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Abstract—Scan-based Design-for-Test (DFT) is a widely
deployed technique for testing hardware chips. Using this
approach, all flip-flops in the design under test are connected to
a scan chain where their states can be scanned out through this
chain during the testing phase. Scan-based side channel attacks
exploit the information obtained by analyzing the scanned data
in order to retrieve secret information from cryptographic
hardware devices that are designed with this testability feature.

The NTRU encryption algorithm (NTRUEncrypt) is a pa-
rameterized family of lattice-based public key cryptosystems
which has recently been accepted to the IEEE P1363 standards
under the specifications for lattice-based public-key cryptogra-
phy. In this paper, we present a scan-based side channel attack
on NTRUEncrypt hardware implementations that employ scan
based DFT techniques. Our attack determines the scan chain
structure of the polynomial multiplication circuits used in
the decryption algorithm which allows the cryptanalyst to
efficiently retrieve the secret key.

Keywords-NTRU; public key cryptography; scan-based at-
tacks; side channel attacks.

I. INTRODUCTION

Scan-based Design-For-Test (DFT) [1] is a popular tech-

nique for validating the functionality of integrated circuits

at fabrication time and providing on-chip debugging capa-

bilities in the field. When using this approach, all flip-flops

in the design under test are tied in one or more scan chains

through which the states of theses flip-flops can be scanned

out during the testing phase through the Joint Test Action

Group (JTAG) boundary scan interface [2]. A JTAG interface

is a special four/five-pin serial interface with the following

pins: TDI (Test Data In), TDO (Test Data Out), TCK (Test

Clock), TMS (Test Mode Select), and optional TRST (Test

Reset). TMS selects between normal mode and test mode.

TRST is the reset signal for the test controller. During testing

mode, test vectors can be scanned in via the TDI pin and

internal flip-flops can be scanned out via the TDO pin. As

shown in Figure 1, a scan flip-flop is a flip-flop with a MUX

at the input. In normal mode, it works like a normal flip-flop.

In test mode, as shown in Figure 2, all scanned flip-flops are

disconnected from the combinational circuit and connected

to each other in a scan chain where their contents can be

scanned in and out.
While scan-based DFT improves the quality of testing,

it also opens a powerful side channel against hardware
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Figure 1. An illustration for a scan flip-flop (SFF)
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Figure 2. An illustration for a scan chain

implementations of cryptographic devices that utilize this

technique. Despite the fact that the internal structure of the

scan chain is usually not known to attackers, exploiting

the information obtained from analyzing the scanned data

allows cryptanalysts to ascertain this structure and retrieve

the secret key from the cryptographic hardware devices

implementing various cryptographic algorithms such as DES

[3], AES [4], [5], RSA [6], ECC [7], and stream ciphers [8],

[9].

The NTRU encryption algorithm (NTRUEncrypt) [10],

[11] is a parameterized family of lattice-based public key

cryptosystems. Both the encryption and decryption opera-

tions in NTRUEncrypt are based on simple polynomial mul-

tiplication which makes it very fast and compact compared

to other public key alternatives such as RSA, and elliptic-

curve-based systems [12]. The NTRU system has been ac-

cepted to the IEEE P1363 standards under the specifications

for lattice-based public-key cryptography (IEEE P1363.1).

In the past few years, the security of NTRUEncrypt against

mathematical attacks had been analyzed by many researchers

(e.g., [13]-[14]). Different classes of side channel attacks
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against NTRUEncrypt and their countermeasures were also

considered [15], [16], [17], [18].

In this paper, we present a scan-based side channel

attack against hardware implementations of NTRUEncrypt.

