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ABSTRACT Maximum power point tracking (MPPT) techniques have been vastly researched and

developed in order to obtain the maximum terminal power of photovoltaic (PV) arrays in the solar

renewable energy system. The aim of this paper is to present a new principal scheme-based review of

the categorised MPPT methods (conventional, novel, and hybrid) with respect to the deployment of their

input variables (solar irradiance, PV arrays’ temperature, and PV arrays’ terminal voltage and current),

where MPPT methods are categorised to six different schemes. For each scheme, previous MPPT studies

are extracted from literature and analysed. Then the critical benefits and limitations of the six presented

MPPT schemes are compared and discussed. It is concluded that those MPPT schemes deploying the

measured external variables would be able to track the global maximum power point with high reliability;

however, their implementation cost and applicability remains as a challenge due to increasing the sensor

deployment cost and complexity. The conclusion of this paper will help new researchers to deliberately

select an appropriate MPPT scheme based on their projects’ objectives and limitations, prior to selecting an

optimisation algorithm for MPPT.

INDEX TERMS Solar photovoltaic, Maximum Power Point Tracking (MPPT), solar renewable energy

system, power conversion efficiency.

I. INTRODUCTION

I
N comparison with the non-renewable energy systems,

solar renewable energy system (SRES) does produce less

amount of negative environmental impacts such as air pol-

lution (greenhouse gas emission) but its power efficiency is

highly depended on the external (environmental) impacts.

Since these impacts and conditions are variable, solar renew-

able energy (SRE) is not a fixed voltage or current source [1].

Maximum power point tracking (MPPT) is employed

in order to automatically track the maximum power point

(MPP) of photovoltaic (PV) arrays in SRES. Resulting from

sudden and fast environmental changes, the MPP as well

as the output I-V curve of PV arrays are also changed

considerably.

Therefore, the sensed external variations and their impacts

should be considered in designing and implementing of the

MPPT methods. In general, sudden variations of solar irradi-

ance (λ), variations of PV array’s temperature (T ), and partial

shading condition (PSC) have been researched as the most

important external impacts in SRES [2].

Researchers have tried to present various types of high

accuracy MPPT methods to control the internal and external

impacts of SRES, and a wide range of analytical and numeri-

cal MPPT algorithms have been employed [3]–[8]. They have

mostly optimised the sensed PV arrays’ terminal voltage (V )

and current (I). However, some research projects applied the

sensed λ and T in the MPPT methods.

There are also a considerable number of MPPT overview

and comparative surveys, where the MPPT algorithms have

been mostly classified as the conventional and novel methods

[9]. A combined approach of two or more conventional

and/or novel MPPT algorithms is also categorised and called

as hybrid MPPT method [7].

The conventional MPPT methods are also categorised as
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indirect (offline) and direct (online) approaches [2], [10].

A comprehensive history of MPPT methods was presented

in the first chapter of [2], and a comprehensive review and

critical analysis of MPPT methods was presented in [11],

[12] as well as in the fourth chapter of [5].

Although previous comprehensive and comparative review

studies have been trying to categorise and compare the MPPT

methods based on the type of optimisation algorithm being

used, a different review study capable of classifying and

analysing the existing well-known MPPT methods with re-

spect to their input variables is still required.

To this end, this paper presents a scheme-based review of

the existing conventional, novel, and hybrid MPPT topolo-

gies with respect to the deployment of their sensed inputs, λ,

T , V , and I . In section II, a brief review of external impacts

on the SRES’s performance is presented. In section III, six

different MPPT schemes are classified and reviewed. In sec-

tion IV, a comparison based on the main criteria, limitations,

and benefits of each scheme, is performed and discussed.

Recommendations to develop MPPT schemes and unravel

their limitations are presented in section V, and a conclusion

accompanied with future research suggestions are discussed

in section VI.

II. EXTERNAL IMPACTS

External impacts are generally described as the environmen-

tal variations and disturbances affecting the SRES’s per-

formance, regardless of the SRES’s dynamic characteristics

including the non-linear dynamic of solar PV arrays, the

variations of power conversion circuit parameters, and the

variations of load. External impacts are usually unfavourable,

fast, and unforeseeable. A wide range of optimisation al-

gorithms and control system techniques have been used to

control these variations. As mentioned, external variations

affecting the SRES’s performance include;

• Variations of λ, a rate of income amount of solar energy

on horizontal PV arrays.

• Variations of T , temperature of PV arrays’ surface (solar

PV cells’ temperature).

