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A Scaling limit of a Hamiltonian of many
nonrelativistic particles interacting with a
quantized radiation field

Fumio HIROSHIMA
Department of Mathematics, Faculty of Science, Hokkaido University
Sapporo 060 Japan

Abstract

This paper presents a scaling limit of Hamiltonians which describe interactions of
N-nonrelativistic charged particles in a scalar potential and a quantized radiation field
in the Coulomb gauge with the dipole approximation. The scaling limit defines effective
potentials. In one-nonrelativistic particle case, the effective potentials have been known
to be Gaussian transformations of the scalar potential [J.Math.Phys.34(1993)4478-
4518]. However it is shown that the effective potentials in the case of N-nonrelativistic

particles are not necessary to be Gaussian transformations of the scalar potential.



2 Fumio Hiroshima
1 INTRODUCTION

The main problem in this paper is to consider a scaling limit of a model in quantum elec-
trodynamics which describes an interaction of many nonrelativistic charged particles and
a quantized radiation field in the Coulomb gauge with the dipole approximation. For our
discussion we may limit ourselves to the case of a fixed number N of the particles, since N
dose not change in time. The model we consider is called “the Pauli-Fierz model”, which has
been a subject of great interests and by which real physical phenomena of charged particles
and a quantized radiation ﬁeld such as “Lamb shift” can be interpreted. There has been a
considerable amount of literature on the Pauli-Fierz model with one-nonrelativistic charged
particle, e.g.,[1,2] from points of view of physics and [3,4,5,6,7,8] mathematical points of view.
In particular, the authors of [5,6] have studied a scaling limit of the Pauli-Fierz model with
one-nonrelativistic charged particle. We may well extend the scaling limit of one-particle
system to N-particle system.

The authors of [5,6] defined Hamiltonians of the Pauli-Fierz model as self-adjoint oper- -
ators H, with an ultraviolet cut-off function p acting in the tensor product of the Hilbert
space L%(R?) and a Boson Fock space F(W) over W = @1 L*(R?). Introducing scalings
with respect to parameters ¢ (the speed of light), m (the mass of the particle) and e (the
charge of the particle), the authors have shown the existence of the strong resolvent limits
of the scaled self-adjoint operators H*¥N (k) + V ® I with an infinite self-energy of the non-
relativistic particle subtracted with a scalar potential V, (we call the limit “the scaling limit
of H,+V ®I7): In [6] we have proved the following:

Let V and p satisfy some conditions and A be the Laplacian in L:(R%). Then HfEN(/c) +

V ® I is self-adjoint and bounded from below uniformly in sufficiently large £ > 0 with

1 -1
s— lim (HPN (k) + V QI —2)" =S{(-—-2—m—A+Veff—Z) ®P0}5_1,

K—00

where z € C\ R, My, is a positive constant, S a unitary operator on L*(R%) @ F(W), Py a



projection on F(W) and V.s; a multiplication operator defined by
Vegs(w) = (2m0)~# [ dye P2y (y),

where « is a positive cénstant. - The multiplication operator V.ss is called “the effective
~ potential”.

One of the strongest methods to analyze the scaling limits in [5,6] was to find Bogoli-
ubov transformations U, which implements a unitary equivalence between the Pauli-Fierz

Hamiltonians H, and decoupled Hamiltonians of the form
H= —-éA ® I+ I® Hy+ constant,
2m

where m is a positive constant and H, is the free Hamiltonian of the quantized radiation

field in F(W); the authors of [5,6] show equations of the following type:
(HEEN 4 veoI—z) =u(B+u'(venu-z)" u (1. 1)

In this paper, the Pauli-Fierz Hamiltonian H; with N-nonrelativistic charged particles in the
Coulomb gauge with the dipole approximation are defined as operators acting in the Hilbert

space L*(RY) ® ... ® L*(RY) @ F(W) = L2(R™) @ F(W) by

i

N

1 X e 2
Hy = =YY (—itDi®@I-el® Aup;)) +1® H,
2 i=1u=1
h? 1 N d Ry ) )
= —o—ARI+IQHy+ 5= (2ehiD} ® Au(p;) + €1 ® A2(p)))
2m 2m ;o =1

where Df; is the differential operator with respect to the j-th variable in the u-th direction,
A the Laplacian in L*(R%V), % the Planck constant divided 27 and A,(p;) the quantized
radiation field in the p-th direction with an ultraviolet cut-off function p; in the Coulomb

gauge. Problems arising in the many particles system are as follows:

(i) Do there any Bogoliubov transformations such as (1.1) exist?
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(ii) What kind of scalar potentials V and sets of ultraviolet cut-off functions (py, ..., px) do
a scaling limit of the Hamiltonian Hz + V ® I exist for ? Furthermore, what kind of

infinite self-energy should be subtracted from the original Hamiltonian H; + V @ I?
(iii) If the scaling limit exists, what form does the effective potential have?

With this motivation, we continue here to analyze a scaling limit of the Pauli-Fierz model
with N-nonrelativistic charged particles.

We introduce the same scaling as [6] as follows;
(k) = ck,e(k) = ex™2, m(k) = mr~2, | (1. 2)

Introducing a pseudo differential operator EREN (D, k) in L*(RN) with a symbol EREN(p, k)

such that EFFN(p, k) — oo as k — 0o, we define a Hamiltonian H;*FN (k) by

1 N d .
HF " (k) = —~E"N(D, k) @ I+ kI @ Hy + 53 3 (k2ehiDi @ Au(p;) + €21 ® A2(p;)) .

j=1p=1

For sufficiently large k > 0 and a scalar potential V' with some conditions, we shall show
that H;FN (k)4 V @1 is essentially self-adjoint on D(~A®I)ND(I® H,) and bounded from
below uniformly in sufficiently large ¥ > 0, and the existence of Bogoliubov transformations

%), which gives a unitary equivalence of HF**" (k) + V ® I and a self-adjoint operator

U
Hi(r) + C.(V) as follows;

(HF N (k) + V © I = 2)7" = U(k)(Hp(x) + Cu(V) — 2)" U (x),

where Hx(k) = E(D,x) @ I + I ® Hy, E(D, ) is a pseudo differential operator in L2(R%)
~and Ck(V) = U (k)(V @I)U(k) (Theorem 3.5). Then we see that U(x) — U(00) as & — oo
strongly (Theorem 3.4) and hence we get

s — lim (B (x) + V @ 1 - 2)71 = U(o0) {(B=(D) + Vagy — ) ® B} U (c0),

K—00



where £°(D) is a pseudo differential operator in L?(R?") and V,;; a multiplication operator.
(Theorems 3.6, 3.7). In the case of one-particle system the effective potential V.ss is a
Gaussian transformation of a given scalar potential V. However, we shall see that in the
N-particle system, V.y; is not necessary to be a Gaussian transformation. Actually it is

determined by a matrix A® = (A?f)lsi,js ~ defined by

~ 1d—=1 [ %\ € pi(k)p;(k)
Ao 28— €e Pilk)Pi\K) _
o2 d "(mc) Fic Jrd dk w(k)® ’ (1-3)
where w(k) = |k|,k € R%. In the case where A% is non-degenerate, the effective potential

Vess is Gaussian transformations of V.