In general, all scan-based side channel attacks can be

viewed as a kind of differential cryptanalysis where attack-

ers take advantages of the scan chains to observe the bit

changes between pairs of chosen plaintexts/ciphertexts so

as to identify the secret keys. More precisely, scan-based

attacks can be classified into two classes [19]: constant

based attacks (CBAs) and fixed-Hamming-distance-based

attacks (FHDAs). Constant-based attacks take advantages

of the fact that in the encryption/decryption process, the

contents of some special registers are independent of the

input. By using several different inputs and scanning out the

contents at different times of the cryptographic operation,

the internal registers of the cryptographic device can be

easily identified. Then by setting these registers to specific

states through scan operations, the complexity of secret

key recovery can be reduced. In FHDAs, several pairs of

relevant plaintexts/ciphertexts are applied and then, for each

pair, the number of different bits in the output are counted

so as to recover the secret key. Our attack can be seen

as a type of FHDAs where we focus on determining the

scan chain structure of the polynomial multiplication circuit

in the decryption algorithm and then utilize the Hamming

weight information of some particular registers, which can

be obtained via the JTAG interface, to efficiently retrieve all

the coefficients of the secret key polynomial.

The rest of the paper is organized as follows. Description

of NTRUEncrypt, its hardware implementation options and

some of the ideas behind our attack are briefly described

in the next section. The details of the proposed attack is

provided in section III and the simulation results are given

in section IV. Finally, our conclusion is presented in section

V.

II. PRELIMINARIES

A. Description of the NTRUEncrypt

NTRUEncrypt is a lattice-based public key cryptosystem

that is parameterized by three integers: (N, p, q), where N
is prime, gcd(p, q) = 1 and p << q. Let R, Rp, and Rq be

the polynomial rings

R =
Z[x]

xN − 1
, Rp =

Z/pZ[x]

xN − 1
, Rq =

Z/qZ[x]

xN − 1
.

The product of two polynomials

a(x) = a0 + a1x+ a2x
2 + ...+ aN−1x

N−1 ∈ R,
b(x) = b0 + b1x+ b2x

2 + ...+ bN−1x
N−1 ∈ R

is given by

c(x) = a(x) � b(x),

where

ck =
∑

i+j=k (mod N)

aibk−i.

For any positive integers d1 and d2, let τ(d1, d2) denote

the set of ternary polynomials given by⎧⎨
⎩a(x) ∈ R :

a(x) has d1 coefficients equal to 1,

a(x) has d2 coefficients equal to -1,

all other coefficients equal to 0.

⎫⎬
⎭

In what follows, we briefly describe the key generation,

encryption and decryption operations in NTRUEncrypt [10].

1) Key Generation:
- Choose a private f(x) ∈ τ(df , df −1) that is invertible

in Rq and Rp.

- Choose a private g(x) ∈ τ(dg, dg).
- Compute Fq(x) = f−1(x) in Rq and Fp(x) = f−1(x)

in Rp.

- Compute h(x) = fq(x) � g(x) in Rq .

The polynomial h(x) is the user’s public key. The cor-

responding private key is the pair (f(x), Fp(x)). The fol-

lowing steps denote the encryption operations for plaintext

m(x) ∈ Rp.

2) Encryption:
- Choose a random ephemeral key r(x) ∈ τ(dr, dr).
- Compute the ciphertext e(x) = pr(x) � h(x) + m(x)

mod q.

3) Decryption:
- Compute a(x) = f(x) � e(x) mod q.

- Compute b(x) = Centerlift (a(x)) such that its coeffi-

cients lie in the interval (−q/2, q/2].

- Compute m = Fp(x) � b(x) mod p.

B. Hardware Implementation options for NTRUEncrypt

Throughout the rest of the paper, we focus on NTRU-

Encrypt with the widely used parameters: p = 3 and q
in the form of 2n [11]. We also assume that the attacker

has access to the high level timing diagram of the target

hardware implementation and that the secret key is stored

in secure memory that cannot be accessed through the scan

chain. It is also assumed that the attacker has direct access

to the scan chains via the JTAG port or by breaking open

the package and directly probing the buried JTAG ports [1].

From the description of the encryption and decryption

operations above, it is clear that the most time/area consum-

ing step in both operations is the convolution multiplication

required to compute r(x) � h(x) and f(x) � e(x) during the

encryption and decryption operations, respectively.

