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Airlines around the world continue to face steadily
declining passenger yields. As competition intensi-
fies, owing to liberalization and deregulation, airlines
have been forced to cut costs and uphold revenues,
while their marginal profits come under tremendous
pressure. One of the major factors contributing to the
problems in airlines operations is the stochastic nature
of passenger demand. Seasonal variations in demands
are usually taken into account, but there also exist
typical random demand fluctuations throughout an
airline’s network, which generally lead to (relatively)
low average load factors and a significant number
of not accepted passengers (spill). Recently, certain
events (September 11th, war in Iraq, outbreak of
SARS) have also led to a high variability in demand.

A newly envisioned concept to deal with this high
variability is the dynamic allocation of airline fleet
capacity. This emerging new operating philosophy
aims to use the most recent estimates of customers
demands for accordingly updating the assignments
of aircrafts to the flight schedule, shortly before the
actual operations, to better match the available capac-
ity to the demands and boost the total operating profit
over the entire network (see, e.g., the discussion on
demand driven dispatch by Berge and Hopperstad
1993).
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Presently, some airlines manually swap aircraft
assignments at various stages in response to demand
variation. A recent indication on the current prac-
tice of “matching planes to people” is provided by
Feldman (2002). However, a systematic application of
the dynamic capacity allocation concept on a struc-
tural basis would imply major reorganization changes
for the airlines. To provide insight into the concept
benefits and the necessary changes it would trigger,
prospective studies and appropriate decision support
systems started to emerge. In cooperation with Airbus
Industry, ORTEC Consultants B.V., The Netherlands,
initiated the dynamic capacity management (DCM)
system, a system designed to assist airlines and air-
craft manufacturers throughout this process. In this
system a strategic and an operational level are distin-
guished. The strategic tool addresses the airline fleet
planning and its impact on the network dynamics.
Despite using advanced mathematical techniques, the
optimization approaches to date are deterministic in
nature.

This paper presents background research connected
with the DCM concept. More specifically, it devises an
approach to the airline fleet composition problem that
accounts explicitly for stochastic demand fluctuations.
In our modeling, a fleet composition is sought that
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appropriately supports dynamic allocation, depend-
ing on the flight schedule under consideration and
the associated stochastic demands on its flight legs.
Owing to this strong dependency, our approach sup-
ports strategic fleet planning in a model-based way;
it can be applied to various networks and schedule
scenarios. By doing so, we are advocating proactive
decision making at the strategic level (fleet planning),
which better enables more flexible operational (and
dynamic) aircraft capacity deployment. In particular,
we document the idea that an appropriate strategic
support tool should incorporate explicit means for
determining a fleet composition flexible enough for
the successful implementation of the dynamic alloca-
tion concept.

Given a flight schedule and a fleet of aircrafts of
several types, the fleet assignment problem is to deter-
mine which type of aircraft should fly each flight leg.
The objective is to maximize the total profit, under
the constraints that each leg is carried out by exactly
one type, the number of deployed aircrafts does not
exceed the total number of aircrafts available in the
fleet, and the type flow balance is maintained. In
the fleet composition problem, the fleet is not given,
but has to be determined from a set of aircraft types
to maximize the assignment profit minus the fixed
costs of the planes, under similar constraints as in the
assignment problem.

Although the related fleet assignment problem is a
well-researched topic, explicit approaches of the fleet
composition problem are not yet observed in the lit-
erature. Nevertheless, fleet assignment models rep-
resent the operational use of a given fleet, and so
they provide the basis for further investigations con-
cerning an appropriate fleet composition. Hence, we
briefly review here representative contributions to the
modeling and solution of the assignment problem.
Probably one of the first contributions dealing with a
simplified version of fleet assignment is the allocation
of aircraft to routes in Ferguson and Dantzig (1956).
Remarkably, this was written at the same time as one
of the first applications of the stochastic programming
theory. More than 30 years later, Abara (1989) presents
a model that can be used for the general airline net-
work, but which has some practical limitations due
to explicitly modeling feasible flight connections as
decision variables.

Berge and Hopperstad (1993) present the dynamic
allocation concept, formulate supporting assignment
models as multicommodity network flow problems
on space-time networks, and suggest two heuris-
tics for their solution. They also give an example
of adjusting a fleet composition through downsiz-
ing, that is, replacing some airplane types in the fleet
with an equal number of planes of lower capacity.
However, there is no indication on how such fleet

adjustment could be done in the general case, based
on the characteristics of the flight schedule under
consideration.

An elaborated solution methodology oriented to-
ward computational applicability to large-scale prob-
lems is discussed in Hane et al. (1995). The authors
present the computational history of solving a very
large mixed-integer program in a case study of the
basic fleet assignment. The numerical procedures
include the solution of the linear relaxation of the
model as well as the fixing of variables from the frac-
tional relaxed solution, resulting in a so-called crushed
model. Subramanian et al. (1994) present the Cold-
start project at Delta Air Lines, based on similar con-
siderations. A “warm start” based approach such as
in Talluri (1996) improves a valid initial assignment
by swapping planes for some flights, while maintain-
ing aircraft flow balance. The complexity and behav-
ior of the fleet assignment model are addressed by Gu
et al. (1994). Rushmeier and Kontogiorgis (1997) base
their assignment model used at USAir on a network
that represents the complexity of the connect time
rules, combined with a framework for the resource
constraints that captures certain economic trade-offs.

In recent years, considerable efforts have been
spent on the so-called origin-destination (O-D)-based
fleet assignment. Barnhart et al. (1998) present a
string-based fleet assignment model, where a string
represents a small sequence of legs flown by the
same aircraft. This model can address simultane-
ously the fleet assignment and the aircraft-routing
problem (determining the routes to be flown by
individual aircraft). Furthermore, Barnhart, Kniker,
and Lohatepanont (2002) propose a new formulation
and solution approach that capture certain network
effects, which are insufficiently treated in the previ-
ous models. Note that the leg-based models have two
main drawbacks: They do not capture network effects,
and they assume deterministic demand. In this con-
text, our paper addresses the latter but not the for-
mer, which is addressed by O-D models. Although
a comparison between our approach and determinis-
tic O-D models is beyond the scope of this paper, it
is certainly an interesting issue that deserves further
attention.

An important issue addressed by Rosenberger,
Johnson, and Nemhauser (2001) is the robustness of
the fleet assignment with respect to the necessary
rescheduling caused by disruptions. Using the model
in Barnhart et al. (1998), the authors show that certain
assignments with a limited number of legs belonging
to routes that begin at one hub and end at a different
hub feature more short cycles (a cycle is a sequence
of flights that begins and ends at the same airport).
Such assignments consider the possibility of disrup-
tions early during the planning phase and are proven
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to perform better in operations than the solutions of
traditional models.

Recently, Anbil et al. (1999) announced the intention
to investigate at IBM’s T. ]J. Watson Research Center
the use of stochastic programming to fleet planning
and assignment problems. However, no reports have
been released so far.

Our considerations here integrate into the context
described above, while focusing more specifically on
the strategic issue of the fleet composition. Similar
to Rosenberger, Johnson, and Nemhauser (2001), our
work is also motivated by the possibility of reas-
signing the fleet due to uncertainty. However, we
address a different source of uncertainty—the stochas-
tic fluctuations in demand—and we are concerned
with the intentional reallocation of the aircraft to
better match the actual demands. In particular, we
study the capacity distribution of the fleet among
various aircraft types, from the perspective of such a
dynamic use.

The remainder of the paper is organized as fol-
lows. Section 1 describes the fleet problem under con-
sideration, as well as our various assumptions and
research questions. The mathematical modeling of the
described problem is further elaborated in §2. In §3,
we discuss our implementation of the involved algo-
rithms in a suite of applications, called FleetComp.
Case study results on representative networks are pre-
sented in §4. Finally, §5 formulates our documented
conclusions.

The findings of our investigations show promise
in providing conceptually more robust solutions with
respect to dynamic allocation than those generated
by deterministic formulations. Moreover, they clearly
assess the potential benefits of using a stochastic
approach and the feasibility of its implementation
within a practice-oriented decision support system.

