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Abstract. In this paper an improved, macroblock (MB) level, visual
saliency algorithm, aimed at video compression, is presented. A Rel-
evance Vector Machine (RVM) is trained over 3 dimensional feature
vectors, pertaining to global, local and rarity measures of conspicu-
ity, to yield probabalistic values which form the saliency map. These
saliency values are used for non-uniform bit-allocation over video frames.
A video compression architecture for propagation of saliency values, sav-
ing tremendous amount of computation, is also proposed.

1 Introduction

The acuity of the human eye is limited to only 1-2◦ of visual angle. This means
that when viewed from a recommended distance of 1.2 m, the eye can crisply
perceive only a 2 cm radial region (computed as 1.2×tan(2◦/2)) on a standard
definition 32 inch LCD. Also, a recent eye-tracking study [1] on inter-observer
saliency variations in task-free viewing of natural images has concluded that
images known to have salient regions generate highly correlated saliency maps for
different viewers. However, correctly estimating the points of human eye fixation
still remains a challenge. Itti et. al. [2] model visual attention as a combination
of low level features pertaining to the degree of dissimilarity between a region
and its surroundings. Novel center-surround approaches like [3] model saliency as
the fraction of dissimilar pixels in concentric annular regions around each pixel.
Hou et. al. [4] take a completely different approach, suppressing the response to
frequently occurring features while capturing deviances. Other transform domain
approaches like [5,6] follow a similar line of thought. Although these approaches
work on psychological patterns with high accuracy, they often fail to detect
salient objects in real life images. Some failure cases of these approaches will be
shown in our comparison results in Fig. 2.

The failure of these approaches can be attributed to Gestaltś grouping prin-
ciple which concerns the effect produced when the collective presence of a set
of elements becomes more meaningful than their presence as separate elements.
Thus, we model saliency as a combination of low level, as well as high level fea-
tures which become important at the higher-level visual cortex. Many authors
like [7] resort to a linear combination of features such as contrast, skin color, etc.,
but do not provide any explanation for the weights chosen. Hence, we propose
a learning based feature integration algorithm where we train an RVM with 3
dimensional feature vectors to output probabalistic saliency values.
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One of the earliest automated (as opposed to gaze contingent), visual saliency
based, video compression model was proposed by Itti in [8]. In [8] a small num-
ber of virtual foveas attempt to track the salient objects, over the video frames;
and the non-salient regions are Gaussian blurred to achieve compression. Guo et.
al. [5] use their PQFT approach for proto-object detection, and apply a multi-
resolution wavelet domain foveation filter suppressing coefficients correspond-
ing to background. Selective blurring can however lead to unpleasing artifacts
and generally scores low on subjective evaluation. A novel bit allocation model,
achieving compression while preserving visual quality is presented in [9] which we
adopt here. In all these compression approaches, the saliency map is computed
for each frame which is avoidable considering the inherent temporal redundancy
in videos. We propose here a video coding architecture, incorporating visual
saliency propagation, to save on a large amount of saliency computation, and
hence time. This architecture is most effective for natural video sequences.

The rest of this paper is organized as follows. In Sect. 2, we describe the steps
for computing the saliency map. Since all video coding operations are MB based,
we learn saliency at MB level to save on unnecessary computation. Section 3
describes a video coding architecture in which various issues relating to saliency
propagation/ re-calculation and bit allocation are addressed. We conclude with
some conclusions and directions for future research in Sect. 4

2 Generation of Saliency Map

We use color spatial variance, center-surround multi scale ratio of dissimilar-
ity and pulse DCT to construct 3 feature maps. Then, a soft, learning based
approach is used to arrive at the final saliency map.

2.1 Global Conspicuity: Color Spatial Variance

The lesser a particular color is globally present in a frame, the more it is likely
to catch the viewerś attention. However, a color sparsely distributed over the
entire frame need not be conspicuous owing to Gestaltś principles. Hence, spatial
variance of colors can be employed as a measure of global conspicuity. We follow
the method given in [10], based on representation of color clusters by Gaussian
mixture models to calculate their spatial variance, to get this feature map. The
feature map is normalized to the range [0,1]

