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Abstract—Perceptual, “context-aware” applications that ob-
serve their environment and interact with users via cameras
and other sensors are becoming ubiquitous on personal com-
puters, mobile phones, gaming platforms, household robots,
and augmented-reality devices. This raises new privacy risks.

We describe the design and implementation of DARKLY, a
practical privacy protection system for the increasingly com-
mon scenario where an untrusted, third-party perceptual ap-
plication is running on a trusted device. DARKLY is integrated
with OpenCV, a popular computer vision library used by such
applications to access visual inputs. It deploys multiple privacy
protection mechanisms, including access control, algorithmic
privacy transforms, and user audit.

We evaluate DARKLY on 20 perceptual applications that per-
form diverse tasks such as image recognition, object tracking,
security surveillance, and face detection. These applications
run on DARKLY unmodified or with very few modifications
and minimal performance overheads vs. native OpenCV. In
most cases, privacy enforcement does not reduce the appli-
cations’ functionality or accuracy. For the rest, we quantify
the tradeoff between privacy and utility and demonstrate that
utility remains acceptable even with strong privacy protection.

I. INTRODUCTION

Modern software programs increasingly include percep-

tual functionality that takes advantage of high-resolution

cameras and other sensors to observe their users and physi-

cal environment. Perceptual software includes “natural user

interface” systems that interact with users via gestures

and sounds, image recognition applications such as Google

Goggles, security software such as motion detectors and

face recognizers, augmented reality applications, “ambient

computing” frameworks, a variety of video-chat and tele-

presence programs, and other context-aware software.

Hardware platforms for perceptual applications include

mobile phones, programmable robotic pets and household

robots (e.g., iRobot Create platform), gaming devices (e.g.,

Kinect), augmented reality displays (e.g., Google Glass),

and conventional computers equipped with webcams. Many

platforms provide app stores—for example robotappstore.

com (“your robots are always up-to-date with the coolest

apps”)—enabling consumers to download and execute thou-

sands of third-party perceptual applications.

The growing availability and popularity of potentially

untrusted perceptual applications capable of scanning their

surroundings at fine level of detail—and, in the case of

programmable robots, even moving around—raises interest-

ing privacy issues for their users. Many people are already

uncomfortable with law enforcement agencies conducting

large-scale face recognition [2, 17]. Perceptual applications

running in one’s home or a public area may conduct

unauthorized surveillance, intentionally or unintentionally

overcollect information (e.g., keep track of other people

present in a room), and capture sensitive data such as credit

card numbers, license plates, contents of computer monitors,

etc. that accidentally end up in their field of vision.

General-purpose, data-agnostic privacy technologies such

as access control and privacy-preserving statistical analysis

are fairly blunt tools. Instead, we develop a domain-specific

solution, informed by the structure of perceptual applications

and the computations they perform on their inputs, and ca-

pable of applying protection at the right level of abstraction.

Our system, DARKLY, is a privacy protection layer for

untrusted perceptual applications operating on trusted de-

vices. Such applications typically access input data from

the device’s perceptual sensors via special-purpose software

libraries. DARKLY is integrated with OpenCV, a popular

computer vision library which is available on Windows,

Linux, MacOS, iOS, and Android and supports a diverse

array of input sensors including webcams, Kinects, and

smart cameras. OpenCV is the default vision library of the

Robot Operating System (ROS); our prototype of DARKLY

has been evaluated on a Segway RMP-50 robot running

ROS Fuerte. DARKLY is language-agnostic and can work

with OpenCV programs writen in C, C++, or Python. The

architecture of DARKLY is not specific to OpenCV and can

potentially be adapted to another perceptual software library

with a sufficiently rich API.

We evaluate DARKLY on 20 existing OpenCV applica-

tions chosen for the diversity of their features and perceptual

tasks they perform, including security surveillance with

motion detection, handwriting recognition, object tracking,

shape detection, face recognition, background-scenery re-

moval from video chat, and others.

18 applications run on DARKLY unmodified, while 2 re-

quired minor modifications. The functionality and accuracy

of most applications are not degraded even with maximum

privacy protection. In all cases, performance with DARKLY

is close to performance on “native” OpenCV.



II. THREAT MODEL AND DESIGN OF DARKLY

We focus on the scenario where the device, its operating

system, and the hardware of its perceptual sensors are

trusted, but the device is executing an untrusted third-party

application. The application can be arbitrarily malicious, but

it runs with user-level privileges and can only access the

system, including perceptual sensors, through a trusted API

such as the OpenCV computer vision library.
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Figure 1. System architecture of DARKLY.

The system model of DARKLY is shown in Fig. 1 with

the trusted components shaded. DARKLY itself consists of

two parts, a trusted local server and an untrusted client

library. We leverage standard user-based isolation provided

by the OS: the DARKLY server is a privileged process with

direct access to the perceptual sensors, while applications

run as unpriviliged processes that can only access the

sensors through DARKLY. Furthermore, we assume that no

side-channel information about DARKLY operation (e.g.,

screenshots of its console) can be obtained via system calls.

The untrusted DARKLY client library runs as part of each

application process and communicates with the DARKLY

server. This is merely a utility for helping applications access

the perceptual API and the system remains secure even if a

malicious application modifies this library.

A major challenge in this design is figuring out which

parts of the input should be revealed to the application and

in what form, while protecting “privacy” in some fashion.

Visual data in particular are extremely rich and diverse,

making it difficult to isolate and identify individual objects.

Existing methods for automated image segmentation are too

computationally expensive to be applied in real time and

suffer from high false positives and false negatives.

DARKLY applies multiple layers of privacy protection

to solve the problem: access control, algorithmic transfor-

mation, and user audit. First, it replaces raw perceptual

inputs with opaque references. Opaque references cannot

be dereferenced by an application, but can be passed to and

from trusted library functions which thus operate on true per-

ceptual data without loss of fidelity. This allows applications

to operate on perceptual inputs without directly accessing

them. This approach is so natural that privacy protection is

completely transparent to many existing applications: they

work on DARKLY without any modifications to their code

and without any loss of accuracy or functionality.

Second, some applications such as security cameras and

object trackers require access to certain high-level features of

the perceptual inputs. To support such applications, DARKLY

substitutes the corresponding library API with declassifier

functions that apply appropriate feature- or object-specific

(but application-independent!) privacy transforms before re-

turning the data to the application. Example of transforms

include sketching (a combination of low-pass filtering and

contour detection) and generalization (mapping the object to

a generic representative from a predefined dictionary).

To help balance utility and privacy, the results of applying

a privacy transform are shown to the user in the DARKLY

console window. The user can control the level of transfor-

mation via a dial and immediately see the results. In our

experience, most applications do not need declassifiers, in

which case DARKLY protects privacy without any loss of

accuracy and the DARKLY console is not used. For those

of our benchmark applications that use declassifiers, we

quantitatively evaluate the degradation in their functionality

depending on the amount of transformation.

DARKLY provides built-in trusted services, including a

trusted GUI—which enables a perceptual application to

show the result of computation to the user without accessing

it directly—and trusted storage. For example, after the

security camera detects motion, it can store the actual images

in the user’s Google Drive without “seeing” them.

A few applications, such as eigenface-based face rec-

ognizers, need to operate directly on perceptual inputs.

DARKLY provides a domain-specific ibc language based

on GNU bc. Isolating domain-specific programs is much

easier than isolating arbitrary code. Untrusted ibc programs

are executed on the raw inputs, but have no access to the

network, system calls, or even system time. Furthermore,

DARKLY only allows each invocation to return a single

32-bit value to the application. We show that legitimate

computations can be ported to ibc with little difficulty.

