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ABSTRACT

We describe and test an updated version of radiation-hydrodynamics in the RAMSES code, that

includes three new features: (i) radiation pressure on gas, (ii) accurate treatment of radiation

diffusion in an unresolved optically thick medium, and (iii) relativistic corrections that account

for Doppler effects and work done by the radiation to first order in v/c. We validate the

implementation in a series of tests, which include a morphological assessment of the M1

closure for the Eddington tensor in an astronomically relevant setting, dust absorption in an

optically semithick medium, direct pressure on gas from ionizing radiation, convergence of

our radiation diffusion scheme towards resolved optical depths, correct diffusion of a radiation

flash and a constant luminosity radiation, and finally, an experiment from Davis et al. of the

competition between gravity and radiation pressure in a dusty atmosphere, and the formation of

radiative Rayleigh–Taylor instabilities. With the new features, RAMSES-RT can be used for state-

of-the-art simulations of radiation feedback from first principles, on galactic and cosmological

scales, including not only direct radiation pressure from ionizing photons, but also indirect

pressure via dust from multiscattered IR photons reprocessed from higher-energy radiation,

both in the optically thin and thick limits.
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1 IN T RO D U C T I O N

Recent years have seen great advances in the theory of galaxy evo-

lution, in part thanks to the insight gained from hydrodynamical

simulations. Among the clearest messages to come out of the sim-

ulations is the necessity for feedback to regulate galaxy evolution.

Without it, the galaxies are too massive and compact compared to

observations (e.g. Suginohara & Ostriker 1998; Balogh et al. 2001).

While the inclusion of feedback from supernovae (SN) and active

galactic nuclei (AGN) has helped to relieve this so-called overcool-

ing problem, overcompact galaxies remain an issue in cosmologi-

cal simulations (Scannapieco et al. 2012, though see Schaye et al.

2015). This can partly be traced directly to numerical overcooling,

due to the lack of resolution and/or the details of the hydrodynami-

cal solver (e.g. Creasey et al. 2011; Dalla Vecchia & Schaye 2012;

Keller et al. 2014).

Part of the problem may also be the lack of alternative feedback

mechanisms in simulations, such as cosmic rays (e.g. Pfrommer

et al. 2007; Booth et al. 2013; Hanasz et al. 2013; Salem & Bryan

2014), or radiation (e.g. Gayley, Owocki & Cranmer 1995; Murray,

Quataert & Thompson 2005; Krumholz & Matzner 2009).

⋆E-mail: jokirosdahl@gmail.com

Radiation feedback in particular has been employed in a number

of recent simulation works to improve galaxy evolution models

and quench star formation rates (e.g. Oppenheimer & Davé 2006;

Brook et al. 2012; Agertz & Kravtsov 2014; Hopkins et al. 2014).

However, even if those simulations are successful in reproducing a

set of observations, it remains unclear and debated whether radiation

feedback is effective, and how it works in detail.

Radiation typically heats the gas it interacts with, and though the

heating is relatively gentle compared to AGN and SN feedback, it

may well give an important boost to those other feedback mecha-

nisms (e.g. Pawlik & Schaye 2009). Radiation pressure may also

be an important feedback mechanism on its own, stirring up the

gas in the interstellar medium (ISM) and even generating outflows.

Here, direct pressure from ionizing radiation can play a role (e.g.

Haehnelt 1995; Wise et al. 2012; Ceverino et al. 2014), although

recent works have relied more on the boost in radiation pressure

that can be gained by reprocessed multiscattered infrared (IR) radi-

ation, which could in particular be a major feedback mechanism in

optically thick ultraluminous IR galaxies, or ULIRGS (e.g. Murray,

Quataert & Thompson 2010; Thompson et al. 2015). This last men-

tioned multiscattering feedback mechanism in particular has been

under debate in the recent literature. Observationally there is not a

lot of evidence for radiation feedback from star formation, though

recent observations of stellar nurseries hint that its effect on the ISM
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is mild and mostly in the form of heating (Lopez et al. 2014). It is

likely though that the nature of the radiation feedback mechanism

depends heavily on the environment, mainly the optical thickness

of the galactic gas.

It does not help that most simulations that invoke some form

of radiation feedback do so with pure hydrodynamics (HD), us-

ing subgrid models and approximations instead of the radiation-

hydrodynamics (RHD) needed to model radiation feedback from

first principles.

This is understandable, as radiative transfer (RT) is both com-

plex and costly due to the usually much shorter inherent time-scales

and large number of computational dimensions. RHD is still young

compared to the more mature field of HD in galaxy evolution, but in

the last decade or so, increased computational power and the devel-

opment of new approaches and algorithms has finally made RHD

a feasible prospect in astronomical and cosmological simulations

(e.g. Petkova & Springel 2009; Krumholz, Klein & McKee 2011;

Pawlik & Schaye 2011; Wise & Abel 2011; Jiang, Stone & Davis

2012; Skinner & Ostriker 2013; Norman et al. 2015).