• PSC, resulting from either cloudy condition or dusty

surface of the PV arrays [3], [10], [13].

FIGURE 1. PV array’s P-V curve shown for three levels of solar irradiance (λ),

where λ1 < λ2 < λ3.

As shown in Figure 1, the higher λ, the higher terminal

power (P ) a solar PV array can deliver, where λ3(W/m2)
results in a higher MPP than λ2(W/m2), sequently higher

MPP than λ1(W/m2). Differently, as shown in Figure 2, the

FIGURE 2. PV array’s P-V curve shown for three levels of PV arrays’

temperature (T ), where T1 < T2 < T3.

FIGURE 3. PV array’s P-V curve shown for rapidly variations of external

impacts.

higher PV array’s temperature, the lower power a PV array

may deliver, where T1(
◦C) results in a higher MPP than

T2(
◦C) and T3(

◦C).
Also, as per shown in Figure 3, it has been resulted

that under rapid change of the external impacts, multiple

local MPPs (LMPPs) may occur, when there is always one

desired global MPP (GMPP), the desired MPP representing

the highest PV array performance [14].

III. EXISTING MPPT SCHEMES IN SRES

As discussed, a wide range of control and optimisation

algorithms have been used in order to obtain the GMPP

in the SRESs, as shown in Figure 4, where each technique

has employed some of the sensed input variables (shown as

MPPT inputs in Figure 4).

In this section, six MPPT schemes are classified through

combining the MPPT techniques and MPPT input variables.

Each scheme is independently presented and discussed. As

mentioned, this paper is going to review MPPT schemes in

SRES, where to further study about various types of DC-

DC converters in SRES, the resources [15]–[17] are recom-

mended.

A. CONVENTIONAL MPPT METHODS

Conventional MPPT methods are categorised as indirect (of-

fline) and direct (online) approaches.

Fractional open circuit voltage (FOCV) and fractional

short circuit current (FSCC) are the commonly used indirect

MPPT methods, where V and I are computed based on a

ratio of the open circuit voltage (Voc) or the short circuit

current (Isc) in the offline state [2].

Perturb and observe (P&O) and incremental conductance

(INC) algorithms, derived from hill climbing (HC), local

search family optimisation algorithms, have been presented
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FIGURE 4. A flowchart of the existing MPPT techniques and MPPT input variables.

as direct MPPT methods [2]. The main advantages of these

methods are known as their algorithms’ simplicity and low

implementation cost.

1) Scheme 1, conventional MPPT, input variables: V and I

The principal scheme 1 is depicted in (Figure 5 (Scheme 1)).

Since SRES is dynamically non-linear, it may not accurately

respond to the unfavourable, fast, and non-linear input varia-

tions. Majority of conventional MPPT algorithms control and

optimise this non-linear system without taking advantage of

feed-forward or feedback loops to observe and control the

external variations, λ and T . In other words, the conventional

MPPT methods are unable to quickly reset their algorithms’

parameters and constraints reacting to the sudden external

changes and disturbances being usually applied in SRES.

Then they are susceptible to get trapped in the LMPPs being

resulting in losing power during the power tracking process

[3].

Both P&O and INC algorithms follow the perturbation

techniques based on step-measuring and comparing the V ,

I , and P until reaching the MPP [14]. As mentioned, sudden

external variations would finally result in the sudden changes

of the PV terminal power. In this crucial situation, the con-

ventional direct and indirect MPPT methods often suffer

from their disability to track the GMPP, where P&O and INC

algorithms may drop in an instable loop. For example, in ac-

cordance with Figure 6, P&O algorithm constantly perturbs

∆V=Vt −Vt−1, computes ∆P=Pt −Pt−1, and tracks MPP

based on ∆V and ∆P (graph 1), when a big ∆λ immediately

affects and reshapes the PV’s output I-V curve (graph 2)

locating Pt (Point B) and Pt−1 (Point A) in different sides

of MPP. In addition, the algorithm is still oscillating around

the MPP even after reaching there. Although, oscillation

around MPP can be controlled by reducing the step size

∆t=t − (t− 1), it would negatively result in increasing the

tracking time. In this condition, the algorithm does not work

efficiently.