While there are several hardware implementations for

NTRUEncrypt (e.g., see [16], [17], [20], [21], [22], and

[23]), the majority of these implementations focus on op-

timizing either the time or the area required by theses

convolution operations. In what follows, we focus on the

decryption process because it is the only relevant part for our
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cryptanalysis since the encryption module does not contain

any secret information.
For low area and low power implementations, which

are viable for resource constrained applications such as

RFIDs and sensor nodes, the convolution multiplication,

a = f �e mod q, is usually performed in approximately N2

clock cycles [20], [21] as shown in Figure 3. In this case,

the computation for the coefficients of the polynomial a are

done sequentially where the coefficient ai, of size log2(q),
is obtained after (i + 1) × N clock cycles, 0 ≤ i < N .

For example, a0 is calculated by accumulating (mod q) the

results of serially multiplying e0 × f0, eN−1 × f1, eN−2 ×
f2, · · · , e1fN−1 into a register initialized to zero where each

multiply-and-add step is performed in one clock cycle.
For this kind of implementations, scan-based side channel

attack can be used to recover the secret information in a

straightforward way as follows: First, the attacker determines

the locations of the flip flops of the ciphertext register e
in the scan chain output by analyzing the bit difference

between the scan chain output corresponding to the all

zeroes ciphertext and the N × log2(q) scan chain outputs

corresponding to the ciphertext blocks with a (bit) Hamming

weight equal to one. This step is performed right after the

ciphertext loading operation.
In the next step of the attack, the attacker loads a

ciphertext e in which all coefficients are set to 1. Since the

value of a0 is computed sequentially, then the intermediate

values of a0 after the tth clock cycle of the convolution

multiplication step are given by

a
(t)
0 =

∑t
j=0 fj × e(N−j) mod N mod q

=
∑t

j=0 fj mod q, 0 ≤ t < N.

Consequently, the attacker can recover the value of the secret

key by scanning out the intermediate values of a0. Note

that the attacker is able to determine the locations of the

log2(q) bits corresponding to a0 since the location of the bits

corresponding to e are already determined in the previous

step and the only bits of the scan chain output that change

in this step would correspond to the a0 bits since the bits

corresponding to ai, 0 < i < N remain zeroes throughout

the computation of a0.
In hardware implementations of NTRUEncrypt that tar-

gets higher speed applications (e.g., see [16], [17], [22]),

instead of storing all the coefficients of f , the locations of

the nonzero (2× df − 1) coefficients are stored. This allows

the convolution multiplication to be performed, as shown

in Algorithm 1 [23], in (2 × df − 1) × N steps instead

of N2 steps (see Figure 4). Since the number of nonzero

coefficients, 2 × df − 1, is typically much smaller than N ,

this implementation leads to a faster decryption speed.
Determining the corresponding locations of the register

e in the scan chain output can be performed using the

same approach above, i.e., by loading different ciphertexts

with a Hamming weight equal to one and analyzing the
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Figure 3. A typical low area implementation of the convolution multipli-
cation (f(x) � e(x)) in N2 clock cycles. For each 0 ≤ i < N , j varies
from 0 to N − 1.

�

�

�

� �

���

�#$�%�

��	��

�
������ &#$�%��	��

� � � � ' � (� � )�

� &#$�%��	� � �#$�% � �*	��������
�

�#$�%�

��

�
������ &#$�%���

� &#$�%�� � �#$�% � ���������
�

�#$�%�

��

�
������ &#$�%

� &#$�% � �#$�% � ���������
�

Figure 4. The convolution multiplication between the polynomials f(x)
and e(x) in N clock cycles

output differences in the scan chain output corresponding to

these ciphertexts and the one corresponding to the all zero

ciphertext. On the other hand, determining the coefficients of

the secret key polynomial, f , requires some deeper analysis

which will be developed in the remaining sections of this

paper.