The outline of this paper is as follows. In section 2, we define the Pauli-Fierz Hamiltonian
with N-nonrelativistic charged particles in the Coulomb gauge with the dipole approximation
and show its self-adjointness. Moreover we construct an exact solution to the Heisenberg
equation from the point of view of the operator theory (Corollary 2.9). In section 3, when
the scaling parameter « > 0 is sufficiently large, we show that a Bogoliubov transformation
can be constructed, and define a renormalized self-adjoint operator H; "™ (k) which is the
original Hamiltonian Hz(x) with an infinite self-energy of the nonrelativistic charged particles
subtracted. We shall show the existence of the scaling limit of Hz+V @I and give an explicit

form of the effective potential. We give a typical example of a scalar potential and a set

of ultraviolet cut-off functions. In section 4, we give a physical interpretation of the matrix

~

A,

The author would like to thank Professor A.Arai for helpful discussions.

2 THE PAULI-FIERZ MODEL AND EXACT SO-
LUTION

To begin with, let us introduce some preliminary notations. Let H be a Hilbert space over C.

We denote the inner product and the associated norm by < *,- >4 and || - ||» respectively.
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The inner product is linear in - and antilinear in *. The domain of an operator A in H is
denoted by D(A). A notation The Fourier transformation of a function f is denoted by f
(resp.f) and f the complex conjugate of f. In this paper, summations over repeated Greek
letters are understood. Let

W=LRYS...0 LARY).

'

d

We define the Boson Fock space over W by

1

FW) = Derw =B FEW),

n=0

where ®2W = C and Q"W (n > 1) denotes the n-fold symmetric tensor product. Put

N
FYw)= P F.w) @ {0}

n=0 n>N+1

Moreover we define the finite particle subspace of F(W) by
FeW) = | FYW).
N=0

The annihilation operator a(f) and the creation operator af(f) (f € W) act on the finite

particle subspace and leave it invariant with the canonical commutation relations (CCR):

for f,g € W
[a(f),a'(9)] = (ﬁg}w
[@'(f),d!(9)] = O,
where [A, B] = AB — BA, a* denotes either a or af. Furthermore,
(N2, ), = (@, DY) sy ®YEFEW).

We define polarization vectors e’(r = 1,...,d — 1) as measurable functions e" : R? — R?

such that

e’ (k)e*(k) = 6,5, € (K)e=0, a.ek€R



In this paper, we fix polarization vectors e”. The p-th direction time-zero smeared radiation

field in the Coulomb gauge with the dipole approximation is defined as operators acting in

F(W) by

and the conjugate momentum

() = 5 {o' (@itvVavase.f) - a (eitvivae i)}, 2. 2)

where g(k) = g(—k). Note that in the case where f is real-valued, A,(f) and II,(f) are

symmetric operators. Let = (1,0,0,...) € F(W). It is well known that
£{a'(f)--a' ()0, Qf; € W, =1,.0m,n > 1}

is dense in F(W). For a nonnegative self-adjoint operator & : W — W, an operator I'(e~*)

is defined by

I

T(e™)al(fi)..a'(f)Q = al(e™fy)..al(e " f,)Q,
Te™™0 = Q.

The operator I'(e™*) defines a unique strongly continuous one-parameter semigroup on

F(W). Hence, by Stone’s theorem, there exists a nonnegative self-adjoint operator dI'(A) in
g

F(W) such that
F(e—th) — e—tdl"(h).

The operator dI'(h) is called “the second quantization of A”. Put ® = w & ... ® w. The free
—

d—1
Hamiltonian Hj in F(W) is defined by

H, = hedl'(®).
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Let M, be a Hilbert space defined by
Mo = {1 | [ 110 PRk < oo},
with the inner product
<f9>a= [, gk (k) dk.

We have the following commutation relations on F*° (W)

)

[A#(f),AV(g)] = 0? f;g € M—la
[H#(f)anu(g)] ZO’ A fage Ml’
AT = 0 0) . Fid€ ManMyn s,

3.
2

and on D(H?),

where A is the Laplacian in the L?-sense and d,, (k) = ¥4, el (k)ey(k). The Pauli-Fierz
Hamiltonian with N-nonrelativistic charged particles interacting with the quantized radia-
tion field in the Coulomb gauge with the dipole approximation is defined by

N d ‘ 9

;E (—ihDi ® I — eI ® Au(py)) +1® H,

acting in

PRY® . 0 PR QFW) = EY) 0 FV) = [ ® FW)da,
e

where Df; is the L2-derivative with respect to the j-th variable in the p-th direction, p;s
serve as ultraviolet cut-off functions. We introduce a scaling with respect to the parameters
c,e,m as (1.2). Throughout this paper, for objects A = A(c, e, m) containing the parameters
c,e,m, we denote the scaled object by A(x) = A(c(x), e(k), m(k)). We define a class of sets

of functions as follows:



Definition 2.1 = (p1,...,pn) s in P if and only if

(1) pj,5 =1,..., N are rotation invariant, p;(k) = p;(|k]), and real-valued,

(2) pj/w, pi/Vw, pjsVwp; € L*(RY).
Moreover  is in P if and only if in addition to (1) and (2) above

(8) Forallj=1,..,N, pjJwyw € LA(R?) and there erist 0 < a < 1 and 1 < € such that

pi(v/$)p;(v/8)(+/3)*2 € Lip(a) N L]0, 00)), where Lip(a) is the set of the Lipschitz

continuous functions on [0, 00) with order a,
(4) supy |p;(k)wi~2 (k)| < oo,supy |4;(k)wi~% (k)| < 00,5 =1,..., N.