In [18], it was tried to modify the P&O algorithm by

adding a dynamic switching circuit to track the fast external

changes. In [19], some control based MPPT methods such

as slide control mode (SCM) and ripple correlation control

(RCC) were classified as conventional MPPT methods and

further reviewed in [14], [20]. In SCM based MPPT [20], the

power converter switching function u works based on the fact

that dP/dV > 0 is placed on the left side of the MPP, and

dP/dV < 0 is placed on the right side of MPP. The control

term S is defined as;

S = dP/dV = I + V
dI

dV
(1)

Where the open switch (u = 0) and the close switch (u = 1)

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028580, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Existing MPPT schemes in SRES

(Scheme 1)

(Scheme 3)

(Scheme 5)

(Scheme 2)

(Scheme 4)

(Scheme 6)

MPPT inputs: V and I MPPT inputs: λ, Ƭ, V, and I

DC        

            DC

-

+

V

I

P(t)>P(t-1)
No Yes

V(t)=V(t-1)+Offset

D(k)=D(k-1)+Offset

Offset=-Offset

P&O based MPPT

Compute Power

λ

DC        

            DC

-

+

DC        

            DC

-

+

P&O/FLC based MPPT

DC        

            DC

-

+

V

I

Modified P&O based MPPT

λ
T

V

I

V

I

λ DC        

            DC

-

+

V

I

ANN based MPPT

λ
T

λ DC        

            DC

-

+

-
+

V

I

ANN/PSO based MPPT

λ
T

λ
T

P(t)>P(t-1)
No Yes

V(t)=V(t-1)+Offset

D(k)=D(k-1)+Offset

Offset=-Offset

Compute Power

λ1  < λ  < λ2

T1 < T < T2

-

+

 

V

P(t)>P(t-1)
No Yes

Offset=-Offset

Compute Power

V

I

V

I

S M B

ΔD<Thr

No
Yes

T

V

I

H
y

b
r
id

M
o

d
if

ie
d

 h
y

b
r
id

M
o

d
if

ie
d

 n
o

v
el

M
o

d
if

ie
d

 c
o

n
v

e
n

ti
o

n
a

l

C
o

n
v

en
ti

o
n

a
l

N
o

v
e
l

Inputs OutputHidden layers

A

VV

I

+

-

A

VV

I

+

-

A

VV

I

+

-

A

VV

I

+

-

A

VV

I

+

-

A

VV

I

T

T

T

V(t)=V(t-1)+Offset

D(k)=D(k-1)+Offset

ACO based MPPT

GMPP
P

V

GMPP

LMPP

P

V(1) (2)

 

FIGURE 5. MPPT Schemes.
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FIGURE 6. Divergence in conventional MPPT algorithm.

are given as (2).

u = 0 S ≥ 0

u = 1 S < 0
(2)

2) Scheme 2, modified conventional MPPT, input variables:

λ, T , V , and I

The principal scheme 2 is depicted in (Figure 5 (Scheme 2)).

Although many steps have been taken in order to optimise

the conventional MPPT methods to control the external vari-

ables, majority of the conventional MPPT methods employ

the non-linear dynamic model of PV arrays in their com-

putations, when it can still result in some unwanted power

oscillations regardless of the accuracy of employed methods.

A possible solution is due to directly applying the sensed λ
and T by modifying the conventional MPPT methods.

For example, in the Temperature MPPT method , variable

T has been applied to the FOCV method [4], [10].

Vmpp (t) = kocv × Voc (t) (3)

Vmpp (t) represents the output voltage at MPP, kocv defines

as open circuit voltage coefficient, and Voc (t) represents the

open circuit voltage.

Vmpp (t) = Vmpp (Tref ) + TkVoc
(T − Tref ) (4)

Vmpp (Tref ) represents the output voltage at MPP, Tref

is reference temperature, and TkVoc
defines as temperature

coefficient of open circuit voltage. Although this method

may reduce the oscillation around MPP due to measuring

and tracking the sudden variations of T , it still requires

offline measuring of Voc (t). Moreover, temperature sensing

can be not only impractical in the large-scale SRESs but

also problematic due to its implementation and calibrations’

complexities.

As another suggestion, (4) can be modified by adding

the λ variable or a coefficient of that. However, in other

conventional MPPT methods, λ and T were employed to

track the optimum range of GMPP, assisting the conventional

MPPTs [21].

B. NOVEL MPPT METHODS

Various novel (soft-computing) optimisation algorithms were

employed in order to obtain the GMPP in SRES. Novel

optimisation algorithms including artificial intelligence (AI)

and biologically inspired (BI) were used in order to obtain

the GMPP [2], [22]. In this paper, novel MPPT methods are

categorised as their interaction with λ and T .

