
 Open access Proceedings Article DOI:10.1145/3160504.3160506

A Scenario-Based Approach for Checking Consistency in User Interface Design
Artifacts — Source link

Thiago Rocha Silva, Marco Winckler

Institutions: Paul Sabatier University

Published on: 23 Oct 2017 - Human Factors in Computing Systems

Topics: User interface design, User interface, User requirements document and User story

Related papers:

 How Consistent Is Your GUI Design

 Choosing Requirements for Experimentation with User Interfaces of Requirements Modeling Tools

 Towards a Practical GOMS Model Methodology for User Interface Design

 A support tool for elicitation of user interface requirements

 MaramaAIC: tool support for consistency management and validation of requirements

Share this paper:

View more about this paper here: https://typeset.io/papers/a-scenario-based-approach-for-checking-consistency-in-user-
7btrfkludp

https://typeset.io/
https://www.doi.org/10.1145/3160504.3160506
https://typeset.io/papers/a-scenario-based-approach-for-checking-consistency-in-user-7btrfkludp
https://typeset.io/authors/thiago-rocha-silva-4ib04kzgbw
https://typeset.io/authors/marco-winckler-3ansqea3um
https://typeset.io/institutions/paul-sabatier-university-xa8xpvjj
https://typeset.io/conferences/human-factors-in-computing-systems-3h6h898v
https://typeset.io/topics/user-interface-design-11ky9oue
https://typeset.io/topics/user-interface-m9tigr1x
https://typeset.io/topics/user-requirements-document-262pl2hx
https://typeset.io/topics/user-story-1ek85kit
https://typeset.io/papers/how-consistent-is-your-gui-design-4ytvbbmdb1
https://typeset.io/papers/choosing-requirements-for-experimentation-with-user-2xf6s81v5x
https://typeset.io/papers/towards-a-practical-goms-model-methodology-for-user-1zbgj7kvr1
https://typeset.io/papers/a-support-tool-for-elicitation-of-user-interface-58wpzc15ix
https://typeset.io/papers/maramaaic-tool-support-for-consistency-management-and-4cbys4umhe
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-scenario-based-approach-for-checking-consistency-in-user-7btrfkludp
https://twitter.com/intent/tweet?text=A%20Scenario-Based%20Approach%20for%20Checking%20Consistency%20in%20User%20Interface%20Design%20Artifacts&url=https://typeset.io/papers/a-scenario-based-approach-for-checking-consistency-in-user-7btrfkludp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-scenario-based-approach-for-checking-consistency-in-user-7btrfkludp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-scenario-based-approach-for-checking-consistency-in-user-7btrfkludp
https://typeset.io/papers/a-scenario-based-approach-for-checking-consistency-in-user-7btrfkludp

HAL Id: hal-02138494
https://hal.archives-ouvertes.fr/hal-02138494

Submitted on 23 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Scenario-Based Approach for Checking Consistency in
User Interface Design Artifacts

Thiago Rocha Silva, Marco Winckler

To cite this version:
Thiago Rocha Silva, Marco Winckler. A Scenario-Based Approach for Checking Consistency in User
Interface Design Artifacts. XVI Brazilian Symposium on Human Factors in Computing Systems, Oct
2017, Joinville, Brazil. pp.3, 10.1145/3160504.3160506. hal-02138494

https://hal.archives-ouvertes.fr/hal-02138494
https://hal.archives-ouvertes.fr

A Scenario-Based Approach for Checking Consistency in
User Interface Design Artifacts

Thiago Rocha Silva

ICS-IRIT, Université Paul Sabatier
Toulouse, France

rocha@irit.fr

Marco Winckler

ICS-IRIT, Université Paul Sabatier
Toulouse, France
winckler@irit.fr

ABSTRACT

Keeping the consistency of requirements in different artifacts
along the development process is a cumbersome activity,
especially if it is done manually. Previous studies have
investigated the use of User Stories to write testable
requirements in order to automate the assessment of a given
set of development artifacts. This paper expands the research
in this field describing a scenario-based approach for
checking consistency in User Interface (UI) design artifacts,
modeling business and user requirements. A case study is
presented as a proof of concept showing how our approach
could be used to ensure the consistency of both business and
task models, besides UI prototypes and scenarios.
Preliminary testing results have shown that our approach is
able to identify even fine-grained inconsistencies in the
mentioned artifacts, allowing establishing a reliable
compatibility among different UI design artifacts.

Author Keywords

Scenario-Based Design, User Interface Design Artifacts,
Automated Assessment, User Stories, Business Modeling,
Task Modeling, Prototyping.

ACM Classification Keywords

H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces.

INTRODUCTION
Modeling information systems is a very complex task.
Several aspects of information, from the macro business
goals until the most detailed information about user tasks
must be taken into account. For facing this challenge,
software systems tend to be designed based in several
requirements artifacts, modeling different aspects of the
system (e.g. business models, use cases, task models, etc.).
Artifacts are the means by which the outcomes of these
modeling activities are registered. As many stakeholders
have different views of the system and different phases of
development require distinct information, artifacts used for
modeling tend to be very diverse throughout the
development and ensuring their consistency is quite

challenging [25]. In iterative processes, the cycle of
producing and evaluating artifacts permeates all phases of
system development, from requirements and business
analysis until the software testing.