...

// Grab a frame from camera
img=cvQueryFrame(..);

// Process the image to filter out unrelated stuff

...

// Extract a binary image based on the ball’s

color

cvInRangeS(img, ...);

...

// Process the image to filter out unrelated stuff

...

// Compute the moment

cvMoments(...);

// Compute ball’s coordinates using moment

...

// Move robot towards the calculated coordinates

...

Listing 1. Outline of the ball-tracking robot application.



To illustrate how DARKLY works on a concrete example,

Listing II shows a simplified ball-tracking application for a

robotic dog. The code on the light gray background does

not need direct access to image contents and can operate on

opaque references. The code on the dark gray background

invokes a DARKLY declassifier, which applies a suitable

privacy transform to the output of the cvMoments OpenCV

function. The rest of the code operates on this transformed

data. DARKLY thus ensures that the application “sees” only

the position of the ball. The accuracy of this position

depends on the privacy transform and can be adjusted by

the user via the privacy dial.

III. PRIVACY RISKS OF PERCEPTUAL APPLICATIONS

What does a scanner see? Into the head? Down into the
heart? Does it see into me, into us? Clearly or darkly?

A Scanner Darkly (2006)

Perceptual applications present unique privacy risks. For

example, a security-cam application, intended to detect mo-

tion in a room and raise an alarm, can leak collected video

feeds. A shape detector can read credit card numbers, text on

drug labels and computer screens, etc. An object or gesture

tracker—for example, a robot dog programmed to follow

hand signals and catch thrown balls—can be turned into

a roving spy camera. A face detector, which hibernates the

computer when nobody is in front of it, or a face recognizer,

designed to identify its owner, can surreptitiously gather

information about people in the room. A QR code scanner, in

addition to decoding bar codes, can record information about

its surroundings. App stores may have policing mechanisms

to remove truly malicious applications, but these mecha-

nisms tend to be ineffective against applications that collect

privacy-sensitive information about their users.

Overcollection and aggregation. The privacy risks of

perceptual applications fall into several hierarchical cate-

gories. The first is overcollection of raw visual data and

the closely related issue of aggregation. The problem of

aggregation is similar to that of public surveillance: a single

photograph of a subject in a public place might make

that individual uncomfortable, but it is the accumulation of

these across time and space that is truly worrying. Even

ignoring specific inferential privacy breaches made possible

by this accumulation, aggregation itself may inherently be

considered a privacy violation. For example, Ryan Calo

argues that “One of the well-documented effects of interfaces

and devices that emulate people is the sensation of being

observed and evaluated. Their presence can alter our attitude,

behavior, and physiological state. Widespread adoption of

such technology may accordingly lessen opportunities for

solitude and chill curiosity and self-development.” [4]

Many applications in DARKLY work exclusively on

opaque references (Section VI-B), in which case the ap-

plication gets no information and the aggregation risk does

not arise. For applications that do access some objects and

features of the image, we address aggregation risks with

the DARKLY console (Section VIII). The DARKLY console

is an auxiliary protection mechanism that visually shows

the outputs of privacy transforms to the user, who has the

option to adjust the privacy dial, shut down the application,

or simply change his or her behavior. A small amount of

leakage may happen before the user has time to notice

and react to the application’s behavior, but we see this as

categorically different from the problem of aggregation. The

DARKLY console is rougly analogous to the well-established

privacy indicators in smartphones that appear when location

and other sensory channels are accessed by applications.

Inference. The first category of inference-based privacy

risks is specific, sensitive pieces of information—anything

from a credit card number to objects in a room to a person’s

identity—that are leaked by individual frames.

DARKLY addresses such threats by being domain- and

data-dependent, unlike most privacy technologies. Privacy

transforms (see Section VII), specifically sketching, mini-

mize leakage at a frame-by-frame level by interposing on

calls that return specific features of individual images (see

examples in Figs. 2 and 3). Privacy protection is thus specific

to the domain and perceptual modality in question, and

some privacy decisions are made by actually examining the

perceptual inputs. In contrast to basic access control, this

domain-specific design sacrifices the simplicity of imple-

mentation and reasoning. In exchange, we gain the ability to

provide the far more nuanced privacy properties that users

intuitively expect from perceptual applications.

The last category in the hierarchy of privacy risks is

semantic inference. For example, even a sketch may al-

low inference of potentially sensitive gestures, movements,

proximity of faces, bodies, etc. It is unlikely these risks

can be mitigated completely except for specific categories

of applications, mainly those that can function solely with

opaque references or require only numerical features such as

histograms where techniques like differential privacy [9, 10]

may apply. Unless the transformed data released to the

application is sufficiently simple to reason about analytically,

the semantic inference risk will exist, especially due to the

continual nature of perceptual observation.

That said, a machine-learning-based, data-dependent ap-

proach to privacy transforms offers some hope. For example,

in Section VII-B, we describe how to use facial identification

technology to transform a face into a privacy-preserving

“canonical representation.” The key idea here is to take a

technology that leads to the inference risk, namely facial

recognition, and turns it on its head for privacy protection.

It is plausible that this paradigm can be extended to handle

other types of inference, and as more complex inference

techniques are developed, privacy transforms will co-evolve

to address them. This is left to future work.



IV. STRUCTURE OF PERCEPTUAL APPLICATIONS

DARKLY is based on the observation that most legiti-

mate applications do not need unrestricted access to raw

perceptual inputs. This is reflected in their design. For

example, most existing OpenCV applications do not access

raw images (see Section IX) because implementing complex

computer vision algorithms is difficult even for experienced

developers. Fortunately, the OpenCV API is at the right

level of abstraction: it provides domain-specific functions

for common image-processing tasks that applications use

as building blocks. This enables applications to focus on

specific objects or features, leaving low-level image analysis

to OpenCV functions and combining them in various ways.

DARKLY ensures that these functions return the information

that applications need to function—but no more!

Perceptual applications can be classified into three general

categories: (1) those that do not access the perceptual inputs

apart from invoking standard library functions; (2) those that

access specific, library-provided features of the inputs; and

(3) those that must execute their own code on raw inputs. For

applications in the first category, DARKLY completely blocks

access to the raw data. For the second category, DARKLY

provides declassifier functions that apply privacy transforms

to the features before releasing them to the application. For

the third category, DARKLY isolates untrusted code to limit

the leakage of sensitive information.

For example, a security camera only needs to detect

changes in the scene and invoke a trusted service to store

the image (and maybe raise an alarm). This requires the

approximate contours of objects, but not their raw pixels.

Trackers need objects’ moments to compute trajectories, but

not objects themselves. A QR scanner works correctly with

only a thresholded binary representation of the image, etc.

DARKLY is designed to support more sophisticated func-

tionalities, too. For example, applications dealing with hu-

man faces can be classified into “detectors” and “recogniz-

ers.” Face detectors are useful for non-individualized tasks

such as emotion detection or face tracking—for example,

a robotic pet might continually turn to face the user—and

need to know only whether there is a rectangle containing

a face in their field of vision. To support such applications,

DARKLY provides a privacy transform that returns a generic

representation of the actual face.

Face recognizers, on the other hand, must identify specific

faces, e.g., for visual authentication. Even in this case, a

recognizer may run an algorithm comparing faces in the

image with a predefined face but only ask for a single-bit

answer (match or no match). To support such applications,

DARKLY allows execution of arbitrary image analysis code,

but rigorously controls the information it can export.