Observe that Definition 2.1 (1) implies that p;’s are real-valued functions. Hence A,(p;)’s

are symmetric operators. Put

1

——RAQI+IQH,,
m

Hy =

where A is the Laplacian in L?(R?"). Tt is well known that Hj is a nonnegative self-adjoint

operator on D(Hy) = D (-—-2—1n-h2A ® I) N D(I @ Hy).

Theorem 2.2 ([3,4]) For § € P and k > 0, the operator Hx(k) is self-adjoint on D(Hy)

and essentially self-adjoint on any core of Hy and nonnegative.

Let F = F ® I, where F denotes the Fourier transform in L2(R). It is clear that operators

FH;F~! can be decomposable as follows:

%)
FH,-,-(K,)F_I =/ H3(p, k)dp,

REN

where

N d
Hz(p, k) = % Z > (/chpL - eA“(pj))2 + Kk Hp.

j=1p=1
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Theorem 2.3 ([3,4]) For € P and k > 0, the operator Hx(p, &) is self-adjoint on D(H)

and essentially self-adjoint on any core of H, and nonnegative.

Following [3,4,6], we shall construct a Heisenberg field concretely. The Heisenberg field

A,u(f,t, k) with the scaling parameter « is defined by a solution to the Heisenberg equation:

d 1
E{A#(f,t,ﬁj) = ﬁ[Hﬁ(p’K)’AH(f’t’K)]’

A (f,0,8) = Auf, k).

In order to construct the Heisenberg field in a rigorous way, we shall prepare some technical

lemmas. We define an N x N matrix-valued function D(z) = (Di;(2)),<; j<ny bY

2d=1 1 paE)
2 d Jre z-— |k

D;:(z) = mb;; — dk, zeC\]|0,00).
j j

Lemma 2.4 Let ( , ) denote the Euclidean inner product. Suppose p € P. Then the

followings hold:
(1) The functions D;j(z,k),1 < i,j < N,k >0 are analytic in C\ [0,00).

(2) Fors € [0,00) and k > 0, the pointwise limit Dy;;(s, k) = lim;‘Ho D;;j(s £ th, k) exists

and has the following form

m 1 62Vdd—l 27”;' e2Vyd-—1\ ..
Dm@@==gﬁ‘g&;;jry%®iﬁ«§7_7'&M%
; . . d_
Kij(s) = p(vs)pi(Vs)si 7,
H;(s) = lim de,

=0+ Jis—z|>e S —Z

where Vg = ors JT(%) (T(z) is the gamma function). The convergence is uniform
in s € [0,00); for any 6 > 0, there exists hg > 0 independent of s, k, such that for

0 <" h < hy,

) 6
| Dij(s £ th, &) — Dyyi(s, k)| < Pl
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Moreover H;;(s) is Lipschitz continuous in s € [0,00) with the same order as that of

Ki; and contained in L¢(RY) with some € > 1.

(3) Let k > 0 be sufficiently large. PutDy(s, k) = (Dyii(s,8))1<ij<n- ‘Then there ezists a

positive constant di(x) such that for (wy,...,wy) = @ € CV,

ei[l(’)lf )](Di(s,m)u')’, B)| > dy (k)| D).

(4) Let k > 0 be sufficiently large. Then there ezists a positive constant do(k) such that for

wech,

inf  |(D(z, k)@, T)| > do()| |2
b (00,00, B) > ()]

Proof: The statements (1) and (2) are fundamental facts([9]). We shall prove (3). From (2)

it follows that

a . m [ e 1A I A
(Di(s, k)W, W) = = {|w| - E—T;(H(s)w,w } + 2sz(K (s)w, W),

where A = %—%idT, H(s) = (Hij(s))1<ij<d> K(5) = (Kij(s))i<ij<d- Since Hy; is a Lipschitz

continuous function and contained in L¢([0, 00)), it is bounded. Hence we have

(H(s)@, D) <N x  sup  |Hy(s)] - [@]* = ofd].
5€[0,00),1<ij<d

Thus we can see that for sufficiently large x > 0

Km

(ot 2 (1= 12 1P

Hence we get (3). We shall prove (4). From (2) it follows that for any n > 0, there exists

€0 > 0 independent of s € [0,00) and k > 0 such that for 0 <¥ ¢ < ¢,

|(D+(s, &)W, B)| — —|@]|* < |(D(s £ i€, k)W, D).
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Hence we have

\(D(s + ie, )T, T)| > {HZ (1 _ %%) _ %} @2 (2. 3)

On the other hand, put II,, = C\ {z +4y|z > 0,]y| < €}. Then we see that for z + iy € I,

o) — N . N 2 %—1
(D(z +iy, AT, D) = — (I ol ~ 1A/0 (2= )| Dy wipV5)['s ds)

Km (z—s)24+ 42

/oo Yyl X, wip(y/5)[2s2 !
K73

(z —s)2+y?

Noting that |ab|/a® + b? < 1/2, we have

(x“s)lz_lwzpz(\/_)‘232 1 o J A 2 2‘_1
= ds S—/ wipi(V/s)?s7 " ds,
b (s s+ gl Jo | 2 bV

1 o 2 415 1 2

< o [T lava)st st
€J0 =1

= Lyap.
€0

Since €o is independent of k > 0, we see that for sufficiently large x > 0,
m 1A - .
|(D(z + iy, k)W, T)| > E(l___ﬁ> |@?, z+iy € I,,. (2. 4)

Combining (2.3) and (2.4), we get (4). O

From Lemma 2.4 (3) and (4) it follows that for sufficiently large x > 0, there exist the

inverse matrices to D(z, k) and D (s, k), which satisfy

1

su DI (s, k)i, Wa )| < —— ||| W], 2.5
(P (e, B) | < gl (2. 9)
sup \(D_l(z,n)zb’l,lb'z)l < ——1——|tb'1||u72|. (2. 6)
2€C\[0,00) ‘ da(~)
We set for g € P and sufficiently large k >0
k)
Q(k, k) = D (K%, k) : = (Qu(k, k), ..., Qn (k, K)).

pn (k)
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For later use in Appendix, we note that for all s € [0, 00),

1 (e i—1 X X i
D.ij(s,k) = D_y(s,K) = 27”@ (Egvd y ) pi(\/g)pj(\/g)sg L 2. 7)

Put D_l(z) = (Di;l(z))ISijSN’ D;](S> = (D;}j(s))ls.ijgjv. Then (27) 1mphes that

2mi (e d—1\ & ) —1 . . d_y
3 —= V4 d Z D-uc(S,’f)Dq-jz(Sa"C)Pk(\[9-);01(\/5)32 = D_ij(s,k) = D4ji(s, K).

c? k=1
(2. 8)

Remark 2.5
(1) In [3,4,6], the authors define functions Dy(s) corresponding to Di(s) defined in this

paper. The function 1/D4(s, k) can be well defined for some p and any k > 0. However,
in our case, we do not know whether DL (s, k) has the inverse or not for all kK > 0. But
since, in this paper, we focus on an asymptotic behavior as k — 0, it is sufficient to

consider the case where k is sufficiently large.
(2) For the proof of Lemma 2.4, we do not need Definition 2.1 (4).