III. THE PROPOSED SCAN-BASED ATTACK

As mentioned above, when the convolution multiplication

is implemented as shown in Figure 4, a straightforward

application of scan-based attacks and trying to recover the
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Algorithm 1 Fast Convolution Algorithm [23]

1: INPUT: An array k of df+1 locations for +1 and df
locations for -1 representing f ; e; N : the size of f and

e
2: OUTPUT: T = f � e mod q.

3: for 0 ≤ l < 2N do
4: Tl ←− 0
5: end for
6: for 1 ≤ t ≤ df + 1 do
7: for 0 ≤ l < N do
8: Tl+k[t] ←− Tl+k[t] + el
9: end for

10: end for
11: for df + 2 ≤ t ≤ 2df + 1 do
12: for 0 ≤ l < N do
13: Tl+k[t] ←− Tl+k[t] − el
14: end for
15: end for
16: for 0 ≤ l < N do
17: Tl ←− (Tl + Tl+N ) mod q
18: end for

full scan chain structure will not work because of the large

number of flip-flops connected in the scan chain. Instead, in

our attack, we focus on determining the relevant flip-flops in

the scan chain structure of the polynomial multiplication cir-

cuit. The main idea of our attack is to distinguish the register

T into two parts: TR and TL (the relevance of both parts will

be explained below.) Then by single stepping through the

2df +1 clock cycles of the convolution multiplication step,

and by recording the Hamming weight of TR and TL in each

clock, the attacker can construct a system of linear equations,

with the estimated positions of the non-zero elements of the

secret keys as unknowns. This set of equations can be solved

to obtain the set of possible keys. Then, the correct key can

be determined by verifying the correctness of the decryption

operation for a known plaintext using the keys in this set.

A. Summary of the attack

Conceptually, the steps of the attack can be summarized

as follows:

1) Reset the chip and run it in normal decryption mode to

load an all zero ciphertext into the register e. Resetting

the circuit allows the attacker to reset all flip-flops

(including the ones that belong to the control circuit)

into the same initial state before each attack step. This

is necessary in order to allow the attacker to calculate

the difference in the Hamming weight of the target

registers before and after each attack step.

2) Switch to test mode and scan out the bit stream pattern.

3) Repeat steps 1 and 2 using all the N × log2(q)
ciphertexts with a (bit) Hamming weight equal to one

and compare the output differences in the scan chain

output corresponding to these ciphertexts with the one

corresponding to the all zeroes ciphertext.

At the end of this step, the attacker is able to determine

the locations corresponding to the ciphertext register,

e, in the scan chain.

4) Load the chip with a ciphertext of all 1’s in normal

mode and clock the system one time to evaluate T =
f × e as shown in Algorithm 1.

5) Switch to test mode and scan out the bit stream pattern.

In this case, the register T can be distinguished into

two parts: TR which contains all 1’s and TL which

contains 0’s. Note that while the attacker can identify

the group of bits that belong to each one of these

two registers, the attacker cannot determine the exact

location of these bits within these registers.

6) Clock the system in normal mode

7) Switch to test mode and scan out the bit stream to

calculate the Hamming weight of the registers TR and

TL.

8) Repeat steps 6-7 for (2 × df ) times and record the

Hamming weights of the registers TR and TL.

9) Use the Hamming weights obtained above as an input

to Algorithms 2 and 3 to form a set of linear equations

which can be solved to obtain the set of possible keys.

10) Determine the unique correct key by verifying the

correctness of the decryption operation (using any ar-

bitrary known plaintext-ciphertext pair obtained using

the public key encryption process) for each one of the

keys obtained in step 9 above.

B. Recovering the secret key

For A = [a0, a1, ..., aN−1] and B = [b0, b1, ..., bN−1],
ai, bi ∈ Zq , 0 ≤ i < N , the following notation will be used

throughout the rest of the paper.

• Ai..j denotes the vector [ai, ai+1, ..., aj ] of length j −
i+ 1, 0 ≤ i < j.