1. The Fleet-Composition Problem

Given a set of aircraft types, the fleet-composition
problem is to determine the optimal composition of
the fleet (i.e., the number of aircrafts of each type to
be the most profitable for the operation of an airline
schedule). In practice, this problem pertains to the
upper management levels and involves many com-
plex factors, which can vary in the long run. For
example, the flight schedule of an airline is changed
regularly by canceling some routes or by announc-
ing additional destinations or more frequent flights
to existing destinations. Moreover, a drastic reduc-
tion in passenger demand typically results in large-
scale reductions in flight schedules and, implicitly,
in grounding some aircraft in the fleets. Thus, the
robustness of the fleet composition under a criterion
such as modifications of the schedule or long-run

demand variations is a very important practical issue.
However, this kind of robustness is beyond the scope
of the current paper. Instead, our goal is to provide
some insight into the robustness of a fleet configura-
tion with respect to the concept of dynamic allocation,
in response to the short-term fluctuations in demand.
Consequently, we address the problem from an oper-
ations research perspective and model it in relation
to the basic fleet assignment, under some simplifying
assumptions pertaining to the latter problem, which
are specified below. Because we focus here on the
strategic issue of fleet composition, we are concerned
with the assignment problem itself only to the extent
that it reflects the operational use of a certain fleet.
Therefore we decided to keep these assumptions rea-
sonably simple, so as not to burden our set up with
redundant technical details.

Our research setting considers a given flight sched-
ule and, starting from that schedule, aims to deter-
mine which fleet is most appropriate (in real cases
airlines are likely to try out several possible sched-
ules). Thus, the results obtained in this setting should
be regarded only as input for the analysis, in which,
clearly, many more aspects need to be taken into
account before an actual decision is made. Weekly
flight schedules given as a list of flight legs are con-
sidered here, where the corresponding index week is
supposed to offer a representative network of flights
for the airline’s operations. For each flight leg in the
schedule the following data are given: the origin air-
port, the destination airport, the departure time, the
arrival time, the (expected) demand for each fare
class (economy or business), and the flight distance.
Demands for seats are assumed to follow indepen-
dent normal distributions (truncated at zero), with
the variability specified as the K-factor (the ratio of
the standard deviation to the mean). Hence, in this
respect, we basically follow here the baseline assump-
tions from Berge and Hopperstad (1993). The choice
for a truncated normal distribution for demand is not
essential and does not affect the approach we are
going to present.

Each aircraft type is defined by its fixed costs (per
week), its operational costs, its capacity for each fare
class, its range capability, and its family indicator.
An aircraft type may be assigned to a flight leg only
if its range is greater than the flight distance, so
that certain type or leg combinations are prohibited.
Types allowed to perform a leg are assumed to have
the same flying time; these flying times are exactly
the ones required by the flight specifications. More-
over, we assume that all the aircraft types consid-
ered have identical turnaround times over the whole
network. The last assumption can be easily relaxed,
leading to type-dependent flight connections. How-
ever, although variable turnaround times are certainly
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very relevant in the operational phase, they become,
instead, details in a strategic context here.

We assume that when demand for a fare class
exceeds the corresponding capacity of a type, the
excess demand is spilled and the passengers turned
away are not recaptured. Revenue management (RM)
could alleviate these losses, and the assumption may
be relaxed by expressing the effect of RM in more
complex yield functions, yet that does not affect
our main contribution. Moreover, it diffuses the out-
comes. Because RM typically assumes a fixed capac-
ity, a precise modeling of the interaction between
dynamic capacity management and revenue manage-
ment is a complex issue, which certainly requires
more research.

For a given schedule, there exists a constant rep-
resenting the minimum total number of airplanes
(independent of type) needed to carry out the whole
schedule. This constant can be easily computed (see
the modeling section). Only fleet compositions with
this minimum total number of airplanes are taken into
consideration.

The fleet performance is expressed in terms of the
operating profit it can generate, minus the fixed air-
craft costs. This profitability measure (which results
from the dynamic interaction between the actual
demand values and the aircrafts” characteristics, espe-
cially their capacities) drives both the search process
for an appropriate fleet composition and the evalua-
tion of any established fleet configuration. More pre-
cisely, once a fleet composition has been specified, the
quantification of its performance can be achieved by
means of demand simulation, fleet reassignment, and
calculation of some average scores, such as the system
load factor, the overall spill, or the total profit. Such
an evaluation essentially follows the same macroflow
structure as the demand driven dispatch method pro-
posed by Berge and Hopperstad (1993). This structure
forms the conceptual basis for implementing opera-
tional support systems for dynamic aircraft assign-
ment. To the best of our knowledge, no author in
the academic literature has yet investigated how the
stochastic nature of demands could be taken into
account in determining a suitable fleet composition.
The goal of the present paper is to address this issue.
Our investigations were driven by the need to answer
the following questions:

(1) By which mathematical optimization techniques
could the stochastic nature of passenger demands be
taken into account in the fleet composition problem?

(2) To what extent would the solution given by
such an approach be more robust as compared with
a deterministic solution?

(3) Could such an approach determine an appro-
priate composition for an interchangeable fleet (which
allows swapping assignments of planes within an air-
craft family)?

Answers to these questions are provided based on the
models and their solution methodology presented in
the next section.

2. Modeling

The fleet composition problem can be formulated as
a multicommodity flow problem based on the con-
struction of a space-time network, customarily used
for the fleet assignment (see Berge and Hopperstad
1993, Hane et al. 1995). The stream of arrivals and
departures in the schedule is translated into activity
timelines, with one such line for each airport. Each leg
adds its departure time to the timeline of its depar-
ture airport and its arrival time to the timeline of its
arrival airport. At this point, the arrival times also
incorporate the turnaround times resulting in actual
“ready-to-take-off” times, such that proper connec-
tions are established. A node in the network repre-
sents an airport during a block of time; it starts with
the first arrival time preceded by a departure and it
comprises all the consecutive arrivals as well as all
the consecutive departures following those arrivals.
An arc in the network is either a flight arc between
two nodes belonging to different airport lines, or a
ground arc between two consecutive nodes from the
same airport. The latter arcs are used to represent air-
craft that stay on the ground during the time between
two blocks of time. We augment the network with one
source and one sink for each timeline, and consider
the following additional ground arcs: one ground arc
from a source to the first actual node of the corre-
sponding line, representing the initial number of air-
craft at that airport (before the schedule is carried
out), and one ground arc from the last actual node
of a timeline to the corresponding sink, representing
the final number of aircraft at that airport (after the
schedule is carried out). These additional ground arcs
allow model formulations with or without restrictions
on the number of aircrafts at airports at the begin-
ning or at the end of the planning period. With these
conventions, the activity timeline at an airport can be
represented as in Figure 1. The aggregated form of
the network plays a critical role in reducing the size
of the model as compared with a full network formu-
lation (without aggregating consecutive arrivals with
consecutive departures). Consequently, it enables an
efficient formulation of the underlying mathematical
model, which is discussed in §2.1.

For any prespecified set of demand values, with
the associated profits for the potential assignments,
the model searches for the corresponding optimal
fleet composition. For instance, the expected values
of demand may be used for this purpose. Clearly,
such an approach does not account for the impact of
demand variability on the assignment’s profit. A rea-
sonable alternative is to compute beforehand, for any
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Figure 1 Timeline of Activity at One Airport

allowed assignment type or leg, the expected profit
based on demand distribution, and to run the deter-
ministic model with these expected profits as param-
eters. We will refer to this second variant as the
deterministic approach to our problem. Although this
approach uses more information from demand distri-
butions, the profit of any potential assignment type
or leg remains fixed. Thus, using only the determin-
istic model in either variant suggested above has the
drawback of looking for a fleet composition without
reflecting the profit’s variability as a major determi-
nant factor. Drawing on a single set of parameters, the
deterministic approach simply corresponds to a static
allocation of the airline’s capacity.

The need arises for an approach that explicitly
accounts for the information offered by demand dis-
tribution while searching for a fleet that is robust with
respect to the variability of the actual profits. A way
to achieve this accountability is to generate a set
of representative demand scenarios consistent with
the known distributions and to address the compo-
sition of the fleet through a stochastic programming
approach that accounts for these scenarios. Because
the scenarios may be interpreted as multiple demand
realizations over a number of (consecutive) weeks,
such a stochastic approach better reflects the deci-
sion process that pursues maximum fleet flexibility
for dynamic capacity allocation. The modeling of this
point of view is explained in §2.2, after the introduc-
tion of the deterministic model in §2.1. Subsequently,
§2.3 presents a method for tackling the proposed
stochastic model. The envisioned scenario generation
method is described later in §2.4. The last subsection
of this modeling section, §2.5, discusses the evalua-
tion of fleet performance and the terms of comparison
between solutions.