V. DESIGN PRINCIPLES OF DARKLY

Block direct access to perceptual inputs. DARKLY inter-

poses on all accesses by applications to cameras and other

perceptual sensors. As shown in Fig. 1, this privacy protec-

tion layer is implemented as a DARKLY server that runs as

a privileged “user” on the same device as the applications;

only this user can access the sensors. Applications interact

with the DARKLY server via inter-process sockets (UNIX

domain sockets) and standard OS user isolation mechanisms

prevent them from accessing the state of DARKLY.

The key concept in DARKLY is opaque reference. Opaque

references are handles to image data and low-level rep-

resentations returned by OpenCV functions. An applica-

tion cannot dereference them, but can pass them to other

OpenCV functions, which internally operate on unmodified

data without any loss of fidelity. Applications can thus per-

form sophisticated perceptual tasks by “chaining together”

multiple OpenCV functions. In Section IX, we show that

many existing applications produce exactly the same output

when executed on DARKLY vs. unmodified OpenCV.

A similar architectural approach is used by PINQ [18], a

system for privacy-preserving data analysis. PINQ provides

an API for basic data-analysis queries such as sums and

counts. Untrusted applications receive opaque handles to

the raw data (PINQueryable objects) which they cannot

dereference, but can pass to and from trusted API functions

thus constructing complex queries.

DARKLY also provides trusted services which an applica-

tion can use to “obliviously” export data from the system,

if needed. For example, after a security-camera application

detects motion in the room, it can use a trusted remote-

storage service to store the captured image in the user’s

Google Drive—without accessing its pixels!

Support unmodified applications, whenever possible.

DARKLY is language-independent and works equally well

with OpenCV applications written in C, C++, or Python. It

changes neither the API of the existing OpenCV functions,

nor OpenCV’s types and data structures. Instead, opaque

references replace pointers to raw pixels in the meta-data of

OpenCV objects. DARKLY is thus completely transparent to

applications that do not access raw image data, which are the

majority of the existing OpenCV applications (Section IX).

Use multiple layers of privacy protection. Applications

that do not access raw inputs assemble their functionality by

passing opaque references to and from OpenCV functions.

For applications that work with high-level features, DARKLY

provides declassifiers that replace these features with safe

representations generated by the appropriate privacy trans-

forms (Section VII). Privacy transforms keep the information

that applications need for their legitimate functionality while

removing the details that may violate privacy.

Inform the user. To help the user balance utility and

privacy, our system includes a trusted DARKLY console. For

applications that operate solely on opaque references, this

window is blank. For applications that use declassifiers to

access certain input features, it shows to the user the outputs



of the privacy transforms being used by the application at

any point in time (Section VIII).

The DARKLY console window also contains a privacy dial

that goes from 0 to 11. By adjusting the dial, the user can

increase or decrease the degree of privacy transformation.

Even at the setting of 0, DARKLY provides significant

privacy protection; in particular, applications are always

blocked from directly accessing raw image data.

Be flexible. In rare cases, applications may need to execute

arbitrary code on raw inputs. For example, one of our

benchmark applications runs the eigenface algorithm [26]

to match a face against a database (see Section VI-F).

For such applications, DARKLY provides a special ibc

language inspired by GNU bc [1]. Applications can supply

arbitrary ibc programs which DARKLY executes internally.

These programs are almost pure computations and have no

access to the network, system calls, or even system time

(Section VI-F). Furthermore, DARKLY restricts their output

to 32 bits, thus blocking high-bandwidth covert channels.

VI. IMPLEMENTATION

The prototype implementation of DARKLY consists of

approximately 10,000 lines of C/C++ code, not counting the

ported ibc compiler and VM.

A. OpenCV

OpenCV provides C, C++, and Python interfaces [20]

on Windows, Linux, MacOS, iOS and Android. OpenCV

is also the default vision library of the Robot Operating

System (ROS), a popular platform that runs on 27 robots

ranging from the large Willow Garage PR2 to the small

iRobot Create or Lego NXT. OpenCV supports diverse input

sensors including webcams, Kinects and smart cameras like

VC nano 3D1 or PicSight Smart GigE.2

The OpenCV API has more than 500 functions that

applications—ranging from interactive art to robotics—use

for image-processing and analysis tasks. Our prototype cur-

rently supports 145 of these functions (see Section IX for

a survey of OpenCV usage in existing applications). Our

design exploits both the richness of this API and the fact

that individual OpenCV functions encapsulate the minutiae

of image processing, relieving applications of the need to

access raw image data and helping DARKLY interpose pri-

vacy protection in a natural way. That said, the architecture

of DARKLY is not specific to OpenCV and can be applied

to any perceptual platform with a sufficiently rich API.

OpenCV comprises several components: libcxcore imple-

ments internal data structures, drawing functions, clustering

algorithms, etc.; libcv – image processing and computer

vision tasks such as image transformations, filters, motion

analysis, feature detection, camera calibration, and object

1http://www.vision-components.com/en/products/smart-cameras/
vc-nano-3d/

2http://www.leutron.com/cameras/smart-gige-cameras/

detection; libhighgui – functions for creating user interfaces;

libml – machine learning algorithms; libcvaux – auxiliary

algorithms such as principal component analysis, hidden

markov models, view morphing, etc.

OpenCV defines data structures for image data (IplImage,

CvMat, CvMatND, etc.), helper data structures (CvPoint,

CvRect, CvScalar, etc.), and dynamic data structures (CvSeq,

CvSet, CvTree, CvGraph, etc.). OpenCV also provides

functions for creating, manipulating, and destroying these

objects. For example, cvLoadImage creates an IplImage

structure and fills it with the image’s pixels and meta-data,

while cvQueryFrame fetches a frame from a camera or video

file and creates an IplImage structure with the frame’s pixels.

The OpenCV API thus helps developers to program their

applications at a higher level. For example, the following 8

lines of C code invert the image and display it to the user

until she hits a key:

1 IplImage* img = 0;

2 // load an image

3 img=cvLoadImage(argv[1]);

4 // create a window

5 cvNamedWindow("mainWin", CV_WINDOW_AUTOSIZE);
6 cvMoveWindow("mainWin", 100, 100);

7 // invert the image

8 cvNot(img, img);

9 // show the image

10 cvShowImage("mainWin", img );
11 // wait for a key

12 cvWaitKey(0);

13 // release the image

14 cvReleaseImage(&img );

OpenCV permits only one process at a time to access the

camera, thus DARKLY does not allow concurrent execution

of multiple applications.

B. Opaque references

To block direct access to raw images, DARKLY replaces

pointers to image data with opaque references that cannot

be dereferenced by applications. Applications can still pass

them as arguments into OpenCV functions, which derefer-

ence them internally and access the data.

To distinguish opaque references and real pointers,

DARKLY exploits the fact that the lower part of the address

space is typically reserved for the OS code, and therefore

all valid pointers must be greater than a certain value. For

example, in standard 32-bit Linux binaries, all valid stack

and heap addresses are higher than 0x804800. The values

of all opaque references are below this address.

DARKLY cannot simply return an opaque reference in lieu

of a pointer to an OpenCV object. Some existing, benign

applications do dereference pointers, but only read the meta-

data stored in the object, not the image data. For example,

consider this fragment of an existing application:

surfer = cvLoadImage("surfer.jpg",

CV_LOAD_IMAGE_COLOR);

...

size = cvGetSize(surfer);



/* create an empty image, same size, depth and

channels of others */

result = cvCreateImage(size, surfer->depth, surfer

->nChannels);

Here, surfer is an instance of IplImage whose meta-data

includes the number of channels and the depth of the image.