•
−
Ai..j denotes the vector [(ai + (q− 1))mod q, (ai+1 +
(q − 1))mod q, ..., (aj + (q − 1))mod q]=[(ai −
1)mod q, (ai+1−1)mod q, ..., (aj−1)mod q], 0 ≤ i <
j.

•
+

Ai..j denotes the vector [(ai − (q− 1))mod q, (ai+1 −
(q − 1))mod q, ..., (aj − (q − 1))mod q] = [(ai +
1)mod q, (ai+1+1)mod q, ..., (aj+1)mod q], 0 ≤ i <
j.

To illustrate the above notation, consider the following

example where A = [5, 0, 4, 2, 7] and q = 0xF (in

hexadecimal). Then
−
A1..3 = [0 + (q − 1)mod q, 4 +

(q−1)mod q, 2+(q−1)mod q] = [(0−1)mod q, (4−
1)mod q)], (2 − 1)mod q = [0xE, 3, 1]. Similarly,
+

A0..2 = [5 − (q − 1)mod q, 0 − (q − 1)mod q, 4 −
(q − 1)mod q] = [5 + 1, 0 + 1, 4 + 1] = [6, 1, 5].

• A(t) denotes the value of the register A at time t.
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• HW(·) denotes the Hamming weight of the enclosed

argument.

• A|B denotes the vector obtained from the concatenation

of A and B.

1) Recovering the locations of the +1 elements in the
secret key: As mentioned above, after determining the corre-

sponding locations of the flip-flops corresponding to e in the

scan chain, the attacker divides the flip-flops corresponding

to the register T into two parts: TL and TR which contain,

after the first step of convolution multiplication, all zeroes

and all ones, respectively. Algorithm 2 is then used to

determine the locations of the +1 elements in f relative to the

location of the first +1 element. More precisely, Algorithm 2

outputs an array whose tth element is equal to (k[t]−k[0]),
1 ≤ t < df + 1. As shown in the algorithm, A and B,

are used to simulate the intermediate values of TL and TR,

respectively, during the computation of T = f �e mod q. By

examining the Hamming weight information of TL and TR

obtained from the scan chain output bit stream observed via

the JTAG port, one can derive information about k[t]− k[0]
by going through all valid guesses for k[t] (see the variable

j in Algorithm 2) and choosing the value for which the

Hamming weight of A and B match the corresponding one

for TL and TR, respectively, at the corresponding time.

The steps of Algorithm 2 can be explained as follows.

At t = 1, a ciphertext of all ones is circularly shifted

by k[0] elements and loaded into T (note that all ones

at the bit level corresponds to ei = q − 1.) This can

be simulated by initializing Ai = 0 and Bi = q − 1,

0 ≤ i < N (lines 3-6). At t = 2, the ciphetext polynomial

is circularly shifted by k[1] elements and added to T . Thus

(k[1]−k[0]) elements of A will change from 0 to q−1 and

(N− (k[1]−k[0])) elements of B will change from q−1 to

= ((q−1)+(q−1)) mod q = q−2). The notation
−
Ai..j and

−
Bi..j (lines 14-15) is used to reflect these updates in A and

B. Similarly, depending on the value of k[2]−k[0], at t = 3,

some elements of A change from q−1 to q−2 and from 0 to

q−1 while some elements of B change from q−2 to q−3.

This process continues in a similar way until t = df + 1.

As shown in lines 8-17, we update A0..N and B0..N to

A0..N−j−1|
−
AN−j..N−1, and

−
B0..N−j−1|BN−j..N−1, respec-

tively, 1 ≤ j < N to simulate the above process. For each j,

we calculate HW(A0..N−j−1|
−
AN−j..N−1) − HW(A). This

step is repeated after incrementing j until the difference

between these Hamming weights matches the value of

HW(TL
(t)) − HW(TL

(t−1)), 2 ≤ t ≤ df + 1. Then we set

k[t]− k[0] = j, 1 ≤ t ≤ df + 1. Note that while observing

the changes in the Hamming weight of A is enough to

allow Algorithm 2 to calculate the elements of S1, we still

update B since it is needed by Algorithm 3 which is used

to determine all possible valid locations of the -1’s in f .