On one hand, business requirements are usually modeled
using Business Process Modeling Notation (BPMN) [8].
BPMN is a well-established approach to model business-
oriented tasks in a high-level of abstraction through a
workflow view. User requirements, on the other hand, can be
obtained using a diverse set of methods. User-centered
approaches usually model requirements using artifacts such
as scenarios, task models and prototypes. In a scenario-based
approach, these artifacts can be additionally aligned to pro-
vide a complete software design specification for interactive
systems.

User Stories [4] are artifacts that allow specifying natural
language requirements using scenarios in a simple and
understandable way for different stakeholders. Additionally,
scenarios from User Stories can be directly tested from their
textual specifications. They provide actually a “live”
documentation once it contains, in a single artifact, the
specification itself besides test cases which are able to certify
whether some requirement has been attended or not.
However, current testing approaches using User Stories
focus essentially on assessing final user interfaces that are
typically produced late in the development process.

Since long time ago, it is a peaceful argument that providing
early assessment is very helpful for detecting errors of
modeling as soon as possible, before making strong
commitments with the software implementation [14].
Nonetheless, ensuring the consistency of other artifacts every
time a requirement is introduced and/or modified is a
discouraging activity for software development teams,
especially if it should be done manually. Several tools both
in the academy and industry environments have provided
means of vertically tracing requirements through different
artifacts, although they do not provide means of checking the
consistency of such requirements [23].

In this paper, we propose to explore the use of such
techniques to investigate testing perspectives for user
interface design artifacts that model different aspects of both
business and user requirements. Considering a scenario-
based approach, the aim is to verify and test the consistency
of three early artifacts: BPMN models, low-fidelity
prototypes and task models, looking for errors and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

IHC 2017, October 23–27, 2017, Joinville, Brazil
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-6377-8/17/10…$15.00
https://doi.org/10.1145/3160504.3160506

mailto:Permissions@acm.org

inconsistencies when modeling functional requirements. A
case study for the flight tickets e-commerce domain is
presented as a proof of concept to attest the feasibility of the
approach. In the following sections, we present the
foundations for our approach, followed by our strategy for
modeling and conducting tests in the mentioned artifacts.
Further, we describe a case study that demonstrates its
feasibility and discuss the advantages and shortcomings of
the approach. Lastly, we lay out our next steps for research
in this field.

FOUNDATIONS

User Stories and Scenario-based design

Scenario-based design (SBD) is a family of techniques in
which the use of a future system is concretely described at an
early point in the development process. Narrative
descriptions of envisioned usage episodes are then employed
in a variety of ways to guide the development of the system.
Like other user-centered approaches, scenario-based design
changes the focus of design work from defining system
operations (i.e., functional specification) to describing how
people will use a system to accomplish work tasks and other
activities [19].

SBD follows an iterative design framework in which
scenarios serves as a central representation of requirements
throughout the development cycle, first describing the goals
and concerns of current use, and then being successively
transformed and refined through an iterative design and
evaluation process (Figure 1). However, from analysis to
evaluation, the SBD cycle does not tackle how to manage
and assess the flow of artifacts that are produced all along
these multiple development phases.

Figure 1. An overview of the scenario-based design (SBD)

framework (from Rosson & Carroll [19]).

As central representation of requirements, scenarios can
admit multiple templates according to the phase of
development and to the level of abstraction that they are
addressing for some information. Free narratives, for
example, are useful in the very early phases, when typically
high-level business requirements are being defined (problem
scenarios). Nevertheless, they are a frequent source of

misunderstandings when used to refine requirements in
activity or interaction scenarios in the design phase. Semi-
formatted templates like in User Stories are better suitable in
this case.

The use of User Stories for modeling requirements has been
proposed by Cohn [4]. The author suggests formalize these
stories in an artifact describing a feature and its acceptance
criteria, with concrete examples about what should be tested
to consider this feature as “done”. Below it is presented a
template proposed by North [15] and Cohn [4]:

Title (one line describing the story)

Narrative:

As a [role]

I want [feature]

So that [benefit]

Acceptance Criteria: (presented as Scenarios)

Scenario 1: Title

Given [context]
 And [some more context]...

When [event]

Then [outcome]

 And [another outcome]...

Scenario 2: ...

According to this template, a User Story is described with a
title, a narrative and a set of scenarios representing the
acceptance criteria. The title provides a general description
of the story, referring to a feature that this story represents.
The narrative describes the referred feature in terms of the
role that will benefit from the feature, the feature itself, and
the benefit it will bring to the business. The acceptance
criteria are defined through a set of scenarios, each one with
a title and three main clauses: “Given” to provide the context
in which the scenario will be actioned, “When” to describe
events that will trigger the scenario and “Then” to present
outcomes that might be checked to verify the proper behavior
of the system. Each one of these clauses can include an
“And” statement to provide multiple contexts, events and/or
outcomes. Each statement in this representation is called
step.

User Stories are usually specified by Product Owners [20] to
settle a big picture about features that will be developed,
emphasizing, for each one, the business value they will bring
to users. The set of acceptance criteria that compose the User
Story determines whether a feature can be considered as
“done”, i.e. under which conditions stakeholders will
consider this feature able to add value to the business. By
specifying such conditions through examples of use,
stakeholders set up the validation scenarios under which the
system should be tested.

Business Process Modeling

Business Process can be understood as the step-by-step rules
specific to the resolution of some business problem. Business
Process Modeling (BPM) refers to the design and execution
of business processes. Among the benefits of BPM are the
formalization of current processes and the support for
efficiently automating the process flow. Business Process

Modeling Notation (BPMN) is a graphical flowchart-like
language intended for use by business analysts and
developers to build business process diagrams [9].