Even though this code does not access the pixel values,

it would crash if DARKLY returned an opaque reference

instead of the expected pointer to an IplImage object.

DARKLY exploits the fact that most OpenCV data struc-

tures for images and video include a separate pointer to the

actual pixel data. For example, IplImage’s data pointer is

stored in the imageData field; CvMat’s data pointer is in

the data field. For these objects, DARKLY creates a copy of

the data structure, fills the meta-data, but puts the opaque

reference in place of the data pointer. Existing applications

can thus run without any modifications as long as they do

not dereference the pointer to the pixels.

C. Interposition

To support unmodified applications, DARKLY must in-

terpose on their calls to the OpenCV library. All of the

applications we tested use the dynamically linked version

of OpenCV. We implemented DARKLY’s interposition layer

as a dynamically loaded library and set the LD PRELOAD

shell variable to instruct Linux’s dynamic linker to load it

before OpenCV. The functions in the interposition library

have the same names as the OpenCV functions, thus the

linker redirects OpenCV calls made by the application.

This approach works for C functions, but there are several

complications when interposing on C++ functions. First, the

types of the arguments to DARKLY’s wrapper functions must

be exactly the same as those of their OpenCV counterparts

because the C++ compiler creates new mangled symbols

based on both the function name and argument types.

The second, more challenging issue is C++ virtual func-

tions. Because their bindings are resolved at runtime, they

are not exported as symbols for the linker to link against.

Instead, their addresses are stored in per-object vtables. To

interpose on calls to a virtual function, DARKLY overrides

the constructor of the class defining the function. The new

constructor overwrites the appropriate entries in the vtables

of newly created objects with pointers to DARKLY wrappers

instead of the genuine OpenCV functions. The formats of

objects and vtables are compiler-dependent: for example,

GCC stores the vtable address in the object’s first 4 bytes.

Our code for hooking vtables is as follows:3

extern "C" void patch_vtable(void *obj, int

vt_index, void *our_func) {

int* vptr = *(int**)obj;

// align to page size:

void* page = (void*)(int(vptr) & ˜(getpagesize()

-1));

// make the page with the vtable writable

3Cf. http://www.yosefk.com/blog/machine-code-monkey-patching.html

mprotect(page, getpagesize(), PROT_WRITE|

PROT_READ))

vptr[vt_index] = (int)our_func;

}

The vt index parameter specifies the index of the vtable

entry to be hooked. GCC creates vtable entries in the order

of the virtual function declarations in the class source file.

Dispatching OpenCV functions. For each call made by an

application to an OpenCV function, the interposition library

must decide whether to execute it within the application or

forward it to the trusted DARKLY server running as a sepa-

rate “user” on the same device (only this server has access

to camera inputs). To complicate matters, certain OpenCV

functions accept variable-type arguments, e.g., cvNot accepts

either IplImage, or CvMat. OpenCV detects the actual type

at runtime by looking at the object’s header.

After intercepting a call to an OpenCV function, the

interposition library determines the type of each argument

and checks whether it contains an opaque reference (the

actual check depends on the object’s type). If there is at

least one argument with an opaque reference, executing

the function requires access to the image. The interposition

library marshals the local arguments and opaque references,

and forwards the call to DARKLY for execution.

If none of the arguments contain an opaque reference,

the function does not access the image and the interposition

library simply calls the function in the local OpenCV library.

D. Privacy transforms

For applications that need access to image fea-

tures—for example, to detect motion, track certain ob-

jects, etc.—DARKLY provides declassifier functions. Our

prototype includes the following declassifiers: cvMoments

returns moments, cvFindContours – contours, cvGoodFea-

turesToTrack – sets of corner points, cvCalcHist – pixel

histograms, cvHaarDetectObjects – bounding rectangles for

objects detected using a particular model (DARKLY restricts

applications to predefined models shipped with OpenCV),

cvMatchTemplate – a map of comparison results between

the input image and a template, cvGetImageContent – image

contents (transformed to protect privacy).

Declassifier Privacy transform

cvMoments Sketching

cvFindContours Sketching

cvGoodFeaturesToTrack Increasing feature threshold

cvCalcHist Sketching

cvHaarDetectObjects Generalization

cvMatchTemplate Thresholding match values

cvGetImageContent Thresholding binary image

Table I
TRANSFORMS USED FOR EACH DARKLY DECLASSIFIER.



Declassifiers apply an appropriate privacy transform (see

Section VII) to the input, as shown in Table I. For example,

cvGetImageContent returns a thresholded binary represen-

tation of the actual image. Furthermore, these outputs are

displayed on the DARKLY console to inform the user.

E. Trusted services

Trusted services in DARKLY enable the application to

send data to the user without actually “seeing” it.

Trusted display. The trusted display serves a dual purpose:

(1) an application can use it to show images to which it

does not have direct access, and (2) it shows to the user

the privacy-transformed features and objects released to the

application by declassifiers (see Section VIII).

We assume that the OS blocks the application from read-

ing the contents of the trusted display via “print screen” and

similar system calls. These contents may also be observed

and recaptured by the device’s own camera. We treat this

like any other sensitive item in the camera’s field of vision

(e.g., contents of an unrelated computer monitor).

To enable applications to display images without access

to their contents, DARKLY must interpose on HighGUI,

OpenCV’s user interface (UI) component [13]. HighGUI is

not as extensive as some other UI libraries such as Qt, but

the general principles of our design are applicable to any UI

library as long as it is part of the trusted code base. Among

other things, HighGUI supports the creation and destruction

of windows via its CvNamedWindow and CvDestroyWindow

functions. Applications can also use cvWaitKey to receive

keys pressed by the user, cvSetMouseCallback to set custom

callback functions for mouse events, and cvCreateTrackbar

to create sliders and set custom handlers.

The interposition library forwards calls to any of these

functions to DARKLY. For functions like CvNamedWindow,

DARKLY simply calls the corresponding OpenCV func-

tion, but for the callback-setting functions such as cvSet-

MouseCallback and cvCreateTrackbar, DARKLY replaces

the application-defined callback with its own function. When

the DARKLY callback is activated by a mouse or tracker

event, it forwards these events to the interposition library,

which in turns invokes the application-defined callback.

User input may be privacy-sensitive. For example, our

benchmark OCR application recognizes characters drawn by

the user using the mouse cursor. DARKLY replaces the actual

mouse coordinates with opaque references before they are

passed to the application-defined callback.

HighGUI event handling is usually synchronous: the

application calls cvWaitKey, which processes pending

mouse and tracker events and checks if any key has

been pressed. This presents a technical challenge because

most application-defined callbacks invoke multiple OpenCV

drawing functions. If callback interposition is implemented

synchronously, i.e., if the DARKLY callback handler for-

wards the event to the application-defined callback and waits

for it to finish, the overhead of interposition (about 9%

per each call forwarded over an interprocess socket, in our

experiments) increases linearly with the number of OpenCV

functions invoked from the application-defined callback. In

practice, this causes the OpenCV event buffer to overflow

and start dropping events.

Instead, our callback handler runs in a separate thread

in the DARKLY server. The interposed callbacks forward

GUI events asynchronously to a thread in the interposition

library, which then invokes the application-defined callbacks.