2.1. The Underlying Deterministic Model

The set of flight legs in the schedule is denoted by N
and the set of potential aircraft types by K. For each
flight i € N we denote by K; the set of aircraft types
that may perform flight i and, similarly, for each type
k € K we denote by N, the set of flights that may be
performed by type k. The set of airports serviced by
the schedule is denoted by L. Also, we denote by V

—> >
> >

Departure arc / // /
Sink

// /

the set of all the nodes (except sources and sinks) and
by G the set of all the ground arcs in the space-time
network. For simplicity, we make a small abuse of
notation and use N to denote also the flight arcs in
the network. Consequently, arr(v) and dep(v) denote
the set of flights arriving at and, respectively, depart-
ing from node v. In the same vein, we use / € L to
denote also the first actual node of the timeline of air-
port [, such that g |in [ represents the first ground arc
at airport /.

The model parameters are a,, the fixed cost of a
plane type k and pf, the profit of the assignment of
aircraft type k to the flight leg i. The computation of
revenues, costs, and profit functions for the allowed
assignments is discussed in Appendix 1.

The decision variable x¥ has value 1 if aircraft type k
flies the flight leg i, and 0 otherwise. For each type k,
the variables y§ count the number of aircraft of this
type on every ground arc g € G. They may be defined
as continuous variables, because in any solution with
integral assignments x, the y variables are forced by
the model formulation to be integral as well. The vari-
ables z; represent the total number of planes type k
in the fleet (also defined as continuous).

Using this notation, the underlying deterministic
model for the fleet composition problem is stated as

(P) max 3 (—a)z+)_ > pix

keK keKieN

st. Y xf=1 VieN (1)
keK;
k k k k
yg|inv_yg\outv+ Z Xi — Z Xi =0

iearr(v)capNy

VkeK,VoeV (2)

iedep(v)capNy

Zk—ZmeFO VkeK ®)
leL

2,>0 Vkek (4)

ys=0 VkeK,vgeG (5)

k€{0,1} VkeK,VieN,. (6)

This formulation corresponds to a mixed integer
multicommodity flow problem on the constructed
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space-time network, where the commodities cor-
respond to the aircraft types. Constraints (1), called
assignment constraints, force each flight leg to be per-
formed by exactly one aircraft type. The balance con-
straints (2) ensure the conservation of flow of each
aircraft type at each node. Constraints (3) determine
the fleet composition by counting the number of air-
craft of each type on the ground before the actual
schedule is carried out. They are added to the model
for the clarity of the formulation and for easing some
integer programming extensions, which are also used
in our approach. For example, if the number of air-
craft of a type k must be within certain limits, upper
or lower bounds, or both, can be imposed on z;,. When
all the variables z, are fixed, this results in the fleet
assignment problem for that particular fleet composi-
tion. The model may be extended to include a fixed
start location of the aircrafts in a given fleet, by fix-
ing the first ground arcs variables y’g‘m, for the timeline
of each airport [ and for every aircraft type k. More-
over, if the start location and the end location of the
planes must be the same, constraints equaling the first
ground arc variable to the last ground arc variable for
each timeline and each aircraft type may be added.
When at least three aircraft types are considered, this
problem is proven to be NP-hard (see Gu et al. 1994).

The minimum number of planes (independent of
type) necessary to fly the whole schedule can be eas-
ily determined by running formally the above model
with a, =1 for every k and pf =0 for every k and
every i.

Whereas this deterministic model and its extensions
capture the basic features of the problem, the model
has obvious limitations for coping with fluctuating
customer demands. For this purpose we present a
more advanced model in §2.2.

2.2. A Robust Fleet Composition

As suggested previously, deciding on a robust fleet
composition can be achieved by accounting for a
number of demand scenarios, which may be gener-
ated as explained in §2.4. Once the uncertainty of
demand is modeled by, say, S representative scenar-
ios, one may find a solution (z,, y,, x,) to the individ-
ual scenario s problem, concisely written as

(P,) max f(z,y,x,5)
st. (z,y,x)eC,,

where z, y, x denote vectors with the corresponding
entries defined in §2.1, and f(z, x, y, s) represents the
objective associated with the profit parameters in sce-
nario s. We remark that in the model formulation con-
sidered here only the objective function f depends on
the scenario, the feasible set C is actually the same
C, = C for every scenario s. The set C is defined by

constraints (1)-(6). A solution to (P,) would generate
a fleet composition z, appropriate for scenario s.

When all the scenarios are considered and a prob-
ability p, is assigned to each scenario s, we are inter-
ested in a solution of the form (z, (y,, x,)s—1 ) to the
stochastic programming problem

.....

(SP)  max ipsf (2, Ys, X5, 5)

s=1
st. (z,y,,x)eC Vs=1,...,S,

with the fleet composition z as first-stage decision (it
must not depend on s) and the assignments (y, x) as
second-stage decisions (depending on s). That is, we
want to find one fleet composition that maximizes the
expected profit over a number of possible future sit-
uations with respect to the uncertain demand. Such
a (first-stage) solution represents a possible decision
and is called an implementable solution. The diffi-
culty is, of course, that problem (SP) is in general
much larger than individual scenario problems (P,)
and, therefore, much harder to solve. Because (P,) is
already a hard problem, it is clear that (SP) cannot
be tackled directly, except in the case when the deter-
ministic version has a particularly limited size.

Note in particular that each first-stage variable can
assume potentially any value between zero and the
minimum total number of planes required by the
schedule. For example, if 10 aircraft types are consid-
ered and a total of 99 planes are needed, then each of
the 10 first-stage variables could take potentially up
to 100 values. Although a subset of the resulting com-
binations can be directly eliminated, the remaining
combinations (which do sum up to the minimum total
required) are still very numerous. Moreover, there is a
huge number of integer second-stage variables. These
facts greatly prohibit the use of a branch-and-bound
type of procedure.

Preliminary test results for small-sized problems
solved to integrality show that the solution of the
linear relaxation of (SP), denoted by (LSP), includes
many integer-valued decision variables. Moreover, the
linear programming (LP) relaxation gap turns out to
be less than 0.5% in these cases. These results perfectly
agree with the previous reports concerning the deter-
ministic fleet assignment problem (see Subramanian
et al. 1994; Hane et al. 1995; Rushmeier and Kontogior-
gis 1997), where fixing a significant part of the (inte-
ger) variables after solving the linear relaxation is an
essential step in the solution methodology. Further-
more, the stochastic problem contains very few first-
stage decisions (the number of types of aircraft is lim-
ited), which depend on a large number of second-stage
variables (the potential assignments in all scenarios).

Our interest here is mainly focused on the fleet
composition decisions; from this viewpoint, it may
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be expected that the contribution of few (fractional)
assignments to the determining of the whole fleet
composition is quite minor. Therefore, a solution to
(LSP) will already give good insight into the candi-
date integer configurations for a robust fleet. These
results encouraged us to pursue the strategy of first
finding a solution to the linear relaxation (LSP) of the
stochastic problem, and then using a simple round-
ing procedure to generate integer fleet compositions.
Furthermore, from the viewpoint of numerical imple-
mentation, (LSP) cannot be tackled directly either, due
to its overwhelming dimensionality and computer
memory requirements. Therefore, we resorted to the
scenario aggregation technique described in §2.3.

2.3. The Scenario Aggregation-Based Approach
Scenario aggregation is a decomposition-type of
method for multistage stochastic programming prob-
lems (see Rockafellar and Wets 1991, Wets 1989),
which is not directly related to the well-known
Dantzig-Wolfe decomposition principle. The main
idea is to iteratively solve individual scenario prob-
lems, perturbed in a certain sense, and to aggregate, at
each iteration, these individual solutions into an over-
all implementable solution. Under certain assump-
tions, the sequence of these implementable solutions
converges to the solution of the stochastic problem.
This technique gives a reliable mathematical basis for
deriving solutions to the overall stochastic problem
from the individual scenarios solutions. In this sense,
it can be applied to (convex) problems with contin-
uous variables to improve on pure scenario analysis.
We apply it here to find (a good estimate for) the
first-stage solution to (LSP), as the first step suggested
above.