2.2 Local Conspicuity: Multi-scale Ratio of Dissimilarity

The ‘pop-out’ effect has, since long [2], been attributed to the degree of dissim-
ilarity between a stimulus and its surroundings. A simple method to accurately
capture local saliency has been recently proposed in [3]. In this method, a multi-
scale filter is designed to simulate the visual field. A summation of the fraction
of dissimilar pixels in concentric ring-like regions around each pixel gives a mea-
sure of conspicuity. We use this method to construct our second feature map.
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However, this approach is slow, since a large number of computations and com-
parisons are carried out for every pixel. Noting that background pixels generally
have very low values of saliency, computation of saliency for these pixels is su-
perfluous. Hence, we first run a SIFT algorithm and locate the keypoints in the
image, which are salient not only spatially but also across different scales. We
take one keypoint at a time and compute its saliency using [3]. If the saliency of
this point is above a threshold (0.4 here, required since a keypoint may lie on a
cluttered background), we start growing a region from that point. The saliency
value of neighboring pixels is used as region membership criterion and all pixels
visited are marked so that they are not re-visited when a different seed point
is chosen. We stop when the distance between the new pixel and region mean
exceeds a threshold (0.2 here). This feature map is also normalized to [0,1].

2.3 Rarity Conspicuity: Pulse Discrete Cosine Transform

A biologically plausible, real time model simulating lateral inhibition in the
receptive field has been proposed in [6]. It has also been shown to outperform
other transform domain approaches like [5] both in terms of speed as well as
accuracy over psychological patterns. We apply the pulse DCT algorithm to
smoothened images to produce our rarity feature map. A Gaussian blurred image
simulates the scene viewed from a distance and thus finer edge details in a
cluttered background are not noticed, leading to a sparser feature map. We
normalize it to the range [0,1].

2.4 Learning to Integrate the Feature Maps

The steps followed for combining the 3 feature maps are as follows. First, we
selected 30 images, of size 300×400, encompassing the failure cases of each of
the 3 feature maps. 5 viewers were asked to mark each part of the image they
considered salient. In accordance with [1], our images (mostly taken from [10])
had well-defined salient regions and hence the markings turned out to be exactly
the same for almost all images. Then, an MB level, 3 dimensional training data
(total 450×30 points) was prepared taking average values of each of the 3 feature
maps over each MB of size 16×16. A target class label ’1’ was assigned to an MB
if more than half of the pixels of that MB were marked salient; else class label
’0’ was assigned. Next, we trained an RVM over this training data as a binary
classification problem. Here we must point out that we are not really interested
in a binary label (salient/non-salient) but the relative saliency value of each MB
which will later be used for bit allocation. A potential advantage of RVM over
SVM, which is desired here, is that it provides posterior probabilities. Also, RVM
has better generalization ability and its sparser kernel function leads to faster
decisions. The probabilistic outputs of the RVM formed our final saliency map.

To test the machine, we generated a testing data from 120 images (450×120
points) and evaluated the saliency maps obtained against ground truth. Various
authors like Bruce et. al. [11] have used area under the ROC curves to quantify
the quality of their algorithms. The ROC curve obtained on our own ground
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truth data is shown in Fig. 1. Also shown in the same figure is a comparison of
our result with another leading graph based visual saliency approach [12], which
has been shown to outperform various other approaches like [2]. We obtained
a 0.90048 (s.e. 0.00136) area under the curve compared to 0.87009 (s.e. 00161)
for [12]. In the context of application of saliency to video compression, an FN
(actually salient but classified non-salient) is costlier compared to an FP. A
very low FN rate, less than 2%, at the cut-off point reflects the potential of our
algorithm for such applications. Some results and comparisons with [12] and [11]
are shown in Fig. 2. A comparison with [3] and [6] is inherent in these results as
our local and rarity feature maps respectively. It is apparent that our approach
is better or at least at par with these other high-ranking approaches.

Fig. 1. ROC curves for our approach and [12] obtained by varying thresholds on
saliency values

Fig. 2. (a) Input image, (b) global, (c) local [3], (d) rarity [6] feature maps, (e) our
resized saliency map, (f) saliency map obtained from [12] and (g) [11]
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3 Video Compression Architecture

We wish to employ saliency for the purpose of video compression. However, com-
putation of feature maps for each video frame can prove to be computationally
very expensive if we rely on techniques such as those proposed in [5,8,9] as they
necessitate calculation of saliency map of each frame. We propose here the use
of temporal redundancy inherent in videos to propagate saliency values. Ideally
the saliency map should be re-calculated only when there is a large change in
saliency. However, to measure this change, we require the saliency for the next
frame which is unavailable. Hence, we also propose a workaround to detect the
frames for which re-computation of saliency map is indispensable. A block di-
agram of the architecture is shown in Fig. 3 which is discussed in detail in the
following subsections