Because most OpenCV functions are not thread-safe, we

serialize access with a lock in the interposition library.

void on_mouse( int event, int x, int y, int flags,

void* param ) {

...

cvCircle(imagen, cvPoint(x,y), r, CV_RGB(red,

green,blue), -1, 4, 0);

// Get clean copy of image

screenBuffer=cvCloneImage(imagen);

cvShowImage( "Demo", screenBuffer );

...

}

int main(int argc, char** argv ) {
...

cvSetMouseCallback("Demo",&on_mouse, 0 );

for (;;) { ... c = cvWaitKey(10); ... } }

}

Listing 2. Sample callback code.

Trusted storage. To store images and video without ac-

cessing their contents, applications can invoke cvSaveImage

or cvCreateVideoWriter. The interposition library forwards

these calls to DARKLY, which redirects them to system-

configured files that are owned and accessible only by the

user who is running DARKLY. Dropbox or Google Drive can

be mounted as (user-controlled) remote file systems.

With this design, an application cannot store data into its

own files, while standard OS file permissions block it from

reading the user’s files.

F. Support for application-provided code

Even though the OpenCV API is very rich, some ap-

plications may need to run their own computations on

raw images rather than chain together existing OpenCV

functions. DARKLY provides a special-purpose language that

application developers can use for custom image-processing

programs. DARKLY executes these programs inside the

library on the true image data (as opposed to privacy-

preserving representations returned by the declassifiers), but

treats them as untrusted, potentially malicious code. Isolating

arbitrary untrusted programs is difficult, but our design takes

advantage of the fact that, in our case, these domain-specific

programs deal solely with image processing.

The DARKLY language for application-supplied untrusted

computations is called ibc. It is based on the GNU bc

language [1]. We chose bc for our prototype because it (1)



supports arbitrary numerical computations but has no OS

interface, (2) there is an existing open-source implementa-

tion, and (3) its C-like syntax is familiar to developers. ibc

programs cannot access DARKLY’s or OpenCV’s internal

state, and can only read or write through the DARKLY

functions described below. They do not have access to the

network or system timers, minimizing the risk of covert

channels, and are allowed to return a single 32-bit value.4

ibc compiler. The GNU bc compiler takes a source file

as input, generates bytecode, and executes it in a bytecode

VM. DARKLY cannot pay the cost of bytecode generation

every time an application executes the same program (for

example, for each frame in a video). Therefore, we separated

the bytecode generator and the VM.

DARKLY adds a bcCompile function to the OpenCV API.

It takes as input a string with ibc source code and returns a

string with compiled bytecode. DARKLY also adds a cvExe-

cuteUntrustedCode function, which takes a bytecode string

and pointers to OpenCV objects, executes the bytecode on

these objects, and returns a 32-bit value to the application.

The latter required a VM modification because GNU bc

does not allow the main program to return a value.

To support computations on images and matrices,

DARKLY adds iimport and iexport functions. iimport takes

the id of an OpenCV object (i.e., the order in which it was

passed to cvExecuteUntrustedCode), x and y coordinates,

and the byte number, and returns the value of the requested

byte of the pixel at the x/y position in the image. Similarly,

iexport lets an ibc program to set pixel values.

Using custom ibc programs. To illustrate how to write

custom image-processing code in ibc, we modified an

existing application that inverts an image by subtracting each

pixel value from 255 (this can be done by calling OpenCV’s

cvNot function, but this application does not use it):

img = cvLoadImage(argv[1], 1);

data = (uchar *)img->imageData;

// invert the image

for(i=0;i<img->height;i++)

for(j=0;j<img->width;j++)

for(k=0;k<channels;k++)

data[i*step+j*channels+k]=255-data[i*step+

j*channels+k];

Listing 3. Application code for inverting an image.

bc_invrt_tmpl =

"for (i=0; i<%d;i++) {

for (j=0; j<%d; j++) {

for (k=0; k<4; k++) {

v = iimport(0, i, j, k);

iexport(0, i, j, k, 255-v); } } }

return 0;";

img = cvLoadImage(argv[1], 1);

snprintf(bc_invert_code, MAX_SIZE, bc_invert_tmpl,

img->height, img->width);

4The current DARKLY prototype allows an application to gain more
information by invoking ibc programs multiple times, but it is easy to
restrict the number of invocations if needed.

bc_bytecode = bcCompile(bc_invert_code);

ret = cvExecuteUntrustedCode(bc_bytecode, img, 0,

0);

Listing 4. Using ibc code for inverting an image.

The iimport/iexport interface can also be used to access

any 1-, 2- or 3-D array. For example, we took an existing

face recognition application (see Section IX) and wrote

an ibc program to find the closest match between the

input face’s eigen-decomposition coefficients computed by

cvEigenDecomposite and a dataset of faces. Running this

program inside DARKLY allows the application to determine

whether a match exists without access to the actual eigen-

decomposition of the input face. The code is shown below.

int findNearestNeighbor( const Eigenface& data,

float * projectedTestFace ) {

double leastDistSq = 999999999; //DBL_MAX;

int iNearest = 0;

for( int iTrain = 0; iTrain < data.nTrainFaces
; iTrain++ ) {

double distSq = 0;

for( int i = 0; i < data.nEigens; ++i ) {

float d_i = projectedTestFace[i] -

data.projectedTrainFaceMat->data.

fl[iTrain * data.nEigens + i];

distSq += d_i * d_i / data.eigenValMat

->data.fl[i]; }

if( distSq < leastDistSq ) {

leastDistSq = distSq;

iNearest = iTrain; } }
return iNearest;

}

cvEigenDecomposite(image,

data.nEigens,
&(*( data.eigenVectVec.begin())),

0, 0, data.pAvgTrainImg,
projectedTestFace);

int iNearest = findNearestNeighbor(data,

projectedTestFace);

Listing 5. Part of face-recognition application code for calculating the
closest match to the input image.

bc_dist_tmpl =

"fscale=2;

leastdistsq = 999999999

inearest = -1

for( itrain = 0; itrain < %d; itrain++ ) {

distsq = 0.0;

for( i = 0; i < %d; ++i ) {

a = iimport(0, i, 0, 0)

b = iimport(1, itrain * 2 + i, 0, 0)

di = a-b

c = iimport(2,i,0,0);

distsq += di * di / c ;

}

if( distsq < leastdistsq ) {

leastdistsq = distsq;

inearest = itrain;

}

}

return inearest;";

cvEigenDecomposite(image,

data.nEigens,



Figure 2. Output of the sketching transform on a female face image at different privacy levels.

Figure 3. Output of the sketching transform on a credit card image at different privacy levels.

&(*( data.eigenVectVec.begin())),

0, 0, data.pAvgTrainImg,

projectedTestFace);

snprintf(bc_dist_code, MAX_SIZE, bc_invert_tmpl,

data.nTrainFaces, data.nEigens);

bc_bytecode = bcCompile(bc_dist_code);

int iNearest = cvExecuteUntrustedCode(bc_bytecode,

projectedTestFace, data.projectedTrainFaceMat
, data.eigenValMat);

Listing 6. Modified face-recognition application code using ibc for
calculating the closest match to the input image.

VII. PRIVACY TRANSFORMS

In Section IX, we show that many OpenCV applications

can work, without any modifications, on opaque refer-

ences. Some applications, however, call OpenCV functions

like cvMoments, cvFindContours, or cvGoodFeaturesTo-

Track which return information about certain features of the

image. We call these functions declassifiers (Section VI-D).