2.3.1. The Scenario Aggregation Algorithm. In
the above introduction, we suggested the main idea
behind the scenario aggregation (also called the pro-
gressive hedging) algorithm. Before describing the
steps of the algorithm, we summarize here some addi-
tional arguments. A solution (z, (y;, X,)s—;,..s) to (LSP)
is admissible if it is feasible for each scenario, i.e., if
(z,y,,x,) € C for all s. If the z variables are indexed
over s in the formulation of (LSP), then additional
constraints need to be imposed to require that all z
equal the same value z. Such implicit constraints may
be stated as

S
zg— Y pezg=0 Vs=1,...,8S. (7)

s'=1

These implementability constraints, if added directly
to (LSP), would connect the scenarios. Therefore, in

the algorithmic scheme for solving (LSP), the separa-
bility of scenario variables is achieved by replacing
constraints (7) by the constraints

s
z,— Y pezh =0 Vs=1,...,8S, 8)

s'=1

where the average sum is now computed based on
the solutions z§'*' resulting from the previous itera-
tion. In the algorithm, constraints (8) are relaxed in
the Lagrangian sense using multipliers w;.

We describe now the algorithmic part of the method,
and then we comment on its functioning. In the sequel,
p is a (scalar) perturbation parameter and v is the
iteration counter. The principal set up of the scenario
aggregation algorithm for the (linear relaxation of the)
stochastic fleet-composition problem states as follows:

Step 0. Set 2°=0 and 7° =0, 22 =0 for every s. Set
w? =0 for every s. Choose p >0 and set v =1.

Step 1. For each scenario s, solve the perturbed sce-
nario problem max f”(z, y, x, s) subject to (z, y, x)
€ C where f"(z, v, x, 8)=f(z, y, x, s) —w!' 'z —
Lollz,y,0) = @1, g2, &P Let (22, 2, x7) de-
note the solution vector.

Step 2. Calculate 2" =) p,z! and set i’ =y!, X! =
x!. For every s, update the perturbation term w! =
w!™' + p(z! — 2¥). Return to Step 1 with v=v+1.

At each iteration » = 1,2,... one generates an
admissible decision (z?,y?, x?) for each scenario s,
as a solution to the perturbed problem for sce-
nario s with objective f”(z,y, x,s), the augmented
Lagrangian. These solutions are blended into an
implementable solution (2%, (i, X),_; . s), which is
not necessarily admissible, in the sense that the
“assignments” i and X! are not necessarily feasible
for the “fleet” Z” in scenario s. Besides the multipli-
ers w!™! and the fixed parameter p, the augmented
Lagrangian f”(z,y,x,s) also involves the imple-
mentable solution z*~' and 77!, ¥, s=1,...,S,
obtained in the previous iteration » — 1. Based on the
scenario solutions and the aggregated solution, the
multipliers w are updated for the next iteration. As
suggested above, these multipliers are interpreted as
information prices associated with the implicit con-
straints that the feasible solutions must be imple-
mentable, that is, the individual scenario solutions
must generate the same fleet composition.

What typically happens is a “fight” between the
scenario solutions z? and the aggregated solution z”,
the individual solutions trying to pull away from
the implementable one. This tendency is “corrected”
by updating w multipliers; when they become prop-
erly adjusted the scenario solutions will agree with
the implementable solution. The stopping criteria
must reflect a measure of this agreement. We use
in this sense the variance of the error with respect
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to the z variables, conditioned on scenarios, that is
6, :=>.p.llzf —2"||>. According to the convergence
results in Rockafellar and Wets (1991), 6, converges
to 0, so the algorithm may stop when 6, <€ for a
given tolerance € > 0. In the fleet-composition prob-
lem, such a tolerance may be expressed as a small
percentage of the minimum total number of planes.

Thus, the scenario aggregation algorithm gener-
ates a sequence {z”, v =1,2,...} of estimates of the
optimal first-stage decision z* of the relaxed stochas-
tic problem (LSP) by progressively insisting that
the scenario solutions must be implementable, that
is, that they produce the same fleet composition.
Owing to the low number of first-stage variables,
a great advantage of this approach in our case is
that we can capture at an early stage the direction
in which the sequence {z”, v=1,2, ...} moves. This
argument relates to the convergence behavior of the
algorithm that we observed during the numerical
experiments. For a given parameter p, this behavior
may be illustrated by the variations in the quantity
8,=1z2" —z"7!|| at each iteration v. A typical pattern
which can be observed is the following. During the
first two to three iterations, there is a sharp decrease
in 8, followed by a hump during the next three to
four iterations. This process is then repeated, at a
lower amplitude, during the next five to eight itera-
tions (a rapid decrease followed by a hump). Typi-
cally, starting from the fourteenth to sixteenth itera-
tions, both the increases and the decreases in 6 are
low and, from this point onward, z¥ converges at a
slower rate to an optimal solution. Numerically, these
small variations are in the order of 1072. Because we
are actually interested in an integer solution to (SP),
it becomes clear that we do not need to pursue the
search for a solution of the relaxation to proven opti-
mality. Instead, we can stop with a reliable estimate,
which we have always at hand in the last z¥ gener-
ated, and then we can apply a rounding procedure as
described in §2.3.2.

Another issue related to the behavior of the algo-
rithm is the choice of the perturbation parameter p.
In this respect, Mulvey and Vladimirou (1991) pro-
vide an extensive analysis in the context of stochastic
generalized networks. However, there is no conclu-
sive theoretical analysis to support a general selection
rule for this parameter; the ultimate choice is based
on empirical testing. We address this issue in §3.

2.3.2. A Rounding Procedure. Although the best
available estimated first-stage solution to (LSP) con-
sists of fractional values, the progressive hedging
effect of the scenario aggregation algorithm pro-
vides good insight into the candidate integer fleet
configurations to be considered. Suppose that z =
(21,25, --.,2,) is a fractional first-stage solution with
Y,z = M, where M denotes the (constant) total

number of planes. For any real number u we denote
by [u] the integer part of u, that is, the largest integer
smaller than or equal to u, and by {u} the fractional
part of u, that is {u} = u — [u]. Suppose c is a con-
stant between 0 and 0.5. For each k =1,...,m, z,
can be rounded to an integer r, as follows: If {z;} <¢c,
then 1, = [z;]; if {z;} > 1—¢, then r, = [z, ]+ 1, if
¢ <{z} <1—¢, then r, =[z;] or r, =[z;] + 1. The con-
stant ¢ can be defined as a value deemed relevant for
the structure of z (for instance 0.2 or 0.25 appear to
work well in most cases). The higher c is, the fewer
number of rounding possibilities, and vice versa. We
consider all the integer vectors r = (r,, 1, ..., 1,,) that
result as possible combinations of these individual 7,
k=1,...,m, such that >}_, . = M. Note that each
such rounded combination represents a feasible first-
stage solution, i.e., a possible fleet configuration, yet
the performance of each such solution is still to be
assessed. Clearly, some of the vectors r represent a
rounding of z which are intuitively more justified than
others. Therefore we order first these integer vectors r
in increasing order of the distance to z and then pro-
ceed in evaluating the fleets over the scenarios in this
order. For the evaluation, we solve the second-stage
integer programs to (almost) optimality (see §3), to
determine the fleet assignments in each scenario, and
then we compute the expected profits. Details on the
computational effort for solving the assignment prob-
lems are included in §§3 and 4.

Our typical experience when evaluating the poten-
tial integer fleet compositions over the scenarios is
that only a limited number of configurations from the
beginning of the list give a significant improvement
of the total expected profit. Moreover, as we go fur-
ther down the list the total expected profit decreases
considerably. In particular, the solution from the list
that performs worst in expectation may give compa-
rable or, in some cases, even slightly worse results
than the deterministic solution. However, this is per-
fectly expectable for combinations rounded in a way
that is intuitively less justified when compared with
the solution of the relaxation. Hence the number of
fleet compositions from the list to be checked can be
decided (or, alternatively, prespecified) in each case,
based on its characteristics and practical considera-
tions. From the evaluated configurations we retain
that fleet composition that generates the maximum
expected profit over the scenarios, and we refer to
it as the solution of the scenario aggregation-based
approach.

