Title	A scaling limit of a Hamiltonian of many nonrelativistic particles interacting with a quantized radiation field
AuthorſIs□	Hiroshima□F□
Autions	TI JOS ILITALIFU
C itation	Hokkaido University Preprint Series in Mathematics 338 1184
Issue Date	1996[5 [] 1
DOI	10🗆 4943 🖪 3484
DocURL	http://indilhandlelinet/2115/69088
Туре	bulletin [article]
File Information	pre338@pdf

A Scaling limit of a Hamiltonian of many nonrelativistic particles interacting with a quantized radiation field

Fumio Hiroshima

Series #338. May 1996

HOKKAIDO UNIVERSITY PREPRINT SERIES IN MATHEMATICS

- #314 T. Mikami, Weak convergence on the first exit time of randomly perturbed dynamical systems with a repulsive equilibrium point, 20 pages. 1995.
- #315 A. Arai, Canonical commutation relations, the Weierstrass Zetafunction, and infinite dimensional Hilbert space representations of the quantum group U_q (\mathfrak{sl}_2), 22 pages. 1995.
- #316 Y. Shibukawa, Vertex-face correspondence in elliptic solutions of the Yang-Baxter equation, 8 pages. 1995.
- #317 M.-H. Giga and Y. Giga, Consistency in evolutions by crystalline curvature, 16 pages. 1995.
- #318 Wei-Zhi Sun, Shadows of moving surfaces, 19 pages. 1995.
- #319 S. Izumiya and G.T. Kossioris, Bifurcations of shock waves for viscosity solutions of Hamilton-Jacobi equations of one space variable, 39 pages. 1995.
- #320 T. Teruya, Normal intermediate subfactors, 44 pages. 1995.
- #321 M. Ohnuma, Axisymmetric solutions and singular parabolic equations in the theory of viscosity solutions, 26 pages. 1995.
- #322 T. Nakazi, An outer function and several important functions in two variables, 12 pages. 1995.
- #323 N. Kawazumi, An infinitesimal approach to the stable cohomology of the moduli of Riemann surfaces, 22 pages. 1995.
- #324 A. Arai, Factorization of self-adjoint operators by abstract Dirac operators and its application to second quantizations on Boson Fermion Fock spaces, 15 pages. 1995.
- #325 K. Sugano, On strongly separable Frobenius extensions, 11 pages. 1995.
- #326 D. Lehmann and T. Suwa, Residues of holomorphic vector fields on singular varieties, 21 pages. 1995.
- #327 K. Tsutaya, Local regularity of non-resonant nonlinear wave equations, 23 pages. 1996.
- #328 T. Ozawa and Y. Tsutsumi, Space-time estimates for null gauge forms and nonlinear Schrödinger equations, 25 pages. 1996.
- #329 O. Ogurisu, Anticommutativity and spin 1/2 Schrödinger operators with magnetic fields, 12 pages. 1996.
- #330 Y. Kurokawa, Singularities for projections of contour lines of surfaces onto planes, 24 pages. 1996.
- #331 M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, 94 pages. 1996.
- #332 M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications to the *p*-laplace diffusion equation, 20 pages. 1996.
- #333 T. Nakazi, The spectra of Toeplitz operators with unimodular symbols, 9 pages. 1996.
- #334 B. Khanedani and T. Suwa, First variation of horomorphic forms and some applications, 11 pages. 1996.
- #335 J. Seade and T. Suwa, Residues and topological invariants of singular holomorphic foliations¹, 28 pages.
- #336 Y. Giga, M.E. Gurtin and J. Matias, On the dynamics of crystalline motions, 67 pages. 1996.
- #337 I. Tsuda, A new type of self-organization associated with chaotic dynamics in neural networks, 22 pages. 1996.

A Scaling limit of a Hamiltonian of many nonrelativistic particles interacting with a quantized radiation field

Fumio HIROSHIMA

Department of Mathematics, Faculty of Science, Hokkaido University Sapporo 060 Japan

Abstract

This paper presents a scaling limit of Hamiltonians which describe interactions of N-nonrelativistic charged particles in a scalar potential and a quantized radiation field in the Coulomb gauge with the dipole approximation. The scaling limit defines effective potentials. In one-nonrelativistic particle case, the effective potentials have been known to be Gaussian transformations of the scalar potential [J.Math.Phys.34(1993)4478-4518]. However it is shown that the effective potentials in the case of N-nonrelativistic particles are not necessary to be Gaussian transformations of the scalar potential.

2 Fumio Hiroshima

1 INTRODUCTION

The main problem in this paper is to consider a scaling limit of a model in quantum electrodynamics which describes an interaction of many nonrelativistic charged particles and a quantized radiation field in the Coulomb gauge with the dipole approximation. For our discussion we may limit ourselves to the case of a fixed number N of the particles, since N dose not change in time. The model we consider is called "the Pauli-Fierz model", which has been a subject of great interests and by which real physical phenomena of charged particles and a quantized radiation field such as "Lamb shift" can be interpreted. There has been a considerable amount of literature on the Pauli-Fierz model with one-nonrelativistic charged particle, e.g., [1,2] from points of view of physics and [3,4,5,6,7,8] mathematical points of view. In particular, the authors of [5,6] have studied a scaling limit of the Pauli-Fierz model with one-nonrelativistic charged particle. We may well extend the scaling limit of one-particle system to N-particle system.

The authors of [5,6] defined Hamiltonians of the Pauli-Fierz model as self-adjoint operators H_{ρ} with an ultraviolet cut-off function ρ acting in the tensor product of the Hilbert space $L^2(\mathbb{R}^d)$ and a Boson Fock space $\mathcal{F}(\mathcal{W})$ over $\mathcal{W}=\oplus_{r=1}^{d-1}L^2(\mathbb{R}^d)$. Introducing scalings with respect to parameters c (the speed of light), m (the mass of the particle) and e (the charge of the particle), the authors have shown the existence of the strong resolvent limits of the scaled self-adjoint operators $H_{\rho}^{REN}(\kappa) + V \otimes I$ with an infinite self-energy of the non-relativistic particle subtracted with a scalar potential V, (we call the limit "the scaling limit of $H_{\rho} + V \otimes I$ "): In [6] we have proved the following:

Let V and ρ satisfy some conditions and Δ be the Laplacian in $L^2(\mathbb{R}^d)$. Then $H_{\rho}^{REN}(\kappa) + V \otimes I$ is self-adjoint and bounded from below uniformly in sufficiently large $\kappa > 0$ with

$$s - \lim_{\kappa \to \infty} (H_{\rho}^{REN}(\kappa) + V \otimes I - z)^{-1} = \mathcal{S}\left\{\left(-\frac{1}{2m_{\infty}}\Delta + V_{eff} - z\right)^{-1} \otimes P_0\right\} \mathcal{S}^{-1},$$

where $z \in \mathbb{C} \setminus \mathbb{R}$, m_{∞} is a positive constant, S a unitary operator on $L^{2}(\mathbb{R}^{d}) \otimes \mathcal{F}(\mathcal{W})$, P_{0} a

projection on $\mathcal{F}(\mathcal{W})$ and V_{eff} a multiplication operator defined by

$$V_{eff}(x) = (2\pi\alpha)^{-\frac{d}{2}} \int dy e^{-|x-y|^2/2\alpha} V(y),$$

where α is a positive constant. The multiplication operator V_{eff} is called "the effective potential".

One of the strongest methods to analyze the scaling limits in [5,6] was to find Bogoliubov transformations \mathcal{U} , which implements a unitary equivalence between the Pauli-Fierz Hamiltonians H_{ρ} and decoupled Hamiltonians of the form

$$\widetilde{H} = -\frac{1}{2\widetilde{m}}\Delta \otimes I + I \otimes H_b + constant,$$

where \widetilde{m} is a positive constant and H_b is the free Hamiltonian of the quantized radiation field in $\mathcal{F}(\mathcal{W})$; the authors of [5,6] show equations of the following type:

$$\left(H_{\rho}^{REN} + V \otimes I - z\right)^{-1} = \mathcal{U}\left(\widetilde{H} + \mathcal{U}^{-1}(V \otimes I)\mathcal{U} - z\right)^{-1}\mathcal{U}^{-1}.$$
 (1. 1)

In this paper, the Pauli-Fierz Hamiltonian $H_{\vec{\rho}}$ with N-nonrelativistic charged particles in the Coulomb gauge with the dipole approximation are defined as operators acting in the Hilbert space $L^2(\mathbb{R}^d) \otimes ... \otimes L^2(\mathbb{R}^d) \otimes \mathcal{F}(\mathcal{W}) \cong L^2(\mathbb{R}^{dN}) \otimes \mathcal{F}(\mathcal{W})$ by

$$\begin{split} H_{\vec{\rho}} &= \frac{1}{2m} \sum_{j=1}^{N} \sum_{\mu=1}^{d} \left(-i\hbar D_{\mu}^{j} \otimes I - eI \otimes A_{\mu}(\rho_{j}) \right)^{2} + I \otimes H_{b} \\ &= -\frac{\hbar^{2}}{2m} \Delta \otimes I + I \otimes H_{b} + \frac{1}{2m} \sum_{j=1}^{N} \sum_{\mu=1}^{d} \left(2e\hbar i D_{\mu}^{j} \otimes A_{\mu}(\rho_{j}) + e^{2}I \otimes A_{\mu}^{2}(\rho_{j}) \right), \end{split}$$

where D^j_{μ} is the differential operator with respect to the j-th variable in the μ -th direction, Δ the Laplacian in $L^2(\mathbb{R}^{dN})$, \hbar the Planck constant divided 2π and $A_{\mu}(\rho_j)$ the quantized radiation field in the μ -th direction with an ultraviolet cut-off function ρ_j in the Coulomb gauge. Problems arising in the many particles system are as follows:

(i) Do there any Bogoliubov transformations such as (1.1) exist?

(ii) What kind of scalar potentials V and sets of ultraviolet cut-off functions $(\rho_1, ..., \rho_N)$ do a scaling limit of the Hamiltonian $H_{\vec{\rho}} + V \otimes I$ exist for ? Furthermore, what kind of infinite self-energy should be subtracted from the original Hamiltonian $H_{\vec{\rho}} + V \otimes I$?

(iii) If the scaling limit exists, what form does the effective potential have?

With this motivation, we continue here to analyze a scaling limit of the Pauli-Fierz model with N-nonrelativistic charged particles.

We introduce the same scaling as [6] as follows;

$$c(\kappa) = c\kappa, e(\kappa) = e\kappa^{-\frac{1}{2}}, m(\kappa) = m\kappa^{-2}.$$
 (1. 2)

Introducing a pseudo differential operator $E^{REN}(D,\kappa)$ in $L^2(\mathbb{R}^{dN})$ with a symbol $E^{REN}(p,\kappa)$ such that $E^{REN}(p,\kappa) \to \infty$ as $\kappa \to \infty$, we define a Hamiltonian $H_{\vec{\rho}}^{REN}(\kappa)$ by

$$H_{ec{
ho}}^{REN}(\kappa) = -E^{REN}(D,\kappa) \otimes I + \kappa I \otimes H_b + rac{1}{2m} \sum_{j=1}^{N} \sum_{\mu=1}^{d} \left(\kappa 2e\hbar i D_{\mu}^{j} \otimes A_{\mu}(
ho_{j}) + e^{2}I \otimes A_{\mu}^{2}(
ho_{j})
ight).$$

For sufficiently large $\kappa > 0$ and a scalar potential V with some conditions, we shall show that $H_{\vec{\rho}}^{REN}(\kappa) + V \otimes I$ is essentially self-adjoint on $D(-\Delta \otimes I) \cap D(I \otimes H_b)$ and bounded from below uniformly in sufficiently large $\kappa > 0$, and the existence of Bogoliubov transformations $\mathcal{U}(\kappa)$, which gives a unitary equivalence of $H_{\vec{\rho}}^{REN}(\kappa) + V \otimes I$ and a self-adjoint operator $\widetilde{H}_{\vec{\rho}}(\kappa) + C_{\kappa}(V)$ as follows;

$$(H_{\vec{\rho}}^{REN}(\kappa) + V \otimes I - z)^{-1} = \mathcal{U}(\kappa)(\widetilde{H_{\vec{\rho}}}(\kappa) + C_{\kappa}(V) - z)^{-1}\mathcal{U}^{-1}(\kappa),$$

where $\widetilde{H_{\vec{\rho}}}(\kappa) = \widetilde{E}(D,\kappa) \otimes I + \kappa I \otimes H_b$, $\widetilde{E}(D,\kappa)$ is a pseudo differential operator in $L^2(\mathbb{R}^{dN})$ and $C_{\kappa}(V) = \mathcal{U}^{-1}(\kappa)(V \otimes I)\mathcal{U}(\kappa)$ (Theorem 3.5). Then we see that $\mathcal{U}(\kappa) \to \mathcal{U}(\infty)$ as $\kappa \to \infty$ strongly (Theorem 3.4) and hence we get

$$s - \lim_{\kappa \to \infty} (H_{\vec{\rho}}^{REN}(\kappa) + V \otimes I - z)^{-1} = \mathcal{U}(\infty) \left\{ (E^{\infty}(D) + V_{eff} - z)^{-1} \otimes P_0 \right\} \mathcal{U}^{-1}(\infty),$$

where $E^{\infty}(D)$ is a pseudo differential operator in $L^2(\mathbb{R}^{dN})$ and V_{eff} a multiplication operator. (Theorems 3.6, 3.7). In the case of one-particle system the effective potential V_{eff} is a Gaussian transformation of a given scalar potential V. However, we shall see that in the N-particle system, V_{eff} is not necessary to be a Gaussian transformation. Actually it is determined by a matrix $\tilde{\Delta}^{\infty} = (\tilde{\Delta}_{ij}^{\infty})_{1 \leq i,j \leq N}$ defined by

$$\widetilde{\Delta}_{ij}^{\infty} = \frac{1}{2} \frac{d-1}{d} \left(\frac{\hbar}{mc} \right) \frac{e^2}{\hbar c} \int_{\mathbb{R}^d} dk \frac{\hat{\rho}_i(k)\hat{\rho}_j(k)}{\omega(k)^3}, \tag{1. 3}$$

where $\omega(k) = |k|, k \in \mathbb{R}^d$. In the case where $\tilde{\Delta}^{\infty}$ is non-degenerate, the effective potential V_{eff} is Gaussian transformations of V.