Notational elements in business process diagrams are di-
vided into four basic categories: flow objects, artifacts,
connecting objects and swimlanes, each of which consists of
a set of elements. They include events, activities, gateways,
data objects, groups, annotations, sequence and message
flows, and associations. By following the flow of activities
in the model, we succeed building high-level scenarios.
Examples of notational elements are presented in the case
study.

Modeling User Requirements for Interactive Systems

Task Modeling

Task models provide a goal-oriented description of
interactive systems, but avoiding the need for the level of
detail required for a full description of the user interface.
Each task can be specified at various abstraction levels,
describing an activity that has to be carried out to fulfil the
user's goals. By modeling tasks, designers are able to
describe activities in a fine granularity, for example,
covering the temporal sequence of tasks to be carried out by
the user or system, as well as any preconditions for each task
[16].

HAMSTERS [13] is a tool-supported graphical task
modeling notation for representing human activities in a
hierarchical and ordered manner. At the higher abstraction
level, goals can be decomposed into sub-goals, which can in
turn be decomposed into activities. The output of this
decomposition is a graphical tree of nodes. Nodes can be
tasks or temporal operators. Tasks can be of several types
and contain information such as a name, information details,
and criticality level. Abstract Task is a task that involves sub-
tasks of different types. System Task is a task performed only
by the system. User Task is a generic task describing a user
activity. It can be specialized as a Motor Task (e.g. a physical
activity), a Cognitive Task (e.g. decision making, analysis),
or Perceptive Task (e.g. perception of alert). Finally,
Interactive Task represents an interaction between the User
and the System; it can be refined into Input Task when the
users provide input to the system, Output Task when the
system provides an output to the user, and Input/Output Task
that is a mix of both, but performed in an atomic way.

Additionally, temporal relationships between tasks are rep-
resented by means of operators. The operator “Enable” (>>)
describes that the tasks T1 and T2 occur sequentially, one
after the other. Other operators such as “Concurrent” (|||),
“Choice” ([]), “Order independent” (|=|), etc. describe that
tasks can be held simultaneously, the choice of one implies
that the other will be disabled, or that the user can choose
whether he will perform the one or another task first. It is the
use of these operators to link tasks in the model that allows
extracting scenarios to be performed in the system. This is
done by following the multiple achievable paths in the

model, with each combination of them generating an
executable scenario.

Prototyping

A prototype is a previous representation of an interactive
system. Prototypes are concrete artifacts and important
components of the design process. They encourage
communication, helping designers, engineers, managers,
software developers, customers and users to discuss design
options and interact with each other. They also permit early
evaluation since they can be tested in various ways, including
traditional usability studies and informal user feedback,
throughout the design process [1]. Prototypes are often used
in an iterative design process where the prototype is refined
and become more and more close to the final user interface
through the identification of user needs, constraints and
feedbacks on early prototypes. It makes particularly
important the investigation of multiple design options in the
early phases. By running simulations on prototypes, we can
determine potential scenarios that users can perform in the
system.

Along this refining process, the prototype can be designed in
different levels of fidelity. The prototype fidelity expresses
the similarity between the final user interface (running in a
particular technological space) and the prototyped UI. The
UI prototype fidelity is said to be high if the prototype
representation is the closest possible to the final UI, or almost
in the same representation type. The fidelity is said to be low
if the prototype representation only partially evokes the final
UI without representing it in full details. Between high-
fidelity and low-fidelity exists the medium-fidelity level, that
gives more importance to the contents than the style with
which these contents are presented [5].

Prototyping is primarily a design activity in software
engineering. It ensures that software prototypes evolve into
technically sound working systems and serves for studying
the effectiveness of particular designs.

PROPOSED APPROACH

For modeling business and user requirements, we propose a
scenario-based approach, taking multiple views of the sys-
tem into account. Figure 2 illustrates this approach, so far
designed for supporting three modeling processes: business
modeling, task modeling and prototyping. The processes of
business and task modeling as well as the process of
prototyping are iterative and contribute mutually for the
development of each one. The relationship between task
modeling and prototyping are quite natural once both
composes the typical process of modeling user requirements
for interactive systems. Both of them are also innately
scenario-based as they use scenarios to perform and simulate
user activities in the system. The relationship between
business and task models has already been studied by some
authors [17] [25]. Winckler and Palanque [25] have
demonstrated how – starting from a business process – task
models can be designed to specify the flow of detailed tasks
that a user should accomplish to perform a given activity for

each business process. With this perspective, the process of
business modeling can also fit in a scenario-based approach,
once the overall business view about the system can be easily
described using a scenario narrative.

Figure 2. Modeling business and user requirements in a

scenario-based approach.

The problem raised in such processes is that there is not a
common ground to specify scenarios for each model. They
can be freely described following few or no templates, from
informal descriptions such as textual narratives until more
formal ones such as pre-formatted lists of tasks extracted
from task models. It makes very hard the work of identifying
similar requirements that eventually describe the same
features but in different perspectives. To tackle this problem,
we explore the use of the ontological support proposed by
Silva et al. [21] aiming describing common behaviors with a
standard vocabulary for writing User Stories as scenario
artifacts. The main benefit of this strategy is that User Stories
described following a common vocabulary can be directly
automated for running test scenarios on other artifacts. As
the common vocabulary has been set using well-established
concepts such as UsiXML [11], W3C MBUI [18] and others,
it establishes indeed the searched common ground for a
scenario-based approach considering multiple artifacts.