The use of rounding techniques may raise ques-
tions on the relaxation gap to the optimal value
of (LSP). However, for large problems the scenario
aggregation algorithm will not solve (LSP) to opti-
mality and thus, in general, this lower bound will
not be available. Moreover, the rounding procedure
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involves only the first-stage (approximate) solution
of (LSP), which includes the few variables represent-
ing the fleet composition, but no rounding is applied
to the assignment variables resulting from the per-
turbed scenario problems, for obvious reasons: On the
one hand, it is difficult to produce a rounding of
these assignment values (for each scenario) that is
also feasible for a rounded first-stage solution; on the
other hand, such a rounding is rather impractical.
Thus, these are obvious limitations for evaluating the
optimality gap for large-scale problems. Anyway, the
LP relaxation gap appears to be less relevant for
the practical interpretation of the solution. Instead,
the method may be validated for small problems as
explained in §4.1, while for the general case the qual-
ity of the rounded stochastic solution can be evalu-
ated by simulation, as explained in §2.5.

2.4. Scenario Generation

The random demand parameters are originally
assumed to follow continuous (independent) distri-
butions. However, the model needs to reflect the
dynamic interaction between actual demand values
and the aircrafts’ capacities. To achieve this effect
through a reduced yet representative set of scenarios,
we select the demand realizations and their mutual
combinations using the method of descriptive sam-
pling (see Saliby 1990, Jonsson and Silver 1996).
Descriptive sampling is based on a purposive selec-
tion of the sample values—aiming to achieve a close
fit with the represented distribution—and the ran-
dom permutations of these values. It is therefore rel-
evant for problems where the sample sequence plays
a major role, such as in our situation.

Suppose for simplicity that only one payload class
is available in each aircraft type. The demand for seats
of each flight leg i=1,2,..., N is assumed to follow
a normal distribution d; ~ N(u;, ;) with probability
distribution function F, (the demands are assumed to
be independent). We specify in advance the number
of scenarios we wish to generate, say S. The S values
d;[1], d,[2], ..., d;[S], which are to be sampled from
distribution i, are then deterministically set at equally
spaced quantiles of the distribution, that is,

ail=5"(52), =12

In this way we generate more values from a range
where the distribution has higher density and fewer
values from low-density regions (see Figure 2 for an
example).

An alternative view of this argument is that we dis-
cretize the normal distribution to generate exactly S
demand points for each flight leg. However, one
should remark that, in general, descriptive sampling
can be applied to discrete distributions as well, even

0.025

0.020 §

0.015F

0.010

0.005

100 120 140

Figure 2 Descriptive Sampling: An Example with 15 Sample Values

when the number of scenarios to be used is larger than
the number of discrete realizations in the distribution
(see, e.g., Jonsson and Silver 1996). Because the inverse
of the distribution function F, is not available ana-
lytically, we use accurate numerical approximations
generated with the Newton-Raphson method. Subse-
quently, we make a random permutation of the val-
ues d;[j], j=1,2,...,S,foreachi=1,2,...,N. Then
each vector (d,[j], d,[j1, ..., dylj]), j=1,2,...,S, rep-
resents a scenario that is assigned probability 1/S.
Thus we randomly combine the S values selected
from each distribution with each other to maintain
the scenario variability. Again, an alternative view is
that we generate a scenario by randomly sampling
without replacement from the S values for each flight
leg. This effect is of particular interest in the fleet-
composition problem, because the dynamic allocation
concept tries to improve marginal profits by adjusting
the available capacity to the demand fluctuations on
connecting flights.

When two payload classes (economy and busi-
ness) are considered for each aircraft type, values can
be generated by descriptive sampling for each class,
either assuming that the two classes are independent
or assuming a certain type of dependence between
them. For instance, when demands for the two classes
are assumed to be positively correlated, the random
permutation of the S values can be done simultane-
ously for both classes for each leg. In the alternative
argument of sampling without replacement from the
S selected values, this means that the same random
number is used for either class when choosing one
of the S values. A negative correlation can be treated
using a similar argument.

An issue for any sampling-based solution approach
is the choice of the sample size so that the solu-
tion to the sampled instance is good (or optimal)
for the true (expected value) problem. For this
purpose, a whole theory has been recently devel-
oped in the context of sample-average approxima-
tion method (see Shapiro and Homem-de-Mello 2000;
Kleywegt, Shapiro, and Homem-de-Mello 2001; Lin-
deroth, Shapiro, and Wright 2002). This theory sug-
gests that under certain circumstances the sample size
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necessary to obtain very good solutions is small com-
pared with the size of the whole sample space. For our
problem, we give some indication in this respect in §4.

2.5. Fleet-Performance Evaluation

One possibility to compare the solution of the stochas-
tic approach with the deterministic solution is to
evaluate the latter one over the same scenarios used
for finding the former one. However, we decided
to separate the generation of solutions from their
performance evaluation. In this vein, we use in the
evaluation phase new simulated demands, drawn
from the same distributions that were assumed for
generating scenarios to the stochastic model—this
time, however, by completely random sampling. The
number of draws is three to four times larger than the
number of scenarios used in the stochastic approach
(see §4). For each given fleet, we solve the fleet-
assignment problem to (almost) optimality for every
set of simulated demands (see §3). Finally, we cal-
culate the average score of each fleet based on these
common draws. Namely, we record the average esti-
mates for the following performance indicators: the
load factor, the spill percentage, the total revenues,
the total operational costs, and the total profit (which
also accounts for the fixed costs of the component
aircrafts).

We place the conceptual evaluation flow above in
two specific settings. The first variant aims to assess
the generic fleet flexibility resulting only from its
capacity distribution among types of aircraft, irre-
spective of the family affiliation of its planes. The
second setting focuses more specifically on the fleet
interchangeability within families to adjust its capac-
ity to the actual demands. Either setting reflects, in a
fairly simple manner, the potential fleet capability for
dynamic use. We subsequently describe each variant.

The generic fleet flexibility is evaluated as follows:
We make a number of random draws for demand val-
ues; at every draw the fleet is completely reassigned
to the schedule in the best possible way. By complete
reassignment we mean that there are no constraints
related to the start location or the family of any plane
and the assignment at each draw is made indepen-
dently. The average indicators recorded with such a
scheme can give reasonable insight into the appropri-
ateness of the fleet capacity distribution among types
for the typical demand variations in the schedule.

The fleet interchangeability within families has
to be assessed relative to an existing fleet assign-
ment. Therefore we make first one random draw of
demands and record the optimal fleet allocation based
on these drawn values. We refer to this as the fixed
assignment of the given fleet. Subsequently, we make
a number of random draws. At each draw the fleet is
again reassigned in the best way to the schedule, but
subject to the following extra constraints:

(1) The start location of the planes is identical to
the one in the fixed assignment.

(2) An aircraft type k is allowed to perform a flight
leg i only if leg i is flown in the fixed assignment by
a type ky(i) belonging to the same family as type k.

Given these extra constraints as well as the original
flow conservation constraints, the reassignment of the
fleet generates (in this case) actual swaps of its planes
within families (relative to the fixed assignment) in
such a way that the overall profit is maximized for
each drawn set of demand values. The undertaken
steps admit the following interpretation: The fixed
assignment corresponds to an initial capacity allo-
cation for the index week, based on the forecasted
demands (cast by the first draw) at a relevant plan-
ning point in time, preceding the week’s operations.
Because this initial capacity assignment also deter-
mines the scheduling of the crews, whose dynamic
assignment would be both difficult and expensive, it
is required that the actual operation of each flight to
be done by an airplane belonging to the same fam-
ily the assigned crew is certified to fly. As the actual
operation time approaches, more accurate informa-
tion about the actual demands is accumulated and
the initially assigned capacity is adjusted. Each sub-
sequent draw captures a possible state of the world
shortly before the start of the index week. Where pos-
sible, the planes are swapped to better match their
capacities to the actual demands, increase the passen-
ger loads, decrease the spill, and improve the operat-
ing profits.

In either evaluation setting, the fleet composition
given by the deterministic approach based on ex-
pected profits (EP) and the one given by the sce-
nario aggregation-based (SA) approach can be com-
pared based on the average performance indicators
they achieve.

