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Purpose: In positron emission tomography (PET) imaging, the main function of scatter and ran-

doms corrections is to improve contrast and quantitative accuracy. Both corrections are essential

and critically important. Several iterative reconstruction schemes incorporating scatter and randoms

corrections have been developed over the years. In this work, the authors propose a new method to

incorporate the scatter and randoms corrections into the iterative image reconstruction, which has

shown promising results in regards to improving reconstruction performance and image quality as

compared to the standard methods.

Methods: The authors describe a scatter and randoms weighted (SRW) iterative PET reconstruc-

tion algorithm. The SRW method is based on the estimation of the trues fraction (TF) within the

prompts. Once the TF is estimated, it is then incorporated into the weighting component of the sys-

tem matrix, and the net result is a scatter and randoms weighting in the sensitivity image similar to

the attenuation correction weighting. Although using the measured prompts in the TF estimation

was demonstrated to achieve the fastest convergence at high statistics, it is not reliable in low

counts situations due to the sparse and noisy nature of the measured prompts. Therefore, a mean

estimation of the prompts derived from the forward projection of the reconstructed prompts image

was introduced into the TF estimation. A contrast phantom was scanned, and the data were recon-

structed using the standard and the SRW methods.

Results: The contrast vs noise, precision vs accuracy in contrast, absolute error vs number of itera-

tions comparisons, and standard deviation image over different realizations of the same object were

evaluated at low counts situations, and it was observed that the SRW method outperforms the stand-

ard approaches such as the scatter and randoms data precorrection and the ordinary Poisson meth-

ods. The image intensity (activity) outside the object can also be minimized using the SRW

method. In addition, further improvement in accuracy, precision, convergence, and noise properties

can be achieved by further improving the TF and the prompts estimate.

Conclusions: The authors have developed a practical scatter and randoms weighting scheme in the

sensitivity image for iterative PET reconstructions. Our proposed SRW method has a number of

advantages over the conventional methods, and it has shown promising results with additional

optimization for various applications to be further investigated. VC 2011 American Association of

Physicists in Medicine. [DOI: 10.1118/1.3590379]

Key words: positron emission tomography, iterative image reconstruction, scatter and randoms

corrections weighting, trues fraction within prompts, system matrix

I. INTRODUCTION

In positron emission tomography (PET), the data (measured

prompts) acquired are the coincidence events or pairs of 511

keV photons generated from the positron annihilations. A

pair of photons is registered as a coincidence event when the

two photons are detected nearly simultaneously (within the

coincidence timing and energy windows), and a correspond-

ing line-of-response (LOR) is assigned. Scattered events

occur due to the Compton scatter, which is the dominant pho-

ton interaction with a free or outer shell electron in tissue for

the 511 keV photons. Although scattered photons typically

have energy lower than 511 keV, they can still be registered

and contaminate the measured data due to the finite energy

resolution of PET scanners. As a result, one or both of the

photons get scattered off of their original paths thus causing

the assigned LOR nowhere close to the actual annihilation

site for the registered scattered event. On the other hand, two

photons from different annihilation sites can also be regis-

tered as a coincident event when one of each pair of the anni-

hilation photons (1) gets absorbed in the object, (2) escapes

the scanner’s field of view, or (3) passes through the detector

without getting recorded. Consequently, the coincident event

is measured by “accident” due to the finite coincidence tim-

ing window, and the assigned LOR most likely does not cor-

respond to either of the annihilation sites (i.e., randoms

events). The detection of scatter and randoms events results

in loss of image contrast and quantitative accuracy, and the

scatter and randoms corrections are thus essential and crit-

ically important. Several iterative image reconstruction
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schemes incorporating scatter and randoms corrections have

been developed over the years such as the scatter and ran-

doms data precorrection, the ordinary Poisson (OP) algo-

rithm,1,2 and most recently the Monte Carlo estimation of the

scatter system matrix (not including the randoms).3 In this

work, we propose a scatter and randoms weighted (SRW)

iterative reconstruction algorithm, which practically incorpo-

rates any existing scatter and randoms correction sinograms

into the weighting component of the system matrix similar to

the attenuation correction weighting.