The ontology covers concepts related to graphical
components (presentation and behavior) used to build web
and mobile applications. It also models concepts describing
the structure of User Stories, tasks, scenarios and prototypes.
As illustrated by Figure 3, the specification of behaviors
encompasses when the interaction can be performed (using
Given, When and/or Then clauses) and which graphical
elements (i.e. Radio Button, CheckBox, Calendar, Link, etc.)
are suitable to implement the expected system behavior. In
the example, the behavior receives two parameters: an
“elementName” and a “locatorParameters”. The first
parameter is associated to data for testing, while the second
parameter refers to the interaction element supported by this
behavior, in this case: “Radio Button”, “CheckBox”,
“Calendar” and “Link”. To comply with semantic rules, the
behavior “I chose \”$elementName\” referring to
\”$locatorParameters\”” shown in Figure 3 can be modelled

into a predefined behavior “chooseReferringTo”, called
Common Step.

Figure 3. Behavior being mapped to UI Elements (from Silva

et al. [21]).

The ontological model describes only behaviors that report
steps performing actions directly on the user interface
through interaction elements. This is a powerful resource
because it allows keeping the ontological model domain-
free, which means it is not subject to particular business
characteristics in the User Stories, promoting the reuse of
steps in multiple scenarios. Thus, steps can be easily reused
to build different behaviors for different scenarios.

Based on the presented strategy, we set out four main
challenges for implementing this approach as follows: (i)
adhere to a model-based approach for describing artifacts
produced along the process; (ii) teams must be willing to
adopt the template for User Stories as well as the vocabulary
proposed in the ontology; (iii) the ontology must be
expressive enough to cover the UI-supported set of
interactive behaviors; and (iv) tests must be carried out by
our set of tools.

Target Stakeholders

Many stakeholders are typically involved in the development
of interactive systems. Table 1 summarizes their typical
activities when modeling interactive system and the benefits
they can get from using our proposed approach.

Stakeholders Activity Benefit

Client
Define business and user

requirements.

Requirements and
automated acceptance

testing implemented in a
natural and high-level

language.

Product Owner
and Business

Analyst

Write User Stories and
define the business

model.

A reliable and consistent
compatibility between

User Stories and
business models.

Requirements and
Test Analyst

Write and format User
Stories and help to
design task models.

A common and standard
vocabulary for writing
and formatting User

Stories.

Designers
Design task models and

UI prototypes.

A reliable and consistent
compatibility between

task models and UI
prototypes.

Table 1. Target stakeholders of the approach.

CASE STUDY

In order to conduct a proof of concept for our approach, we
propose a case study in the flight tickets e-commerce

domain. In the following subsections, we present a part of
this case with the business process modeling using BPMN,
the task modeling using HAMSTERS, the set of resultant
scenarios formatted as User Stories, and finally the user
interface prototyping using a sketching tool. Both modeling
and testing activities have been carried out by the authors of
this study.

Modeling the Business Process View

Figure 4 presents the BPMN model for the case study. At the
top, in the first lane, we have the set of activities performed
by users. In the second lane, we have the set of activities
performed by the airline company. At first, the set of
activities performed by the airline company could be made
either manually or in an automated way (using a software
system). For this study, we are assuming that the choice is to
conduct these activities in an automated way, using a web
software system. The online booking process of flight tickets
is divided in 2 main sub-processes. The first one is the search
of flights based on a provided set of parameters and the
consequent selection of the desired flight(s) in a list of
matching flights. The second one is the process of booking
effectively, providing both passengers and payment data to
conclude the booking. The set of functional requirements
assumed by the system is described below through a
narrative scenario:

The user starts the process by conducting a search of flight based on his
desired parameters like origin and destination, dates, number of passengers,
etc. This set of parameters is then submitted to the airline system that will
process the request and creates a list of matching flights. The list of flights
is then returned to the user that verify this list and chooses a flight that better
suit his needs. After choosing the desired flight, the user provide all
passengers data to the airline system that will process the booking. Thereby,
the system confirms the availability of seats and request user to provide
payment data. After the user filling and submitting the data for payment, the
system processes the payment. If the payment is accepted, then the booking
is completed, the user obtains a booking confirmation and the process
finishes. If the payment is declined, then the booking is refused and the
process finishes as well.

Modeling the Task Model View

We have manually modeled the tasks for the general business
process for booking tickets presented in the previous
subsection. We have selected the first sub-process for the

study once it is the most interactive one and represents the
main source of cognitive efforts from users and designers.
The second sub-process, being simply a data providing in
forms, is not so relevant to demonstrate the concepts
presented in the paper, even though the whole process could
be supported by our approach. The task models for the
process of searching and choosing flights have been modeled
using the HAMSTERS notation.

Figure 5 presents respectively the extract of the business
process selected for modeling and the resultant task models.
In the transition (a), the initial business activity “Search
Flights” has been mapped to the abstract/iterative task
“Search Flights” once it is performed by the user. This task
is exploited in an ordered sequence of input/output tasks.
First, the user goes to the web page where he provides data
for search, then he provides a set of data for searching his
flights, submits the search, and finally verifies the resultant
list of flights. Those are sequential user tasks (operator
“Enable”). For the abstract task “Verify List of Flights”, the
system actually provides the list of available flights and then
the subtask “Choose Flights” becomes available to be
performed by the user. It matches with the business activity
“Verify List of Flights” in the BPMN model.