The procedures we are using reflect relatively sim-
ple views of the phenomena of interest. A more realis-
tic picture could be created by a full simulation cycle
as described in Berge and Hopperstad (1993). Never-
theless, the two evaluation methods described above
preserve the essential idea of such a cycle and give
valuable insight into the appropriateness of certain
fleet compositions for dynamic use, without a time-
consuming reproduction of the complete booking pro-
cess simulation done by Berge and Hopperstad.

3. Implementation Issues

The numerical analysis of the case studies was per-
formed on a Windows NT-based 933 MHz Pentium III
PC with 256 MB RAM using our own FleetComp suite
of C applications with the CPLEX Callable Library ver-
sion 7.1 (see ILOG 2000). The components of the Fleet-
Comp suite are schematically illustrated in Figure 3.
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Figure 3 FleetComp Suite Components

Based on the data read in the Input module, the Dyn-
NetGen module generates the dynamic space-time net-
work of flights as described in §2, which further serves
all models formulations within FleetNet, FleetSA, and
FleetSim modules. The fleetnet application can address
the deterministic model based on either profit param-
eters corresponding to particular demand values or
the expected profits for each allowed type-leg com-
bination. It can be run with the fleet composition
as decision variables as well as with a prespecified
fleet configuration. The fleetstoch application solves the
stochastic model in extensive form; it is only useful for
small cases to validate the scenario aggregation-based
method.

The main scenario aggregation algorithm is imple-
mented in the fleetsa application. In this context, two
issues need to be clarified. The first is the choice of
the p perturbation parameter. We followed the argu-
ment in Rockafellar and Wets (1991), which suggests
that low values of p are likely to encourage progress in
the primal sequence {z"} (instead of the dual sequence
{w”}). Consequently, we performed numerical experi-
ments with different values between 20 and 500. The
algorithm showed the most stable primal convergence
for low values of p between 50 and 100. The second
issue concerns the value of the e tolerance for the
6, convergence measure. We set this tolerance to a
small percentage (3%) of the minimum total number
of planes in each particular case. Hence, if a total of
100 planes was required, the scenario aggregation pro-
cedure would stop when the sum of the deviations
of all (first-stage) scenario solutions from the imple-
mentable solution (weighted by scenario probabilities)
is no more than three. Although not our main concern
here, the scenario aggregation algorithm greatly facili-
tates parallel computation, such that its execution can
potentially be spread out to utilize all available com-
putational power, leading to substantial running time
reduction.

The rounding application implements the round-
ing procedure with an adjustable ¢ rounding con-
stant. The candidate fleets from the resulting ordered

list are passed further for evaluation over scenarios
to the fleeteval application. The advantage of using
fleeteval is that it evaluates a given configuration over
the descriptive sampling-based scenarios, which are
more limited, and it therefore avoids applying the
computationally much more expensive simulation too
many times. This way, the fleetsim application can be
finally used to assess the actual performance of few
fleets with typical characteristics. It can address the
complete reassignment studies as well as the plane-
swapping studies starting from a fixed assignment
generated by the fixassign application.

The perturbed scenario problems within the sce-
nario aggregation procedure take the form of con-
cave quadratic programming problems and are solved
using CPLEX Barrier Optimizer. The other applica-
tions, in which the assignment problem is of con-
cern, use the branch-and-cut algorithm exploited by
the CPLEX Mixed Integer Optimizer with several
tuning options, some of them briefly mentioned in
Appendix 2. The experience we report gives some
indication of the computational effort for solving such
integer programming problems and relates the options
provided by the current optimization software to
the numerical history of solving the fleet-assignment
problem such as in, e.g., Hane et al. (1995).

4. Case Study Results
The benefits of the presented method were established

through application to several case studies based on
realistic data, set up in agreement with the ORTEC air-
line consultant. We summarize these benefits by dis-
cussing two representative cases: a small case in which
we validated the method, and a large case that better
shows the extent to which our method improves on
the deterministic approach.

For simplicity, we assume in both cases the same K-
factor for all flight legs, specific only to each fare class,
namely 0.5 for economy and 0.6 for business. The yield
multiplier and the yield exponent equal 1.7 and 0.35
for the business class, respectively 1.5 and 0.4 for the
economy class. The purpose of these parameters is to
establish a relation between the revenue per passenger
and the distance traveled (see Appendix 1). Up to nine
aircraft types from three families A, B, C, denoted by
Al, A2, A3, A4, B1, B2, C1, C2, C3, were considered.
Their total capacities are respectively 100, 130, 155, 175,
85,70, 122, 145, and 110 seats, with 40% business seats
and 60% economy seats. A minimum turnaround time
of 25 minutes was considered for all aircraft types at
all airports.

Initially, it was thought that increasing the num-
ber of scenarios would generally produce signifi-
cantly better results. Therefore, we experimented with
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stochastic models based on 25, 50, 80, and 100 sce-
narios in the case presented in §4.1. Such experi-
ence revealed that a number of 20 to 50 scenarios,
generated by descriptive sampling, sufficed for cap-
turing demand variations that actually had impact on
the fleet composition (typically, no significant change
resulted in the solution after increasing the number of
scenarios over 50). This finding is important because
in each iteration the scenario aggregation algorithm
requires a running time that depends linearly on
the number of scenarios. Moreover, the number of
required iterations usually increases with the number
of scenarios. Thus, it is desirable to seek a scenario
representation that achieves a good trade-off between
the computation time and the quality of the solution.
Our experiments mentioned above provide some ini-
tial insight in this respect. The dependency of the num-
ber of scenarios on the size of the underlying model
certainly deserves further attention and testing on var-
ious data sets.

4.1. A Small Case and the Validation of
the Method

The low-sized hub-spoke system considered in this
case provided early feedback to validate the solution
method. The network consists of 342 flight legs per
week serving 18 airports with a fleet of 15 airplanes.
The mean demands vary between 14 and 65 for the
economy class and between 26 and 48 for the busi-
ness class. The stochastic models discussed in this case
account for 50 scenarios. In both studies presented
below the scenario aggregation-based approach gen-
erated a fleet composition that turned out to be the
optimal (first-stage) solution of the stochastic model,
as verified by solving the deterministic equivalent to
optimality. Moreover, most of the alternative fleets
from the top of the list constructed by our method
generated profits close to the optimal when evaluated
over the scenarios. These findings validate our method
in case of small-sized problem instances.

4.1.1. Generic Fleet Flexibility Study. For this
study all the nine aircraft types were considered. This
setting translates into a deterministic model with 5,068
variables, 2,430 constraints, and 12,783 nonzeroes,
whose solving required two seconds. The correspond-
ing stochastic model with 50 scenarios has 252,959
variables, 121,500 constraints, and 639,150 nonzeroes.
Solving its extensive form to optimality required
almost two hours of computation. By comparison,
the scenario aggregation procedure stopped after 12
minutes by satisfying the stopping criterion and the
rounding procedure generated 10 candidate fleet com-
positions, each of them requiring approximately one
minute for evaluation over scenarios. The third fleet
from the list turned out to be the optimal one. The
expected profits generated by the first five candidate

Table 1 Fleet Composition with Nine Aircraft Types (Small Case)

Aircraft type (total capacity)

Al A2 A3 A4 Bt B2 (1 G2 C3
Fleet (100) (130) (155) (175) (85) (70) (122) (145) (110)

EP 1 0 5 0 6 0 2 1 0
SA 2 2 1 2 4 1 1 1 1

configurations from the top of the list were signifi-
cantly better than those generated by the last three
fleets in the list. An optimal fleet composition given by
the deterministic approach based on expected profits
(EP) and the fleet composition generated by the sce-
nario aggregation-based (SA) approach are given in
Table 1.

The performance of each of these configurations
was established through a simulation run with
200 draws and complete reassignment, requiring three
minutes for EP and five minutes for SA. Their aver-
age performance indicators based on weekly figures
are presented in Table 2.

In the EP fleet some aircraft types (such as A3
and B1) are preferred, because their capacities ren-
der themselves more profitable when related to the
(fixed) expected profits of the flight legs. However,
when actual varying profits are cast in scenarios and
the objective is to maximize the overall expected profit
over these scenarios, these aircraft types are partly
replaced in the SA fleet by several other types with
various capacities. This change results in 1.4% increase
in the fixed costs of the planes and, likewise, a rela-
tively small increase in operating costs. However, the
SA fleet generates a higher average load factor with an
impressive simultaneous decrease in the average spill,
accounting for a much more significant increase in rev-
enues. This increase not only covers the extra invest-
ment and operational costs, but, moreover, it makes
a substantial bottom-line contribution in such a way
that the SA fleet achieves a 11.54% improvement in
the average total profit. Translating this improvement
to a yearly basis would result in about $56,500 profit
added per airplane per year.