The outline of this paper is as follows. In section 2, we define the Pauli-Fierz Hamiltonian with N-nonrelativistic charged particles in the Coulomb gauge with the dipole approximation and show its self-adjointness. Moreover we construct an exact solution to the Heisenberg equation from the point of view of the operator theory (Corollary 2.9). In section 3, when the scaling parameter $\kappa > 0$ is sufficiently large, we show that a Bogoliubov transformation can be constructed, and define a renormalized self-adjoint operator $H_{\vec{\rho}}^{REN}(\kappa)$ which is the original Hamiltonian $H_{\vec{\rho}}(\kappa)$ with an infinite self-energy of the nonrelativistic charged particles subtracted. We shall show the existence of the scaling limit of $H_{\vec{\rho}} + V \otimes I$ and give an explicit form of the effective potential. We give a typical example of a scalar potential and a set of ultraviolet cut-off functions. In section 4, we give a physical interpretation of the matrix $\tilde{\Delta}^{\infty}$.

The author would like to thank Professor A.Arai for helpful discussions.

2 THE PAULI-FIERZ MODEL AND EXACT SO-LUTION

To begin with, let us introduce some preliminary notations. Let \mathcal{H} be a Hilbert space over \mathbb{C} . We denote the inner product and the associated norm by $\langle *, \cdot \rangle_{\mathcal{H}}$ and $||\cdot||_{\mathcal{H}}$ respectively.

6 Fumio Hiroshima

The inner product is linear in \cdot and antilinear in *. The domain of an operator A in \mathcal{H} is denoted by D(A). A notation The Fourier transformation of a function f is denoted by \hat{f} (resp. \check{f}) and \bar{f} the complex conjugate of f. In this paper, summations over repeated Greek letters are understood. Let

$$\mathcal{W} \equiv \underbrace{L^2(\mathbb{R}^d) \oplus ... \oplus L^2(\mathbb{R}^d)}_{d-1}.$$

We define the Boson Fock space over W by

$$\mathcal{F}(\mathcal{W}) \equiv igoplus_{n=0}^\infty \otimes_s^n \mathcal{W} \equiv igoplus \mathcal{F}_n(\mathcal{W}),$$

where $\otimes_s^0 \mathcal{W} \equiv \mathbb{C}$ and $\otimes_s^n \mathcal{W}$ $(n \geq 1)$ denotes the n-fold symmetric tensor product. Put

$$\mathcal{F}^N(\mathcal{W}) \equiv \bigoplus_{n=0}^N \mathcal{F}_n(\mathcal{W}) \bigoplus_{n>N+1} \{0\}.$$

Moreover we define the finite particle subspace of $\mathcal{F}(\mathcal{W})$ by

$$\mathcal{F}^{\infty}(\mathcal{W}) \equiv \bigcup_{N=0}^{\infty} \mathcal{F}^{N}(\mathcal{W}).$$

The annihilation operator a(f) and the creation operator $a^{\dagger}(f)$ $(f \in \mathcal{W})$ act on the finite particle subspace and leave it invariant with the canonical commutation relations (CCR): for $f, g \in \mathcal{W}$

$$\begin{aligned} & [a(f), a^{\dagger}(g)] &= \left\langle \bar{f}, g \right\rangle_{\mathcal{W}}, \\ & [a^{\sharp}(f), a^{\sharp}(g)] &= 0, \end{aligned}$$

where [A, B] = AB - BA, a^{\sharp} denotes either a or a^{\dagger} . Furthermore,

$$\left\langle a^{\dagger}(f)\Phi,\Psi\right\rangle_{\mathcal{F}(\mathcal{W})}=\left\langle \Phi,a(\bar{f})\Psi\right\rangle_{\mathcal{F}(\mathcal{W})},\quad \Phi,\Psi\in\mathcal{F}^{\infty}(\mathcal{W}).$$

We define polarization vectors $e^r(r=1,...,d-1)$ as measurable functions $e^r: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ such that

$$e^r(k)e^s(k) = \delta_{rs}, \quad e^r(k)k = 0, \quad a.e.k \in \mathbb{R}^d.$$

In this paper, we fix polarization vectors e^r . The μ -th direction time-zero smeared radiation field in the Coulomb gauge with the dipole approximation is defined as operators acting in $\mathcal{F}(\mathcal{W})$ by

$$A_{\mu}(f) = \frac{1}{\sqrt{2}} \left\{ a^{\dagger} \left(\bigoplus_{r=1}^{d-1} \frac{\sqrt{\hbar} e_{\mu}^{r} \hat{f}}{\sqrt{c\omega}} \right) + a \left(\bigoplus_{r=1}^{d-1} \frac{\sqrt{\hbar} e_{\mu}^{r} \hat{f}}{\sqrt{c\omega}} \right) \right\}, \tag{2. 1}$$

and the conjugate momentum

$$\Pi_{\mu}(f) = \frac{i}{\sqrt{2}} \left\{ a^{\dagger} \left(\bigoplus_{r=1}^{d-1} \sqrt{\hbar} \sqrt{c\omega} e_{\mu}^{r} \hat{f} \right) - a \left(\bigoplus_{r=1}^{d-1} \sqrt{\hbar} \sqrt{c\omega} e_{\mu}^{r} \hat{f} \right) \right\}, \tag{2. 2}$$

where $\tilde{g}(k) = g(-k)$. Note that in the case where f is real-valued, $A_{\mu}(f)$ and $\Pi_{\mu}(f)$ are symmetric operators. Let $\Omega = (1, 0, 0, ...) \in \mathcal{F}(\mathcal{W})$. It is well known that

$$\mathcal{L}\left\{a^{\dagger}(f_1)...a^{\dagger}(f_n)\Omega,\Omega|f_j\in\mathcal{W},j=1,...,n,n\geq 1\right\}$$

is dense in $\mathcal{F}(\mathcal{W})$. For a nonnegative self-adjoint operator $h: \mathcal{W} \to \mathcal{W}$, an operator $\Gamma(e^{-th})$ is defined by

$$\Gamma(e^{-th})a^{\dagger}(f_1)...a^{\dagger}(f_n)\Omega = a^{\dagger}(e^{-th}f_1)...a^{\dagger}(e^{-th}f_n)\Omega,$$

$$\Gamma(e^{-th})\Omega = \Omega.$$

The operator $\Gamma(e^{-th})$ defines a unique strongly continuous one-parameter semigroup on $\mathcal{F}(\mathcal{W})$. Hence, by Stone's theorem, there exists a nonnegative self-adjoint operator $d\Gamma(h)$ in $\mathcal{F}(\mathcal{W})$ such that

$$\Gamma(e^{-th}) = e^{-td\Gamma(h)}.$$

The operator $d\Gamma(h)$ is called "the second quantization of h". Put $\widetilde{\omega} = \underbrace{\omega \oplus ... \oplus \omega}_{d-1}$. The free Hamiltonian H_b in $\mathcal{F}(\mathcal{W})$ is defined by

$$H_b \equiv \hbar c d\Gamma(\widetilde{\omega}).$$

Let M_d be a Hilbert space defined by

$$M_d = \left\{ f \left| \int |f(k)|^2 \omega(k)^d dk \right| < \infty \right\},$$

with the inner product

$$\langle f, g \rangle_n = \int_{\mathbb{R}^d} \bar{f}(k)g(k)\omega(k)^n dk.$$

We have the following commutation relations on $\mathcal{F}^{\infty}(\mathcal{W})$,

$$\begin{split} &[A_{\mu}(f),A_{\nu}(g)]=0, & \hat{f},\hat{g}\in M_{-1}, \\ &[\Pi_{\mu}(f),\Pi_{\nu}(g)]=0, & \hat{f},\hat{g}\in M_{1}, \\ &[A_{\mu}(f),\Pi_{\nu}(g)]=i\hbar \left\langle d_{\mu\nu}\hat{\tilde{f}},\hat{g}\right\rangle_{L^{2}(\mathbb{R}^{d})}, & \hat{f},\hat{g}\in M_{-1}\cap M_{0}\cap M_{1}, \end{split}$$

and on $D(H_b^{\frac{3}{2}})$,

$$[H_b, A_{\mu}(f)] = -i\hbar \Pi_{\mu}(f), \qquad \hat{f} \in M_{-1} \cap M_1,$$

$$[H_b, \Pi_{\mu}(f)] = i\hbar c^2 A_{\mu}(-\Delta f), \quad \hat{f} \in M_3 \cap M_1,$$

where Δ is the Laplacian in the L^2 -sense and $d_{\mu\nu}(k) = \sum_{r=1}^d e_{\mu}^r(k) e_{\nu}^r(k)$. The Pauli-Fierz Hamiltonian with N-nonrelativistic charged particles interacting with the quantized radiation field in the Coulomb gauge with the dipole approximation is defined by

$$H_{\vec{\rho}} \equiv H_{\rho_1,...,\rho_N} \equiv \frac{1}{2m} \sum_{j=1}^N \sum_{\mu=1}^d \left(-i\hbar D^j_{\mu} \otimes I - eI \otimes A_{\mu}(\rho_j) \right)^2 + I \otimes H_b,$$

acting in

$$\underbrace{L^2(\mathbb{R}^d) \otimes \ldots \otimes L^2(\mathbb{R}^d)}_{N} \bigotimes \mathcal{F}(\mathcal{W}) \cong L^2(\mathbb{R}^{dN}) \otimes \mathcal{F}(\mathcal{W}) \cong \int_{\mathbb{R}^{dN}}^{\oplus} \mathcal{F}(\mathcal{W}) dx,$$

where D^j_{μ} is the L^2 -derivative with respect to the j-th variable in the μ -th direction, $\rho'_j s$ serve as ultraviolet cut-off functions. We introduce a scaling with respect to the parameters c, e, m as (1.2). Throughout this paper, for objects A = A(c, e, m) containing the parameters c, e, m, we denote the scaled object by $A(\kappa) \equiv A(c(\kappa), e(\kappa), m(\kappa))$. We define a class of sets of functions as follows:

Definition 2.1 $\vec{\rho} = (\rho_1, ..., \rho_N)$ is in P if and only if

- (1) $\hat{\rho}_j, j = 1, ..., N$ are rotation invariant, $\hat{\rho}_j(k) = \hat{\rho}_j(|k|)$, and real-valued,
- (2) $\hat{\rho}_j/\omega, \hat{\rho}_j/\sqrt{\omega}, \hat{\rho}_j, \sqrt{\omega}\hat{\rho}_j \in L^2(\mathbb{R}^d).$

Moreover $\vec{\rho}$ is in \widetilde{P} if and only if in addition to (1) and (2) above

- (3) For all j = 1, ..., N, $\hat{\rho}_j/\omega\sqrt{\omega} \in L^2(\mathbb{R}^d)$ and there exist $0 < \alpha < 1$ and $1 \le \epsilon$ such that $\hat{\rho}_i(\sqrt{s})\hat{\rho}_j(\sqrt{s})(\sqrt{s})^{d-2} \in Lip(\alpha) \cap L^{\epsilon}([0,\infty))$, where $Lip(\alpha)$ is the set of the Lipschitz continuous functions on $[0,\infty)$ with order α ,
- (4) $\sup_{k} |\hat{\rho}_{j}(k)\omega^{\frac{d}{2}-\frac{3}{2}}(k)| < \infty, \sup_{k} |\hat{\rho}_{j}(k)\omega^{\frac{d}{2}-\frac{1}{2}}(k)| < \infty, j = 1, ..., N.$

Observe that Definition 2.1 (1) implies that ρ_j 's are real-valued functions. Hence $A_{\mu}(\rho_j)$'s are symmetric operators. Put

$$H_0 = -\frac{1}{2m}\hbar^2 \Delta \otimes I + I \otimes H_b,$$

where Δ is the Laplacian in $L^2(\mathbb{R}^{dN})$. It is well known that H_0 is a nonnegative self-adjoint operator on $D(H_0) = D\left(-\frac{1}{2m}\hbar^2\Delta\otimes I\right) \cap D(I\otimes H_b)$.

Theorem 2.2 ([3,4]) For $\vec{\rho} \in P$ and $\kappa > 0$, the operator $H_{\vec{\rho}}(\kappa)$ is self-adjoint on $D(H_0)$ and essentially self-adjoint on any core of H_0 and nonnegative.