To protect privacy, declassifiers transform the features

before releasing them to the application. The results of the

transformation are shown to the user in the DARKLY console

window (Section VIII). The user can control the level of

transformation by adjusting the privacy dial on this screen.

The transformations are specific to the declassifier but

application-independent. For example, the declassifier for

cvGetImageContent replaces the actual image with a thresh-

olded binary representation (see Fig. 7). The declassifier

for cvGoodFeaturesToTrack, which returns a set of corner

points, applies a higher qualitylevel threshold as the dial

setting increases, thus only the strongest candidates for

corner points are released to the application.

The declassifiers for cvFindContours, cvMoments, and cv-

CalcHist apply the sketching transform from Section VII-A

to the image before performing their main operation (e.g.,

finding contours) on the transformed image. The application

thus obtains only the features such as contours or moments

and not any other information about the image.

Applying a privacy transform does not affect the accuracy

of OpenCV functions other than the declassifiers because

these functions operate on true, unmodified data.

A. Sketching

The sketch of an image is intended to convey its high-level

features while hiding more specific, privacy-sensitive details.

A loose analogy is publicly releasing statistical aggregates

of a dataset while withholding individual records.

The key to creating sketches is to find the contours of the

image, i.e., the points whose greyscale color value is equal to

a fixed number. In our prototype we use a hardcoded value of

50% (e.g., 127 for 8-bit color). Contours by themselves don’t

always ensure the privacy properties we want. For example,

in Fig. 3, contours reveal a credit card number. Therefore,

the sketching transform uses contours in combination with

two types of low-pass filters.

First, the image is blurred5 before contour detection.

Blurring removes small-scale details while preserving large-

scale features. The privacy dial controls the size of the filter

5We use a box filter because it is fast: it averages the pixels in a box
surrounding the target pixel. We could also use a Gaussian or another filter.



kernel. Higher kernel values correspond to more blurring

and fewer details remaining after contour detection.

Just as contour detection alone is insufficient, low-pass

filtering alone would have been insufficient. For example,

image deblurring algorithms can undo the effect of box

filter and other types of blur; in theory, this can be achieved

exactly as long as the resolution of the output image is not

decreased [15]. By returning only the contours of the blurred

image, our sketching transform ensures that blurring cannot

be undone (it also removes all contextual information).

Another low-pass filter is applied after contour detection.

The transform computes the mean radius of curvature of

each contour (suitably defined for nondifferentiable curves

on discrete spaces) and filters out the contours whose mean

radius of curvature is greater than a threshold. The threshold

value is controlled by the privacy dial. Intuitively, this

removes the contours that are either too small or have too

much entropy due to having many “wrinkles.”

Reducing an image to its contours, combined with low-

pass filtering, ensures that not much information remains in

the output of the transform. Due to blurring, no two contour

lines are too close to each other, which upper-bounds the

total perimeter of the contours in an image of a given size.

Fig. 4 illustrates how sketching reduces information avail-

able to the application, as a function of the user-selected

privacy level. We also experimentally estimated the entropy

of sketches on a dataset of 30 frontal face images sampled

from the Color FERET database.6 These were cropped to the

face regions, resulting in roughly 220x220 images. We can

derive an upper bound on entropy by representing contours

as sequences of differences between consecutive points,

which is a more compact representation. Fig. 5 shows that,

for reasonable values of the privacy dial (3–6), the resulting

sketches can be represented in 500-800 bytes.
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Figure 4. Sketching: reduction in information available to the application
for images from Figs. 2 and 3.

B. Generalization

In addition to generic image manipulation and feature

extraction functions like cvFindContours, OpenCV also pro-

vides model-based object detectors. An application can load

a Haar classifier using cvLoadHaarClassifierCascade and

6http://www.nist.gov/itl/iad/ig/colorferet.cfm
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Figure 5. Sketching: reduction in average information available to the
application for facial images in FERET database (size roughly 220x220).

detect objects of a certain class (for example, faces) by

calling cvHaarDetectObjects with a class-specific model. To

prevent applications from inferring information via mali-

cious models, the current DARKLY prototype only allows

predefined models that ship with OpenCV.

If a match is found, cvHaarDetectObjects returns a rect-

angular bounding box containing the object, but not the

pixels inside the box. This still carries privacy risks. For

example, an application that only has an opaque reference

to the box containing a face can use OpenCV calls to

detect the location of the nose, mouth, etc. and learn enough

information to identify the face. To prevent this, DARKLY

applies a generalization-based privacy transform.

Face generalization. Generalization has a long history in

privacy protection; we explain our approach using face

detection as an example. Our privacy transform replaces

the actual face returned by cvHaarDetectObjects with a

“generic” face selected from a predefined, model-specific

dictionary of canonical face images. We call our face gen-

eralization algorithm cluster–morph.

The generalization idiom is already familiar to users from

“avatars” in video games, online forums, etc. Sometimes

avatars are picked arbitrarily, but often users choose an

avatar that best represents their own physical characteristics.

In the same way, the generalized face in DARKLY is intended

to be perceptually similar to the actual face, although, unlike

an avatar, it is programmatically generated.

There are two components to generalization: first, fixing

(and if necessary, pre-processing) the canonical dictionary,

and second, choosing a representative from this dictionary

for a given input face. The former is a one-time process, the

latter is part of the transform. For the first component, one

straightforward approach is to simply pick a small dictionary

of (say) 20 faces and run a face detector on the actual face

to find and return its closest match from the dictionary.

Our proposed cluster–morph technique is a promising

but more complex approach to generalization. It works as

follows: start from a large database of images and compute

its eigenfaces by applying a well-known algorithm [26] that

uses Principal Component Analysis to calculate a set of



basis vectors for the set of all faces. Then compute the

eigen-decomposition of each face, i.e., represent it as a

linear combination of the basis vectors, and truncate each

decomposition to the first (say) 30 principal components.

Next, cluster the set of faces using the Euclidean distance

between decompositions as the distance function.

Finally, to find the canonical face “representing” each

cluster, morph the faces in the cluster using standard morph-

ing algorithms [3]. Fig. 6 shows an example from a cluster

of size 2 obtained by hierarchical clustering on a 40-person

ORL dataset [22]. Clustering and morphing are done once

to produce a fixed dictionary of canonical faces.

We propose to use hierarchical agglomerative clustering.

It offers the key advantage that the level of generalization

can be adjusted based on the setting of the privacy dial: as

the dial value increases, the transform selects clusters higher

in the hierarchy. If all clusters have at least k elements, then

the number of clusters is no more than 2N

k
where N is the

total number of faces in the database.

At runtime, to generalize a given input face, compute its

eigen-decomposition, calculate its distance to each cluster

center,7 and pick the closest. The transform then returns the

morphed image representing this cluster to the application.

Our DARKLY prototype includes a basic implementation

of cluster–morph. Evaluating the algorithm on the Color

FERET database is work in progress. There are at least three

challenges: measuring the effectiveness of face clustering,

finding a mapping between privacy dial values and cluster

hierarchy levels (e.g., dial values can be pegged to either

cluster sizes or cluster cohesion thresholds), and developing

metrics for quantifying privacy protection.

Figure 6. Face morphing for generalization. The left and right faces belong
to the same cluster; the morph “representing” this cluster is in the center.

Our cluster–morph algorithm is inspired in part by New-

ton et al.’s algorithm for k-anonymity-based facial de-

identification [19], which works as follows: given a database

of images, repeatedly pick a yet-unclustered image from the

database and put it in a cluster with k − 1 of its “closest”

images, according to an eigenface-based distance measure.

