2/6��
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Proof. For the first probability, Chebyshev’s inequality gives for α < 0,

P�Sn ≤ �1 − ε�nq/p
 = P
{
exp�αSn� ≥ exp�α�1 − ε�nq/p�


≤ exp
{−n[α�1 − ε�q/p− logp/�1 − qeα�]}�

Set α = log��1−ε��p+�1−ε�q�−1	 and do a Taylor expansion in the exponent.
A similar argument proves the second inequality of the statement. ✷

Proof of Theorem 1.1. Define a sequence σn=�σn�j��j∈Z, n=1�2�3� � � � �
of random initial server configurations as follows: P�σn�0� = 0
 = 1, and
�ηn�i� = σn�i� − σn�i− 1� − 1� i ∈ Z
 are i.i.d. Geom(1 − ν) distributed, with

ν = νn = n�1−a�/2

1 + n�1−a�/2 �

Note that E�σn�k�	 = n�1−a�/2k� By Lemma 5.4, assumptions (2.3) and (2.4)
hold with v0�y� = y, β0 < 1, and C0 > 0. So by Lemma 5.1,

�5�20� lim
n→∞

σn�0� nt� + nt

n�1+a�/2 = sup
y≤0

{
y+ α

√
−ty } = α2t/4

holds in probability.
On the other hand, the i.i.d. geometric distributions are invariant for the

zero-range process �ηn�i��i∈Z [Andjel (1982)]. It is well known that, with ser-
vice rate 1 and queues in Geom(1 − ν) equilibrium, the departure process
of a queue is a rate ν Poisson process [see page 34 in Kelly (1979)]. Since
σn�0�0� = 0 and server 0 jumps left whenever a customer leaves the queue,
−σn�0� nt� is Poisson distributed with parameter

ntν = nt− nt

1 + n�1−a�/2 �

Consequently

�5�21� lim
n→∞

σn�0� nt� + nt

n�1+a�/2 = t�

Comparison of (5.20) and (5.21) gives α = 2. ✷

For the proof of Theorem 2.1, combine Lemma 5.1 and Theorem 1.1.
The following simple example demonstrates how Theorem 2.1 can fail with-

out assumption (2.4).

Example 5.1. Let �cj
 be any sequence of numbers greater than or equal
to 1 increasing to +∞. By Lemma 4.1, choose an increasing sequence �nj
 of

integers such that nj > c
3/2�1−a�
j and

∑
j

P

{
ξ��cjnj	� njt� − njt

n
�1+a�/2
j

> −2
√
cjt+ 1

}
< +∞�
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For each nj, define an initial configuration by

σnj�−�cjna
j	 + k� = −�c1/4

j n�1+a�/2	
+ max

{
k� �kn�1−a�/2 + �c1/4

j − cj�n�1+a�/2	}
for all k ∈ Z, and for n �= nj put σn�k� = k�n�1−a�/2	 for all k ∈ Z. Then (2.3)
holds with v0�x� = x, and by (2.6), v�x� t� = x+ t. But the conclusion (2.5) of
Theorem 2.1 fails because with probability 1, for large enough nj,

σnj�0� njt� + njt

n
�1+a�/2
j

≥ σnj�−�cjna
j	�

n
�1+a�/2
j

− ξσ
nj �−�cjna

j	���cjnj	� njt� − njt

n
�1+a�/2
j

≥ −c1/4
j + 2

√
cjt

which tends to +∞ as j → ∞.
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