We define operators Gy, (h > 0) by

_ f(K) /
(Gui)k) = /mad 7%+ )R

It is well known and not so hard to see that G, are bounded linear operators on L?(R?) and
the strong limits limy_o G, = G exists ([4]). Furthermore G is skew symmetric (G* = —G).
For sufficiently large k > 0, we can define the following operators:
1 e X di oy 41, 4
To(®)f =6uf+ =2 Y Qikwr Gwe T, pf, 1< pv <d.
i=1

Lemma 2.6 Suppose that g € Pandk>0is sufficiently large. Then the follo'wz'ng holds.

(1) Tu(k) and T, (k) are bounded operators on M,, o = —1,0,1 and (T (k) f) = T (k) F.
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(2) Put D;'(0,5) = D3:i;(0,k) and let f € M_,. Then

<dm?}(j3),\/1_ Ty (x )f>L2(Rd): <duaépgl(o,n)\/’3j_ %> s vi=1,..,N.

(3) [w? Th(k) | = = TN, 55 (Qi(K), ) 12ze) duv .
(4) Tuw(x)p; = 6 ZQ;(k).

(5) T, (k)dvaTop(k) = dyg.

(8) €T (K)duaTp(K)E) = bra.

Proof: See Appendix. O

In the rest of this section, we fix sufficiently large « > 0 and omit s in notations for

simplicity. Define 4,(f) = A, (f) and T, (f) = IL,(f). We put

B(T)(f’p) = -1_2{;4\# %T:Ve;\/cwf> +1H (\/ET/IV Z\/"')
N/ e Qje; >
+ h v 39 bl M ?
jZ——:l p] <\/ﬁ(C&))5 f LZ(Rd)} f E 0
1) I N N A e Py i e |
BW\(f,p) = 5 A, = wevewf ) —ill, _\/ﬁT“"e”—_\/@'

N ‘ e er
+ hp111<_ . l;af> 7f€M7p= pla"'apN eRdN-
2 VA (cw)? L2(R%) ’ ( )

By the definition of A,(f) and II,(f), for the vector of the form f = f1 @ ... ® fa_1 € W, we

see that for p = (p!,...,p") € RV

d-1 . N
B(E.p) = X BV (frap) = ! (W-1) &+ a(Wa) + 3 (Lit' 1) oy
r=1 =
N
B ZBT(T (Frip) = l(Wt) +a(W_£) + 3 (L £) , 00 (29)

j=1



15

where
Wi = ( (”)1<rs<d 1)
Ly Ly,
Lj = (L}j)1<u<d, 1gr<a—1 = | : J=1,.., N,
L‘fj—l e ng—l
where
(r,8) Lol egm s
W+ f = §(TGHTI‘V€V\/_+ \/_eﬂ s U\/_)f’
T8 1 1 * * ~8 r
W£ )f = 5(—\/——_6;171;11/ u\/—_\/—ey pv I/T)
Lr- = e\/_eP'Qj
v = e

We see that, by Lemma 2.6 (1), W is a bounded operator on W. By virtue of Lemma 2.6

(5) and (6), one can easily see that W satisfy the following algebraic relations:

W W, -W'W_ = I,

W, W_-W_W, = 0,

W, W -W_.W_ = I,

W_W: -W,W_ = 0. (2. 10)

We put W, = M, & ... M,, o € R. These relations (2.10) imply that on F>°(W) for
NSyt 4

d—1
fa g € WO)

[B(f,p),BT(g,p)] = <f,g>W)

B(t,p), B(g,p)] = O,

and for @, ¥ € F>(W),

(B'(f,p)®, @)ﬂw) = (&, B(f, p)\I!>}_(W) :
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Lemma 2.7 Forf € WyNW,, p € R®N and 5 € P, we have

3
2

[ Hy(p), B} (£, p) | = £B*(heiof, p), on F*(W)N D(Hy), (2. 11)
where + (resp.-) corresponds to B (resp.B).

Proof: Suppose that f € W_o N Wy N W,. Then by Lemma 2.6 (3) and (4), one can directly

see that (2.11) holds. Next by a limiting argument, one can get (2.11) for f € Wy nW,. O

Define

A(f,p)

25 (B(E.0)+ B(E.9),

H(f,p) = \/§ (BT(f,p) - B(f,p)) , few

We can easily see that the operators A(f,p)|rwew) and TI(f, p)|re(w) are essentially self-
adjoint by the Nelson analytic vector theorem [10,Theorem X.39]. We denote the self-adjoint

extensions by the same symbols.

Theorem 2.8 Suppose g € P. Then for £ € W,

A(e%, p), (2. 12)

exp (i%Hﬁ(p)) A(f,p) exp (-—i-:—i-Hﬁ(p)) =
exp (i Hpfp) ) T8, D) exp (~ix Hip)) = TS, ). (2. 19)

Proof: We only show an outline of the proof. For simplicity, put A(e"catf ,0) = A(f,p,1).
Let C®(H,) = N, D(H}). We can easily see that, by Lemma 2.7, <eiA(f””t)\If,<1>> ,U,0 €
C®(H,) N F>(W),f € W_o N Wy N Wy, is differentiable in ¢ with

d ;4 - i ;
By X (fvpvt)\P & — <_ zA(f,p,t)\D Hx ¢> - <_H_‘ )} ——zA(f,p,t)<I)> 2. 14
zi e @) om = (7 HADI) oy ™ AR AP € o™ 1

From (2.14) it follows that

d

- G A ®) =0, ¥,®cD(H,),feW.