Let $\mathbf{F} = F \otimes I$, where F denotes the Fourier transform in $L^2(\mathbb{R}^{dN})$. It is clear that operators $\mathbf{F}H_{\bar{\rho}}\mathbf{F}^{-1}$ can be decomposable as follows:

$$\mathbf{F} H_{\vec{\rho}}(\kappa) \mathbf{F}^{-1} = \int_{\mathbb{R}^{dN}}^{\oplus} H_{\vec{\rho}}(p,\kappa) dp,$$

where

$$H_{\vec{\rho}}(p,\kappa) = \frac{1}{2m} \sum_{i=1}^{N} \sum_{\mu=1}^{d} \left(\kappa \hbar p_{\mu}^{j} - eA_{\mu}(\rho_{j}) \right)^{2} + \kappa H_{b}.$$

Theorem 2.3 ([3,4]) For $\vec{\rho} \in P$ and $\kappa > 0$, the operator $H_{\vec{\rho}}(p,\kappa)$ is self-adjoint on $D(H_0)$ and essentially self-adjoint on any core of H_b and nonnegative.

Following [3,4,6], we shall construct a Heisenberg field concretely. The Heisenberg field $A_{\mu}(f,t,\kappa)$ with the scaling parameter κ is defined by a solution to the Heisenberg equation:

$$\frac{d}{dt}A_{\mu}(f,t,\kappa) = \frac{i}{\hbar}[H_{\bar{\rho}}(p,\kappa), A_{\mu}(f,t,\kappa)],$$

$$A_{\mu}(f,0,\kappa) = A_{\mu}(f,\kappa).$$

In order to construct the Heisenberg field in a rigorous way, we shall prepare some technical lemmas. We define an $N \times N$ matrix-valued function $\mathbb{D}(z) = (D_{ij}(z))_{1 \leq i,j \leq N}$ by

$$D_{ij}(z) = m\delta_{ij} - \frac{e^2}{c^2} \frac{d-1}{d} \int_{\mathbb{R}^d} \frac{\hat{\rho}_i(k)\hat{\rho}_j(k)}{z - |k|^2} dk, \quad z \in \mathbb{C} \setminus [0, \infty).$$

Lemma 2.4 Let $(\ ,\)$ denote the Euclidean inner product. Suppose $\vec{\rho}\in \tilde{P}.$ Then the followings hold:

- (1) The functions $D_{ij}(z,\kappa), 1 \leq i, j \leq N, \kappa > 0$ are analytic in $\mathbb{C} \setminus [0,\infty)$.
- (2) For $s \in [0, \infty)$ and $\kappa > 0$, the pointwise limit $D_{\pm ij}(s, \kappa) \equiv \lim_{h \to 0} D_{ij}(s \pm ih, \kappa)$ exists and has the following form

$$D_{\pm ij}(s,\kappa) = \frac{m}{\kappa^2} \delta_{ij} - \frac{1}{\kappa^3} \left(\frac{e^2}{c^2} \frac{\mathbf{V}_d}{2} \frac{d-1}{d} \right) H_{ij}(s) \pm \frac{2\pi i}{\kappa^3} \left(\frac{e^2}{c^2} \frac{\mathbf{V}_d}{2} \frac{d-1}{d} \right) K_{ij}(s),$$

$$K_{ij}(s) = \hat{\rho}_i(\sqrt{s}) \hat{\rho}_j(\sqrt{s}) s^{\frac{d}{2}-1},$$

$$H_{ij}(s) = \lim_{\epsilon \to 0+} \int_{|s-x| > \epsilon} \frac{K_{ij}(x)}{s-x} dx,$$

where $\mathbf{V}_d = 2\pi^{\frac{d}{2}}/\Gamma(\frac{d}{2})$ ($\Gamma(z)$ is the gamma function). The convergence is uniform in $s \in [0, \infty)$; for any $\delta > 0$, there exists $h_0 > 0$ independent of s, κ , such that for $0 < \forall h \leq h_0$,

$$|D_{ij}(s \pm ih, \kappa) - D_{\pm ij}(s, \kappa)| \le \frac{\delta}{\kappa^3}.$$

Moreover $H_{ij}(s)$ is Lipschitz continuous in $s \in [0, \infty)$ with the same order as that of K_{ij} and contained in $L^{\epsilon}(\mathbb{R}^d)$ with some $\epsilon \geq 1$.

(3) Let $\kappa > 0$ be sufficiently large. Put $\mathbb{D}_{\pm}(s,\kappa) = (D_{\pm ij}(s,\kappa))_{1 \leq i,j \leq N}$. Then there exists a positive constant $d_1(\kappa)$ such that for $(w_1,...,w_N) = \vec{w} \in \mathbb{C}^N$,

$$\inf_{s \in [0,\infty)} |(\mathbb{D}_{\pm}(s,\kappa)\vec{w},\vec{w})| > d_1(\kappa)|\vec{w}|^2.$$

(4) Let $\kappa > 0$ be sufficiently large. Then there exists a positive constant $d_2(\kappa)$ such that for $\vec{w} \in \mathbb{C}^N$,

$$\inf_{z\in\mathbb{C}\backslash[0,\infty)}|(\mathbb{D}(z,\kappa)\vec{w},\vec{w})|>d_2(\kappa)|\vec{w}|^2.$$

Proof: The statements (1) and (2) are fundamental facts([9]). We shall prove (3). From (2) it follows that

$$(\mathbb{D}_{\pm}(s,\kappa)\vec{w},\vec{w}) = \frac{m}{\kappa^2} \left\{ |\vec{w}|^2 - \frac{1}{\kappa} \frac{\lambda}{m} (H(s)\vec{w},\vec{w}) \right\} \pm 2\pi i \frac{\lambda}{\kappa^3} (K(s)\vec{w},\vec{w}),$$

where $\lambda = \frac{e^2}{c^2} \frac{\mathbf{V}_d}{2} \frac{d-1}{d}$, $H(s) = (H_{ij}(s))_{1 \leq i,j \leq d}$, $K(s) = (K_{ij}(s))_{1 \leq i,j \leq d}$. Since H_{ij} is a Lipschitz continuous function and contained in $L^{\epsilon}([0,\infty))$, it is bounded. Hence we have

$$|(H(s)\vec{w}, \vec{w})| \le N \times \sup_{s \in [0, \infty), 1 \le i, j \le d} |H_{ij}(s)| \cdot |\vec{w}|^2 \equiv \alpha |\vec{w}|^2.$$

Thus we can see that for sufficiently large $\kappa > 0$

$$|(\mathbb{D}_{\pm}(s,\kappa)\vec{w},\vec{w})| \ge \frac{m}{\kappa^2} \left(1 - \frac{1}{\kappa} \frac{\lambda}{m} \alpha\right) |\vec{w}|^2.$$

Hence we get (3). We shall prove (4). From (2) it follows that for any $\eta > 0$, there exists $\epsilon_0 > 0$ independent of $s \in [0, \infty)$ and $\kappa > 0$ such that for $0 <^{\forall} \epsilon \leq \epsilon_0$,

$$|(\mathbb{D}_{\pm}(s,\kappa)\vec{w},\vec{w})| - \frac{\eta}{\kappa^3}|\vec{w}|^2 \le |(\mathbb{D}(s\pm i\epsilon,\kappa)\vec{w},\vec{w})|.$$

Hence we have

$$|(\mathbb{D}(s \pm i\epsilon, \kappa)\vec{w}, \vec{w})| \ge \left\{ \frac{m}{\kappa^2} \left(1 - \frac{1}{\kappa} \frac{\lambda}{m} \alpha \right) - \frac{\eta}{\kappa^3} \right\} |\vec{w}|^2.$$
 (2. 3)

On the other hand, put $\Pi_{\epsilon_0} = \mathbb{C} \setminus \{x + iy | x \geq 0, |y| \leq \epsilon_0 \}$. Then we see that for $x + iy \in \Pi_{\epsilon_0}$

$$(\mathbb{D}(x+iy,\kappa)\vec{w},\vec{w}) = \frac{m}{\kappa^2} \left(|\vec{w}|^2 - \frac{1}{\kappa} \frac{\lambda}{m} \int_0^\infty \frac{(x-s)|\sum_{i=1}^N w_i \hat{\rho}_i(\sqrt{s})|^2 s^{\frac{d}{2}-1}}{(x-s)^2 + y^2} ds \right)$$

$$+ i \frac{\lambda}{\kappa^3} \int_0^\infty \frac{y|\sum_{i=1}^N w_i \hat{\rho}(\sqrt{s})|^2 s^{\frac{d}{2}-1}}{(x-s)^2 + y^2} ds.$$

Noting that $|ab|/a^2 + b^2 \le 1/2$, we have

$$\left| \int_{0}^{\infty} \frac{(x-s)|\sum_{i=1}^{N} w_{i} \hat{\rho}_{i}(\sqrt{s})|^{2} s^{\frac{d}{2}-1}}{(x-s)^{2} + y^{2}} ds \right| \leq \frac{1}{2|y|} \int_{0}^{\infty} |\sum_{i=1}^{N} w_{i} \hat{\rho}_{i}(\sqrt{s})|^{2} s^{\frac{d}{2}-1} ds,$$

$$\leq \frac{1}{2\epsilon_{0}} \int_{0}^{\infty} \sum_{i=1}^{N} |\hat{\rho}_{i}(\sqrt{s})|^{2} s^{\frac{d}{2}-1} ds |\vec{w}|^{2}$$

$$\equiv \frac{\beta}{\epsilon_{0}} |\vec{w}|^{2}.$$

Since ϵ_0 is independent of $\kappa > 0$, we see that for sufficiently large $\kappa > 0$,

$$|(\mathbb{D}(x+iy,\kappa)\vec{w},\vec{w})| \ge \frac{m}{\kappa^2} \left(1 - \frac{1}{\kappa} \frac{\lambda}{m} \frac{\beta}{\epsilon_0} \right) |\vec{w}|^2, \quad x+iy \in \Pi_{\epsilon_0}.$$
 (2. 4)

Combining (2.3) and (2.4), we get (4).

From Lemma 2.4 (3) and (4) it follows that for sufficiently large $\kappa > 0$, there exist the inverse matrices to $\mathbb{D}(z, \kappa)$ and $\mathbb{D}_{\pm}(s, \kappa)$, which satisfy

$$\sup_{s \in [0,\infty)} \left| \left(\mathbb{D}_{\pm}^{-1}(s,\kappa) \vec{w}_1, \vec{w}_2 \right) \right| < \frac{1}{d_1(\kappa)} |\vec{w}_1| |\vec{w}_2|, \tag{2.5}$$

$$\sup_{z \in \mathbb{C} \setminus [0,\infty)} \left| \left(\mathbb{D}^{-1}(z,\kappa) \vec{w}_1, \vec{w}_2 \right) \right| < \frac{1}{d_2(\kappa)} |\vec{w}_1| |\vec{w}_2|. \tag{2. 6}$$

We set for $\vec{\rho} \in \tilde{P}$ and sufficiently large $\kappa > 0$

$$Q(k,\kappa) \equiv \mathbb{D}_{+}^{-1}(k^{2},\kappa) \begin{pmatrix} \hat{\rho}_{1}(k) \\ \vdots \\ \hat{\rho}_{N}(k) \end{pmatrix} \equiv (Q_{1}(k,\kappa),...,Q_{N}(k,\kappa)).$$

For later use in Appendix, we note that for all $s \in [0, \infty)$,

$$D_{+ij}(s,\kappa) - D_{-ij}(s,\kappa) = 2\pi i \frac{1}{\kappa^3} \left(\frac{e^2}{c^2} \mathbf{V}_d \frac{d-1}{d} \right) \hat{\rho}_i(\sqrt{s}) \hat{\rho}_j(\sqrt{s}) s^{\frac{d}{2}-1}.$$
 (2. 7)

Put $\mathbb{D}^{-1}(z) = (D_{ij}^{-1}(z))_{1 \le ij \le N}, \mathbb{D}_{\pm}^{-1}(s) = (D_{\pm ij}^{-1}(s))_{1 \le ij \le N}$. Then (2.7) implies that

$$\frac{2\pi i}{\kappa^3} \left(\frac{e^2}{c^2} \mathbf{V}_d \frac{d-1}{d} \right) \sum_{k,l=1}^N D_{-ik}^{-1}(s,\kappa) D_{+jl}^{-1}(s,\kappa) \hat{\rho}_k(\sqrt{s}) \hat{\rho}_l(\sqrt{s}) s^{\frac{d}{2}-1} = D_{-ij}(s,\kappa) - D_{+ji}(s,\kappa).$$
(2. 8)

Remark 2.5

- (1) In [3,4,6], the authors define functions $D_{\pm}(s)$ corresponding to $\mathbb{D}_{\pm}(s)$ defined in this paper. The function $1/D_{\pm}(s,\kappa)$ can be well defined for some ρ and any $\kappa > 0$. However, in our case, we do not know whether $\mathbb{D}_{\pm}(s,\kappa)$ has the inverse or not for all $\kappa > 0$. But since, in this paper, we focus on an asymptotic behavior as $\kappa \to \infty$, it is sufficient to consider the case where κ is sufficiently large.
- (2) For the proof of Lemma 2.4, we do not need Definition 2.1 (4).