II. A PRACTICAL SCATTER AND RANDOMS
WEIGHTED SYSTEM MODEL

The core idea of the SRW method is to estimate the “trues

fraction” (TF) within the prompts. Typically the prompts in

PET consist of the trues (t), randoms (r), and the scattered

events (s) as given by Eq. (1) which can be rearranged to

form Eq. (2):

prompts ¼ tþ r þ s (1)

prompts:ð1� RFÞ � ð1� SFÞ ¼ prompts � TF ¼ t

0 � RF � 1; 0 � SF � 1; and 0 � TF � 1; (2)

where RF is the randoms fraction and SF is the scatter frac-

tion as given by Eq. (3):

RF ¼
r

prompts
; SF ¼

s

prompts � ð1� RFÞ
(3)

The (1�RF) term is thus the nonrandoms fraction, (1�SF)

is the nonscatter fraction, and the product of the nonrandoms

and nonscatter fractions is the TF within the prompts. The

RF and SF are typically defined for the whole PET scan as

the global estimate of the background contamination; how-

ever, here the RF, SF, and TF are defined for each LOR in

the SRW method as will be discussed shortly.

The system matrix (Pij) in iterative reconstruction typi-

cally consists of three parts: a weighting component (W),

which accounts for normalization (ni) and attenuation (ai)

corrections, a geometrical component (G), which correlates

the LORs or bins of the sinograms and the image voxels, and

a blurring component (B) for the image space resolution

modeling as given by Eq. (4):

Pij ¼ WGB; where W ¼
1

ni
�
1

ai
(4)

The SRW method is applicable to all statistical reconstruc-

tion methods like EM, OSEM, and regularized reconstruc-

tion. Here, we performed our evaluations on the most widely

used reconstruction method (OSEM). The 3D ordered sub-

sets expectation maximization4 (3D-OSEM) using the OP

method is given by Eq. (5):

k
m;lþ1
j ¼

k
m;l
j

P

i2sl
Pij

X

i2sl

Pij

yi
PJ

j¼1 Pijk
m;l
j þ ri þ si

; (5)

where yi is the measured data along the ith LOR within the

lth subset (sl), and k
m;l
j is the image intensity estimate in

voxel j (j¼ 1,…, J) at the mth iteration and lth subset. Here,

the scatter and randoms correction sinograms are incorpo-

rated into the reconstruction task in the forward model.

For the SRW method once the TF is estimated for

each LOR, it can then be incorporated into the weighting

component of the system matrix similar to the attenuation

correction factors. When incorporated into 3D-OSEM, the

SRW-OSEM algorithm is given by Eq. (6):

k
m;lþ1
j ¼

k
m;l
j

P

i2sl
P0

ij

X

i2sl

P0
ij

yi
PJ

j¼1 P
0
ijk

m;l
j

where P0
ij ¼ W0GB and W0 ¼

1

ni
�
1

ai
�
1

TFi

(6)

The net result is a scatter and randoms weighting in the sen-

sitivity image as the weighting component (the diagonal ma-

trix) cancels out between the forward- and back-projection

step. Consequently, the definition of the sensitivity image in

the SRW-OSEM becomes the probability of a “true” voxel

to be detected everywhere.

It has been observed that the image estimate is less noisy

and updates more quickly (i.e., faster convergence) without

the inclusion of scatter and randoms corrections in Eq. (5),2

which is equivalent to Eq. (6) with TF¼ 1 for all LORs.

The 3D-OSEM without scatter and randoms corrections will

be referred to as the prompts reconstruction from here on.