Fow) !
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Hence
et AEP0) ei%Hﬁ(I’)eiSA(f””t)e“i%Hﬁ(p), on C®(Hy) N F=(W). (2. 15)

By a limiting argument, one can see that (2.15) holds for ®,¥ € D(H,),f € W,. Since
the both sides of (2.15) are one parameter unitary groups in s € R, Stone’s theorem yields

(2.12). (2.13) is quite similar to (2.12). Thus we get the desired result. 0

For t € R, we define operators in F(W) by |

1 = \/ﬁ tewt £ T \/ﬁ —tcwt 7 .
Aﬂ(fatlp) = E z {BT(T) <—\/_ae teuTHUf)p> + B( ) (\/_a'e teuT,ul/f,p)}
r=1

N ~ £
—¢€ Z hp:/ <d,UV'D'L_;1(0) b 7% ’ f € M—17l‘l' = 17 ,d
cw

4j=1

Form Lemma 2.5 (2) (5) and (6) it follows that

Au(f,0lp) = Au(f). (2. 16)

Corollary 2.9 Suppose € P. Then the operator A,(f,t|p) is the Heisenberg field with

exp (i HAP)) Aulf)exp (~in Holp)) = Au(71]p) (2. 17)

Proof: 1t is enough to show (2.17) for a real-valued function f. For a real-valued function f

such that f € M_;, we can see that

A(f) - -l—dz_jl B ‘/ﬁerT‘ fip) +BD N o f
m - \/§T=1 \/a vl uw P \/@ vt oyt D
N X R
i - Pj f
—e hp, <d ,D71(0 ,——> .
i§=:1 wDii 0) (cw)3 Vew
Hence (2.17) follows from Theorem 2.8. O

Corollary 2.10 vSuppose g€ P. Then for ® € D(H,),

. t . t icw
exp (i Hylp)) B(E,p) exp (=i Hylp)) @ = B, )
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Proof: Note that D(Bf,p)) C D(Hs) = D(H(p)). Thus from (2.12) and (2.13) it follows
that on D(H,)

T A(F, p)e=itHAD) _L{ei%Ha(p) BI(£, p)e#1A0) 4 4T B(F, p)e=it o))
zcwtf +B( —zcwtf)}
i+ H(p) SiEHAD) _ ' [GitHAD) gt (~i4Ha(p) _ it HsP) B(F. p)e—it Hs(P
e TsOI(F, p)e~ih = ﬁ{ Bl(f,p)e v 5®) B(F, p)e~ i Ha)}
_ U [ oty idte\ _ Ry .—icotF
= ﬁ{B(e f) — B(e™ )} .

Thus the corollary follows. a

3 BOGOLIUBOV TRANSFORMATIONS AND SCAL-
ING LIMITS

In this section, we coﬂstruct a unitary operator which implements a unitary equivalence of
the Pauli-Fierz Hamiltonian and a decoupled Hamiltonian. Moreover we investigate a scaling
limit of the Pauli-Fierz Hamiltonian. Unless otherwise stated in this section, we suppose that
k > 0 is sufficiently large. Since the bounded operators W *(k) have integral kernels

1 ee(k)en(K) Ty pi(k)Q; (K, %)
K3t (k| + |K))(|k][R])?

b

Wk, K k) =

- such that W(k) € L*(R? x RY), the operator W_(x) is a Hilbert Schmidt operator on
W. Then from (2.9) and (2.10) it follows that there exist two unitary operators U(x) (p

independent) and S(p, k) such that ([6,Section IIT})
U= ()S(p, 5)" BH(E, p, K)S(p, M)U(s) = aH(E), £ W. 3. 1)

Concretely S(p, k) is given by

' N eh e"D;71(0,k)p e" D710, k) p;
S — i d:1 [ J) P | < d-1%utij J ]
(p, k) = exp (121 sz# {a (697‘—1 V2hBw a' | Dr=g J2h3w
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Theorem 3.1 Suppose § € P. Then putting S(p, k)U(k) = U(p, ), we see that U(p, k)

maps D(Hy) onto itself with

U(p, k) H(p, &)U (p, k) = kH, + E(p, k), (3. 2)
where
B2 N d
E(p,k) = 2m22(ﬂpﬂ+ﬁpp(f€)) +0(x),
i=1 p=1
N
pu(k) = Y plAl(x),
j=1
. 1 2 X &l <eTD-'kl(0 VK ) Pk (r,s) €2 pi
Ni(R) = Soms vk 2 2P T+ W ()W) -L-> ,
() = G L\ A (W) ™ e
62h N d-1 <6r/3' (rys) eSﬁ_
O(k) = — L2 (T - W_(k)WI(k)) '”> .
( ) mc;r,sgl \/(; ( ( ) +( )) \/U L2(r4)

Proof: For simplicity, we omit the symbol x. Put U(p)Q2 = Q(p). From [6,Proposition 2.4,
Lemma 5.9] it follows that Q(p) € D(H,). Then Q(p) € D(B(f,p)). By virtue of Corollary
2.10 and (3.1), we can see that for all f € W

B(t, ) exp (i1 Hy(p)) Up) = 0. (3. 9)
The equation (3.3) implies that there exists a positive constant E(p) such that
| .t .t .
exp (i3 Hy(p) ) Up) = exp (i B(r)) o). (3. 4)
Hence from Corollary 2.10, (3.1), (3.4) and the denseness of
£{ B'(8)...BU£.)0(p), Up)|; € W, = 1, mym 2 1},

one can get (3.2)(we refer to [6,Lemma 5.12]). Noting that ([6,Lemma 2.2})

Ve p; . ! (rs) VRep;
d—1 i _ ) s , i
oot ) o0 = {7t (5 (o) G o,
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one can easily get E(p) by

< Hz(p)Up), 2 >rw)
< Q(p), 2 >Fow)

E(p) =

This completes the proof. a

The positive constant F(p, k) can be rewritten as

K2h? -
E(p’ K;) = %Zﬁ + EREN(p, K) + E(pa K;)a
where

-~ 2712 ) .

E(p,x) = Z Z pLb,(K)pl, (3. 5)
ij=1p,r=1

ij Al A (k) + AR (k) (A (5) + AE ()

b;fu(“) = Z z ( : P Y p ,
k=1 a=1
2h2 _
EREN(p7K') = E(pa )_2— —E(p,n).