Algorithm 2 Recovery of the locations of the +1’s in the

private key polynomial f

1: INPUT: HW(TL
(t)), 1 ≤ t ≤ df + 1.

2: OUTPUT: An array S1 where S1[t] = k[t] − k[0] and

k[t] denotes the location of the tth +1 elements in f ,

1 ≤ t < df + 1.

3: for 0 ≤ i < N do
4: Ai ←− 0
5: Bi ←− q − 1
6: end for
7: j ←− 0
8: for 2 ≤ t ≤ df + 1 do
9: diff ←− 0

10: while (diff �= HW(TL
(t))− HW(TL

(t−1))) do
11: j ←− j + 1

12: diff ←− HW(A0..N−j−1|
−
AN−j..N−1)− HW(A)

13: end while
14: A←− A0..N−j−1|

−
AN−j..N−1

15: B ←−
−
B0..N−j−1|BN−j..N−1

16: S1[t− 1]←− j
17: end for
18: return S1, A,B

2) Recovering the locations of the -1 elements in the
secret key: Algorithm 3 receives A, B, the set of +1

locations, S1, evaluated by Algorithm 2 and the Hamming

weights HW(TL
(t)) and HW(TR

(t)) obtained by analyzing

the scan out bit stream, df + 2 ≤ t ≤ 2 × df + 1. The

algorithm operates in a way similar to Algorithm 2 except

that in this case, each element in S2 represents a list of

possible valid locations for the -1 elements as opposed to

a single element for the case of S1. Also, in this case, the

content of register e is subtracted from register T , instead

of addition in Algorithm 2 (see lines 11-15 in Algorithm 1.)

Lines 7-12 are used to initialize j to the starting values

for our guesses for the location of the t -1 element which

correspond to k[t], df + 2 ≤ t ≤ 2df + 1. These steps can

be explained by noting that S2 represents the list of valid

locations for the -1 elements and by the fact that k[t] >
k[t−1] for df+2 ≤ t ≤ 2df+1 (in other words, the location

of the tth -1 element has to be greater than the location of

the (t− 1)th -1 element in f ). At t = df + 2, j starts from

0 since at this stage, the attacker cannot yet determine the

exact value of k[0] (Also, the j=k[0] step is skipped since

two keys cannot be assigned to the same location.) More

precisely, according to the attacker’s knowledge at this step,

0 ≤ k[0] < N − S1[df ]. In lines 13-36, the updates of A
and B can follow two different pathes depending on whether

k[df + 2] is less than k[0] or greater than it (i.e., whether

the first non-zero element in f is +1 or -1). Lines 26-31 are

used to determine values of j that represent valid guesses
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for the location of the -1’s to be appended to the list S2.

This is performed by comparing the Hamming weight of

the simulated registers A and B with the Hamming weight

of TL and TR which can be calculated by observing the

scan out data. In particular, in lines 29-30, we add j to the

list S2[t − df − 1], df + 2 ≤ t ≤ 2df + 1, as a possible

solution and update the values of A and B and append it to

list L[t− df − 1].
Simple analysis of Algorithm 2 and Algorithm 3 reveal

that their run time complexity is given by O(df ×N) and

O(df ×N3), respectively.

Example 1. Consider a toy version of NTRUEncrypt cryp-

tosystem with parameters (N ,p,q,df )=(7,3,16,2) and with a

private key

f = [0,−1,−1, 1, 0, 1, 1].
Thus the locations of the nonzero coefficients of f are

k = [3, 5, 6, 1, 2] where the first df + 1 values denote the

locations of +1’s in the key and the last df values denote

the locations of -1’s.