1) Scheme 3, novel MPPT, input variables: V and I

The principal scheme 3 is depicted in (Figure 5 (Scheme

3)). In this scheme, novel MPPT methods including AI

and BI algorithms are employed to obtain the GMPP by

optimising V and I . In [23], cuckoo search (CS) was applied

to improve the MPPT performance, transient behaviour, and

convergence speed. Giving the simulation results for CS,

particle swarm optimisation (PSO), and P&O algorithms, the

main advantages of CS were resulted as very low oscillation

around MPP at steady-state condition and high ability to

handle the PSC. The CS algorithm complexity was lower

than PSO but higher than P&O. Also, the hardware validation

and low implementation complexity and cost of this method

were discussed.

Ant colony optimisation (ACO) algorithm [24] was veri-

fied as having a better performance to find GMPP in com-

pare to the P&O and the constant voltage tracking (CVT)

algorithms as well as being simple in compare to the PSO

algorithm in terms of iterations number and independency to

the initial conditions.

In addition, in other studies, bee colony optimisation

(BCO) algorithm [25], bat optimisation (BO) algorithm [26],

salp swarm optimisation (SSO) algorithm [27], (all belong to

the BI algorithms), were employed in the solar MPPT units

mostly for their capability of tracking and identifying the

GMPP under PSC. However, their efficiency, implementation

complexity, and applicability in the large-scale solar SRES

need to be further investigated.

Among AI and machine learning algorithms, reinforce-

ment learning (RL) was employed to minimise the set-up

time and to track the MPP for different PV sources (differ-

ent PV’s characteristics) under various operating conditions

[28].

Also, in [29], fuzzy logic control (FLC) based MPPT

method was proposed and highlighted due its ability to

rapidly respond to external variations and its stability with

respect to circuit parameters’ variations. However, the diffi-

culties of constructing FLC system was mentioned, when the

reliability of FLC is also depended on expert knowledge and

fuzzy parameters such as membership functions.

2) Scheme 4, modified novel MPPT, input variables: λ, T , V ,

and I

The principal scheme 4 is depicted in (Figure 5 (Scheme 4)).

In this scheme, λ and T are also employed as inputs to novel

MPPT. There are a few studies in literature research on this

MPPT scheme.

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3028580, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

In [30], a novel BI optimisation method named memetic

salp swarm algorithm (MSSA) by using a dataset of λ and

T was presented to obtain GMPP under fast varying-weather

condition, where a fast and stable convergence was obtained.

In addition, the variability (power fluctuation) under step

change of λ was obtained about 34% for MSSA and above

66% for other investigated MPPT methods (INC, genetic

algorithm (GA), PSO, gray wolf optimisation (GWA), etc).

Some of other novel algorithms capable of being imple-

mented in the form of this MPPT scheme were reviewed in

[14], [19], [20].

C. HYBRID MPPT METHODS

Various hybrid optimisation algorithms by combining the

conventional MPPT algorithms and/or the novel MPPT tech-

niques have been employed in SRESs. However, there are a

few hybrid linear or non-linear control system based MPPT

methods in literature [31].

1) Scheme 5, hybrid based MPPT, input variables: V and I

The principal scheme 5 is depicted in (Figure 5 (Scheme

5)). In [32], a switching-based control method was employed

to obtain the initial operating point by using FSCC method

and to track GMPP by switching to the P&O algorithm. This

method reduced the oscillation around MPP in face with sud-

den external variations by resetting the algorithm parameters

regularly and estimating the GMPP in every cycle, however

its dependency on the offline tracking was increased.

FLC has been employed in some studies to improve the

performance of conventional MPPT methods like P&O and

INC by controlling their undesired disturbances (including

fast changes of λ) [33], [34]. It was mostly used to optimise

the duty cycle of DC-DC converters either by fuzzification

and optimising the error between instantaneous conduc-

tance and incremental conductance [33] or by optimising

the conventional algorithms’ derivations [34]. The proposed

methods resulted the high power efficiency and fast GMPP

tracking as well as low power oscillation in the steady-state

condition though the algorithm complexity was increased.

In addition, artificial neural network (ANN) algorithms

were combined with the conventional MPPT methods such

as P&O and INC [35]–[37]. They were employed to either

determine the initial Vmpp or to optimise the output of

conventional MPPTs. Other hybrid MPPT methods including

novel/novel and conventional/conventional MPPT algorithms

are also reviewed in Table 1.