Let M(K) be the set of K x K complex matrices. Note that since (b%,(k))1<ij<n,1<up<d €
M(N) ® M(d) = M(dN) is nonnegative and symmetric, we have E(p,&) > 0 for p € RV,
We define H;*EN (p, k) and ﬁ;(p, k) by

1
2m

i Xd: (—QKGHpZ;Au(pj) + GZAN(P]')2) )

j=lp=1

Hi""N(p,x) = —E"™(p,x)+ xH, +
ﬁ;(p,lﬁ) = E(p”{’)-i—ﬁﬂb-

Then one can see that

HFEV () = F-! </R,m HEN(p, /c)dp) F
= —EREN(D k)®I+kI®H,
+__ Z Z (—2ehiD] ® Au(p;) + €21 ® Au(?’j)z) ’
M j=iu=1 ’
) = ¥ ([0 Hp)ip)

= E(D,k)®I+kl® H,
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where E®EN (D, k) and E(D, k) are pseudo differential operators on L%(R¥) with symbols

EREN(p k) and E(p, k) respectively.

Theorem 3.2 Suppose § € P. Then H;"EN(k) and ﬁ;(m) are essentially self-adjoint on

any core of Hy and bounded from below.
Proof: By the definition of ER®N(D, k) and E(D, k), H;®EN () and IA{;(K) are symmetric.
For f € D(—A), there exist d;(x) and da(k) such that
|E(D, &) fll 2 eany < di()]] = AFl|pgreny,
IEZN (D, 1)l aamy < da()]| = Al gaquamy.
Hence, similar to the proof of ‘Theorem 2.2, the Nelson commutator theorem yields desired

results. ' O

Remark 3.3 Write

Rk K2 .
E(p,x) = ———p + Z Z e TAGED IS 5 Pu(k)* + O(x). (3. 6)
Then the first and second terms on the right hand side of (3.6) diverge as k — oo for p # 0,

but the rest terms not. Actually we see that

2
B2 4 N 1<e2)<d_1>2dN N A YA

lim — p = 5= | hp3<——’———> ,

Koo 2m ;E s 2m \ 2mc? d a=1kz=:1 JZ=:1 Vwd Jw L3(rd)

= E=(p).

Then, by (3.2), concerning an asymptotic behavior of Hxk) as k — 0o, we should subtract
the first and second terms in the right hand side of (3.6) from the original Hamiltonian Hx(k).
However one can not say that ]3;‘;(/{)2 is real and nonnegative for any p € R . To guarantee
the nonnegative self-adjointness of the Hamiltonian Hy REN (p, k) with the divergence terms
subtracted, we should define E(p, k) such as (3.5 ). In this sense, we may say that the operator
H®EN (k) has an interpretation of the Hamiltonian H 5(k) with the infinite self-energy of the

nonrelativistic particles subtracted.
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We define

Then we have the following theorem.
Theorem 3.4 Suppose that g € P. Then
s— lim U(k) = exp % i71Dj ® {a (@d"l——ip}-—> - ;zf <€Bd_1——§‘—ﬁ—j—>}
k=00 =1 m H r=1 Vv 2hc3w3 r=1 vV 2hc3w3 ’
= U(c0). (3. 7)
Proof: From [6,Theorem 3.11] it follows (3.7). O

We take scalar potentials V' to be real-valued measurable functions on RY and put

C.V)=UY )V RDU(K), CV)=UHoo)(V& U(x0). (3. 8)

We introduce conditions (V — 1) and (V — 2) as follows.

(V-1) For sufficiently large « > 0, D(E(D, k)) C D(V) and for A > 0, V(E(D, &) + X)~! is
bounded with

lim [[V(E(D, k) + )7 =0, (3. 9)
where the convergence is uniform in sufficiently large x > 0.
(V-2) For A > 0, V(E(D,&) + X\)™! is strongly continuous in & and

s— lim V(E(D,k) 4+ X = V(E®(D) + ).

K—00

The condition (3.9) yields that, by the Kato-Rellich theorem and commufativity of U(k)
and (E(D, k) + A)™1, operators E(D, k) ® I + C(V) are essentially self-adjoint on any core
of D(E(D,«) ® I) and uniformly bounded from below in sufficiently large x > 0. Moreover

since I ® H, is nonnegative and commute with E(D, k) ® I, one can see that

HxV,k) = E(D,x) @ I + Co(V) + kI ® H,
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is essentially self-adjoint on any core of D(E(D,k) ® I + kI ® Hy) and uniformly bounded

from below in sufficiently large « > 0. In particular, D(Hy) is a core of ﬁ:;(V, k). Put
HFPN(V,k) = HF*N(k)+V QLI

Theorem 3.5 Let § € P. Suppose that V satisfies (V — 1) and (V —2). Then, for suffi-
ciently large k > 0, the operator HFEN (V, k) is essentially self-adjoint on D(Hy,) and bounded
from below uniformly in sufficiently large k > 0. Moreover the unitary operator U(k) maps
D(Hy) onto itself and for z € C\ R or z < 0 with |z| sufficiently large,

-1

(=) =) =u) @V =) u . @)

Proof: Since U(x) maps D(I ® H,) onto itself (see Theorem 3.1) and ~A ® I commutes with
U(k) on D(—A ® I), U(k) maps D(Hp) onto itself. Put

Seo(®N) = {f € LX®™)|f € C(R™)}.
At first , by Theorem 3.1, we see that for @ € SP(RY)QD(H,),
HEN(V, k)@ = U(r)HAV, 6)U 1 (x)D. (3. 11)

By alimiting argument we can extend (3.11) to ® € D(Hy). Since D(Hy) is a core of ’I;T;(V, K)
and U(x) maps D(Hy) onto itself, the right hand side of (3.11) is essentially self-adjoint on
D(Hy). -So is the left hand side of (3.11). (3.10) can be easily shown. O

We want to consider a scaling limit of H;**"(V, k) as k — co. In [5], a general theory of
the strong resolvent limit of self-adjoint operators including abstract versions like as the self-
adjoint operator ’I:I—,;(V, ) has been established. We shall apply the theory in [5] with a little
modification. Let V satisfy (V — 1). Then since D(C(V)) D D(—A)®D(H,), one can define,

for ® € F(W) and ¥ € D(H,), a symmetric operator Eg ¢(C(V)) with D(Es4(C(V)) =
D(-A) by

<fa EQ;\P(C(V))9>L2(R1N) = (f® @,C(V)(g ® \I’»}" f€ Lz(RdN)ag € D(_A)'
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In particular, we call Eq o(C(V)) = Eq(C(V)) “the partial expectation of C(V') with respect
to ”([5, Section II}).