For each face in the input database, the average of the faces

in its cluster constitutes its de-identified version.

The salient differences in our case are as follows: our

goal is not k-anonymity within a database, but finding a

7A cluster center is the mean of the eigen-decomposites of each image
in the cluster. It does not correspond to the morphed image. Since eigen-
decomposition of a face is a linear transformation, averaging in the
eigenspace is the same as averaging in the original space; thus, the image
corresponding to the cluster center is a plain pixelwise average of the faces
in the cluster. This average would be unsuitable as a canonical representative
due to artifacts such as ghosting, which is why we use the morphed image.

canonical representation w.r.t. a globally predefined dataset

(in particular, the input image is not drawn from this dataset).

Further, Newton et al.’s algorithm has some weaknesses

for our purposes: it uses greedy clustering instead of more

principled methods, requires re-clustering if the privacy dial

changes, and, finally, in our experiments averaging of faces

produced results that were visually inferior to morphing.

Figure 7. Output of the thresholding binary transform on an image of
a street scene with a QR code. QR decoding application works correctly
with the transformed image.

VIII. DARKLY CONSOLE

The DARKLY console is a DARKLY-controlled window

that shows a visual representation of the features and ob-

jects returned to the application by the declassifiers. For

applications that operate exclusively on opaque references,

the DARKLY console is blank. For applications that use

declassifiers, the DARKLY console shows the outputs of the

corresponding privacy transforms—see examples in Figs. 8

and 9. We assume that this window cannot be spoofed by

the application. In general, constructing trusted UI is a well-

known problem in OS design and not specific to DARKLY.

Figure 8. Motion detector: actual image and the DARKLY console view.
Application works correctly with the transformed image.

The DARKLY console is implemented as a separate pro-

cess communicating with DARKLY over UNIX domain sock-

ets. With this design, the application’s declassifier function

calls need not be blocked until the DARKLY console has

finished rendering. We did not implement the DARKLY

console as a thread inside the DARKLY server because both

use OpenCV, and OpenCV functions are not thread-safe.

Consecutive DARKLY console views are stored as a movie

file in AVI or MPG format. If storage is limited, they can be

compressed and/or stored at reduced resolution. The user can



Figure 9. Ball tracker: actual image and the DARKLY console view.
Application works correctly with the transformed image.

play back the movie and see how the information released

to the application by privacy transforms evolved over time.

Privacy dial. The DARKLY console includes a slider for

adjusting the level of transformation applied by the pri-

vacy transforms. The values on the slider range from 0 to

11. Absolute values are interpreted differently by different

transforms, but higher values correspond to coarser outputs

(more abstract representations, simpler contours, etc.). For

example, higher values cause the sketching declassifier to

apply a larger box filter to smoothen the image before finding

the contours, thus removing more information (see Fig. 3).

IX. EVALUATION

We evaluated DARKLY on 20 OpenCV applications, listed

in Table II along with their source URLs. These applications

have been selected from Google Code, GitHub, blogs, and

OpenCV samples for the variety and diversity of their

features and the OpenCV functionality they exercise. With

the exception of OCR, which uses the C++ interface for

nearest-neighbor clustering, they use OpenCV’s C interface.

Our DARKLY prototype is based on OpenCV release

2.1.0. Applications were evaluated on a Segway RMP-50

robot running ROS Fuerte and/or a laptop with a quad-core

2.40GHz Intel Core i3 CPU and 4 GB of RAM running 32

bit Ubuntu 11.10 desktop edition.

Results are summarized in Table III. 18 out of 20 applica-

tions required no modifications to run on DARKLY, except

very minor formatting tweaks in a couple of cases (removing

some header files so that the program compiles in Linux).

For the face recognizer, we re-implemented the eigenface

matching algorithm in our ibc language (see Section VI-F)

so that it can run on true images inside the library, returning

only the match/no match answer to the application.

For all tests, we used either a benchmark video dataset of

a person talking,8 or the sample images and videos that came

with the applications, including OpenCV sample programs.9

Depending on the application, frame rates were computed

for the video or over the input images.

8http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking face.
html

9https://code.ros.org/trac/opencv/browser/trunk/opencv/samples/c?rev=
27

Application URL

OCR for hand-drawn

digits

http://blog.damiles.com/2008/11/

basic-ocr-in-opencv/

Security cam http://code.google.com/p/camsecure/

Ball tracker https://github.com/liquidmetal/

AI-Shack--Tracking-with-OpenCV/blob/master/

TrackColour.cpp

QR decoder https://github.com/josephholsten/libdecodeqr

PrivVideo, video back-

ground subtractor and

streamer

http://theembeddedsystems.blogspot.com/2011/

05/background-subtraction-using-opencv.html

Facial features detector http://opencvfacedetect.blogspot.com/2010/10/

face-detectionfollowed-by-eyesnose.html

Face recognizer http://www.cognotics.com/opencv/servo 2007

series/index.html

Histogram calculator

(RGB)

http://www.aishack.in/2010/07/

drawing-histograms-in-opencv/

Histogram calculator

(Hue-Saturation)

http://opencv.willowgarage.com/documentation/

cpp/histograms.html

Square detector https://code.ros.org/trac/opencv/browser/trunk/

opencv/samples/c/squares.c?rev=27

Morphological

transformer

https://code.ros.org/trac/opencv/browser/trunk/

opencv/samples/c/morphology.c?rev=27

Intensity/contrast

changer for images/

histograms

https://code.ros.org/trac/opencv/browser/trunk/

opencv/samples/c/demhist.c?rev=1429

Pyramidal

downsampler + Canny

edge detector

http://dasl.mem.drexel.edu/∼noahKuntz/

openCVTut1.html

Image adder http://silveiraneto.net/2009/12/08/

opencv-adding-two-images/

H-S histogram back-

projector

http://dasl.mem.drexel.edu/∼noahKuntz/

openCVTut6.html

Template matcher http://opencv.willowgarage.com/wiki/

FastMatchTemplate?action=AttachFile&do=

view&target=FastMatchTemplate.tar.gz

Corner finder http://www.aishack.in/2010/05/

corner-detection-in-opencv/

Hand detector http://code.google.com/p/

wpi-rbe595-2011-machineshop/source/browse/

trunk/handdetection.cpp

Laplace edge detector https://code.ros.org/trac/opencv/browser/trunk/

opencv/samples/c/laplace.c?rev=27

Ellipse fitter https://code.ros.org/trac/opencv/browser/trunk/

opencv/samples/c/fitellipse.c?rev=1429

Table II
BENCHMARK OPENCV APPLICATIONS.

Performance. Performance is critically important for per-

ceptual applications that deal with visual data. If the over-

head of privacy protection caused frame rates to drop

too much, applications would become unusable. Figure 10

shows that the performance overhead of DARKLY is very

minor and, in most cases, not perceptible by a human user.

The effect of a given privacy transform depends on the set-

ting of the privacy dial, aka the privacy level. For example,

sketching, the transform for the cvFindContours declassifier,

applies different amounts of blurring before finding contours.

Fig. 11 shows that the performance variation of the security

camera application at different privacy levels is minimal

(within 3%). Interestingly, in this case performance does not

change monotonically with the privacy level. The reason is

that the OpenCV function used by the sketching transform

switches algorithms depending on the parameters.

Tradeoffs between privacy and utility. Table III shows that

for most applications, there is no change of functionality and

no loss of accuracy even at the maximum privacy setting.