2) Scheme 6, modified hybrid MPPT, input variables: λ, T ,

V , and I

The principal scheme 6 is depicted in (Figure 5 (Scheme

6)). This scheme is expected as to be the most accurate

MPPT scheme, where the external impacts (λ and T ) are also

applied in the high efficient hybrid MPPT algorithms. The

algorithm and implementation complexity as well as other

features of this MPPT scheme are reviewed in Table 1.

In [38], a combination of an adaptive calculation block for

calculating the reference voltage point of MPPT (by using λ
and T measurements) and a FLC block for adjusting the duty

cycle of pulse width machine (PWM) was presented, where

a high accuracy (above 99% efficiency) and low oscillation

MPPT was obtained by four and five times faster than the

conventional P&O and INC algorithms, respectively 28%
faster than single FLC based MPPT. However, the imple-

mentation cost and complexity factors were mentioned as its

drawbacks.

In [39], an ANN vision-based MPPT system combined

with Back-stepping controller under PSC was designed. The

artificial vision was used to identify the PSC and λ vari-

ations in order to provide the maximum reference voltage

and maximum power, where a robust and non-linear back-

stepping controller was employed to regulate the DC/DC

converter by controlling the differential error between the PV

output voltage measured by voltage sensor and maximum

reference voltage obtained by ANN. The proposed MPPT

method successfully tracked the GMPP under various levels

of PSC and λ variations. It was discussed that the required

webcams and image processing system would cost less than

employing other relevant environment sensing methods but

its complexity and applicability in the large-scale SRES as

well as required embedded processor were not investigated.

In [40], a novel MPPT algorithm by using the ANN

based on fuzzy particle swarm optimisation gravitational

search algorithm (FPSOGSA), (A combination of fuzzy

based gravitational search algorithm (GSA), from heuristic

methods, and PSO algorithm) was presented, prototyped, and

tested. Simulation and experimental results confirmed reduc-

ing power oscillations and stabilising the reference voltage

around MPP rather than conventional MPPT methods. λ and

T were measured through using the solar irradiance and PV

temperature sensors and the applicability of the proposed

method was shown using a TMS320F28335 digital signal

processor (DSP).

In [10], the measurements of λ and T were employed

to estimate the PSC, where the measurements of λ was

employed to modify the FOCV combining with P&O to

deliver the GMPP. High GMPP tracking efficiency was ob-

tained by comparing the proposed MPPT method with other

conventional MPPT methods.

IV. COMPARISON AND DISCUSSION

In previous MPPT review studies [2], [7], [8], [11], [12], [14],

[19], [20], [26], [41]–[46], the performance of various MPPT

methods have been discussed and compared.

In this paper, a comparative review of the presented MPPT

schemes is delivered through Table 1. Where, the significant

criteria to indicate the performance, efficiency, complexity,

and implementation cost of the six presented schemes are

discussed below.

VOLUME 4, 2016 7
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A. POWER CONVERSION EFFICIENCY

Power efficiency is the most important MPPT’s factor which

represents the quality of the employed MPPT method. Apart

from other factors such as implementation cost and complex-

ity of the novel and hybrid MPPT methods, their efficiency

has been often approved as higher than the efficiency of

conventional MPPT methods [7]. In general, Novel (soft-

computing) based MPPT methods are accurate and their

tracking efficiency and speed is high [44]. MPPT power

efficiency, represented in Table 1, is computed in the steady-

state of GMPP, when the performance of MPPT depends on

other factors as well. According to the Table 1, scheme 1 has

a lower efficiency than other MPPT schemes due to the often

employing the simple algorithms, those which are not able

to track the fast external variations and may get trapped in

the LMPPs, where a considerable amount of power would be

lost. The efficiency of other schemes are quite high due to

using either accurate algorithms or sensing and tracking the

fast external changes.

B. ANALOG/DIGITAL

The MPPT methods are implemented through either analog

or digital circuit processers. Despite some of the conventional

MPPT methods, most of the novel and hybrid MPPT meth-

ods require to be designed and experimented on the digital

embedded systems. When, in the MPPT schemes 2, 4, and 6,

a high volume of complex computations are added because of

the external variables’ measurements, data acquisition, and

data processing.

C. PERIODIC TUNING

Some MPPT techniques may require periodic tuning to

update their training parameters. It can be done due to the

updating of AI algorithms such as ANN and FLC which are

employed to either obtain the GMPP, schemes 3 and 5 or to

train the external variables to estimate a reference voltage for

MPPT algorithm, schemes 4 and 6.