We define operators G_h (h > 0) by

$$(G_h f)(k) = \int_{\mathbb{R}^d} \frac{f(k')}{(k^2 - k'^2 + ih)(kk')^{\frac{d}{2} - 1}} dk'.$$

It is well known and not so hard to see that G_h are bounded linear operators on $L^2(\mathbb{R}^d)$ and the strong limits $\lim_{h\to 0} G_h \equiv G$ exists ([4]). Furthermore G is skew symmetric $(G^* = -G)$. For sufficiently large $\kappa > 0$, we can define the following operators:

$$T_{\mu\nu}(\kappa)f \equiv \delta_{\mu\nu}f + \frac{1}{\kappa^3} \frac{e^2}{c^2} \sum_{j=1}^{N} Q_j(\kappa) \omega^{\frac{d}{2}-1} G \omega^{\frac{d}{2}-1} d_{\mu\nu} \hat{\rho}_j f, \quad 1 \le \mu, \nu \le d.$$

Lemma 2.6 Suppose that $\vec{\rho} \in \tilde{P}$ and $\kappa > 0$ is sufficiently large. Then the following holds.

(1) $T_{\mu\nu}(\kappa)$ and $T_{\mu\nu}^*(\kappa)$ are bounded operators on M_{α} , $\alpha = -1, 0, 1$ and $(T_{\mu\nu}(\kappa)\tilde{f}) = T_{\mu\nu}(\kappa)\tilde{f}$.

(2) Put $D_{ij}^{-1}(0,\kappa) \equiv D_{\pm ij}^{-1}(0,\kappa)$ and let $f \in M_{-1}$. Then

$$\left\langle d_{\nu\alpha} \frac{Q_i(\kappa)}{\sqrt{\omega^3}}, \frac{1}{\sqrt{\omega}} T_{\mu\nu}(\kappa) f \right\rangle_{L^2(\mathbb{R}^d)} = \left\langle d_{\mu\alpha} \sum_{j=1}^N D_{ij}^{-1}(0,\kappa) \frac{\hat{\rho}_j}{\sqrt{\omega^3}}, \frac{f}{\sqrt{\omega}} \right\rangle_{L^2(\mathbb{R}^d)}, i = 1, ..., N.$$

- (3) $[\omega^2, T_{\mu\nu}^*(\kappa)] = -\sum_{i=1}^N \frac{1}{\kappa^3} \frac{e^2}{c^2} \langle Q_i(\kappa), \cdot \rangle_{L^2(\mathbb{R}^d)} d_{\mu\nu} \hat{\rho}_i.$
- (4) $T_{\mu\nu}(\kappa)\hat{\rho}_j = \delta_{\mu\nu}\frac{m}{\kappa^2}Q_j(\kappa)$.
- (5) $T_{\mu\nu}^*(\kappa)d_{\nu\alpha}T_{\alpha\beta}(\kappa)=d_{\mu\beta}$.
- (6) $e_{\mu}^{r}T_{\mu\nu}(\kappa)d_{\nu\alpha}T_{\alpha\beta}(\kappa)e_{\beta}^{s}=\delta_{rs}$.

Proof: See Appendix.

In the rest of this section, we fix sufficiently large $\kappa > 0$ and omit κ in notations for simplicity. Define $\widehat{A}_{\mu}(f) = A_{\mu}(\widehat{f})$ and $\widehat{\Pi}_{\mu}(f) = \Pi_{\mu}(\widehat{f})$. We put

$$B^{(r)}(f,p) = \frac{1}{\sqrt{2}} \left\{ \widehat{A}_{\mu} \left(\frac{1}{\sqrt{\hbar}} T_{\mu\nu}^* e_{\nu}^r \sqrt{c\omega} f \right) + i \widehat{\Pi}_{\mu} \left(\frac{1}{\sqrt{\hbar}} T_{\mu\nu}^* e_{\nu}^r \frac{f}{\sqrt{c\omega}} \right) \right.$$

$$\left. + \sum_{j=1}^{N} \hbar p_{\nu}^j \left\langle \frac{e}{\sqrt{\hbar}} \frac{Q_j e_{\nu}^r}{(c\omega)^{\frac{3}{2}}}, f \right\rangle_{L^2(\mathbb{R}^d)} \right\}, \quad f \in M_0,$$

$$B^{\dagger(r)}(f,p) = \frac{1}{\sqrt{2}} \left\{ \widehat{A}_{\mu} \left(\frac{1}{\sqrt{\hbar}} \overline{T}_{\mu\nu}^* \widetilde{e}_{\nu}^r \sqrt{c\omega} \widetilde{f} \right) - i \widehat{\Pi}_{\mu} \left(\frac{1}{\sqrt{\hbar}} \overline{T}_{\mu\nu}^* \widetilde{e}_{\nu}^r \frac{\widetilde{f}}{\sqrt{c\omega}} \right) \right.$$

$$\left. + \sum_{j=1}^{N} \hbar p_{\nu}^j \left\langle \frac{e}{\sqrt{\hbar}} \frac{\overline{Q}_j e_{\nu}^r}{(c\omega)^{\frac{3}{2}}}, f \right\rangle_{L^2(\mathbb{R}^d)} \right\}, f \in M_0, p = (p^1, \dots, p^N) \in \mathbb{R}^{dN}.$$

By the definition of $A_{\mu}(f)$ and $\Pi_{\mu}(f)$, for the vector of the form $\mathbf{f} = f_1 \oplus ... \oplus f_{d-1} \in \mathcal{W}$, we see that for $p = (p^1, ..., p^N) \in \mathbb{R}^{dN}$

$$B(\mathbf{f}, p) \equiv \sum_{r=1}^{d-1} B^{(r)}(f_r, p) = a^{\dagger}(\mathbf{W}_{-}\mathbf{f}) + a(\mathbf{W}_{+}\mathbf{f}) + \sum_{j=1}^{N} \left\langle \mathbf{L}_{j} p^{j}, \mathbf{f} \right\rangle_{L^{2}(\mathbb{R}^{d})},$$

$$B^{\dagger}(\mathbf{f}, p) \equiv \sum_{r=1}^{d-1} B^{\dagger(r)}(f_r, p) = a^{\dagger}(\overline{\mathbf{W}}_{+}\mathbf{f}) + a(\overline{\mathbf{W}}_{-}\mathbf{f}) + \sum_{j=1}^{N} \left\langle \overline{\mathbf{L}}_{j} p^{j}, \mathbf{f} \right\rangle_{L^{2}(\mathbb{R}^{d})}, \qquad (2.9)$$

where

$$\mathbf{W}_{\pm} = (W_{\pm}^{(r,s)})_{1 \le r,s \le d-1},$$

$$\mathbf{L}_{j} = (L_{\mu j}^{r})_{1 \le \mu \le d, \ 1 \le r \le d-1} = \begin{pmatrix} L_{1j}^{1} & \cdots & L_{dj}^{1} \\ \vdots & & \vdots \\ L_{1j}^{d-1} & \cdots & L_{dj}^{d-1} \end{pmatrix}, j = 1, ..., N,$$

where

$$\begin{split} W_{+}^{(r,s)}f &= \frac{1}{2}(\frac{1}{\sqrt{\omega}}e_{\mu}^{r}T_{\mu\nu}^{*}e_{\nu}^{s}\sqrt{\omega} + \sqrt{\omega}e_{\mu}^{r}T_{\mu\nu}^{*}e_{\nu}^{s}\frac{1}{\sqrt{\omega}})f, \\ W_{-}^{(r,s)}f &= \frac{1}{2}(\frac{1}{\sqrt{\omega}}e_{\mu}^{r}T_{\mu\nu}^{*}\tilde{e}_{\nu}^{s}\sqrt{\omega} - \sqrt{\omega}e_{\mu}^{r}T_{\mu\nu}^{*}\tilde{e}_{\nu}^{s}\frac{1}{\sqrt{\omega}})\tilde{f}, \\ L_{\mu j}^{r} &= \frac{e\sqrt{\hbar}e_{\mu}^{r}Q_{j}}{\sqrt{2c^{3}\omega^{3}}}. \end{split}$$

We see that, by Lemma 2.6 (1), \mathbf{W}_{\pm} is a bounded operator on \mathcal{W} . By virtue of Lemma 2.6 (5) and (6), one can easily see that \mathbf{W}_{\pm} satisfy the following algebraic relations:

We put $W_{\alpha} = \underbrace{M_{\alpha} \oplus ... \oplus M_{\alpha}}_{d-1}$, $\alpha \in \mathbb{R}$. These relations (2.10) imply that on $\mathcal{F}^{\infty}(\mathcal{W})$ for $\mathbf{f}, \mathbf{g} \in \mathcal{W}_0$,

$$\begin{split} \left[B(\mathbf{f},p), B^{\dagger}(\mathbf{g},p) \right] &= \langle \mathbf{f}, \mathbf{g} \rangle_{\mathcal{W}} \,, \\ \\ \left[B^{\sharp}(\mathbf{f},p), B^{\sharp}(\mathbf{g},p) \right] &= 0, \end{split}$$

and for $\Phi, \Psi \in \mathcal{F}^{\infty}(\mathcal{W})$,

$$\left\langle B^{\dagger}(\mathbf{f}, p)\Phi, \Psi \right\rangle_{\mathcal{F}(\mathcal{W})} = \left\langle \Phi, B(\bar{\mathbf{f}}, p)\Psi \right\rangle_{\mathcal{F}(\mathcal{W})}$$

Lemma 2.7 For $\mathbf{f} \in \mathcal{W}_0 \cap \mathcal{W}_2$, $p \in \mathbb{R}^{dN}$ and $\vec{\rho} \in \tilde{P}$, we have

$$[H_{\vec{p}}(p), B^{\sharp}(\mathbf{f}, p)] = \pm B^{\sharp}(\hbar c \tilde{\omega} \mathbf{f}, p), \text{ on } \mathcal{F}^{\infty}(\mathcal{W}) \cap D(H_b^{\frac{3}{2}}), \tag{2. 11}$$

where + (resp.-) corresponds to B^{\dagger} (resp.B).

Proof: Suppose that $\mathbf{f} \in \mathcal{W}_{-2} \cap \mathcal{W}_0 \cap \mathcal{W}_2$. Then by Lemma 2.6 (3) and (4), one can directly see that (2.11) holds. Next by a limiting argument, one can get (2.11) for $\mathbf{f} \in \mathcal{W}_0 \cap \mathcal{W}_2$.

Define

$$A(\mathbf{f}, p) \equiv \frac{1}{\sqrt{2}} \left(B^{\dagger}(\mathbf{f}, p) + B(\bar{\mathbf{f}}, p) \right),$$

$$\Pi(\mathbf{f}, p) \equiv \frac{i}{\sqrt{2}} \left(B^{\dagger}(\mathbf{f}, p) - B(\bar{\mathbf{f}}, p) \right), \quad \mathbf{f} \in \mathcal{W}_{0}.$$

We can easily see that the operators $A(\mathbf{f}, p)|_{\mathcal{F}^{\infty}(\mathcal{W})}$ and $\Pi(\mathbf{f}, p)|_{\mathcal{F}^{\infty}(\mathcal{W})}$ are essentially self-adjoint by the Nelson analytic vector theorem [10,Theorem X.39]. We denote the self-adjoint extensions by the same symbols.

Theorem 2.8 Suppose $\vec{\rho} \in \widetilde{P}$. Then for $\mathbf{f} \in \mathcal{W}_0$

$$\exp\left(i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right)A(\mathbf{f},p)\exp\left(-i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right) = A(e^{ic\widetilde{\omega}t}\mathbf{f},p), \qquad (2. 12)$$

$$\exp\left(i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right)\Pi(\mathbf{f},p)\exp\left(-i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right) = \Pi(e^{ic\tilde{\omega}t}\mathbf{f},p). \tag{2. 13}$$

Proof: We only show an outline of the proof. For simplicity, put $A(e^{ic\tilde{\omega}t}\mathbf{f},p) = A(\mathbf{f},p,t)$. Let $C^{\infty}(H_b) = \bigcap_{n=1}^{\infty} D(H_b^n)$. We can easily see that, by Lemma 2.7, $\langle e^{iA(\mathbf{f},p,t)}\Psi, \Phi \rangle$, $\Psi, \Phi \in C^{\infty}(H_b) \cap \mathcal{F}^{\infty}(W)$, $\mathbf{f} \in W_{-2} \cap W_0 \cap W_2$, is differentiable in t with

$$\frac{d}{dt} \left\langle e^{iA(\mathbf{f},p,t)} \Psi, \Phi \right\rangle_{\mathcal{F}(\mathcal{W})} = \left\langle \frac{i}{\hbar} e^{iA(\mathbf{f},p,t)} \Psi, H_{\vec{\rho}}(p) \Phi \right\rangle_{\mathcal{F}(\mathcal{W})} - \left\langle \frac{i}{\hbar} H_{\vec{\rho}}(p) \Psi, e^{-iA(\mathbf{f},p,t)} \Phi \right\rangle_{\mathcal{F}(\mathcal{W})} (2. 14)$$

From (2.14) it follows that

$$\frac{d}{dt} \left\langle e^{-i\frac{t}{\hbar}H_{\vec{\rho}}(p)} e^{iA(\mathbf{f},p,t)} e^{i\frac{t}{\hbar}H_{\vec{\rho}}(p)} \Psi, \Phi \right\rangle_{\mathcal{F}(\mathcal{W})} = 0, \quad \Psi, \Phi \in D(H_b), \mathbf{f} \in \mathcal{W}_0.$$

Hence

$$e^{isA(\mathbf{f},p,0)} = e^{i\frac{t}{\hbar}H_{\vec{\rho}}(p)}e^{isA(\mathbf{f},p,t)}e^{-i\frac{t}{\hbar}H_{\vec{\rho}}(p)}, \quad on \ C^{\infty}(H_b) \cap \mathcal{F}^{\infty}(\mathcal{W}). \tag{2. 15}$$

By a limiting argument, one can see that (2.15) holds for $\Phi, \Psi \in D(H_b)$, $\mathbf{f} \in \mathcal{W}_0$. Since the both sides of (2.15) are one parameter unitary groups in $s \in \mathbb{R}$, Stone's theorem yields (2.12). (2.13) is quite similar to (2.12). Thus we get the desired result.