Theorem 3.6 Let § € P. Suppose that V satisfies the conditions (V—-1) and (V- 2).

Then for z € C\ R or z < 0 with |z| sufficiently large,

K—=00

s — lim (H%FN(V, k) — 2)7! = U(o0) {(EM(D) + Eq(C(V)) — Z)—l ® PO}U_I(OO>v

(3. 12)
where Py is the projection from F(W) to the one dimensional subspace {af]a € C}.
Proof: By (V — 1) and (V — 2), we see that

(V-1)’ For sufficiently large k > 0, D(E(D, x)) € D(Cy(V)) and for X > 0,
C(V)(E(D, ) + A)~! is bounded with

Bim [[CUV)(E(D, %)+ )| =0,
where the convergence is uniform in sufficiently large x > 0.
(V-2)’ For A > 0, Cx(V)(E(D, &) + X)~! is strongly continuous in x and

s — lim Cy(V)(B(D, k) + X)™! = C(V)(E®(D) + ).

From [5,Section II], (V — 1) and (V — 2)' imply that

s— lim (HAV,k) = 2) = (E®(D) + Ea(C(V)) = 2) " & Py.

K—00

Thus by Theorems 3.4 and 3.5, we get (3.12). O

We want to see Eq(C(V)) more explicitly. For 5 € P, let A~ = (A?f)lgi,jgd, where

Zlfj" is defined in (1.3). Let I x4 denote d x d-identity matrix. Since A* = A® ® Iixa €
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M(N) ® N(d) = M(dN) is a nonnegative symmetric matrix, there exist unitary matrices

T € M(dN) so that

Mlixa
TA®T-! = Aol , (3. 13)
AnLixa
where A\ > Ag... > Ay > 0.
Theorem 3.7 Suppose A\; > Xy... > Mg > 0, Agy1 = ... = Ay = 0 and fiz a unitary operator

T in (3.13). Let x = (z1,...,xx), 7; €ERY, j=1,..,N and V satisfy

K |(Tz); — y;|?
/ i dyl...dyK|V| o] 'I“"1 (yla s YK, (T.’L‘)K+1, ceey (Tx)N) exp | — j=1 |( )] yJI < 0o
RAE ANk

(3. 14)

Moreover we suppose that the left hand side of (8.14) is locally bounded. Then the partial

ezpectation Eq(C(V)) is given by a multiplication operator Vesy;

Vers(z) = (27r)\1...)\R-)_% /RdK dyy..dyxV o T (y1, .o, Y, (TZ) k41, ooy (T2 )

K 2
_ 2uj=1 |(Tx)j - yj|
X exp ( DA '

In particular, in the case where A% is non-degenerate, Voss is given by

2
< cor_d z—y
V;ff(:c)z(27rdetA ) 2_/]}ng V(y)exp <_2|detA|°o) dy.

Proof: Suppose V' € S(R™), which is the set of the rapidly decreasing infinitely continuously

differentiable functions on R*N. Then the direct calculation shows that for f,g € L2(R™Y)

(£, EQ(C(V))!])L?(R"N) =(/, Veffg>L2(|R-iN)' (3. 15)

We next consider the case where V' is bounded. In this case we can approximate V by a

sequence {V,}2,, V, € S(R?Y), such that

IV = Valleo = 0 (n — o),
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where || - || denotes the sup norm. Then we have
Eq(C(Va)) = Ea(C(V)) (n — o),

strongly. Moreover (V,,)err(2) — Vess(z) for all z € R, Thus for f,g € L2(R™), (3.15)
follows for such V. Finally, let V" satisfy (3.14). Define

v { V() V(@) <n,
n |V(z)| > n.

Hence for f € L?(R?Y) and g € D(—A), we have
(£, Ea(C(Va))g) p2gany = {f, EQ(C'(V))g)L?(IRdN) (n — o).

On the other hand, since the left hand side of (3.14) is locally bounded, we can see that for

f € Ce(RIN) and g € D(—-A),

(f, (Vn)effg>L2 RNy <fa Veffg>L2 REN (n - Oo)’
(REN) (ReN)

which completes the proof. a

Remark 3.8 In Theorem 3.7, in the case where A® is non-degenerate, since the left hand

RdN

side of (3.14) is continuous in r € , it s necessarily locally bounded.

We call V,;; “the effective potential with respect to V”. We give some éxamples of scalar

potentials V' and ultraviolet cut off functions p.

Example 3.9 ([non-degenerate case]) Let

- _ 2 2 IRY)
Roo =5 141 <i) € / PR
R4

me) he w(k)?

Then there exist positive constants 61 and 6y such that for sufficiently large k > 0

8ilp|> < E(p, &) < 8alp|%. (3. 16)
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Letd =3 and V be the Coulomb potential;

V('le") = Z | ]| Z IB” , Q; > Oa/Bij > 0.

1#7 |.'L'1 .7

Then V is the Kato class potential ([10], Theorem X.16). Namely for any € > 0, there exists
b >0 such that D(V) D D(—A) and |

V|| pausny < €l — AB| ooy + b]1B||p2geony- (3. 17)

Together with (3.16) and (8.17), one can see that V' satisfies (V — 1), (V — 2) and for any

t>0

[ Viwe e dy < oo,
R3

Then the scaling limit of the Pauli-Fierz Hamiltonian with the Coulomb potential exists and

has the effective potential given by

_3 _le—ul?
Varl@) = (@m)7F [ Ve ay,

R3N

S - {%%)”—Z}N%( 4 5)

- 1 (& \[(d-1\> 4
E (D):__gn— (2mc2>( d ) ®i=1|| o

where Aj, j =1,...,N, is the Laplacian in L%(R?).

Moreover

th

IR

Example 3.10 ([non-degenerate case]) Let A® be non-degenerate and V be the Phillips
perturbation with respect to —A([12]). Then (8.16) holds with some 6, and 6,. Hence V
satisfies (V — 1), (V — 2) and for any t > 0

/R.m [V|(y)e~4*¥*dy < co.