D. TRACKING (CONVERGENCE) SPEED

Tracking speed of the MPPT technique defines as its speed

to reach the MPP. A high tracking speed does not necessarily

accompanied with a high power efficiency. For example,

in the P&O MPPT method, high tracking speed involves

increasing in the perturbation size which then results in a

poor tracking efficiency. In general, both accuracy and com-

plexity of a MPPT algorithm are the main factors affecting

the tracking speed. Moreover, the number of sensors are

used, their data acquisition and measurement process, and

their computational complexity can affect the tracking speed.

Also, the delay during start up may affect the tracking speed

of some MPPT methods [47]. Taking into consideration the

above, it is concluded that schemes 4, 5, and 6, requiring

sensing and almost complex and hybrid algorithms, may take

time to track the MPP though the type of algorithm is used

is still effective. Conventional MPPT methods, scheme 1, are

quite slow because of their incapability to find GMPP.

E. ALGORITHM COMPLEXITY

Size and number of the MPPT input and output variables,

processing time, number of optimisation’s parameters, num-

ber of steps taken to obtain the GMPP, and other analytical

parameters are to be considered to compute and to analyse

the complexity of MPPT optimisation algorithms. It has been

computed that the conventional MPPT algorithms, schemes

1 and 2, are less complicated than the novel and hybrid

based MPPT algorithms, schemes 3, 4, 5, and 6. However,

the complexity of scheme 2 is also depended on sensing

process’s complexity.

F. STEADY-STATE OSCILLATION

A critical factor in selecting the appropriate MPPT method

is known as its stability around MPP. In fact, after reaching

the MPP, it is very important that the MPPT algorithm can

control the power oscillation. The big oscillations around

MPP may result in losing power and decreasing the power

efficiency. The accuracy of selected algorithm as well as

considering the external impacts play the critical role to

control the oscillation in steady-state condition. Hence, as

discussed, schemes 2, 4, and 6 are strongly able to control

the oscillations around MPP.

G. IMPLEMENTATION COST

When it comes to investigate the limitations of MPPT

methods, implementation cost as well as hardware require-

ments must be considered. Type of software and processors

required, type and number of sensors required, and whether

analog or digital implementation is desired, can determine

the cost of the selected MPPT method. It may also include

the costs of training the operators and MPPT maintenance. In

previous review and comparative studies, in general, conven-

tional MPPT methods are cheaper and easier to implement,

while novel (soft-computing) MPPT methods require the

high performance software and processors [44].

Moreover, conventional MPPT methods can be imple-

mented by analog processing which is cheaper than novel

MPPT methods requiring digital processing [7].

The scheme-based MPPT classification presented in this

paper can easily facilitate future research to identify the

implementation cost of every MPPT method which they wish

to work on. According to the Table 1, the implementation of

those schemes 2, 4, and 6 mainly using both novel MPPT

algorithms and sensing λ and T is quite high.

Besides complicated algorithms being used in the schemes

2, 4, and 6, their effort to consider the external variations’

impacts would naturally result in the high complexity and

cost. Measuring Climate change impacts especially in the

large scale SRESs cannot be an easy and economical process.

It would also increase the disturbance and noise of the SRES

requiring further control.

Moreover, some of the novel MPPT methods employed

in schemes 3, 4, 5, and 6 require the periodic training and

tuning, which exceeds the complexity of MPPT.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3028580, IEEE Access

A
u
th

o
r

e
t
a
l.:

P
re

p
a
ra

tio
n

o
f
P

a
p
e
rs

fo
r

IE
E

E
T

R
A

N
S

A
C

T
IO

N
S

a
n
d

J
O

U
R

N
A

L
S

TABLE 1. Comparison of various MPPT methods.

MPPT Techniques Efficiency
Analog

/Digital

Periodic

tuning

Convergence

speed

Algorithm

complexity

Steady-state

oscillation

Implementation

cost (large

scale)

Sensors Scheme

1 FVOC [19] Low Both Yes Medium-High Low High Low V 1

2 FSCC [8], [45] Low Both Yes Medium-High Medium High Low I 1

3 P&O [8] Medium Both No Varies Low High Low V and I 1

4 INC [8]
Medium-

High
Digital No Varies Medium Medium Medium V and I 1

5
β MPPT [4], [45],

[48]
High Digital Yes High High Low Medium V and I 1

6 HC [8] Medium Both No Low Medium Medium Medium V and I 1

7 Modified P&O [18] High Both No High Medium - Low V and I 1

8 SCM [14], [20] - Digital No High Medium - Medium V and I 1

9 RCC [20] - Analog No High Medium - Low V and I 1

10
Temperature (T )

method [4], [20], [45]
High Digital Yes Medium High Low High V and T 2

11
I and T measurement

[21]
High Digital Yes High Medium Low

Medium-High
(regular update)