Ideally, if the TF can be properly estimated with negligible

noise as compared to the measured data, the convergence

and noise properties of the SRW method are expected to be

similar to the prompts reconstruction while achieving better

quantitative accuracy. The SRW method also maintains the

Poisson nature of the data (i.e., no data precorrections

applied). Moreover, since there is no need to process

through the scatter and randoms sinograms for every itera-

tion of the reconstruction in the SRW method as compared

to the OP method, the storage requirement for the recon-

struction task can be reduced (note that the amount of

reduction depends on the number of LORs or the size of the

sinogram files for the PET scanner; e.g., scanners such as

the high resolution research tomography,5 which has a large

number of LORs would benefit more from this). The com-

putation of the update factors is also more efficient thus

accelerating the reconstruction task. In addition, the pro-

posed method practically and effectively incorporates any

existing scatter and randoms correction sinograms into the

sensitivity image without computationally intensive simula-

tions such as the estimation of the full scatter system matrix

(for each voxel-LOR combination) as described by Rehfeld

and Alber.3

The TF estimate can also be used as a quality control for

the scatter and randoms corrections as severe bias in both

correction estimates can be easily identified in the TF sino-

grams. Furthermore, the SRW method can minimize the

image intensity (activity) outside the object by conditioning

the TF using the anatomical information (attenuation sino-

grams) as guidance. Ideally, the TF outside the object should

be zero; however, performing summation of one over zero

(i.e., singularity) or one over a very small number close to

zero in the sensitivity estimation has been found to be
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problematic for the LORs close to the boundary of the object

and prone to introduce artifact in the image. The TF outside

and close to the boundary of the object was thus determined

empirically, as will be discussed in Sec. V, in order to mini-

mize the activity outside the object due to scatter and ran-

doms while avoiding the singularity issue.

The estimation of TF requires the scatter and randoms

sinograms as well as the prompts sinograms. A major con-

cern arises when estimating the TF using the measured

prompts (i.e., the direct data-driven approach) at low counts

situations since the measured prompts sinograms are sparse

and noisy, and, therefore, the estimated TF is likely to be

inaccurate. To improve the TF estimation, we used the mean

estimated prompts derived from forward projection of the

reconstructed prompts image followed by rescaling to mini-

mize the difference in overall magnitude as compared to the

measured prompts. The prompts reconstruction was per-

formed using Eq. (6) and setting TF¼ 1 for all LORs. Exam-

ples of TF estimates and the corresponding profiles are

shown in Fig. 1.

One can observe that the average TF for the uniform area

is about 0.8 from the profile with 3.4� 109 (i.e., �300 counts

per bin on average within the object) counts using the meas-

ured prompts; however, the TF estimated from �100 times

less statistics—i.e., 33� 106 counts using the measured

prompts show a noisy and underestimated profile. On the

other hand, the TF obtained from 33� 106 counts using the

mean estimated prompts is in close agreement with that esti-

mated from 3.4� 109 counts using the measured prompts.

Note that the randoms and scatter estimates used are the same

for Figs. 1(b) and 1(c). It can be observed that the noise and

inaccuracy in the TF are mostly contributed from the meas-

ured prompts as shown in Fig. 1(b).

It was also observed that the TF, SF, and RF obtained

from the mean estimated prompts are almost always within

the zero to one range without using a constraint for all the

LORs within the object. Although there is inconsistency

between the forward- and back-projection, the TF obtained

using the mean estimated prompts was found to be more ro-

bust and produce more consistent results when included in

the SRW method for low count situations. A few denoising

techniques were also applied to improve the mean estimated

prompts (analogous to the segmentation step in attenuation

correction), as will be described in Sec. III.

As compared to the widely used OP approach, the

expected advantages and challenges of the SRW method are

summarized below:

Advantages

1. Faster convergence

2. Producing less noisy images when the noise in the TF

estimate is negligible as compared to the measured data.

3. Accelerating the reconstruction task and reducing the

storage requirement.

4. TF sinograms can be used as a quality control for the scat-

ter and randoms estimates.

5. Minimizing the image intensity (activity) outside the

object

FIG. 1. The coronal “z-r” view of the TF sinograms and the corresponding profile for the contrast phantom estimated from (a) 3.4� 109 counts with the meas-

ured prompts, (b) 33� 106 counts with the measured prompts, and (c) 33� 106 counts with the mean estimated prompts. The bright-dark pattern across the

vertical axis shown in (b) is likely due to quantum fluctuations in the measured data.
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Challenges

1. Singularity issue

2. Direct data-driven TF estimation is likely to be inaccurate

for low counts situations; extra care is required for low-

statistics reconstructions.