For $t \in \mathbb{R}$, we define operators in $\mathcal{F}(\mathcal{W})$ by

$$A_{\mu}(f,t|p) = \frac{1}{\sqrt{2}} \sum_{r=1}^{d-1} \left\{ B^{\dagger(r)} \left(\frac{\sqrt{\hbar}}{\sqrt{c\omega}} e^{ic\omega t} e_{\nu}^{r} \overline{T}_{\mu\nu} \hat{f}, p \right) + B^{(r)} \left(\frac{\sqrt{\hbar}}{\sqrt{c\omega}} e^{-ic\omega t} e_{\nu}^{r} T_{\mu\nu} \hat{f}, p \right) \right\}$$

$$-e \sum_{i,j=1}^{N} \hbar p_{\nu}^{i} \left\langle d_{\mu\nu} D_{ij}^{-1}(0) \frac{\hat{\rho}_{j}}{\sqrt{(c\omega)^{3}}}, \frac{\hat{f}}{\sqrt{c\omega}} \right\rangle_{L^{2}(\mathbb{R}^{d})}, \quad \hat{f} \in M_{-1}, \mu = 1, ..., d.$$

Form Lemma 2.5 (2) (5) and (6) it follows that

$$A_{\mu}(f,0|p) = A_{\mu}(f).$$
 (2. 16)

Corollary 2.9 Suppose $\vec{\rho} \in \tilde{P}$. Then the operator $A_{\mu}(f,t|p)$ is the Heisenberg field with

$$\exp\left(i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right)A_{\mu}(f)\exp\left(-i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right) = A_{\mu}(f,t|p). \tag{2.17}$$

Proof: It is enough to show (2.17) for a real-valued function f. For a real-valued function f such that $\hat{f} \in M_{-1}$, we can see that

$$\begin{split} A_{\mu}(f) &= \frac{1}{\sqrt{2}} \sum_{r=1}^{d-1} \left\{ B^{\dagger(r)} \left(\frac{\sqrt{\hbar}}{\sqrt{c\omega}} e_{\nu}^{r} \overline{T}_{\mu\nu} \hat{f}, p \right) + B^{(r)} \left(\frac{\sqrt{\hbar}}{\sqrt{c\omega}} e_{\nu}^{r} \overline{T}_{\mu\nu} \hat{f}, p \right) \right\} \\ &- e \sum_{i,j=1}^{N} \hbar p_{\nu}^{i} \left\langle d_{\mu\nu} D_{ij}^{-1}(0) \frac{\hat{\rho}_{j}}{\sqrt{(c\omega)^{3}}}, \frac{\hat{f}}{\sqrt{c\omega}} \right\rangle. \end{split}$$

Hence (2.17) follows from Theorem 2.8.

Corollary 2.10 Suppose $\vec{\rho} \in \tilde{P}$. Then for $\Phi \in D(H_b)$,

$$\exp\left(i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right)B^{\sharp}(\mathbf{f},p)\exp\left(-i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right)\Phi = B^{\sharp}(e^{ic\widetilde{\omega}t}\mathbf{f},p)\Phi$$

Proof: Note that $D(B^{\sharp}(\mathbf{f},p)) \subset D(H_b) = D(H_{\vec{\rho}}(p))$. Thus from (2.12) and (2.13) it follows that on $D(H_b)$

$$\begin{split} e^{i\frac{t}{\hbar}H_{\vec{\rho}}(p)}A(\mathbf{f},p)e^{-i\frac{t}{\hbar}H_{\vec{\rho}}(p)} &= \frac{1}{\sqrt{2}}\left\{e^{i\frac{t}{\hbar}H_{\vec{\rho}}(p)}B^{\dagger}(\mathbf{f},p)e^{-i\frac{t}{\hbar}H_{\vec{\rho}}(p)} + e^{i\frac{t}{\hbar}H_{\vec{\rho}}(p)}B(\overline{\mathbf{f}},p)e^{-i\frac{t}{\hbar}H_{\vec{\rho}}(p)}\right\}, \\ &= \frac{1}{\sqrt{2}}\left\{B^{\dagger}(e^{ic\widetilde{\omega}t}\mathbf{f}) + B(e^{-ic\widetilde{\omega}t}\overline{\mathbf{f}})\right\}, \\ e^{i\frac{t}{\hbar}H_{\vec{\rho}}(p)}\Pi(\mathbf{f},p)e^{-i\frac{t}{\hbar}H_{\vec{\rho}}(p)} &= \frac{i}{\sqrt{2}}\left\{e^{i\frac{t}{\hbar}H_{\vec{\rho}}(p)}B^{\dagger}(\mathbf{f},p)e^{(-i\frac{t}{\hbar}H_{\vec{\rho}}(p)} - e^{i\frac{t}{\hbar}H_{\vec{\rho}}(p)}B(\overline{\mathbf{f}},p)e^{-i\frac{t}{\hbar}H_{\vec{\rho}}(p)}\right\} \\ &= \frac{i}{\sqrt{2}}\left\{B^{\dagger}(e^{ic\widetilde{\omega}t}\mathbf{f}) - B(e^{-ic\widetilde{\omega}t}\overline{\mathbf{f}})\right\}. \end{split}$$

Thus the corollary follows.

3 BOGOLIUBOV TRANSFORMATIONS AND SCAL-ING LIMITS

In this section, we construct a unitary operator which implements a unitary equivalence of the Pauli-Fierz Hamiltonian and a decoupled Hamiltonian. Moreover we investigate a scaling limit of the Pauli-Fierz Hamiltonian. Unless otherwise stated in this section, we suppose that $\kappa > 0$ is sufficiently large. Since the bounded operators $W_{-}^{r,s}(\kappa)$ have integral kernels

$$W_{-}^{(r,s)}(k,k',\kappa) = \frac{1}{\kappa^3} \frac{e^2}{c^2} \frac{e^r_{\mu}(k) e^s_{\mu}(k') \sum_{j=1}^N \hat{\rho}_j(k) \overline{Q}_j(k',\kappa)}{2(|k| + |k'|)(|k||k'|)^{\frac{1}{2}}},$$

such that $W_{-}^{(r,s)}(\kappa) \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$, the operator $\mathbf{W}_{-}(\kappa)$ is a Hilbert Schmidt operator on \mathcal{W} . Then from (2.9) and (2.10) it follows that there exist two unitary operators $U(\kappa)$ (p independent) and $S(p,\kappa)$ such that ([6,Section III])

$$U^{-1}(\kappa)S(p,\kappa)^{-1}B^{\sharp}(\mathbf{f},p,\kappa)S(p,\kappa)U(\kappa) = a^{\sharp}(\mathbf{f}), \quad \mathbf{f} \in \mathcal{W}.$$
(3. 1)

Concretely $S(p, \kappa)$ is given by

$$S(p,\kappa) = \exp\left(\sum_{i,j=1}^N \frac{e\hbar}{\kappa^2} p_\mu^i \left\{ a \left(\bigoplus_{r=1}^{d-1} \frac{e_\mu^r D_{ij}^{-1}(0,\kappa) \hat{\rho}_j}{\sqrt{2\hbar c^3 \omega^3}} \right) - a^\dagger \left(\bigoplus_{r=1}^{d-1} \frac{e_\mu^r D_{ij}^{-1}(0,\kappa) \hat{\rho}_j}{\sqrt{2\hbar c^3 \omega^3}} \right) \right\} \right).$$

Theorem 3.1 Suppose $\vec{\rho} \in \tilde{P}$. Then putting $S(p,\kappa)U(\kappa) = \mathcal{U}(p,\kappa)$, we see that $\mathcal{U}(p,\kappa)$ maps $D(H_b)$ onto itself with

$$\mathcal{U}(p,\kappa)H_{\vec{\rho}}(p,\kappa)\mathcal{U}^{-1}(p,\kappa) = \kappa H_b + E(p,\kappa), \tag{3. 2}$$

where

$$\begin{split} E(p,\kappa) &= \frac{\hbar^2}{2m} \sum_{i=1}^N \sum_{\mu=1}^d \left(\kappa p_\mu^i + \kappa \tilde{p}_\mu^i(\kappa) \right)^2 + \square(\kappa), \\ \tilde{p}_\mu^i(\kappa) &= \sum_{j=1}^N p_\nu^j \Delta_{\nu\mu}^{ji}(\kappa), \\ \Delta_{\nu\mu}^{ji}(\kappa) &= \frac{1}{\kappa^3} \frac{e^2}{2c^2} \sum_{k=1}^N \sum_{r,s=1}^{d-1} \left\langle \frac{e_\nu^r D_{jk}^{-1}(0,\kappa) \hat{\rho}_k}{\sqrt{\omega^3}}, \left(I + \mathbf{W}_-(\kappa) \mathbf{W}_+^{-1}(\kappa) \right)^{(r,s)} \frac{e_\mu^s \hat{\rho}_i}{\sqrt{\omega}} \right\rangle_{L^2(\mathbb{R}^d)}, \\ \square(\kappa) &= \frac{e^2 \hbar}{4mc} \sum_{i=1}^N \sum_{r,s=1}^{d-1} \left\langle \frac{e_\mu^r \hat{\rho}_i}{\sqrt{\omega}}, \left(I - \mathbf{W}_-(\kappa) \mathbf{W}_+^{-1}(\kappa) \right)^{(r,s)} \frac{e_\mu^s \hat{\rho}_i}{\sqrt{\omega}} \right\rangle_{L^2(\mathbb{R}^d)}. \end{split}$$

Proof: For simplicity, we omit the symbol κ . Put $\mathcal{U}(p)\Omega \equiv \Omega(p)$. From [6,Proposition 2.4, Lemma 5.9] it follows that $\Omega(p) \in D(H_b)$. Then $\Omega(p) \in D(B(\mathbf{f}, p))$. By virtue of Corollary 2.10 and (3.1), we can see that for all $\mathbf{f} \in \mathcal{W}$

$$B(\mathbf{f}, p) \exp\left(i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right)\Omega(p) = 0. \tag{3. 3}$$

The equation (3.3) implies that there exists a positive constant E(p) such that

$$\exp\left(i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right)\Omega(p) = \exp\left(i\frac{t}{\hbar}E(p)\right)\Omega(p). \tag{3.4}$$

Hence from Corollary 2.10, (3.1), (3.4) and the denseness of

$$\mathcal{L}\left\{B^{\dagger}(\mathbf{f}_1)...B^{\dagger}(\mathbf{f}_n)\Omega(p),\Omega(p)\middle|\mathbf{f}_j\in\mathcal{W},j=1,...,n,n\geq 1\right\}$$

one can get (3.2)(we refer to [6,Lemma 5.12]). Noting that ([6,Lemma 2.2])

$$a\left(\oplus_{r=1}^{d-1} \frac{\sqrt{\hbar} e_{\mu}^{r} \hat{\rho}_{i}}{\sqrt{2c\omega}} \right) \Omega(p) = \left\{ -\tilde{p}_{\mu}^{i} - a^{\dagger} \left(\oplus_{r=1}^{d-1} \sum_{s=1}^{d-1} \left(\mathbf{W}_{-} \mathbf{W}_{+}^{-1} \right)^{(r,s)} \frac{\sqrt{\hbar} e_{\mu}^{s} \hat{\rho}_{i}}{\sqrt{2c\omega}} \right) \right\} \Omega(p),$$

one can easily get E(p) by

$$E(p) = \frac{\langle H_{\vec{\rho}}(p)\Omega(p), \Omega \rangle_{\mathcal{F}(\mathcal{W})}}{\langle \Omega(p), \Omega \rangle_{\mathcal{F}(\mathcal{W})}}.$$

This completes the proof.