Hence the scaling limit of the Pauli-Fierz Hamiltonian with Phillips perturbation exists and

has the effective potential in Theorem 3.7,
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Example 3.11 ([degenerate case]) Let V be a real-valued bounded function. Then V
satisfies the conditions (V — 1) and (V — 2). Hence the scaling limit of the Pauli-Fierz

Hamiltonian with the scalar potential V exists for all f € P.

Example 3.12 ([degenerate case]) Letp; = p,i=1,...,N andV satisfy (V — 1), (V — 2)
and the assumption stated in Theorem 3.7. Thenrank A® =1 and the non-zero eigenvalue

C is given by

—- B\2 e2 A(1)2
c-Nd-1(h f-/ akPES

2 d \mc) helrt  w(k)?
Thus the scaling limit of the Pauli-Fierz Hamiltonian with the ultraviolet cut-off function p

exists and has the following effective potential:

Vipre) = @eOF [ dV 0T (a1, (T, o (Tal) oxp (T UE),

Moreover

4
R2A,

~

p

w

- 1 (N2e?\ (d—1)\°
E (D)—_% <2mc2>< d )

where A is the Laplacian in L*(RV).

4 CONCLUDING REMARK

As is seen in Theorem 3.7, the effective potential Vess is characterized by the matrix-valued

functional A% = A%®(7), which has the following mathematical meaning; putting
U(co)(z; ® U (o0) —z; ® I = Az, i=1,...,N,
we see that the partial expectation of Az;Az; with respect to (2 is as follows;

Eol(AziAcy)] = AF (A
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In one-nonrelativistic particle case, A.Arai [5] shows that the partial expectation Eq[(Az)?]
with respect to 2 may be interpreted as the mean square fluctuation in position of one-
nonrelativistic particle ([2]). In this sense, Afj"(ﬁ) may also be interpreted as correlation of

fluctuations in position of the i-th and the j-th nonrelativistic particles under the action of

quantized radiation fields.
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Imaginary line

Real line

Figure 1: Cut Plane Cgg,

5 APPENDIX

In this Appendix we prove Lemma 2.6. For simplicity, in this proof, we omit k in notations

and put
A==, G= wl_%Gwl_%, G, = wl_%Gtwl_%,t > 0.

(1) : This follows from the definition of T),, and T7;,, and Definition 2.1 (4).

nv

(2) !Fbl‘ fe M,

_3 -1 3 -3
<w 2Qi,w 2duaTWf>L2(Rd) = <d"°‘w 2w 2f>L2(1R'i)
N
+ Z <duaw—5Qi7 )‘w_%Qdeﬂ”ﬁjf>L2(R“)
j=1
= I+1II

Using (2.8), one can see that

Q.(k kdyydm 5.(k") f(K' ,
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N D)D) /D) VE) s (k)
= hm)\Z——V / Zs-—k’2+zt)

= %Eﬁ% 57_.‘._2- Z/ S — kl2 + Zt) (D-—-z]( ) - +Jt(s)) (k,)de]”,

dsdk’

where Fi(k') = duo(k")p;(K')f(k'). Using the contour integral on the cut plane Cpg,
(Figure 1), by (2.5) and (2.6), we have

1 oo 1
%/0 m( Zi(s) - +,7i(s)) ds

_ 1 = 1 -1 -1 :
= lm o 271 / (s — k™ +it)s (D_ij(s) B D+ji(s)) ds
1 D7'(2) D'(0)
—lim lim ——o / ij _ Dy
=0 Riood—0 27 Jems, (2 — k2 + z‘t)zdz —k'2 + it
D;'(k? —it)  D;'(0)

k"2 — gt —k'2 4t
Then
_ F;(K)D;'(0) DZ'(k? —it)Fy(k') ,
I = }fl—{%z/ k2 —it k2 — ¢ dk

Hence we get (2).
(3),(4) : They are direct calculations.

(5) : For f,g € My,

N
< T;yduaTa,Bfag >rewd) = < dpﬂf7g > L2(Re) +)‘Z < duﬂf, QiGd;wﬁig >L2(Rd)
j=1

+)\ Z < danJGdaﬂPJf,g >L2(1Rd)
j=1
2d — Ad 5 Ly
+A T Z < QiGdappif,Q;Gduapig > r2(re)
ij=1
= I+II+1IT4+1V.
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Then,
o =16\ - d_
IV = lim A2 i Vd D—ik(s)D+ﬂ(5)Pk(\_/5)pz(\/5)52 .lFij(k',, k")dsdk’dk”,
=0 1,3,k 1=1 (s — k2 — 2t)(5 — k" + zt)
= v,

where Fi;(K', k") = duo(k")p;(K")dap(K") p:(k") f(K')g(k"). By using the cut plane

integral method as in (2), we have

—AD; (K + it)Fi(K' k") —ADZ (k" — it)Fiy(K', k") ;
IV;' = Zl/ k/2 k”2 + 2t + Jk//2 — k2 — ANt dkldk
1]
= =) z < aﬂf, + Zt)p1G2tdpapJg>L2(Rd)

7.7—

- E <d,uaD;—jl(' + it)pj@thaﬁﬁif7 g>

L2(R%)
irj=1 (=9

By a limiting argument as ¢t — 0, we get

%in&IVt =-II-1II.
(6) : For f’g € MO,

<eLTuuduaTaﬂezf>g>L2(Rd) = < 67‘3fa g >L2(le) A< egpjé—Q—je;-}f, g >L2(]Rd)

-A< f, eijGQ—jeLg > L2(r)
+A2 < d“ﬂpjéaje%f, pjéajezg > L2(Rrd)

= I-II-1IT+1V.

We see that

-1 1o
2 p;( V3)sTT H (K k")
IV = Nlin 2: v,2 / ; k’2 O g ek

1]1

i (k"2 + i€) i3 (K" — ie)
= Ahm Z / (k’2 ! knz +2Z€ + k.II2J kl? — e Hij(kl’k”)dk,dk”

1]1

= )\hm Z < f,€,Q;Dij(- + i€)G2.Q; €10 >12(re)

,Jl

+A Z < e;Qz‘—ﬁij(‘ - iE)@zerer,g > 12(Rd),

hj=1
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where H;;(K',k") = Q;(k")Qi(K")es (K )el,(K") F(k')g(k"). Note that Y1 QD = pi.

Then
N o N L
= A) < [, epnGQielg >pry +AY | < €,p;,GQ;ef, 9 > 12
i=1 - j=1
= [I+4+1III
Hence we get the desired results. |
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