III. METHODS

III.A. Tomograph

Data were acquired on the microPET-Focus220. This

scanner is made of four rings of block detectors composed of

an array of 12� 12 lutetium oxy-ortho silicate (LSO) scintil-

lation crystals of 1.6 mm� 1.6 mm� 10 mm with optical

coupling to a position sensitive photomultiplier tube via a

coherent bundle of square optical fibers. The performance

evaluation of this scanner was described by Tai et al.6

III.B. Data acquisition

A 6 cm in diameter and 9 cm long cylindrical phantom

with a “cold” Teflon insert, a cold air insert, a “hot” water

insert (each of which is 1.5 cm in diameter and 4 cm long),

and a “warm” water background was scanned. The phantom

was filled with a 1.36 mCi injection of a 18F solution and a

hot-to-background ratio of 4–1. The phantom was positioned

at the center of the field of view and underwent a 6 h emis-

sion scan and an 18 min transmission scan. Data were

acquired in list-mode with a total number of counts of

�3.4� 109, an average count rate of 157.4 kps, and a global

RF of 11% (the count rate and RF were chosen to mimic typ-

ical conditions encountered in a small animal imaging).

III.C. Image reconstruction and comparison scheme

Data with the entire scan duration were reconstructed

using eight iterations and nine subsets 3D-OSEM (1) without

any scatter and randoms corrections (i.e., prompts recon), (2)

with OP, and (3) with the proposed SRW method using the

measured prompts (SRW_mp) in the estimation of the TF as

the first step for the high statistics evaluation. The scatter

and randoms corrections were computed using the single

scatter simulation7 (SSS) and the smoothed randoms esti-

mated from singles rate.8 Since the estimated scatter sino-

grams were already normalized in SSS, they need to be

denormalized to match the un-normalized randoms and

prompts before estimating the TF. The contrast for the hot

insert and those for the two cold inserts was evaluated as a

function of the voxel-noise in the reconstructed images and

compared between the three methods mentioned above. The

noise in the reconstructed image is characterized by the coef-

ficient of variation (COV) for voxels in the background

region.

The list-mode data were then sorted and divided into ten

frames of 3� 106 counts with similar count rate and RF as

compared to the average count rate and the average RF. For

the aforementioned low counts frames, the data were recon-

structed using (1), (2), (4) the SRW method using the mean

estimated prompts obtained using eight iterations (SRW_ep)

in the TF, and additionally (5) with data precorrected for

scatter and randoms (i.e., subtract the scatter and randoms

from the data before reconstruction). As demonstrated in

Fig. 1, the TF obtained from the mean estimate of the

prompts was identified to be more robust as compared to the

measured prompts; therefore, the SRW_mp method was

omitted for the low counts evaluations in the result section.

Furthermore, the TF obtained using the mean estimated

prompts from the 3.4� 109 counts frame with proper rescal-

ing was included into the 3� 106 counts frame reconstruc-

tion (i.e., (6) SRW_summed_ep) to demonstrate that further

improvement in accuracy, precision, convergence, and noise

properties can be achieved by improving the TF=prompts
estimate. A recently developed denoising technique: HighlY

constrained backPRojection9 (HYPR), using the prompts

image reconstructed from the 3.4� 109 frame as the com-

posite image, was also applied to the TF estimation process

and included in the SRW method (i.e., (7) SRW_HYPR_ep)

for comparison. Note that the same scatter and randoms cor-

rections were used in all the methods mentioned above

except (1). Other than the contrast vs noise comparison, the

COV of the contrast values was evaluated as a function of

the bias in contrast (i.e., precision vs accuracy) for all the hot

and cold inserts over the ten frames. The bias in contrast is

given by:

Biasconstrast ¼
Contrastaverage � Contrastreference

Contrastreference

� �

� 100%:

(7)

The mean absolute error in contrast was also plotted as a

function of number of iterations for all methods. The mean

absolute error in contrast is defined as:

MAEconstrast ¼

PN
i¼1 Contrasti � Contrastreferencej j=N

Contrastreference

 !

� 100%; (8)

where the summation goes over each realization (i¼ 1,…, N)

and N is the total number of realizations.

Although ideally the reference contrast is 100%, the bias

and absolute error were calculated based on the reference

contrasts obtained from the frame with the most statistics

using SRW_mp (closest to the ideal reference as will be

shown in the result section) since the contrasts obtained

from the frames with lower statistics should agree with those

with higher, and the consistency (both overestimation and

underestimation) can be determined. The standard deviation

(STD) image across the ten realizations of the same object

was computed for all methods, and the image intensity out-

side the object was also compared between the OP and the

SRW methods. In summary, the following comparisons were

performed:

• Contrast vs noise
• Precision vs accuracy (i.e., COV vs bias)
• Mean absolute error vs number of iterations
• STD image
• Image intensity (activity) outside the object
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In this work, we used the contrast as the main figure of

merit since it is the quantity most influenced by scatter and

randoms corrections.