The positive constant $E(p,\kappa)$ can be rewritten as

$$E(p,\kappa) = \frac{\kappa^2 \hbar^2}{2m} p^2 + E^{REN}(p,\kappa) + \tilde{E}(p,\kappa),$$

where

$$\widetilde{E}(p,\kappa) = \frac{\kappa^2 \hbar^2}{2m} \sum_{i,j=1}^{N} \sum_{\mu,\nu=1}^{d} p_{\mu}^{i} b_{\mu\nu}^{ij}(\kappa) p_{\nu}^{j}, \qquad (3.5)$$

$$b_{\mu\nu}^{ij}(\kappa) = \sum_{k=1}^{N} \sum_{\alpha=1}^{d} \left(\frac{\Delta_{\nu\alpha}^{jk}(\kappa) + \overline{\Delta_{\nu\alpha}^{jk}}(\kappa)}{2} \right) \left(\frac{\Delta_{\mu\alpha}^{ik}(\kappa) + \overline{\Delta_{\mu\alpha}^{ik}}(\kappa)}{2} \right),$$

$$E^{REN}(p,\kappa) = E(p,\kappa) - \frac{\kappa^2 \hbar^2}{2m} p^2 - \widetilde{E}(p,\kappa).$$

Let M(K) be the set of $K \times K$ complex matrices. Note that since $(b^{ij}_{\mu\nu}(\kappa))_{1 \leq i,j \leq N, 1 \leq \mu,\nu \leq d} \in M(N) \otimes M(d) \cong M(dN)$ is nonnegative and symmetric, we have $\widetilde{E}(p,\kappa) \geq 0$ for $p \in \mathbb{R}^{dN}$. We define $H_{\vec{\rho}}^{REN}(p,\kappa)$ and $\widetilde{H_{\vec{\rho}}}(p,\kappa)$ by

$$H_{\overline{\rho}}^{REN}(p,\kappa) = -E^{REN}(p,\kappa) + \kappa H_b + \frac{1}{2m} \sum_{j=1}^{N} \sum_{\mu=1}^{d} \left(-2\kappa e \hbar p_{\mu}^{j} A_{\mu}(\rho_{j}) + e^{2} A_{\mu}(\rho_{j})^{2} \right),$$

$$\widetilde{H}_{\overline{\rho}}(p,\kappa) = \widetilde{E}(p,\kappa) + \kappa H_{b}.$$

Then one can see that

$$\begin{split} H_{\vec{\rho}}^{REN}(\kappa) & \equiv & \mathbf{F}^{-1} \left(\int_{\mathbb{R}^{dN}}^{\oplus} H_{\vec{\rho}}^{REN}(p,\kappa) dp \right) \mathbf{F} \\ & = & -E^{REN}(D,\kappa) \otimes I + \kappa I \otimes H_b \\ & + \frac{1}{2m} \sum_{j=1}^{N} \sum_{\mu=1}^{d} \left(-2\kappa e \hbar i D_{\mu}^{j} \otimes A_{\mu}(\rho_{j}) + e^{2} I \otimes A_{\mu}(\rho_{j})^{2} \right), \\ \widetilde{H}_{\vec{\rho}}(\kappa) & \equiv & \mathbf{F}^{-1} \left(\int_{\mathbb{R}^{dN}}^{\oplus} \widetilde{H}(p) dp \right) \mathbf{F} \\ & = & \widetilde{E}(D,\kappa) \otimes I + \kappa I \otimes H_b, \end{split}$$

where $E^{REN}(D,\kappa)$ and $\tilde{E}(D,\kappa)$ are pseudo differential operators on $L^2(\mathbb{R}^{dN})$ with symbols $E^{REN}(p,\kappa)$ and $\tilde{E}(p,\kappa)$ respectively.

Theorem 3.2 Suppose $\vec{\rho} \in \widetilde{P}$. Then $H_{\vec{\rho}}^{REN}(\kappa)$ and $H_{\vec{\rho}}(\kappa)$ are essentially self-adjoint on any core of H_0 and bounded from below.

Proof: By the definition of $E^{REN}(D,\kappa)$ and $\widetilde{E}(D,\kappa)$, $H_{\vec{\rho}}^{REN}(\kappa)$ and $\widetilde{H}_{\vec{\rho}}(\kappa)$ are symmetric. For $f \in D(-\Delta)$, there exist $d_1(\kappa)$ and $d_2(\kappa)$ such that

$$||\tilde{E}(D,\kappa)f||_{L^{2}(\mathbb{R}^{dN})} \le d_{1}(\kappa)|| - \Delta f||_{L^{2}(\mathbb{R}^{dN})},$$

$$||E^{REN}(D,\kappa)f||_{L^{2}(\mathbb{R}^{dN})} \le d_{2}(\kappa)|| - \Delta f||_{L^{2}(\mathbb{R}^{dN})}.$$

Hence, similar to the proof of Theorem 2.2, the Nelson commutator theorem yields desired results.

Remark 3.3 Write

$$E(p,\kappa) = \frac{\hbar^2 \kappa^2}{2m} p^2 + \sum_{\mu=1}^d \sum_{i=1}^N \frac{\hbar^2 \kappa^2}{m} p_{\mu}^i \tilde{p}_{\mu}^i(\kappa) + \sum_{\mu=1}^d \sum_{i=1}^N \frac{\hbar^2 \kappa^2}{2m} \tilde{p}_{\mu}^i(\kappa)^2 + \Box(\kappa). \tag{3. 6}$$

Then the first and second terms on the right hand side of (3.6) diverge as $\kappa \to \infty$ for $p \neq 0$, but the rest terms not. Actually we see that

$$\lim_{\kappa \to \infty} \frac{\hbar^2 \kappa^2}{2m} \sum_{\mu=1}^d \sum_{i=1}^N \hat{p}^i_{\mu}(\kappa)^2 = \frac{1}{2m} \left(\frac{e^2}{2mc^2} \right) \left(\frac{d-1}{d} \right)^2 \sum_{\alpha=1}^d \sum_{k=1}^N \left(\sum_{j=1}^N \hbar p^j_{\alpha} \left\langle \frac{\hat{\rho}_j}{\sqrt{\omega^3}}, \frac{\hat{\rho}_k}{\sqrt{\omega}} \right\rangle_{L^2(\mathbb{R}^d)} \right)^2,$$

$$\equiv E^{\infty}(p).$$

Then, by (3.2), concerning an asymptotic behavior of $H_{\vec{\rho}}(\kappa)$ as $\kappa \to \infty$, we should subtract the first and second terms in the right hand side of (3.6) from the original Hamiltonian $H_{\vec{\rho}}(\kappa)$. However one can not say that $\tilde{p}^i_{\mu}(\kappa)^2$ is real and nonnegative for any $p \in \mathbb{R}^{dN}$. To guarantee the nonnegative self-adjointness of the Hamiltonian $H_{\vec{\rho}}^{REN}(p,\kappa)$ with the divergence terms subtracted, we should define $\tilde{E}(p,\kappa)$ such as (3.5). In this sense, we may say that the operator $H_{\vec{\rho}}^{REN}(\kappa)$ has an interpretation of the Hamiltonian $H_{\vec{\rho}}(\kappa)$ with the infinite self-energy of the nonrelativistic particles subtracted.

We define

$$\mathcal{U}(\kappa) = \mathbf{F}^{-1} \left(\int_{\mathbb{R}^{dN}}^{\oplus} \mathcal{U}(\kappa, p) dp \right) \mathbf{F}.$$

Then we have the following theorem.

Theorem 3.4 Suppose that $\vec{\rho} \in \tilde{P}$. Then

$$s - \lim_{\kappa \to \infty} \mathcal{U}(\kappa) = \exp\left(\sum_{j=1}^{N} \frac{e\hbar}{m} D_{\mu}^{j} \otimes \left\{ a \left(\bigoplus_{r=1}^{d-1} \frac{e_{\mu}^{r} \hat{\rho}_{j}}{\sqrt{2\hbar c^{3} \omega^{3}}} \right) - a^{\dagger} \left(\bigoplus_{r=1}^{d-1} \frac{e_{\mu}^{r} \hat{\rho}_{j}}{\sqrt{2\hbar c^{3} \omega^{3}}} \right) \right\} \right),$$

$$\equiv \mathcal{U}(\infty). \tag{3.7}$$

Proof: From [6,Theorem 3.11] it follows (3.7).

We take scalar potentials V to be real-valued measurable functions on \mathbb{R}^{dN} and put

$$C_{\kappa}(V) = \mathcal{U}^{-1}(\kappa)(V \otimes I)\mathcal{U}(\kappa), \quad C(V) = \mathcal{U}^{-1}(\infty)(V \otimes I)\mathcal{U}(\infty).$$
 (3. 8)

We introduce conditions (V-1) and (V-2) as follows.

(V-1) For sufficiently large $\kappa > 0$, $D(\tilde{E}(D,\kappa)) \subset D(V)$ and for $\lambda > 0$, $V(\tilde{E}(D,\kappa) + \lambda)^{-1}$ is bounded with

$$\lim_{\lambda \to \infty} ||V(\tilde{E}(D,\kappa) + \lambda)^{-1}|| = 0, \tag{3.9}$$

where the convergence is uniform in sufficiently large $\kappa > 0$.

(V-2) For $\lambda > 0$, $V(\tilde{E}(D,\kappa) + \lambda)^{-1}$ is strongly continuous in κ and

$$s - \lim_{\kappa \to \infty} V(\tilde{E}(D, \kappa) + \lambda)^{-1} = V(E^{\infty}(D) + \lambda)^{-1}.$$

The condition (3.9) yields that, by the Kato-Rellich theorem and commutativity of $\mathcal{U}(\kappa)$ and $(\tilde{E}(D,\kappa)+\lambda)^{-1}$, operators $\tilde{E}(D,\kappa)\otimes I+C_{\kappa}(V)$ are essentially self-adjoint on any core of $D(\tilde{E}(D,\kappa)\otimes I)$ and uniformly bounded from below in sufficiently large $\kappa>0$. Moreover since $I\otimes H_b$ is nonnegative and commute with $\tilde{E}(D,\kappa)\otimes I$, one can see that

$$\widetilde{H}_{\vec{\rho}}(V,\kappa) \equiv \widetilde{E}(D,\kappa) \otimes I + C_{\kappa}(V) + \kappa I \otimes H_b$$

is essentially self-adjoint on any core of $D(\widetilde{E}(D,\kappa)\otimes I + \kappa I\otimes H_b)$ and uniformly bounded from below in sufficiently large $\kappa>0$. In particular, $D(H_0)$ is a core of $\widetilde{H}_{\rho}(V,\kappa)$. Put

$$H^{REN}_{\vec{\rho}}(V,\kappa) \equiv H^{REN}_{\vec{\rho}}(\kappa) + V \otimes I.$$

Theorem 3.5 Let $\vec{\rho} \in \widetilde{P}$. Suppose that V satisfies $(\mathbf{V} - \mathbf{1})$ and $(\mathbf{V} - \mathbf{2})$. Then, for sufficiently large $\kappa > 0$, the operator $H^{REN}_{\vec{\rho}}(V,\kappa)$ is essentially self-adjoint on $D(H_0)$ and bounded from below uniformly in sufficiently large $\kappa > 0$. Moreover the unitary operator $\mathcal{U}(\kappa)$ maps $D(H_0)$ onto itself and for $z \in \mathbb{C} \setminus \mathbb{R}$ or z < 0 with |z| sufficiently large,

$$\left(H_{\vec{\rho}}^{REN}(V,\kappa) - z\right)^{-1} = \mathcal{U}(\kappa)\left(\widetilde{H_{\vec{\rho}}}(V,\kappa) - z\right)^{-1}\mathcal{U}^{-1}(\kappa). \tag{3. 10}$$

Proof: Since $\mathcal{U}(\kappa)$ maps $D(I \otimes H_b)$ onto itself (see Theorem 3.1) and $-\Delta \otimes I$ commutes with $\mathcal{U}(\kappa)$ on $D(-\Delta \otimes I)$, $\mathcal{U}(\kappa)$ maps $D(H_0)$ onto itself. Put

$$S_0^\infty(\mathbb{R}^{dN}) = \left\{ f \in L^2(\mathbb{R}^{dN}) | \hat{f} \in C_0^\infty(\mathbb{R}^{dN}) \right\}.$$

At first, by Theorem 3.1, we see that for $\Phi \in S_0^{\infty}(\mathbb{R}^{dN}) \widehat{\otimes} D(H_b)$,

$$H_{\vec{\rho}}^{REN}(V,\kappa)\Phi = \mathcal{U}(\kappa)\widetilde{H}_{\vec{\rho}}(V,\kappa)\mathcal{U}^{-1}(\kappa)\Phi.$$
 (3. 11)

By a limiting argument we can extend (3.11) to $\Phi \in D(H_0)$. Since $D(H_0)$ is a core of $\widetilde{H_{\vec{\rho}}}(V,\kappa)$ and $U(\kappa)$ maps $D(H_0)$ onto itself, the right hand side of (3.11) is essentially self-adjoint on $D(H_0)$. So is the left hand side of (3.11). (3.10) can be easily shown.

We want to consider a scaling limit of $H_{\vec{\rho}}^{REN}(V,\kappa)$ as $\kappa \to \infty$. In [5], a general theory of the strong resolvent limit of self-adjoint operators including abstract versions like as the self-adjoint operator $\widetilde{H_{\vec{\rho}}}(V,\kappa)$ has been established. We shall apply the theory in [5] with a little modification. Let V satisfy (V-1). Then since $D(C(V)) \supset D(-\Delta) \widehat{\otimes} D(H_b)$, one can define, for $\Phi \in \mathcal{F}(W)$ and $\Psi \in D(H_b)$, a symmetric operator $E_{\Phi,\Psi}(C(V))$ with $D(E_{\Phi,\Psi}(C(V))) = D(-\Delta)$ by

$$\langle f, E_{\Phi,\Psi}(C(V))g \rangle_{L^2(\mathbb{R}^{dN})} \ = \ \langle f \otimes \Phi, C(V)(g \otimes \Psi) \rangle_{\mathcal{F}}, \ f \in L^2(\mathbb{R}^{dN}), g \in D(-\Delta).$$

In particular, we call $E_{\Omega,\Omega}(C(V)) \equiv E_{\Omega}(C(V))$ "the partial expectation of C(V) with respect to Ω " ([5, Section II]).