I and T 2

12 LCC [20] - Digital Yes High - - Medium λ 2

13
Impp, Vmpp

computation [20]
- Digital Yes - - - Medium T and λ 2

14
PSO [8], [38], [48],

[49]
High Digital No Medium-High Medium Varies Medium V and I 3

15
FLC [29], [38], [43],

[50]
Medium-

High
Digital Yes Medium-High Medium-High Varies Medium-High V and I 3

16 ANN [38], [49], [50] High Digital Yes Medium-High High Varies Medium-High V and I 3

17 CS [23] High Digital Yes Varies Medium Low Low-Medium V and I 3

18
Simulated Annealing

(SA) [51]
High - No Varies Medium Low - V and I 3

19 RL [28] High Digital No High Medium Low - V and I 3

20 ACO [49] High Digital No High Medium-High Low Medium V and I 3

21 BCO [25] High Digital No Very High Medium
Low-

Medium
- V and I 3

22 BO [26] High Digital No High Medium-High Low Medium V and I 3

23 SSO [27] High Digital No Very High High - Medium V and I 3

24 GA [50] High Digital No High High Low Medium V and I 3
25 DE [50], [52] High Digital No High Low-Medium Low Medium V and I 3

26 MSSA [30] Very High Digital Yes High High Very Low - V, T , and λ 4

27 ANN [19] Very High Digital Yes High Medium Low High T and λ 4

28 ANFIS [19] Very High Digital Yes High High Low High T and λ 4
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29 BSC [14], [20] - Digital No Varies - - High
V, I, T , and

λ
4

30 Lookup Table [20] - Digital Yes High - - Medium
V, I, T , and

λ
4

31 PSO/INC [45] High Digital No High Low
Low-

Medium
Medium V and I 5

32
ANN/P&O or INC

[35], [36], [48]
High Digital Yes High Medium Low Medium V and I 5

33 PSO/FLC [8], [53] High Digital Yes High High Low High V and I 5

34 PSO/DV [54] - Digital Yes High High - - V and I 5

35 FSCC/P&O [48] High Both Yes High Medium
Low-

Medium
Low V and I 5

36
INC/FLC estimator

[33]
High Digital Yes High Medium Low - V and I 5

37 PSO/P&O [48], [55] High Digital No High Low-Medium Low Medium V and I 5

38 FLC/P&O [48] High Digital No High Medium Low Medium V and I 5

39 GWO/P&O [48] High Digital No High Medium Low Medium V and I 5

40 ACO/P&O [48], [56] High Digital No Very High Medium Low Medium V and I 5

41 P&O/AIDSM [57] High Digital No Very High Medium Low Medium V and I 5

42 N-FL [19] Very High Digital Yes High High Low High V, T , and λ 6

43 FPSOGSA [40] High Digital Yes High High Low - V, T , and λ 6

44
GA-optimised ANN

[45]
High Digital Yes High High Low High V, T , and λ 6

45
Adaptive

calculation/FLC [38]
High Digital Yes High Medium Low High V, T , and λ 6

46
Regression/Nonlinear

control [31]
High Digital No High High Low High V, T , and λ 6

47
Vision based control

[39]
High Digital Yes High High Low High

V, I, T , and
λ (Image

processing)
6

48 FOCV/P&O [47] High Digital Yes High Medium Low Medium-High V, I, and T 6

49 SVM/P&O [58] High Both Yes High High Low

Medium
(offline data),
High (regular

update)

V, I, and λ 6

50
Modified

FOCV/P&O [10]
High Both Yes High Medium Low High V, I, T, and λ 6
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Since the constraints of the system are changed regularly

and often quickly, it is not efficient to tune the controller

frequently, as it is also accompanied with increasing the

implementation cost.

Therefore, implementation cost factor plays an important

role in designing the MPPT methods, where the majority

of industrial MPPT control units are designed based on

the conventional methods with some modifications. Indeed,

when it comes to research, the main effort is to deliver a high

performance method using the accurate optimisation and

control methods, while on the other side, when it comes to

the product’s manufacturing and marketing, the big concern

turns to implementation complexity and manufacturing cost.