For providing the set of data for searching (“Infs:”), the user
can inform in any other (operator “Order independent”):
departure, destination, number of passengers, departure date,
and trip type. The abstract tasks “Inform Departure” and
“Inform Destination” originate a sequence of three tasks. The
first one in which the user informs a departure (or arrival)
city, the second one in which the system provides a list of
airports in that city, and finally the third one in which the
user chooses the departure (or arrival) airport. The abstract
task “Choose Trip Type” is actually a decision task once the
user can choose (operator “Choice”) between a one-way and
a round trip. If he chooses a round trip, he needs to inform
the arrival date as well.

In the transition (b) of Figure 5, we present the sequence of
the flow. The business activity “Choose a Flight” has been
mapped to the abstract/interactive task “Choose Flights” in
the task model (notice that this same task has already been

Figure 4. Business Process Model for the flight tickets e-commerce domain.

represented as the last abstract task in the first transition).
Exploiting the task “Choose Flights”, the system requests
user for choosing a flight, then the user evaluates the
availability of flights (cognitive analysis task), and finally he
makes a decision, choosing the desired flight (cognitive
decision task). After the cognitive decision about which
flight to choose, the user finally performs the input task of
selecting the desired flight. As a result, the system asks the
user to provide his login information to proceed the booking
with passengers and payment data.

Notice that business and task models are complementary.
The business process model provides an overview of the
activity flow of the system, emphasizing high-level
processes involving diverse business actors. In a different
way, the task model is more focused in describing detailed
user tasks while interacting with the system, emphasizing
lower level tasks. Thereby, task models provide more refined
resources and descriptors to model user interactions than
those provided by business process models.

Extracting User Stories and Scenarios

Based on the task model developed for the process of
searching and choosing flights, we have automatically
extracted some possible scenarios that a user could perform

in the system. HAMSTERS tool supports innately the
extraction of scenarios from task models, by running them
and extracting the possible achievable paths. Figure 6
illustrates an extraction result. The presented path simulates
a scenario for a one-way trip. The ordered sequence of tasks
for this scenario is listed at the top. This scenario is then
manually formatted to meet the User Story template, with
each ordered task being mapped to a testable interactive
behavior described in the ontology.

Hereafter, we present two formatted User Stories. The first
story focuses on the process of searching flights, with a
narrative describing the role involved with the history, the
feature that this history describes in the user’s point of view,
and finally the benefit that this feature brings to the user in
terms of business goals. In the first scenario for this history
(“One-Way Tickets Search”, presented above), the expected
result for the search is a new screen presenting a “List of
Available Flights”, in which the user might select the desired
flight in a list of flights matching his search. The second
scenario (“Search for a return flight before a departure
flight”) describes the behavior for a specific business rule,
simulating an error situation when searching for a return
flight before a departure flight. The expected outcome is the
impossibility to search flights. Notice that this last scenario

(b)

(a)

Figure 5. Mapping BPMN business activities to HAMSTERS user's tasks.

has been specified with its respective testing data while the
first one has been specified only with data domains.

Scenario: One-Way Tickets Search
Given I go to "Find Flights"

When I choose "One way" referring to "Trip Type"
And I inform "Departure City" and choose "Departure Airport"

in the field "Departure"
And I inform "Arrival City" and choose "Arrival Airport" in

the field "Destination"
And I set "Valid Departure Date" in the field "Departure

Date"
And I choose the option of value "2" in the field "Number

of passengers"
And I submit "Search"

Then will be displayed "List of Available Flights"

Figure 6. Scenarios being extracted from task models and then

being formatted by the ontology as User Stories.

User Story: Flight Tickets Search

Narrative:

As a user

I want to be able to search tickets, providing locations

and dates.
So that I can obtain information about rates and times of

flights.

Scenario: One-Way Tickets Search (…)

Scenario: Search for a return flight before a departure

flight
Given I go to "Find Flights"

When I choose "Round trip" referring to "Trip Type"
And I inform "New York" and choose "NYC-New York, NY" in

the field "Departure"
And I inform "Los Angeles" and choose "LAX-Los Angeles

International, CA" in the field "Destination"
And I try to set "12/15/2017" in the field "Departure Date"

And I try to set "12/10/2017" in the field "Arrival Date"

Then will not be possible to search flights

User Story: Select the desired flight

Narrative:

As a frequent traveler

I want to get the list of flights and their rates and times
So that I can select the desired flight after a search of

available flights.

Scenario: Select a diurnal flight

One-Way Tickets Search

Given "Flights Page" is displayed

When I click on "Flights" referring to "AA flight 6557, AA

flight 51"

Then "Optional log in" is displayed

The second history focuses on the process of choosing a flight
in a list of available flights. The scenario “Select a diurnal
flight”, using the Scenario “One-Way Tickets Search”,
simulates the selection in the list of available flights, a couple
of diurnal flights, the AA6557 and the AA51. For this case,

the behavior expected from the system is the presentation of
a new screen with the “Optional log in” message, indicating
the user is able to login in order to proceed to the booking,
filling the passengers and payment data, which is in line with
both business and task models.