Application LoC Modified

LoC

Change in

functionality

Information accessed

QR decoder 4700 19 Works only at
privacy level 0 ∗

Contours, thresholded image

Face recognizer 851 1 + 19 (ibc) No change Match/no match

OCR 513 0 No change Output digit

Template matcher 483 0 No change Match matrix

Security cam 312 0 See Fig. 12 Contours

Facial features detector 258 0 No change ∗∗ Rectangular bounding boxes

Square detector 238 0 See Fig. 12 Contours

Ellipse fitter 134 0 See Fig. 12 Contours

Intensity/contrast changer for images/his-

tograms

127 0 No change Histograms

Ball tracker 114 0 See Fig. 12 Moments

PrivVideo 96 0 No change None

Morphological transformer 91 0 No change None

H-S histogram backprojector 81 0 See Fig. 12 Histogram

Laplace edge detector 73 0 No change None

RGB histogram calculator 70 0 See Fig. 12 Histogram

H-S histogram calculator 58 0 See Fig. 12 Histogram

Hand detector 48 0 No change Yes/no

Corner finder 42 0 See Fig. 12 Corner coordinates

Image adder 37 0 No change None

Downsampler + Canny edge detector 36 0 No change None
∗ Even at level 0, privacy from the QR decoder is protected by the thresholding binary transform.

∗∗ Feature detection is performed on privacy-transformed faces (Section VII-B).

Table III
EVALUATION OF DARKLY ON OPENCV APPLICATIONS.
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Figure 10. Frame rates with and without DARKLY.

The reason is that these applications do not access raw

images and can operate solely on opaque references.

One application, the QR decoder, works correctly at

privacy level 0, but not at higher settings. Even at privacy

level 0, significant protection is provided by the thresholding

binary transform (see Fig. 7). For the remaining applications,
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Figure 11. Frame rate of the security-camera application as a function
of the privacy level. At levels above 4, OpenCV switches from directly
calculating the convolution to a DFT-based algorithm optimized for larger
kernels. Furthermore, as privacy level increases, smaller motions are not
detected and the application has to process fewer motions.

the tradeoff between their accuracy and user-selected privacy

level is shown in Fig. 12.

Support for other OpenCV applications. We found 281

GitHub projects mentioning “vision,” “applications,” and

“opencv.”10 Filtering out empty projects and clones with the

same name and codebase reduced the set to 77 projects.

10A simple search for “opencv” returns different parts of the OpenCV
library itself and does not work for finding OpenCV applications.
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Figure 12. Change in the number of detected security breaches (Security cam), detected squares (Square detector), detected contours (Ellipse fitter), moments
(Ball tracker), and histograms (RGB and H-S histogram calculators, Intensity/contrast changer for images/histograms, and H-S histogram backprojector) as
the privacy level increases. Correlation between histograms was calculated using the cvHistCompare function. Accuracy for tracking was measured using
the Euclidean distance between the object’s original position and the reported position after applying privacy transforms.

We scanned these 77 projects for invocations of cvGet2D,

cvGetAt, or cvGetRawData, and direct accesses to the im-

ageData field of the image data structure. After removing

the spurious matches caused by included OpenCV header

files, we found that 70% of the projects (54 out of 77) do

not access raw pixels. Furthermore, only 11 projects access

the network, and only 2 access audio inputs.

These 77 projects call a total of 291 OpenCV functions, of

which 145 are already supported by our DARKLY prototype,

118 can be supported with opaque references, 15 can be sup-

ported with the sketching-based declassifier, and 3 require

porting application code to ibc. These 281 functions are

sufficient to support 68 of the 77 surveyed projects.

The remaining 9 projects make calls to unsupported

OpenCV functions (10 in total) that perform tasks such as

optical flow (cvCalcOpticalFlowBM, cvCalcOpticalFlowHS

cvCalcOpticalFlowLK, and cvCalcOpticalFlowPyrLK), ob-

ject tracking (cvCamShift, cvMeanShift, and cvSnakeIm-

age), camera calibration (ComputeCorrespondEpilines), mo-

tion analysis (cvSegmentMotion), and image segmenta-

tion (cvWatershed). Supporting these functions in DARKLY

would require new, task-specific privacy transforms and is

an interesting topic for future research.

X. RELATED WORK

Denning et al. [7] showed that many off-the-shelf con-

sumer robots do not use proper encryption and authenti-

cation, thus a network attacker can control the robot or

extract sensitive data. By contrast, DARKLY protects users

from untrusted applications running on a trusted robot.

PlaceRaider [25] is a hypothetical mobile malware that

can construct a 3-D model of its environment from phone-

camera images. DARKLY prevents this and similar attacks.

SciFi [21] uses secure multiparty computation to match

faces against a database. Matching takes around 10 seconds

per image, thus SciFi is unusable for real-time applications.

The threat model of DARKLY is different (protecting images

from untrusted applications), it handles many more percep-

tual tasks, and can protect real-time video feeds.

Ad-hoc methods for protecting specific sensitive items

include the blurring of faces and license plates in Google

Maps’ Street View [24]. Senior et al. [23] suggested im-

age segmentation to detect sensitive objects in surveillance

videos and transform them according to user-provided poli-

cies. To protect surveillance videos on the network, Dufaux

and Ebrahimi [8] proposed to encrypt regions of interest.

This requires computationally expensive, offline image seg-

mentation and it is not clear whether perceptual applications

would work with the modified videos. Chan et al. [5]

developed a method for counting the number of pedestrians

in surveillance videos without tracking any single individual.

Sweeney et al. published several papers [11, 12, 19] on

“de-identifying” datasets of face images. Many of their tech-

niques, especially in the k-same-Eigen algorithm, are similar

to the generalization transform described in Section VII-B.

They do a “greedy” version of clustering and their model-

based face averaging has similarities with face morphing.

Showing the outputs of privacy transforms to the user on

the DARKLY console is conceptually similar to the sensor-

access widgets by Howell and Schechter [14]. Their widgets,

however, display the entire camera feed because applications

in their system have unrestricted access to visual inputs.



Augmented Reality (AR) applications are a special subset

of perceptual applications that not only read perceptual data

but also modify and display some parts of the input back

to the user. To protect user privacy from such applications,

D’Antoni et al. [6] argue that the OS should provide new

higher-level abstractions for accessing perceptual data in-

stead of the current low-level sensor API. Jana et al. [16]

built a new OS abstraction (recognizers) and a permission

system for enforcing fine-grained, least-privilege access to

perceptual data by AR applications. This permission-based

approach is complementary to DARKLY.

XI. FUTURE WORK

DARKLY is the first step towards privacy protection for

perceptual applicatons. Topics for future research include:

(1) evaluation of functionality and usability on a variety of

computer-vision tasks, (2) support for application-provided,

potentially untrusted object recognition models (the cur-

rent transform for cvHaarDetectObjects is based on the

face detection model shipped with OpenCV) and third-

party object recognition services such as Dextro Robotics,

and (3) development of privacy transforms for untrusted,

application-provided image-processing code. The latter may

obviate the restriction on the outputs of untrusted code,

but would also require a new visualization technique for

displaying these outputs to the user on the DARKLY console.

Longer-term research includes: (4) preventing inferential

leaks by using large-scale, supervised machine learning to

construct detectors and filters for privacy-sensitive objects

and scenes, such as certain text strings, gestures, patterns of

movement and physical proximity, etc., and (5) extending

the system to other perceptual inputs such as audio.
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