V. RECOMMENDATION

Tracking the MPP of a large scale SRES in a region with fast

and unforeseeable weather and climate change conditions

demands the measurements of λ and T . In this situation,

a practical solution to minimise costs and complexity is to

research on network sensing methods, sensor reduction and

data fusion techniques, and vision-based algorithms which

may decrease the number of sensors required and corre-

spondingly increase the measurement’s accuracy.

Authors of this paper would also recommend further re-

search on new techniques which can be efficient and applica-

ble, where the external impacts are also considered in MPPT

methods without concern for sensing cost and complexity.

Some likely suggestions are listed below.

• Employing the inverse-modelling and parameter estima-

tion techniques to estimate the external variables from

PV terminal voltage and current.

• Employing the predictive control-based methods instead

of MPPT conventional and soft-computing algorithms.

• Applying some extra constraints in existing MPPT

methods by taking advantage of feed-back and feed-

forward control loops.

• Developing the PV array dynamic model using the

accurate model identification methods.

• Employing the image processing methods to estimate

the external variations by processing their effects on

PVs’ surface using a few webcams and processor, in-

stead of installing a sensor network to measure λ, and T
in large-scale SRESs.

• Training the offline climate data to predict the external

variations.

VI. CONCLUSION

MPPT unit is in charge of controlling and optimising the

maximum power efficiency in the SRESs. In previous re-

search studies, employing a vast range of optimisation al-

gorithms has classified the MPPT methods as conventional,

novel, and hybrid. Since the solar PV arrays behave like a

non-linear dynamic systems, the aim of previously presented

MPPT methods has been to control the sudden disturbances

in the system resulting from sudden external variations such

as solar irradiance (λ) and PV arrays’ temperature (T ). Many

MPPT review studies were also presented in the literature,

while they all have categorised the MPPT methods based on

the type of optimisation algorithm.

• This paper presented a new perspective in classifying

the solar MPPTs based on their principal schemes with

respect to deployment of the sensed PV arrays’ terminal

voltage (V ) and current (I), λ, and T .

• A combination of the sensed input variables of MPPT

unit (λ, T , V , and I) and the MPPT optimisation

methods (conventional, novel, and hybrid) created six

different MPPT schemes.

• For each scheme, the previous MPPT techniques were

extracted from literature and reviewed, where their ben-

efits and limitations were also extracted and discussed.

• The classified schemes were mainly compared based

on their performance of tracking speed, controlling the

external variations and steady-state oscillation, and de-

livering the maximum power efficiency, as well as other

significant features such as their algorithm complexity

and implementation cost in large-scale SRESs.

• Scheme 1: Conventional MPPTs (input variables: V and

I) are quite easy to implement however they may not

track the GMPP efficiently.

• Scheme 2: Modified conventional MPPTs (input vari-

ables: λ, T , V , and I) are more accurate but quite

expensive to implement.

• Scheme 3: Novel MPPTs (input variables: V and I) are

accurate with sometimes complex computations as well

as uncertainty in tracking GMPP under sudden external

variations.

• Scheme 4: Modified novel MPPTs (input variables: λ,

T , V , and I) are quite accurate with expensive imple-

mentation and complex computations.

• Scheme 5: Hybrid MPPTs (input variables: V and I)

are more accurate than previous schemes whereas they

might still suffer from tracking GMPP under sudden

external variations.

• Scheme 6: Modified hybrid MPPTs (input variables: λ,

T , V , and I) are the most accurate MPPT methods with

complex computations and high implementation cost.

• In general, it was concluded that schemes 2, 4, and

6 considering the measured external variables (λ and

T ) are able to track the GMPP with high reliability.

However, their implementation cost and applicability in

the large-scale SRES is still a concern due to the sensor

deployment cost and complexity of λ and T .

• To avoid these drawbacks, researchers have tried to

develop schemes 1, 3, and 5 by employing a wide range

of control and optimisation methods. However, the main

drawback of these schemes remains as not to observe the

external impacts when a large-scale non-linear system,

SRES, is controlled.

Taking all the aforementioned points into account, it can

be concluded that despite many MPPT methods being pre-

viously researched in the form of each presented scheme in
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this paper, selecting the best MPPT controller might be still

a trade-off between benefits and limitations. However, the

new trend in classifying SRES’s MPPT schemes presented

in this paper would be able to provide a comprehensive

view to the future researchers, those who are firstly looking

to familiarize themselves with the dimension of their work

on the SRES’s MPPTs, to determine the advantages and

disadvantages of sensing the external variations based on

their project’s objectives and limitations, to select the best

practical and accurate MPPT algorithm, and to estimate the

applicability of their MPPT method in the industry.
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