Designing the Prototype View

For designing prototypes, we have chosen the sketches
produced by Balsamiq Mockups. Balsamiq is a rapid
wireframing tool that reproduces the experience of sketching
on a whiteboard, but using a computer. Figure 7 presents the
scenario “One-Way Tickets Search” supporting the
development of a sketch prototyped for the User Story
“Flight Tickets Search”.
Scenario: One-Way Tickets Search
Given I go to "Find Flights"

When I choose "One way" referring to "Trip Type"

And I inform "Departure City" and choose "Departure Airport"

in the field "Departure"
And I inform "Arrival City" and choose "Arrival Airport" in

the field "Destination"
And I set "Valid Departure Date" in the field

"Departure Date"
And I choose the option of value "2" in the field

"Number of passengers"
And I submit "Search"

Then will be displayed "List of Available Flights"

Figure 7. Sketch for the User Story “Flight Tickets Search”
built from the scenario “One-Way Tickets Search”.

By using the ontology, the prototype can be manually
designed already considering the set of interactive elements
supported by each behavior. For example, the behavior
“goTo” in the first step (“I go to ‘Find Flights’”) is supported
only by the interaction element Browser Window. Thus, the
designer has no other option to address this behavior. Indeed,
in the prototype, it has been used a Browser Window for this
behavior. On the other hand, the fifth step (“I set ‘Valid
Departure Date’ in the field ‘Departure Date’”) addresses
the interaction element “Departure Date” that refers in the
prototype to the Calendar used for picking up a date of
departure. The behavior “setInTheField” is also supported by
Dropdown Lists, Text Fields and Autocompletes. Thus, the
designer could have picked any of them instead, but not a
Button, for instance, once it does not support the behavior
“setInTheField”. Following the mapping, the second step
addresses the interaction element “Trip Type” that refers to
the Link bar used for choosing between a one-way and a

1

2

3

4

5

6
7

Designing the prototype

1

2

3 4
6

7

5

Formatting by the ontology

round trip. The third and fourth steps addresses the
interaction elements “Departure” and “Destination” that
share the same interactive behavior, so the designer can
simply reuse it for both elements in order to keep the
semantic consistency of the interaction. A Text Field with a
searching feature has been chosen. It means that this element
supports an operation autocomplete where, with a single
interaction, the user attains to inform some partial text and
(based on the instant matching results) choose the desired
option. The sixth step addresses the interaction element
“Number of passengers” that refers to the Combo Box used
for choosing the number of passengers in a finite list. Finally,
the seventh step addresses the interactive element “Search”
that refers to the Button used for submitting the search.

Mapping Elements for Testing

The testing of UI design artifacts is conducted by
automatically checking whether requirements have been
consistently modeled. Table 2 exemplifies the
correspondence of concepts in the models and in the
ontology. In the example, the consistency of the
requirements representation of the interaction element
“Departure Date”, used in the prototype, is being checked in
the other requirements artifacts until reaching the high-level
business activity “Search Flights”.

Artifact
Concepts

Step of

Scenario Model Ontology

BPMN Model
Activity: Search

Flights
Event: When

When I set
“Valid

Departure Date”
in the field
“Departure

Date”

Task Model
Input Task: Set

Departure Date
Behavior:

SetInTheField

Prototype
UI Element:

Departure Date

Interaction
Element:
Calendar

Table 2. Example of concept mapping for testing.

Figure 8 illustrates the testing path covering an extract of the
BPMN model (a), task model (b), scenario (c), and prototype
(d). Following the approach presented above, the first results
of testing have shown, for example, that the step “Given I go

to ‘Find Flights’” has been correctly attended by all business
process model, task model and prototype. It means that there
is an activity in the business process model (“Search
Flights”), a task in the task model (“Go to Find Flights”), and
an interaction element (“Browser Window”) in the prototype
to attend properly this step. Our approach has also identified
some important inconsistencies in the artifacts under testing.
The second step of the two first scenarios (“When I choose

‘One way/Round trip’ referring to ‘Trip Type’”) has failed in
the prototype. This Step has failed because regardless
presenting a proper Link bar for selecting a one-way or round
trip, the element cannot be identified as belonging to “Trip
Type”. It lacks a label in the prototype to identify it. Notice
that, in the task model, if the correspondent task “Choose
Trip Type” had been defined by an operator “Enable” after
the sequence of tasks to inform departure, destination and

dates, the test would fail. As this operator determines
sequential tasks, the model would be conflicting with the
sequence determined in the scenario.

Figure 8. Extract of the testing path in the artifacts.

The last step of the two first scenarios (“Then will be dis-

played ‘List of Available Flights’” and “Then will not be

possible to search flights”) has also failed when testing the
prototype. Once the dialog component (dynamic behavior) is
not conceived yet, we cannot check if the outcome of those
scenarios would be respectively the list of available flights
and the impossibility to search flights. The last step of the
second scenario has also failed for the task model. As user
errors are not part of a user goal, they are usually omitted
from tasks descriptions, making this kind of test fails. Means
of representing these potential errors on task models is being
recently studied [7]. Once it is implemented in the model,
tests could run using the same approach to identify this kind
of error. Finally, all of the other remaining steps were
successfully performed and passed the tests. Notice that once
some step of scenario fails, the scenario is considered as
failed as well.