Fig. 3. Our video compression architecture incorporating saliency propagation

3.1 Propagation of Saliency Values

Firstly, we describe the need for the mutual information (MI) computation unit.
The idea is that we perform a re-calculation of saliency map on the basis of
MI between successive frames. A concise information theoretic shot detection
algorithm has been proposed by Cernekova et. al. in [13] and an improved version
of the same using motion prediction in [14]. The authors compute the MI between
consecutive frames and argue that a small value of MI indicates existence of a
cut. We experimented with this method over some video sequences, with saliency
map of each frame pre-computed, and plotted the MI distributions for color as
well as saliency. MI for an Airtel ad sequence with 9 scene changes is plotted in
Fig. 4. It is apparent that not only does this method effectively capture changes
in saliency as shown in Fig. 4(a), but also, that the RGB and saliency plots
follow a very similar distribution (Fig. 4(b)). Figure 4(b) implies that we can
detect the frames requiring re-computation of saliency maps by calculating MI
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over the color channels. The frame where a large change is detected should be
coded as an I frame (or I MBs in H.264) and saliency re-computed for this frame
and stored. The method has been found to work best on natural video sequences.

Fig. 4. (a) MI plot for saliency maps, (b) MI plots of RGB and saliency overlaid. An
Airtel ad sequence with 9 cuts is used here.

For P frames, we make use of motion vectors to approximate saliency values.
We select an MB in the current frame and look for the best match in the reference
frame. This best match may or may not exactly overlap an MB in the reference
frame, but we have the saliency values for only non overlapping 16×16 MBs.
Therefore, we take a weighted average of the saliency values of each of the MBs
under the best match region the in reference frame, as the saliency value for the
MB in current frame. The weights correspond to the amount of area overlap as
shown in Fig. 5

Fig. 5. Image illustrating a weighted averaging of saliency values, the orange, blue,
yellow, green colors denote the amount of overlap and hence weights
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3.2 Selection of Quantization Parameters

Once the saliency map is obtained, bits may be non-uniformly distributed across
a frame. We require a function which can optimally tune the quantization pa-
rameters of salient and non-salient MBs to achieve compression, i.e, reduce rate
(R), without any significant loss of perceptual quality, i.e, constant distortion
(D). In [9], this is posed as a global optimization problem and solved using the
method of Lagrange multipliers. The final result for quantization step Qistep for
the ith MB having a saliency value wi is given as:

Qistep =
Ws

wiS
Qstep . (1)

where W is the sum of saliency values over all MBs, s is the area of MBi (16×16
here), S is the area of entire frame and Qstep is a fixed value depending on
the amount of distortion tolerable. This formula implies that the quantization
step size should be inversely proportional to the saliency value which is com-
pletely justified. We present here a short verification of how this formulation
achieves compression without compromising on perceptual quality. Assuming a
R-D function [15] for an MBi is given by:

Di = σ2
i e−γRi or Ri =

1
γ

log

(
σ2

i

Di

)
. (2)

where σ2
i is variance of encoding signal and γ is a constant coefficient. Ignoring

the constant term γ and taking σ2
i = 1/α we get:

Ri = log

(
1

αDi

)
. (3)

Now, the average rate R is calculated as
∑N

i=1 sRi/S, where N is the number of
MBs. Noting that Di ∝ Qistep, we get after replacing Qistep by (1):

R =
Ns

S

[
log

(
1

αQstep

)
+ log

(
(w1.w2...wN )

1
N

w1 + w2 + ... + wN

)
+ log

(
S

s

)]
. (4)

From the above equation it is clear that the first term denotes the rate if every
MB was quantized with the same parameter Qstep, the second term is always ≤ 0
by the AM-GM inequality and the third term is a constant. Thus R is reduced.
It can also be readily observed from (1) that overall D (

∑
wiDi/W ) remains

constant. We limit the Qistep to minimum and maximum values of max(0.5 ×
Qstep, Qistep) and min(1.5 × Qstep, Qistep) respectively. Also, we smoothen our
saliency map using a Gaussian filter before computing the quantization step.
This serves two purposes, firstly, it ensures that the salient object/region is
covered completely and secondly, it ensures a smooth transition from salient to
non-salient regions.
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4 Conclusion

A vast amount of research has gone into modelling of the human visual system
with each model having its own merits and shortcomings. The potential which
lies in an integration of these models has been demonstrated by the accuracy of
our results. A simple and effective learning based approach for such a unification
has been presented. Though we make use of only 3 features, this model is easily
extendible to more features if desired. We computed saliency at MB level to
save computation, however our model is equally applicable at pixel level. The
compression framework proposed, to approximate saliency of P frames, can save
a lot of computation, speeding-up compression. We plan to integrate our it into
the H.264 coding system which remains a challenge owing to the complex mode
decision metrics and hybrid coding structures in this standard [16].
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