IV. RESULTS

The contrast vs noise comparison for the scan with

3.4� 109 counts is depicted in Figs. 2(a)–2(c). One can

observe that the OP method improves the contrasts and

increases the noise as compared to the prompts recon (i.e., no

scatter and randoms corrections). Further improvement in

contrasts was observed with the SRW_mp method due to the

faster convergence though higher noise was also obtained

(compared to the other methods at the same iteration) partly

due to the faster convergence but mostly due to the noise in

the measured prompts, which propagates through the TF esti-

mation to the reconstructed image. Note the different conver-

gence rate between the hot and cold regional contrasts. For

the low counts evaluations as shown in Figs. 2(d)–2(i), one

can observe that although the SRW_ep method performs sim-

ilar in terms of accuracy with slightly worse precision as

compared to OP, SRW_summed_ep outperforms all the other

methods in all areas (the plots for mean absolute error vs

number of iterations are not shown).

As expected, the SRW_summed_ep method shows faster

convergence as well as less noise in the images as compared

to the OP method. The noise in the SRW_summed_ep image

was observed to be almost identical to that of the prompts

recon when the noise in the TF estimate is negligible as com-

pared to the noise in the data as shown in Fig. 3.

This also demonstrates that the scatter and randoms cor-

rections do not amplify the noise in the SRW method (where

each image voxel is weighted by the overall contribution of

the scatter and randoms through the TF in the sensitivity)

when the prompts estimate is not noisy, whereas the OP

method increases the noise after the inclusion of scatter and

randoms corrections in the forward model. The SRW_HY-

PR_ep method also performs quite well. As compared to OP,

SRW_HYPR_ep images show similar accuracy with better

precision in contrast values and less noise as well as faster

convergence, and its curves fall in between those of the

SRW_ep method and the SRW_summed_ep method as

expected.

As depicted in Fig. 4, the comparison of STD image

which represents the interframe variation shows similar

results between the OP and the SRW methods with SRW_ep

showing slightly higher variation and the prompts recon

showing the highest variation. Note that the SRW methods

show less variation outside the object as compared to the

rest. The mean value over 24 regions-of-interest (ROI) in the

warm background of the STD image is also shown. In addi-

tion, although not identical the images reconstructed with

the scatter and randoms precorrections show close results as

compared to those reconstructed with the OP method.

The image intensity (activity) outside the object for OP

(left) and SRW (right) is shown in Fig. 5. Both images were

set to have the same scale. One can observe that the image

reconstructed with OP contains more counts outside the

object (�5 times more on average) as compared to the SRW

method.

FIG. 2. Contrast vs noise comparison for (a) the hot

water insert, (b) the cold air insert, and (c) the cold Tef-

lon (bone) insert for the frame with 3.4� 109 counts;

(d), (e), and (f) depict the COV vs bias comparison for

the hot water, cold air, and cold Teflon (bone) inserts,

respectively, for the frames with 3� 106 counts. Note

that each point corresponds to an OSEM iteration, and

the number of iterations increases from left to right.
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V. DISCUSSION

With regard to the SRW_mp method (i.e., the direct data-

driven approach), the computation of the TF is straightfor-

ward and fast as it only requires all of the existing sinograms

(i.e., scatter, randoms, and measured prompts). In other

words, the direct data-driven SRW method does not introduce

any computational burden as compared to the commonly

used attenuation and normalization weighted reconstruc-

tion.10 Moreover, the reconstruction time is reduced (�15%)

as compared to the OP method since there is no need to pro-

cess through the scatter and randoms sinograms in the for-

ward model for every iteration. Even though the noise

obtained from the SRW_mp method is higher as compared to

the other methods at the same iteration as shown in Figs.

2(a)–2(c), one can observe that with a fewer number of itera-

tions (e.g., two iterations less) the SRW_mp method can

achieve higher=similar contrasts and similar=less noise as

compared to the last iteration of OP. As a result, the overall

time gain becomes �35% due to the faster reconstruction

time and using a fewer number of iterations. However, the

major limitation of the SRW_mp method is that it is only ap-

plicable for high statistics scans as mentioned previously.