RELATED WORKS

Language Extended Lexicon (LEL) [10] has used natural
language for specifying requirements since the 90’s. The
authors propose a lexical analysis of requirements
descriptions in order to integrate Scenarios into a
requirements baseline, making possible tracing their
evolution. They were followed by several attempts to
identify test cases from requirements specified in natural
language [6] [22]. Several authors [2] [3] [12] [26], on the
other hand, concentrate efforts in providing automated tools
to keep compatibility between different artifacts models.
Those approaches, regardless providing some mechanism to
trace or assess requirements for particular environments, do
not consider how to integrate and test the set of multiple other
artifacts that are commonly used throughout development
processes.

Luna et al. [12] propose WebSpec, a requirement artifact
used to capture navigation, interaction and UI features in web
applications, where diagrams can be validated due to the
automatic derivation of interaction tests. Wolff et al. [26]
pro-poses to link GUI specifications to abstract dialogue
models describing behavioral characteristics. This approach
provides an interesting mechanism to control changes in
interface elements, however the approach is not iterative and
does not provide the necessary testing component to check
and verify user interfaces against predefined behaviors from
requirements. Buchmann and Karagiannis [2] presented a
modeling method for the elicitation and validation of
requirements for mobile apps that enables semantic
traceability for the requirements representation, but using an
extremely heavy modeling approach that is not suitable to
check requirements in a high level of abstraction, validating
only requirements that were modeled within the approach.

Campos et al. [3] propose a model-based testing approach to
support linking task models to an existing, executable,
interactive application. The method allows defining a
systematic correspondence between the user interface
elements and user tasks. The problem with this approach is
that it only covers the interaction of task models with final
UIs, not covering early artifacts. Another problem is it
requires much intervention of developers to prepare the
source code to support the integration, making it difficult to
be adopted in applications that cannot receive interventions
in the code level. Lastly, Valente et al. [24] propose an
approach considering User Stories for bridging business
process and user tasks, but aiming support enterprise
modeling and software architecture. The authors propose an
approach called Goals Approach that focus on how to obtain
a goals business model of requirements based on the DEMO
method. The approach however is aimed to address the
process issues, not covering the assessment aspects.

CONCLUSION AND FUTURE WORKS

Even being preliminary, the results we have obtained so far
are quite promising. Addressing the four challenges we
stated when presenting the approach and based on such
results, we can highlight a set of advantages and some
shortcomings. Concerning the adherence to a model-based
approach, this approach benefits from the independence for
testing artifacts. Artifacts do not need to be prepared for
testing, neither be part of some development process to be
tested. Once the approach is suited to run with any software
development process, testing can be conducted in an
independent manner, only in the set of artifacts designed at a
given time, which benefits early artifacts. However, so far
we are only covering artifacts modeled in BPMN,
HAMSTERS and Balsamiq. We also did not evaluate yet the
impact of maintaining and evolving such artifacts throughout
the development process.

Concerning the adoption of the template for User Stories and
the vocabulary proposed in the ontology, an advantage is that
requirements and tests in User Stories are kept in a natural

and high-level language. Keeping them as such helps to
establish a common vocabulary for the whole team, and
allows non-technical stakeholders to effectively participate
at the specification and testing processes. Although this
study does not cover evaluation with potential users, ongoing
work aims to investigate the use of the approach in a broader
case study with Product Owners, evaluating the workload,
the maintainability and the scalability of the approach.

Concerning the expressiveness of the ontology, an advantage
is that the approach is domain-independent, once the low-
level interactive actions on UI elements (such as clicks,
selections, settings, etc.) are the same regardless the
application domain. Another advantage is the plurality of
interaction elements modeled by the ontology used. As many
of them can answer the same behavior, even if a Combo Box
has been chosen to attend some behavior in a previous
prototype, an Auto Complete field could be chosen to attend
this behavior on a further and more refined version, once
both elements share the same ontological property for the
behavior under testing. A shortcoming we have identified is
related to the restricted vocabulary of the ontology. Even
with the ontology mapping synonyms for some specific
behaviors, it does not provide any kind of semantic
interpretation, i.e. the behaviors must be specified on stories
exactly as they were defined. At a first glance, nonetheless,
the restricted vocabulary seems to bring less flexibility to
designers, testers and requirements engineers, but at the same
time, it establishes a common vocabulary, avoiding typical
problems of ambiguity and incompleteness in requirements
and testing specifications.

Finally, concerning our tools, one of the advantages they
provide is the fine-grained testing coverage. Each small
modification in the User Stories or in the artifacts is able to
be captured during the testing process. The use of data-
independent scenarios is another advantage. Data can be
specified through data domains to be injected on runtime
(like in “One-Way Tickets Search”), or directly in the
scenario description (like in “Search for a return flight before
a departure flight”). The first strategy is very useful in the
beginning of the project, when typically there are few
definitions about representative data for testing. A limitation
in our set of tools, however, is the absence of classification
for errors. There is currently no distinction between the
different reasons of test failure (e.g. UI element not found,
behavior not supported, etc.). As shown in the case study, our
approach signalize in which step of the scenario some
inconsistency has been found, but do not classify it according
to the solution that should be employed to solve the problem.
Classifying errors would help to better identify if a given
inconsistency detected is due to an actual error in the
requirements representation or if it is due just to a limitation
of the artifact. Our planned future works envision tackling
this issue, besides conducting new studies involving more
complex interactive behaviors, an increase of ontological
expressiveness, and interactions in different contexts beyond
the web.

REFERENCES

1. Michel Beaudouin-Lafon and Wendy Mackay. 2002.
Prototyping tools and techniques. In The human-

computer interaction handbook, L. Erlbaum Associates
Inc., Hillsdale, NJ, USA, 1006-1031.