As explained above, the T register is initialized with

all 0’s before starting the convolution computation of f �
e mod q. At t = 1, T is loaded with a copy of the ciphertext

after being circularly shifted by k[0] = 3 coefficients

according to Algorithm 1. Recall that the attacker does not

know k[0]. By scanning out the bit stream pattern via JTAG

port, the attacker can distinguish T into TL and TR. Assume

that the attacker observed the Hamming weights of of TL

and TR as shown in Table I (Obviously, at t = 1, these

Hamming weights are always going to be 0 and N×log2(q),
respectively.) At t = 2, the register TL is changed by

two coefficients which implies that k[1] − k[0] = 2. While

the attacker cannot associate the bits corresponding to T
in the scan chain output with the individual coefficients

in TL and TR, the attacker can still calculate the value

of k[1] − k[0] by using Algorithm 2 which simulates the

content of T = TL|TR (using A and B) for different

possible values of k([1] − k[0]) (the variable j in lines

7-17) until the change in the Hamming weight of A, i.e.,

HW (A0..N−j−1|
−
AN−j..N−1)−HW (A) in the simulation,

matches HW(TL
(2)) − HW(TL

(1)) obtained from the scan

out bit stream pattern. Following the same strategy, the

attacker recovers the distances between k[t] and k[0] for

2 ≤ t < df + 1. In this example, the attacker recovers the

set S1 = {k[1] − k[0] = 2, k[2] − k[0] = 3} which defines

the distances between the locations of the +1’s in the key.

The top table in Figure 5 shows the corresponding input,

output and intermediate computational results of Algorithm

2. To recover the locations of -1’s in f , the attacker continues

scanning out the bit stream pattern and, using Algorithm

3, calculates HW(TL
(t)) and HW(TR

(t)). Then the attacker

calculates HW(TL
(t)) − HW(TL

(t−1)) and HW(TR
(t)) −

HW(TR
(t−1)) for df + 2 ≤ t ≤ 2 × df + 1. In this case

Table I
THE HAMMING WEIGHT OF TL AND TR AS OBTAINED FROM JTAG

SCAN CHAIN OUTPUT IN EXAMPLE 1

t HW (T
(t)
L ) HW (T

(t)
R )

1 0 28
2 8 23

3=df+1 10 23
4 12 16

5=2×df+1 12 16

and according to the obtained Hamming weights, different

possibilities for these locations, at each t, can be recovered.

The attacker appends all these possible locations of the -

1’s in a set of lists, S2. In particular, for this example, the

attacker evaluates S2 = {k[3] = [1], k[4] = [2]}. Then, the

values in S1 represents the distances between the locations

of +1’s in the key in the form (k[t]−k[0], 1 ≤ t < df+1) and

the values in each element in S2 represents a list of possible

locations of the -1’s in the key. Enumerating all possible

value for k[0], 0 ≤ k[0] < N − S1[df ] (in this example,

0 ≤ k[0] < 4), the attacker is able to uniquely determine the

correct key locations {k[0] = 3, k[1] = 5, k[2] = 6, k[3] =
1, k[4] = 2}. Figures 5 shows the corresponding input,

output and intermediate computational results of Algorithm

2. Detailed calculations corresponding to Algorithm 3 are

omitted due to the space limitations.
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Figure 5. The computation steps corresponding to running Algorithm 2
with the parameters in Example 1

IV. EXPERIMENTAL RESULTS

In order to verify the correctness of the proposed attack,

we implemented the NTRUEncrypt decryption system with

the convolution circuit depicted in Figure 4 using the Syn-

opsys Design Compiler and inserted a scan chain using

Synopsys Test Compiler. Using this implementation, we

confirmed our ability to determine the scan chain structure

and the Hamming weight of TR and TL. The Hamming

weights obtained from the ModelSim simulation were then
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used as input to Algorithm 2 and Algorithm 3 which were

implemented using Python programming language. Table II

shows our simulation results for Algorithm 2 and Algorithm

3 with 100 randomly selected keys for NTRUEncrypt with

parameters (N, p, q, df , dg, dr) = (167, 3, 128, 61, 20, 18),
(263, 3, 128, 50, 24, 16), and (503, 3, 256, 216, 72, 55) which

correspond to the moderate, high, and highest security

parameters in [24]. As shown in the table, the average

size of the list of keys, returned by Algorithms 2 and

3, is given by ≈ 218, 224 and 264 for these three set of

parameters while the exhaustive search key security is given

by 1
dg !