Theorem 3.6 Let $\vec{\rho} \in \widetilde{P}$. Suppose that V satisfies the conditions $(\mathbf{V} - \mathbf{1})$ and $(\mathbf{V} - \mathbf{2})$. Then for $z \in \mathbb{C} \setminus \mathbb{R}$ or z < 0 with |z| sufficiently large,

$$s - \lim_{\kappa \to \infty} (H_{\vec{\rho}}^{REN}(V, \kappa) - z)^{-1} = \mathcal{U}(\infty) \left\{ (E^{\infty}(D) + E_{\Omega}(C(V)) - z)^{-1} \otimes P_0 \right\} \mathcal{U}^{-1}(\infty),$$

$$(3. 12)$$

where P_0 is the projection from $\mathcal{F}(\mathcal{W})$ to the one dimensional subspace $\{\alpha\Omega | \alpha \in \mathbb{C}\}.$

Proof: By (V - 1) and (V - 2), we see that

(V-1)' For sufficiently large $\kappa > 0$, $D(\tilde{E}(D, \kappa)) \subset D(C_{\kappa}(V))$ and for $\lambda > 0$, $C_{\kappa}(V)(\tilde{E}(D, \kappa) + \lambda)^{-1}$ is bounded with

$$\lim_{\lambda \to \infty} ||C_k(V)(\tilde{E}(D,\kappa) + \lambda)^{-1}|| = 0,$$

where the convergence is uniform in sufficiently large $\kappa > 0$.

(V-2)' For $\lambda > 0$, $C_{\kappa}(V)(\tilde{E}(D,\kappa) + \lambda)^{-1}$ is strongly continuous in κ and

$$s - \lim_{\kappa \to \infty} C_k(V) (\tilde{E}(D, \kappa) + \lambda)^{-1} = C(V) (E^{\infty}(D) + \lambda)^{-1}.$$

From [5,Section II], $(\mathbf{V} - \mathbf{1})'$ and $(\mathbf{V} - \mathbf{2})'$ imply that

$$s - \lim_{\kappa \to \infty} \left(\widetilde{H_{\vec{\rho}}}(V, \kappa) - z \right)^{-1} = \left(E^{\infty}(D) + E_{\Omega}(C(V)) - z \right)^{-1} \otimes P_0.$$

Thus by Theorems 3.4 and 3.5, we get (3.12).

We want to see $E_{\Omega}(C(V))$ more explicitly. For $\vec{\rho} \in \tilde{P}$, let $\tilde{\Delta}^{\infty} = (\tilde{\Delta}_{ij}^{\infty})_{1 \leq i,j \leq d}$, where $\tilde{\Delta}_{ij}^{\infty}$ is defined in (1.3). Let $\mathbf{I}_{d \times d}$ denote $d \times d$ -identity matrix. Since $\Delta^{\infty} \equiv \tilde{\Delta}^{\infty} \otimes \mathbf{I}_{d \times d} \in$

 $M(N) \otimes N(d) \cong M(dN)$ is a nonnegative symmetric matrix, there exist unitary matrices $\mathbf{T} \in M(dN)$ so that

$$\mathbf{T}\Delta^{\infty}\mathbf{T}^{-1} = \begin{pmatrix} \lambda_{1}\mathbf{I}_{d\times d} & & & \\ & \lambda_{2}\mathbf{I}_{d\times d} & & \\ & & \ddots & \\ & & & \lambda_{N}\mathbf{I}_{d\times d} \end{pmatrix}, \tag{3. 13}$$

where $\lambda_1 \geq \lambda_2 ... \geq \lambda_N \geq 0$.

Theorem 3.7 Suppose $\lambda_1 \geq \lambda_2 ... \geq \lambda_K > 0$, $\lambda_{K+1} = ... = \lambda_N = 0$ and fix a unitary operator **T** in (3.13). Let $x = (x_1, ..., x_N)$, $x_j \in \mathbb{R}^d$, j = 1, ..., N and V satisfy

$$\int_{\mathbb{R}^{dK}} dy_1 ... dy_K |V| \circ \mathbf{T}^{-1}(y_1, ..., y_K, (\mathbf{T}x)_{K+1}, ..., (\mathbf{T}x)_N) \exp\left(-\frac{\sum_{j=1}^K |(\mathbf{T}x)_j - y_j|^2}{2\lambda_1 ... \lambda_K}\right) < \infty.$$
(3. 14)

Moreover we suppose that the left hand side of (3.14) is locally bounded. Then the partial expectation $E_{\Omega}(C(V))$ is given by a multiplication operator V_{eff} ;

$$V_{eff}(x) = (2\pi\lambda_{1}...\lambda_{K})^{-\frac{d}{2}} \int_{\mathbb{R}^{dK}} dy_{1}...dy_{K} V \circ \mathbf{T}^{-1}(y_{1},...,y_{K},(\mathbf{T}x)_{K+1},...,(\mathbf{T}x)_{N})$$

$$\times \exp\left(-\frac{\sum_{j=1}^{K} |(\mathbf{T}x)_{j} - y_{j}|^{2}}{2\lambda_{1}...\lambda_{K}}\right).$$

In particular, in the case where $\tilde{\Delta}^{\infty}$ is non-degenerate, V_{eff} is given by

$$V_{eff}(x) = (2\pi \det \tilde{\Delta}^{\infty})^{-\frac{d}{2}} \int_{\mathbb{R}^{dN}} V(y) \exp\left(-\frac{|x-y|^2}{2 \det \tilde{\Delta}^{\infty}}\right) dy.$$

Proof: Suppose $V \in \mathcal{S}(\mathbb{R}^{dN})$, which is the set of the rapidly decreasing infinitely continuously differentiable functions on \mathbb{R}^{dN} . Then the direct calculation shows that for $f, g \in L^2(\mathbb{R}^{dN})$

$$\langle f, E_{\Omega}(C(V))g \rangle_{L^{2}(\mathbb{R}^{dN})} = \langle f, V_{eff}g \rangle_{L^{2}(\mathbb{R}^{dN})}. \tag{3. 15}$$

We next consider the case where V is bounded. In this case we can approximate V by a sequence $\{V_n\}_{n=1}^{\infty}$, $V_n \in \mathcal{S}(\mathbb{R}^{dN})$, such that

$$||V-V_n||_{\infty} \to 0 \ (n \to \infty),$$

where $||\cdot||_{\infty}$ denotes the sup norm. Then we have

$$E_{\Omega}(C(V_n)) \to E_{\Omega}(C(V)) \ (n \to \infty),$$

strongly. Moreover $(V_n)_{eff}(x) \to V_{eff}(x)$ for all $x \in \mathbb{R}^{dN}$. Thus for $f, g \in L^2(\mathbb{R}^{dN})$, (3.15) follows for such V. Finally, let V satisfy (3.14). Define

$$V_n = \begin{cases} V(x) & |V(x)| \le n, \\ n & |V(x)| > n. \end{cases}$$

Hence for $f \in L^2(\mathbb{R}^{dN})$ and $g \in D(-\Delta)$, we have

$$\langle f, E_{\Omega}(C(V_n))g \rangle_{L^2(\mathbb{R}^{dN})} \to \langle f, E_{\Omega}(C(V))g \rangle_{L^2(\mathbb{R}^{dN})} \ (n \to \infty).$$

On the other hand, since the left hand side of (3.14) is locally bounded, we can see that for $f \in C_0^{\infty}(\mathbb{R}^{dN})$ and $g \in D(-\Delta)$,

$$\langle f, (V_n)_{eff} g \rangle_{L^2(\mathbb{R}^{dN})} \to \langle f, V_{eff} g \rangle_{L^2(\mathbb{R}^{dN})} \ (n \to \infty),$$

which completes the proof.

Remark 3.8 In Theorem 3.7, in the case where $\widetilde{\Delta}^{\infty}$ is non-degenerate, since the left hand side of (3.14) is continuous in $x \in \mathbb{R}^{dN}$, it is necessarily locally bounded.

We call V_{eff} "the effective potential with respect to V". We give some examples of scalar potentials V and ultraviolet cut off functions ρ .

Example 3.9 ([non-degenerate case]) Let

$$\widetilde{\Delta}_{ij}^{\infty} = \delta_{ij} \frac{1}{2} \frac{d-1}{d} \left(\frac{\hbar}{mc} \right)^2 \frac{e^2}{\hbar c} \int_{\mathbb{R}^d} dk \frac{\widehat{\rho}_i(k)^2}{\omega(k)^3}.$$

Then there exist positive constants δ_1 and δ_2 such that for sufficiently large $\kappa>0$

$$\delta_1 |p|^2 \le \tilde{E}(p,\kappa) \le \delta_2 |p|^2. \tag{3. 16}$$

Let d = 3 and V be the Coulomb potential;

$$V(x_1,...,x_N) = -\sum_{j=1}^{N} \frac{\alpha_j}{|x_j|} + \sum_{i \neq j} \frac{\beta_{ij}}{|x_i - x_j|}, \quad \alpha_j \ge 0, \beta_{ij} \ge 0.$$

Then V is the Kato class potential ([10], Theorem X.16). Namely for any $\epsilon > 0$, there exists $b \geq 0$ such that $D(V) \supset D(-\Delta)$ and

$$||V\Phi||_{L^{2}(\mathbb{R}^{3N})} \le \epsilon ||-\Delta\Phi||_{L^{2}(\mathbb{R}^{3N})} + b||\Phi||_{L^{2}(\mathbb{R}^{3N})}. \tag{3. 17}$$

Together with (3.16) and (3.17), one can see that V satisfies $(\mathbf{V} - \mathbf{1})$, $(\mathbf{V} - \mathbf{2})$ and for any t > 0

$$\int_{\mathbb{R}^{3d}} |V|(y)e^{-t|x-y|^2} dy < \infty.$$

Then the scaling limit of the Pauli-Fierz Hamiltonian with the Coulomb potential exists and has the effective potential given by

$$V_{eff}(x) = (2\pi\gamma)^{-\frac{3}{2}} \int_{\mathbb{R}^{3N}} V(y) e^{-\frac{|x-y|^2}{2\gamma}} dy,$$

$$\gamma = \left\{ \frac{1}{3} \left(\frac{\hbar}{mc} \right)^2 \frac{e^2}{\hbar c} \right\}^N \Pi_{j=1}^N \left(\int_{\mathbb{R}^3} dk \frac{\hat{\rho}_j^2(k)}{\omega(k)^3} \right).$$

Moreover

$$E^{\infty}(D) = -\frac{1}{2m} \left(\frac{e^2}{2mc^2} \right) \left(\frac{d-1}{d} \right)^2 \otimes_{j=1}^N \left\| \frac{\hat{\rho}_j}{\omega} \right\|^4 \hbar^2 \Delta_j,$$

where Δ_j , j = 1, ..., N, is the Laplacian in $L^2(\mathbb{R}^d)$.

Example 3.10 ([non-degenerate case]) Let $\tilde{\Delta}^{\infty}$ be non-degenerate and V be the Phillips perturbation with respect to $-\Delta([12])$. Then (3.16) holds with some δ_1 and δ_2 . Hence V satisfies $(\mathbf{V} - \mathbf{1})$, $(\mathbf{V} - \mathbf{2})$ and for any t > 0

$$\int_{\mathbb{R}^{dN}} |V|(y)e^{-t|x-y|^2} dy < \infty.$$

Hence the scaling limit of the Pauli-Fierz Hamiltonian with Phillips perturbation exists and has the effective potential in Theorem 3.7.

Example 3.11 ([degenerate case]) Let V be a real-valued bounded function. Then V satisfies the conditions (V-1) and (V-2). Hence the scaling limit of the Pauli-Fierz Hamiltonian with the scalar potential V exists for all $\vec{\rho} \in \tilde{P}$.

Example 3.12 ([degenerate case]) Let $\rho_i = \rho$, i = 1, ..., N and V satisfy (V - 1), (V - 2) and the assumption stated in Theorem 3.7. Then rank $\tilde{\Delta}^{\infty} = 1$ and the non-zero eigenvalue C is given by

$$C = \frac{N}{2} \frac{d-1}{d} \left(\frac{\hbar}{mc}\right)^2 \frac{e^2}{\hbar c} \int_{\mathbb{R}^d} dk \frac{\hat{\rho}(k)^2}{\omega(k)^3}.$$

Thus the scaling limit of the Pauli-Fierz Hamiltonian with the ultraviolet cut-off function ρ exists and has the following effective potential:

$$V_{eff}(x) = (2\pi C)^{-\frac{d}{2}} \int_{\mathbb{R}^d} dy_1 V \circ \mathbf{T}^{-1}(y_1, (\mathbf{T}x)_2, ..., (\mathbf{T}x)_N) \exp\left(-\frac{|(\mathbf{T}x)_1 - y_1|^2}{2C}\right).$$

Moreover

$$E^{\infty}(D) = -\frac{1}{2m} \left(\frac{N^2 e^2}{2mc^2} \right) \left(\frac{d-1}{d} \right)^2 \left\| \frac{\hat{\rho}}{\omega} \right\|^4 \hbar^2 \Delta,$$

where Δ is the Laplacian in $L^2(\mathbb{R}^{dN})$.

4 CONCLUDING REMARK

As is seen in Theorem 3.7, the effective potential V_{eff} is characterized by the matrix-valued functional $\tilde{\Delta}^{\infty} = \tilde{\Delta}^{\infty}(\vec{\rho})$, which has the following mathematical meaning; putting

$$\mathcal{U}(\infty)(x_i \otimes I)\mathcal{U}^{-1}(\infty) - x_i \otimes I \equiv \Delta x_i, \quad i = 1, ..., N,$$

we see that the partial expectation of $\Delta x_i \Delta x_j$ with respect to Ω is as follows;

$$E_{\Omega}[(\Delta x_i \Delta x_j)] = \widetilde{\Delta}_{ij}^{\infty}(\vec{\rho})I.$$

In one-nonrelativistic particle case, A.Arai [5] shows that the partial expectation $E_{\Omega}[(\Delta x)^2]$ with respect to Ω may be interpreted as the mean square fluctuation in position of one-nonrelativistic particle ([2]). In this sense, $\tilde{\Delta}_{ij}^{\infty}(\vec{\rho})$ may also be interpreted as correlation of fluctuations in position of the *i*-th and the *j*-th nonrelativistic particles under the action of quantized radiation fields.