4.1.2. Fleet Interchangeability Within Families.
Because aircraft types from different families can
hardly be swapped without directly impacting

Table 2 Fleet Performance with Nine Aircraft Types and Complete
Reassignment (Small Case)

EP fleet SA fleet SA—EP (% of EP)
Load factor (%) 67.34 68.97 1.63
Spill (%) 6.04 3.64 —2.40
Revenues($) 2,543,799 2,584,269 40,470 (1.59)
Operating costs($) 1,487,056 1,498,223 11,167 (0.75)
Fleet cost($) 915,500 928,500 13,000 (1.42)
Profit($) 141,243 157,546 16,303 (11.54)
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crew rosters, it is assumed that in pursuing fleet
interchangeability, aircraft types from fewer families
would consequently be acquired. Therefore only the
six aircraft types from A and B families were con-
sidered in this study and planes were allowed to be
exchanged only within family, as explained in §2. The
deterministic model with 3,340 variables, 1,734 con-
straints, and 8,406 nonzeroes required one second for
solving in this case. The stochastic model with 50 sce-
narios has 166,706 variables, 86,700 constraints, and
420,300 nonzeroes, and was solved to optimality (in its
extensive form) in 21 minutes of computation. The
scenario aggregation procedure required eight min-
utes. Subsequently, nine candidate fleet configurations
were generated by the rounding procedure, each fleet
requiring about 30 seconds to be evaluated over sce-
narios. The second fleet in the list turned out to be the
optimal one. The first four fleets from the top of the
list generated significantly better total expected profits
than the last three fleets in the list. The optimal (EP)
fleet and the (SA) fleet compositions are presented in
Table 3.

The performance of each of these fleet compositions
was established through a simulation run with 200
draws and plane swapping relative to a fixed assign-
ment, a priori generated by one draw. The simulation
runs required one minute for the EP fleet, respec-
tively 1.5 minutes for the SA fleet. The average per-
formance indicators recorded are given in Table 4
(weekly figures).

The EP fleet with six types differs little from the
EP fleet with nine types. They comprise a larger num-
ber of aircrafts of certain types (such as A3 and B1)
which, by their characteristics, better suit the approach
based on (fixed) expected profits. The increase in oper-
ational costs is roughly the same as in the previous
case, but the difference in fixed costs between the
SA fleet and the EP fleet is somewhat smaller in this
case. In the EP fleet, the potential swapping possibili-
ties are limited and are restricted to the planes of the
A family. The SA fleet composition is more diverse
and, consequently, it offers more potential swapping
opportunities within both A and B families. These dif-
ferences are directly reflected in the average perfor-
mance indicators achieved: The higher load factor and
the lower spill of the SA fleet translate into a signif-
icant revenues increase, which covers the extra costs

Table 3 Fleet Composition with Six Aircraft Types

(Small Case)

Aircraft types

M A2 A3 A4 BI B2
Fleet (100) (130) (155) (175) (85) (70)

EP 3 1 5 0 6 0
SA 3 2 2 2 4 2

Table 4 Fleet Performance with Six Aircraft Types and Plane
Swapping (Small Case)
EP fleet SA fleet SA—EP (% of EP)
Load factor (%) 65.76 67.10 1.34
Spill (%) 6.87 4.93 —1.94
Revenues($) 2,496,191 2,529,469 33,278 (1.33)
Operating costs($) 1,481,805 1,493,187 11,382 (0.77)
Fleet cost($) 913,000 924,000 11,000 (1.20)
Profit($) 101,386 112,282 10,896 (10.75)

and contributes further to the bottom line for an over-
all 10.75% improvement in the average total profit.
On a yearly basis this improvement would add about
$37,800 profit per airplane per year.

We note that the SA fleet gives less improvement
in the plane swapping setting than in the complete
reassignment setting. This effect is easily explained
by the fact that the possibilities of changing the ini-
tial assignments in the swapping case are much more
limited than the free reassignments in the other case.
These restrictions, which better model reality, have
a double effect: They decrease the profits generated
by both fleets and, at the same time, they reduce the
improvement of SA over EP. The same effect can also
be observed in the next example.

4.2. A Case Study on a Larger Network

The large network with multiple hubs addressed in
this case allows a better assessment of the benefits
of our method as compared with the deterministic
approach. The system operates 1,978 flight legs per
week, serving 50 airports with a total of 68 planes.
In this case, the mean demands vary between 18
and 57 for the economy class and between 21 and 43
for the business class. The stochastic models applied
in this case are based on 25 scenarios.

4.2.1. Generic Fleet Flexibility Study. For this
study we considered again all nine aircraft types. The
deterministic model for this problem contains 27,078
variables, 11,806 constraints, and 70,497 nonzeroes.
It took two minutes to solve the deterministic model.
The stochastic model with 25 scenarios would consist
of 676,734 variables, 295,150 constraints, and 1,762,425
nonzeroes. Although there is no indication that such a
large-scale model could be tackled directly in reason-
able time, the scenario aggregation algorithm gener-
ated a (fractional) first-stage estimated solution within
the prescribed accuracy in 4.5 hours of computation.
The rounding procedure generated 12 integer fleets,
whose evaluation over scenarios required on aver-
age 10 minutes per fleet. The first fleet from the list
produced the highest profit over scenarios and was
retained as the scenario aggregation-based solution.
However, we have to remark that in this case, owing
to more flexibility conferred by the larger total number
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Table 5 Fleet Composition with Nine Aircraft Types (Large Case)

Aircraft types

Al A2 A3 A4 BI B2 €1 02 C3
Fleet (100) (130) (155) (175) (85) (70) (122) (145) (110)

EP 6 13 7 0 15 0 20 7 0
SA 10 6 8 6 16 5 8 6 3

of planes, as many as the first seven candidate config-
urations from the top of the list generated comparable
expected profits over scenarios (in a range from 0.05%
to 0.1% less than the best of them). The EP fleet com-
position and the SA fleet composition resulted in this
study are given in Table 5.

The two fleet compositions were compared by
means of a simulation run with 75 draws, with com-
plete reassignment at each draw. The simulation run
required 3 hours and 40 minutes for the EP fleet, and,
respectively, 12 hours and 20 minutes for the SA fleet.
The corresponding average performance parameters
(weekly figures) are presented in Table 6.

The larger-scale network from this case offers more
opportunities to exploit the advantages of dynamic
allocation. Although these network opportunities
would potentially favor both fleets, the SA fleet clearly
proves itself more appropriate for dynamic use, as
reflected by the almost 15% increase in the average
total profit when compared with the EP fleet. Here
again the improvement is achieved with an expanded
fleet, which incurs in this case a smaller relative extra
investment and a somehow larger relative increase
in operating costs. In exchange, the SA fleet capacity
is distributed over all aircraft types, including a sig-
nificant number of planes from types that are totally
absent from the EP fleet. Through this typical adjust-
ment, the SA fleet more effectively matches its capac-
ity to the various demands. Therefore, it consider-
ably increases the overall load factor and reduces the
average spill in an even more impressive manner.
This way it accounts for revenues increases that con-
tribute almost $150,000 additional profit to the aver-
age weekly profit. On a yearly basis this would add
$114,000 profit per airplane per year.

4.2.2. Fleet Interchangeability Within Families.
For this plane-swapping study we again restrict the

Table 7 Fleet Composition with Six Aircraft Types

(Large Case)

Aircraft types

Al A2 A3 A4 B1 B2
Fleet ~ (100) (130) (155) (175) (85) (70)

EP 22 24 7 0 15 0
SA 15 13 11 7 16 6

aircraft types to the A and B families. The deter-
ministic model contains in this case 17,816 variables,
8,530 constraints, and 46,290 nonzeroes, and was
solved in 30 seconds. The stochastic model based
on 25 scenarios would consist of 445,256 variables,
213,250 constraints, and 1,157,250 nonzeroes. The esti-
mated first-stage solution to this model was gener-
ated by the scenario aggregation procedure within two
hours of computation. The eight candidate configu-
rations subsequently given by the rounding routine
required for evaluation over scenarios an average of
five minutes per fleet. The second fleet from the top
of the list generated the highest expected profit over
scenarios and was retained as the SA fleet. Table 7
illustrates this fleet composition as well as the EP fleet
obtained in this case.