2. Robert A. Buchmann and Dimitris Karagiannis. 2015.
Modelling Mobile App Requirements for Semantic
Traceability. Requirements Engineering 22, 1: 1-35.

3. José C. Campos, Camille Fayollas, Célia Martinie,
David Navarre, Philippe Palanque and Miguel Pinto.
2016. Systematic automation of scenario-based testing
of user interfaces. In Proceedings of the 8th ACM

SIGCHI Symposium on Engineering Interactive

Computing Systems, 138-148.

4. Mike Cohn. 2004. User Stories Applied: For Agile

Software Development. Addison-Wesley Professional.

5. Adrien Coyette, Suzanne Kieffer and Jean
Vanderdonckt. 2007. Multi-fidelity Prototyping of User
Interfaces. In Proc. of the IFIP TC.13 International

Conference on Human-Computer Interaction, 150-164.

6. Anurag Dwarakanath and Shubhashis Sengupta. 2012.
Litmus: Generation of Test Cases from Functional
Requirements in Natural Language. In Int. Conference

on Application of Natural Language to Information

Systems, 58-69.

7. Racim Fahssi, Célia Martinie and Philippe Palanque.
2015. Enhanced Task Modelling for Systematic
Identification and Explicit Representation of Human
Errors. In Proc. of the IFIP TC.13 International

Conference on Human-Computer Interaction, 192-212.

8. Object Management Group. 2011. Business Process
Model And Notation™ (BPMN™). Retrieved August,
2017 from http://www.omg.org/spec/BPMN/2.0/

9. Michael Havey. 2005. Essential Business Process

Modeling. O'Reilly Media, Inc.

10. Julio C. S. P. Leite and Antonio P. A. Oliveira. 1995. A
Client Oriented Requirements Baseline. In Proc. of the

2nd IEEE International Symposium on Requirements

Engineering (RE'95), 108-115.

11. Quentin Limbourg, Jean Vanderdonckt, Benjamin
Michotte, Laurent Bouillon and Víctor López-Jaquero.
2004. USIXML: a Language Supporting Multi-Path
Development of User Interfaces. In Proc. of the EHCI-

DSVIS, 200-220.

12. Esteban R. Luna, Irene Garrigós, Julián Grigera and
Marco Winckler. 2010. Capture and Evolution of Web
Requirements Using WebSpec. In Proc. of the Int.

Conference on Web Engineering, 173-188.

13. Célia Martinie, Philippe Palanque and Marco
Winckler. 2011. Structuring and Composition
Mechanisms to Address Scalability Issues in Task
Models. In Proc. of the IFIP TC.13 International

Conference on Human-Computer Interaction, 589-609.

14. Rudolf van Megen and Dirk B. Meyerhoff. 1995. Costs
and benefits of early defect detection: experiences from
developing client server and host applications.
Software Quality Journal 4, 4: 247-256.

15. Dan North. 2017. What's in a Story?. Retrieved
August, 2017 from http://dannorth.net/whats-in-a-
story/

16. Fabio Paternò, Carmen Santoro, Lucio D. Spano and
Dave Raggett. 2017. W3C, MBUI - Task Models.
Retrieved August, 2017 from
http://www.w3.org/TR/task-models/

17. Florence Pontico, Christelle Farenc and Marco
Winckler. 2006. Model-Based Support for Specifying
eService eGovernment Applications. In Proc. of the

International Workshop on Task Models and Diagrams

for User Interface Design, 54-67.

18. Jaroslav Pullmann. 2017. W3C, MBUI - Glossary.
Retrieved August, 2017 from
http://www.w3.org/TR/mbui-glossary/

19. Mary B. Rosson and John M. Carroll. 2002. Usability

Engineering: Scenario-Based Development of Human-

Computer Interaction. Morgan Kaufmann.

20. Ken Schwaber. 2004. Agile Project Management with

Scrum. Microsoft Press.

21. Thiago R. Silva, Jean-Luc Hak and Marco Winckler.
2017. A Behavior-Based Ontology for Supporting
Automated Assessment of Interactive Systems. In
Proc. of the 11th IEEE International Conference on

Semantic Computing, 250-257.

22. Harry M. Sneed. 2007. Testing against Natural
Language Requirements. In Proc. of the Seventh IEEE

International Conference on Quality Software (QSIC
2007), 380-387.

23. Eero J. Uusitalo, Marko Komssi, Marjo Kauppinen and
Alan M. Davis. 2008. Linking Requirements and
Testing in Practice. In Proc. of the IEEE Int.

Requirements Engineering Conference, 265-270.

24. Pedro Valente, Thiago Silva, Marco Winckler, and
Nuno Nunes. 2016. Bridging Enterprise and Software
Engineering Through an User-Centered Design
Perspective. In Proc. of the International Conference

on Web Information Systems Engineering, 349-357.

25. Marco Winckler and Philippe Palanque. 2012. Models
as Representations for Supporting the Development of
e-Procedures. In Usability in Government Systems –

User Experience Design for Citizens and Public

Servants, Morgan Kaufmann Publishers, 301-315.

26. Andreas Wolff, Peter Forbrig, Anke Dittmar and
Daniel Reichart. 2005. Linking GUI Elements to
Tasks: Supporting an Evolutionary Design Process. In
Proc. of the 4th International Workshop on Task

Models and Diagrams, 27-34.

View publication statsView publication stats

https://www.researchgate.net/publication/323501276