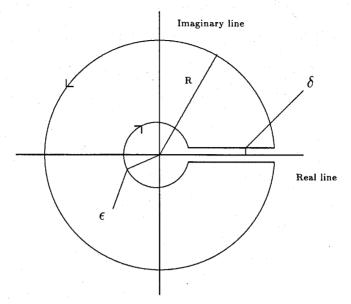


Figure 1: Cut Plane $\mathbb{C}_{R,\delta,\epsilon}$

5 APPENDIX

In this Appendix we prove Lemma 2.6. For simplicity, in this proof, we omit κ in notations and put

$$\lambda = \frac{e^2}{c^2}, \quad \hat{G} = \omega^{1-\frac{d}{2}} G \omega^{1-\frac{d}{2}}, \quad \hat{G}_t = \omega^{1-\frac{d}{2}} G_t \omega^{1-\frac{d}{2}}, t > 0.$$

- (1): This follows from the definition of $T_{\mu\nu}$ and $T_{\mu\nu}^*$, and Definition 2.1 (4).
- (2) : For $f \in M_{-1}$,

$$\begin{split} \left\langle \omega^{-\frac{3}{2}}Q_{i},\omega^{-\frac{1}{2}}d_{\nu\alpha}T_{\mu\nu}f\right\rangle_{L^{2}(\mathbb{R}^{d})} &= \left\langle d_{\mu\alpha}\omega^{-\frac{3}{2}}Q_{i},\omega^{-\frac{1}{2}}f\right\rangle_{L^{2}(\mathbb{R}^{d})} \\ &+ \sum_{j=1}^{N}\left\langle d_{\nu\alpha}\omega^{-\frac{3}{2}}Q_{i},\lambda\omega^{-\frac{1}{2}}Q_{j}\widehat{G}d_{\mu\nu}\widehat{\rho}_{j}f\right\rangle_{L^{2}(\mathbb{R}^{d})} \\ &= I + II \end{split}$$

Using (2.8), one can see that

$$II = \lim_{t \to 0} \lambda \sum_{j=1}^{N} \int \frac{\overline{Q}_{i}(k)Q_{j}(k)d_{\mu\nu}(k')d_{\nu\alpha}(k)\hat{\rho}_{j}(k')f(k')}{(k^{2} - k'^{2} + it)k^{2}} dkdk'$$

$$= \lim_{t \to 0} \lambda \sum_{j=1}^{N} \frac{d-1}{d} \mathbf{V}_{d} \int \frac{\sum_{k,l=1}^{N} D_{-ik}^{-1}(s) D_{+jl}^{-1}(s) \hat{\rho}_{k}(\sqrt{s}) \hat{\rho}_{l}(\sqrt{s}) s^{\frac{d}{2}-1} F_{j}(k')}{(s-k'^{2}+it)s} ds dk'$$

$$= \lim_{t \to 0} \frac{1}{2\pi i} \sum_{j=1}^{N} \int \frac{1}{(s-k'^{2}+it)s} \left(D_{-ij}^{-1}(s) - D_{+ji}^{-1}(s) \right) F_{j}(k') ds dk',$$

where $F_j(k') = d_{\mu\alpha}(k')\hat{\rho}_j(k')f(k')$. Using the contour integral on the cut plane $\mathbb{C}_{R,\delta,\epsilon}$ (Figure 1), by (2.5) and (2.6), we have

$$\frac{1}{2\pi i} \int_{0}^{\infty} \frac{1}{(s - k'^{2} + it)s} \left(D_{-ij}^{-1}(s) - D_{+ji}^{-1}(s) \right) ds$$

$$= \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{\epsilon}^{\infty} \frac{1}{(s - k'^{2} + it)s} \left(D_{-ij}^{-1}(s) - D_{+ji}^{-1}(s) \right) ds$$

$$= \lim_{\epsilon \to 0} \lim_{R \to \infty, \delta \to 0} -\frac{1}{2\pi i} \int_{\mathbb{C}_{R,\delta,\epsilon}} \frac{D_{ij}^{-1}(z)}{(z - k'^{2} + it)z} dz - \frac{D_{ij}^{-1}(0)}{-k'^{2} + it}$$

$$= -\frac{D_{ij}^{-1}(k'^{2} - it)}{k'^{2} - it} - \frac{D_{ij}^{-1}(0)}{-k'^{2} + it}.$$

Then

$$II = \lim_{t \to 0} \sum_{j=1}^{N} \int \frac{F_{j}(k')D_{ij}^{-1}(0)}{k'^{2} - it} - \frac{D_{ij}^{-1}(k'^{2} - it)F_{j}(k')}{k'^{2} - it} dk'$$

$$= -\left\langle d_{\mu\alpha}\omega^{-\frac{3}{2}}Q_{i}, \omega^{-\frac{1}{2}}f\right\rangle_{L^{2}(\mathbb{R}^{d})} + \left\langle d_{\mu\alpha}\omega^{-\frac{3}{2}}\sum_{j=1}^{N}D_{ij}^{-1}(0)\hat{\rho}_{j}, \omega^{-\frac{1}{2}}f\right\rangle_{L^{2}(\mathbb{R}^{d})}.$$

Hence we get (2).

(3),(4): They are direct calculations.

(5) : For $f, g \in M_0$,

$$< T_{\mu\nu}^* d_{\nu\alpha} T_{\alpha\beta} f, g >_{L^2(\mathbb{R}^d)} = < d_{\mu\beta} f, g >_{L^2(\mathbb{R}^d)} + \lambda \sum_{j=1}^N < d_{\nu\beta} f, Q_i \hat{G} d_{\mu\nu} \hat{\rho}_i g >_{L^2(\mathbb{R}^d)}$$

$$+ \lambda \sum_{j=1}^N < d_{\mu\alpha} Q_j \hat{G} d_{\alpha\beta} \hat{\rho}_j f, g >_{L^2(\mathbb{R}^d)}$$

$$+ \lambda^2 \frac{d-1}{d} \sum_{i,j=1}^N < Q_i \hat{G} d_{\alpha\beta} \hat{\rho}_i f, Q_j \hat{G} d_{\mu\alpha} \hat{\rho}_j g >_{L^2(\mathbb{R}^d)}$$

$$= I + II + III + IV.$$

Then,

$$\begin{split} IV &= \lim_{t \to 0} \lambda^2 \sum_{i,j,k,l=1}^N \mathbf{V}_d \frac{d-1}{d} \int \frac{D_{-ik}^{-1}(s) D_{+jl}^{-1}(s) \hat{\rho}_k(\sqrt{s}) \hat{\rho}_l(\sqrt{s}) s^{\frac{d}{2}-1} F_{ij}(k',k'')}{(s-k''^2-it)(s-k''^2+it)} ds dk' dk'', \\ &\equiv \lim_{t \to 0} IV_t, \end{split}$$

where $F_{ij}(k',k'') = d_{\mu\alpha}(k'')\hat{\rho}_j(k'')d_{\alpha\beta}(k')\hat{f}(k')\bar{f}(k')g(k'')$. By using the cut plane integral method as in (2), we have

$$IV_{t} = \sum_{i,j=1}^{N} \int \frac{-\lambda D_{ij}^{-1}(k'+it)F_{ij}(k',k'')}{k'^{2}-k''^{2}+2it} + \frac{-\lambda D_{ij}^{-1}(k''-it)F_{ij}(k',k'')}{k''^{2}-k'^{2}-2it} dk'dk''$$

$$= -\lambda \sum_{i,j=1}^{N} \left\langle d_{\alpha\beta}f, D_{ji}^{-1}(\cdot+it)\hat{\rho}_{i}\hat{G}_{2t}d_{\mu\alpha}\hat{\rho}_{j}g \right\rangle_{L^{2}(\mathbb{R}^{d})}$$

$$-\lambda \sum_{i,j=1}^{N} \left\langle d_{\mu\alpha}D_{ij}^{-1}(\cdot+it)\hat{\rho}_{j}\hat{G}_{2t}d_{\alpha\beta}\hat{\rho}_{i}f, g \right\rangle_{L^{2}(\mathbb{R}^{d})}.$$

By a limiting argument as $t \to 0$, we get

$$\lim_{t \to 0} IV_t = -II - III.$$

(6) : For $f, g \in M_0$,

$$\left\langle e^r_{\mu} T_{\mu\nu} d_{\nu\alpha} T_{\alpha\beta} e^s_{\beta} f, g \right\rangle_{L^2(\mathbb{R}^d)} = \langle \delta_{rs} f, g \rangle_{L^2(\mathbb{R}^d)} - \lambda \langle e^r_{\beta} \rho_j \widehat{G} \overline{Q}_j e^s_{\beta} f, g \rangle_{L^2(\mathbb{R}^d)}$$

$$- \lambda \langle f, e^s_{\mu} \rho_j G \overline{Q}_j e^r_{\mu} g \rangle_{L^2(\mathbb{R}^d)}$$

$$+ \lambda^2 \langle d_{\mu\beta} \rho_j \widehat{G} \overline{Q}_j e^s_{\beta} f, \rho_j \widehat{G} \overline{Q}_j e^r_{\mu} g \rangle_{L^2(\mathbb{R}^d)}$$

$$= I - II - III + IV.$$

We see that

$$IV = \lambda^{2} \lim_{\epsilon \to 0} \sum_{i,j=1}^{N} \mathbf{V}_{d} \frac{d-1}{d} \int \frac{\hat{\rho}_{j}(\sqrt{s})\hat{\rho}_{i}(\sqrt{s})s^{\frac{d}{2}-1}H_{ij}(k',k'')}{(s-k''^{2}-i\epsilon)(s-k''^{2}+i\epsilon)} dsdk'dk''$$

$$= \lambda \lim_{\epsilon \to 0} \sum_{i,j=1}^{N} \int \left(\frac{D_{ij}(k''^{2}+i\epsilon)}{k''^{2}-k''^{2}+2i\epsilon} + \frac{D_{ij}(k''^{2}-i\epsilon)}{k''^{2}-k'^{2}-2i\epsilon} \right) H_{ij}(k',k'')dk'dk''$$

$$= \lambda \lim_{\epsilon \to 0} \sum_{i,j=1}^{N} \langle f, e_{\mu}^{s}Q_{j}D_{ij}(\cdot + i\epsilon)\hat{G}_{2\epsilon}\overline{Q}_{i}e_{\mu}^{r}g \rangle_{L^{2}(\mathbb{R}^{d})}$$

$$+\lambda \sum_{i,j=1}^{N} \langle e_{\mu}^{r}Q_{i}\overline{D}_{ij}(\cdot - i\epsilon)\hat{G}_{2\epsilon}\overline{Q}_{j}e_{\mu}^{s}f, g \rangle_{L^{2}(\mathbb{R}^{d})},$$

where $H_{ij}(k',k'') = Q_j(k')\overline{Q}_i(k'')e^s_\mu(k')e^r_\mu(k'')\overline{f}(k')g(k'')$. Note that $\sum_{j=1}^N Q_j D_{+ij} = \hat{\rho}_i$. Then

$$= \lambda \sum_{i=1}^{N} \langle f, e_{\mu}^{s} \hat{\rho}_{i} \widehat{G} \overline{Q}_{i} e_{\mu}^{r} g \rangle_{L^{2}(\mathbb{R}^{d})} + \lambda \sum_{j=1}^{N} \langle e_{\mu}^{r} \hat{\rho}_{j} \widehat{G} \overline{Q}_{j} e_{\mu}^{s} f, g \rangle_{L^{2}(\mathbb{R}^{d})}$$

$$= II + III.$$

Hence we get the desired results.

6 REFERENCES

- [1]H.A.Bethe, The electromagnetic shift of energy levels, Phys.Rev.72,(1947)339-342.
- [2] T.A.Welton, Some observable effects of the quantum mechanical fluctuations of the electromagnetic field, Phys.Rev.74(1948)1157-1167.
- [3] A.Arai, A note on scattering theory in non-relativistic quantum electrodynamics, J.Phys.A.Math.Gen.16,(1983)49-70.
- [4] A.Arai, Rigorous theory of spectra and radiation for a model in a quantum electrodynamics, J.Math.Phys.24(1983)1896-1910.
- [5] A.Arai, An asymptotic analysis and its applications to the nonrelativistic limit of the Pauli-Fierz and a spin-boson model, J.Math.Phys.31(1990)2653-2663.
- [6] F.Hiroshima, Scaling limit of a model in quantum electrodynamics,J.Math.Phys.34(1993)4478-4578.
- [7] F.Hiroshima, Diamagnetic inequalities for a systems of nonrelativistic particles with a quantized radiation field. to appear Rev.Math.Phys.Vol.8 No.2.
- [8] F.Hiroshima, Functional integral representation of a model in quantum electrodynamics, submitted to J.Funct.Anal..
- [9] E.C.Titchmarsh, Theory of Fourier Integrals, 2nd.ed.(Oxford Univ.Press, Oxford,1948).
- [10] M.Reed, B.Simon, Method of Modern Mathematical Physics II Fourier Analysis and

Self-Adjoint operator, Academic Press(1975).

- [11] E.A. Berezin, "Second quantization", Academic Press(1966).
- [12] E.B.Davies, Properties of the Green's functions of some Schrödinger operators, J.London Math.Soc.7,483-493(1976).