The fleets were evaluated through a simulation run
with 75 draws, where the plane swapping setting
was applied. The simulation run required seven min-
utes for the EP fleet, respectively 20 minutes for the
SA fleet. In Table 8 the resulted average performance
indicators are given (weekly figures).

The multiple hubs system addressed in this case
involves situations where more planes belonging to
the same family are simultaneously on the ground at
a hub airport and the plane swapping is more preva-
lent. Whereas swapping opportunities are restricted to
three types from A family in the EP fleet, the capac-
ity distribution of the SA fleet enables it to more
effectively profit from swapping combinations within
both A and B families. Besides the expectable capital
investment increase, this change also incurs a higher
percentage increase in operational costs in this case.
However, these extra costs are completely compen-
sated by the over 2% increase in the average revenues,
mainly based on spill reduction, but also on significant

Table 8 Fleet Performance with Six Aircraft Types and Plane

Table 6 Fleet Performance with Nine Aircraft Types (Large Case) Swapping (Large Case)
EP fleet SA fleet SA—EP (% of EP) EP fleet SA fleet SA—EP (% of EP)

Load factor (%) 68.22 70.81 2.59 Load factor (%) 66.58 68.26 1.68
Spill (%) 6.78 3.46 -3.32 Spill (%) 7.42 5.08 —2.34
Revenues($) 13,960,397 14,268,352 307,955 (2.21) Revenues($) 13,497,134 13,774,628 277,494 (2.06)
Operating costs($) 8,749,105 8,878,502 129,397 (1.47) Operating costs($) 8,698,664 8,849,680 151,016 (1.73)
Fleet cost($) 4,186,500 4,216,000 29,500 (0.70) Fleet cost($) 4,181,000 4,232,000 51,000 (1.21)
Profit($) 1,024,792 1,173,850 149,058 (14.55) Profit($) 617,470 692,948 75,478 (12.22)
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load factor increase. Moreover, the revenues increase
accounts further for over 12% increase in the bottom
line profit. Translating this extra profit to a yearly basis
would result in $57,700 added profit per airplane per
year.

5. Conclusions

The investigations presented in this paper empha-
size that the stochastic nature of passenger demands
should be explicitly taken into account in the air-
line fleet-composition problem when this problem
is approached from the perspective of applying a
dynamic allocation of the fleet's capacity to the
flight schedule. Acquiring suitably distributed air-
craft capacity, depending on the airline network struc-
ture, is crucial for the successful implementation of
the dynamic allocation concept. From this point of
view, a stochastic approach such as ours can generate
significantly more robust solutions than deterministic
formulations. Given its balanced search between rep-
resentative demand scenarios, this approach is able to
detect situations where it is more profitable to expand
the fleet as well as cases where the fleet based on deter-
ministic estimates should actually be downsized (that
is, replace larger planes by the same number of smaller
planes) to increase profitability in a dynamic envi-
ronment. Therefore the scenario aggregation-based
approach properly quantifies the effects of fluctuating
passenger flows on the fleet-planning process, gen-
erating flexible fleet configurations that better sup-
port dynamic assignments. Such robust compositions
showed in our case studies a potential increase of the
load factors up to 2.6%, with a simultaneous potential
spill decrease up to 3.3%. Moreover, our approach can
find an appropriate fleet composition to facilitate inter-
changing of planes within families. A significant pay-
off would be achieved with such a fleet if the plane-
swapping concept was applied. In such settings, our
results show up to 1.7% higher load factors and up to
2.3% fewer turned-away passengers. Given the typi-
cally low operating profit margins from the total oper-
ating revenues, such improvements can lead to a sub-
stantial increase in the bottom-line profits (between
10.75% and 14.5% in the presented cases).

Besides the clear utility of the scenario aggregation—
based approach, the feasibility of its implementing
has also been proven using realistic data. Although
the primary objective of our implementation was to
build a tool in a proof-of-concept sense, the solution
procedures performed very well for models involv-
ing up to 2,000 flights and nine aircraft types; there
is clear indication of their applicability to even larger
instances. In such cases, we are confident that further
improvement in the efficiency of the various routines
can be achieved through motivated future research.

Moreover, this methodology offers great opportunity
for parallel computations, which could dramatically
impact the overall running times, bringing it even
closer to a point of potential integration into a practice-
oriented decision support system.
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Appendix 1. The Revenues, Costs, and
Profit Functions

The profit parameters p¥ used in the description of the
underlying model depend on the capacity of the aircraft
type k and on the customers demand for seats for the
flight leg 7, as well as on the operational costs incurred by
the assignment of type k to flight i. We use the following
functions:

k_ kj k
pi=2_1 —¢
j

ki j ; j j
1) =rp. x min(dem!, cap),)
j_ 1—e;
rp; =m; x (d;)
Kk
c; =cc+ gy x d;,

where
pr = profit of assigning aircraft type k to flight leg i,
i

1) = revenue of flight i from payload class j when carried

out by type k,
cf = operational costs of performing flight i by type k,
rpl = revenue per passenger in payload class j of flight i,
dem), = demand for seats class j for flight i,
cap), = capacity for class j of aircraft type k,
m; = yield multiplier of class j,
e; = yield exponent of class j,
d; = distance of flight leg i,
cc, = constant costs of using aircraft type k on one
flight leg,
cgr = variable costs of using aircraft type k per unit
distance, and
j = payload class index (economy, business).
When the demands for seats dem] follow normal distri-
butions N(p}, o)) (truncated at zero), the expected profit of
assigning aircraft type k to flight leg i is given by

5] = S E[] - o

€[ =] x (E[denn] |0 < dem] < cap]

+ cap), x P(cap), < dem!)).

Appendix 2. Numerical Experience in

the Implementation
This appendix includes several observations related to
our numerical implementation. We avoided overly tight
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optimality criteria and used relative MIP gap tolerances
between 0.02% and 0.04%. The most efficient setting used
the CPLEX Barrier LP solver for the relaxation at the root of
the branch-and-bound tree, followed by dual crossover for
obtaining an optimal basis, before entering the branching
phase. CPLEX fixed a significant number of integer vari-
ables after solving the root relaxation and before perform-
ing the crossover. The heuristic supported by CPLEX Mixed
Integer Optimizer was effective when invoked at the root,
after an optimal basis was found. For the LP relaxations at
nodes the dual simplex solver with the steepest edge pricing
strategy was used.

An option to use the assignment constraints as priori-
tized Type I Special Ordered Sets (SOS) was implemented.
This option could complementarily improve performance
on many fleet assignment instances, especially where the
default branching rules required more time. For its imple-
mentation the aircraft types were sorted in increasing order
of their total capacity and an initial priority was computed
for each assignment constraint i as

prior(i) = |3 (P —p)’,

kekK;

where k, is the type that precedes type k in the sorted K; and
the summation starts with the second type in K;. That is,
prior(i) gives a measure of variability in the objective coeffi-
cients corresponding to leg i. The interval between the min-
imum and the maximum initial priority was then divided in
a number of equal intervals and legs belonging to the same
interval were assigned the same (final) priority. The number
of priority classes is easily adjustable through the program.
The node selection strategy we chose emphasized feasibility
and preferred more recently created nodes until an integer
feasible solution was found. Usually, the tree was pruned
without exhausting an upper limit (500) we set on the num-
ber of nodes in the tree.

During the branching phase, the Gomory fractional cuts
implemented in the release 7.1 of CPLEX appeared to be
quite effective. On the type of mixed integer programming
models involved, they seem to have contributed to the dif-
ference in the CPU-time between this release and our tri-
als with the previous versions (in which such cuts are not
implemented). Finally, we note that the fleet assignment
model exploited in fleeteval and fleetsim showed a large
variety of instances, which resulted from various combi-
nations of given fleet configurations and simulated profit
figures. A limited number of these instances required longer
computations. In spite of this, the chosen options provided
good trade-offs for most instances, resulting in reasonable
overall running times.
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