√
N !

(N−2dg)!
≈ 283, 2111 and 2285, respectively [24].

It should be noted that this relatively large values for the

average were dominated by some few cases where the size

of the resulting key list were too large compared to the

other cases. As mentioned above, the unique correct key

can be determined by going through this list and verifying

the correctness of the decryption operation for a known

plaintext. This off-line step does not require physical access

to the cryptographic device. It also does not require large

memory space since the size of the sets S1 and S2 (outputs

from Algorithm 2 and 3) is limited to O(dfN). Also, since

there is no dependency between the different search paths,

then this exhaustive search step can be easily parallelized. It

should be noted that the overall complexity of the attack

is dominated by the complexity of Algorithm 3 and the

complexity of going through the list of keys calculated by

Algorithms 2 and 3 since the number of steps required by

the scan-in and scan-out operations is negligible compared

to these two steps.

Table II
AVERAGE SIZE OF THE LIST OF SUGGESTED KEYS

N = 167 N = 263 N = 503
Average ≈ 217.98 223.28 263.52

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a scan-based side channel

attack to recover the NTRUEncrypt secret key. By analyzing

the Hamming weight of the scan chain output at carefully

chosen clock cycles, the attacker is able to efficiently re-

cover the locations of the +1’s and -1’s of the secret key

polynomial. The presented attack clearly shows the need to

utilize secure scan chains [25] for hardware implementations

of NTRUEncrypt with the scan-based DFT feature.

Other instantiations of NTRUEncrypt were proposed (e.g.,

see [26], [27], and [28]). While our attack can be applied in

a straightforward way to [28], it is interesting to investigate

how it can be applied to [26] and [27] where p = x + 2,

q is a prime number and f can be expressed in the form

1 + p � F where F has dF coefficients equal to 1.
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Algorithm 3 Recovery of the -1’s locations in the private

key polynomial f

1: INPUT: A, B and S1[df ] (from Algorithm 2),

HW(TL
(t)) and HW(TR

(t)), df + 2 ≤ t ≤ 2× df + 1
2: OUTPUT: An array S2 of lists where S2[t−df ] is a list

containing all estimated possible values for k[t], df +
1 ≤ t < 2× df + 1.

3: for 0 ≤ k[0] < (N − S1[df ]) do
4: for df + 2 ≤ t ≤ 2× df + 1 do
5: i = 1
6: repeat
7: if (t = df + 2) then
8: j ←− 0
9: else

10: j ←− S2[t− df − 2][i] + 1
11: A|B ←− L[t− df − 2][i]
12: end if
13: while (j < N ) do
14: if (j �= k[0]) then
15: if (j < k[0]) then

16: TempA ←−
+

A0..k[0]−j−1|Ak[0]−j..N−1

17: TempB ←− B0..k[0]−j−1|
+

Bk[0]−j..N−1

18: diff1 ←− HW(TempA)− HW(A)
19: diff2 ←− HW(TempB)− HW(B)
20: else
21: TempA ←−

A0..N−j+k[0]−1|
+

AN−j+k[0]..N−1

22: TempB ←−
+

B0..N−j+k[0]−1|BN−j+k[0]..N−1

23: diff1 ←− HW(TempA)− HW(A)
24: diff2 ←− HW(TempB)− HW(B)
25: end if
26: if (diff1 = HW(TL

(t)) −
HW(TL

(t−1)) and diff2 = HW(TR
(t)) −

HW(TR
(t−1))) then

27: A←− TempA

28: B ←− TempB

29: append A|B to L[t− df − 1]
30: append the location j to S2[t− df − 1]
31: end if
32: j ←− j + 1
33: else
34: j ←− j + 1
35: end if
36: end while
37: i = i+ 1
38: until i > number of elements in the list S2[t −

df − 1]
39: end for
40: end for
41: return S2
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