One can use the TF sinograms as the guidance to decide if

the SRW_mp method is applicable as demonstrated in Fig. 1

(e.g., it is applicable when the TF sinograms are not sparse

and show the structure of the object well in the z-r view). On

the other hand, the SRW_ep, summed_ep, and HYPR_ep

methods are suited for dynamic=low count studies. However,

the reconstruction time gain is lost in the SRW_ep methods

due to the additional reconstruction of the prompts image.

As an effort to reduce the noise in the TF estimate, we

also tried incorporating the mean estimated prompts from

earlier iterations of the prompts image (results not shown).

Although the noise was indeed reduced in the reconstructed

image, contrasts especially for the cold spots are also

reduced due to the error in the TF from the reduced contrast

in the early iterations of the prompts image (e.g., overesti-

mated TF resulting in more counts in the cold spots). Alter-

natively, we used HYPR denoising technique to further

improve the noise and precision properties while maintain-

ing a good accuracy as was demonstrated by the SRW_HY-

PR_ep method. When we estimated the TF using the

forward projection of the prompts image reconstructed from

FIG. 3. Contrast (cold Teflon) vs noise comparison for the frames with

3� 106 counts.

FIG. 4. The STD image comparison with the mean

value from the background ROIs.

FIG. 5. The image intensity (activity) outside the object obtained with the

OP method (left), and the SRW method (right); both images have the same

color level scale.
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3.4� 109 counts (i.e., SRW_summed_ep), we obtained the

best results in terms of accuracy, precision, and noise. How-

ever, this approach is not generally applicable as compared

to SRW_HYPR_ep since it assumes the spatial distribution

of the prompts is constant over time. As a result, the use of

SRW_summed_ep method is limited to the washout phase of

tracers, where the spatial activity distribution changes mini-

mally as well as phantom studies. In summary, even though

the reconstruction time gain is lost in the SRW_ep methods,

the accuracy, noise, and precision properties can be

improved as compared to the other methods by improving

the TF=prompts estimate in the SRW method. Note that the

randoms and scatter estimates may also be inaccurate at low

counts situations due to the limited statistics used in the esti-

mation. Therefore, it might also be useful to apply a practical

scatter and randoms approximation11 for dynamic studies to

further improve the TF estimate.

As mentioned previously, TF outside and close to the

boundary of the object was determined empirically in order

to minimize the activity outside the object while avoiding

the singularity issue. The total image intensity (counts) out-

side the object for the OP method was computed and found

to correspond to TF� 0.25. Consequently, setting TF < 0.25

outside the object in the SRW method improves (reduces)

the background intensity as compared to OP as shown in

Fig. 5. TF� 0.05 outside the object has been found to be a

good compromise and produce consistent results for the

SRW method.

The proposed method can also be applied to the randoms

precorrected data for scanners that do not have the capability

to output the randoms sinograms. Instead of incorporating

the TF into the weighting component of the system matrix,

the nonscatter fraction (i.e., 1�SF) should be applied for

the randoms precorrected data. It is expected that the results

from the scatter only weighted (SOW) method should fall in

between the SRW method and the data precorrection

method. Analogously, SOW can also be applied to iterative

SPECT reconstruction for the scatter correction.

The proposed method has been demonstrated to work

well in small animal imaging (i.e., with SF� 10%–20%).

The SRW method has yet to be evaluated for human PET

imaging (i.e., much higher SF). The SRW method is

expected to converge even faster relative to the OP method

for high SF scans since high SF slows down the convergence

for the OP method though other limitations of SRW might

also be discovered.

VI. CONCLUSION

We have developed a practical scatter and randoms

weighting scheme in the sensitivity image for iterative PET

reconstructions. Our proposed SRW method has a number of

advantages over the conventional methods, and it has shown

promising results with additional optimization for various

applications to be further investigated. Future work for the

proposed method includes further optimization for the

TF=prompts estimate for various sizes of objects, investiga-

tion of other approaches to deal with singularity, and incor-

poration of additional correction terms, such as cascade

gamma correction,12,13 for nonstandard PET nuclides, and

LSO background estimates for specific PET scanners, into

the TF estimation. In addition, the SRW method can be

extended to 4D-PET reconstruction14 by estimating the TF

from the 4D prompts image.
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