Recently, in Rosdahl et al. (2013, hereafter R13), we presented an

implementation of RHD in the cosmological code RAMSES (Teyssier

2002), that we call RAMSES-RT. This work focused on ionizing radi-

ation and its interaction with hydrogen and helium via ionization

heating, which is indeed one of the possibly relevant physical mech-

anisms in radiation feedback. However, we still neglected radiation

pressure in that work, which is cited by many of the aforementioned

works as being the main ‘culprit’ in radiation feedback.

In this paper, we describe a step towards simulating radiation

feedback in galaxy evolution simulations from first principles, with

the additions to RAMSES-RT of radiation pressure and reprocessed

dust-coupled multiscattered radiation. Our new features include a

novel approach to modelling IR radiation trapping, that describes

accurately both the optically thin and thick regimes, a feature that

does not come naturally in RT implementations, which usually work

well in one regime but not the other.

This paper is split into two main sections, describing the method

details (Section 2) and then verification tests (Section 3). In the

methods section, we begin in Section 2.1 by presenting the basic

moment RHD equations to be solved, focusing on the new aspects

of the radiation force and radiation-dust coupling in the optically

thick regime. Then, in Section 2.2, we recall the main ingredients

of our existing RHD solver, and in Section 2.3 we detail the addi-

tion of the radiation pressure and IR–dust interaction. Concluding

the methods section, we present in Section 2.4 our innovative ap-

proach to modelling the propagation of IR radiation correctly in

both the optically thin and thick limits. The rest of the paper is

dedicated to tests of our implementation, starting with qualitative

tests of radiation field morphology in the optically thin and thick

limits (Sections 3.1 and 3.2), going on to test the direct momentum

transfer from photons to gas (Section 3.3), the correct diffusion of

radiation in the optically thick limit (Sections 3.4–3.6), and, finally,

comparing our code directly to another RHD implementation in a

previously published experiment of the competition between radia-

tion pressure and gravity, for which most of our new additions are

quite relevant (Section 3.7). In the appendix we describe relativistic

corrections to our implementation, the details of which are omitted

from the main text for clarity.

2 M E T H O D S

RHD has been partially implemented in RAMSES-RT (R13), which

is an extension of the adaptive mesh refinement (AMR) code RAMSES

(Teyssier 2002). RAMSES models the interaction of dark matter, stellar

populations, and baryonic gas, via gravity, HD, and radiative cool-

ing. The gas evolution is computed using a second-order Godunov

scheme for the Euler equations, while trajectories of collisionless

DM and stellar particles are computed using a particle-mesh solver.

RAMSES-RT adds the propagation of photons and their interaction

with gas via photoionization and heating of hydrogen and helium.

The advection of photons between grid cells is described with the

moment method and the M1 closure relation for the Eddington ten-

sor. RAMSES-RT solves the non-equilibrium evolution of the ionization

fractions of hydrogen and helium, along with ionizing photon fluxes

and the temperature in each grid cell.

The goal of the present paper is to extend the RHD implementa-

tion in RAMSES, adding three important features: (i) we now include

the radiative force, which couples the radiation flux to the gas mo-

mentum equation; (ii) we introduce a new scheme to recover the

proper asymptotic limit in the radiation diffusion regime, in case

the mean free path is much smaller than the grid spacing; (iii) we

add relativistic corrections to the RHD equations, accounting for

Doppler effects up to first order in v/c, where v and c are the gas

and light speeds, respectively, and for the work done by the ra-

diation force on the gas. In this section, we will review the main

characteristics of the RAMSES-RT solver before discussing our new

numerical scheme for the radiation force and for the preservation

of the asymptotic diffusion regime. We will omit the order v/c rel-

ativistic corrections, which will be described in more detail in the

appendix.

2.1 The RHD equations

We describe here the moment equations solved in RAMSES-RT, out-

lining the role played by the radiation force.

As detailed in R13, we use an important approximation to speed

up our explicit scheme for radiation advection, where the time-step

scales inversely with the speed of light c. In this so-called reduced

speed of light approximation, we simply decrease the speed of light,

typically by 1–3 orders of magnitude.1 In this paper, we thus make

an important distinction between c, the actual speed of light, and c̃,

the reduced speed of light.

The starting point in deriving the RHD equations is the radi-

ation specific intensity Iν(x, n, t), describing the radiation flow

(CGS units of erg cm−2 s−1 Hz−1 rad−2)2, over the dimensions of

frequency ν, location x, unit direction n, and time t. The evolution

of the specific intensity is described by the RT equation:

1

c̃

∂Iν

∂t
+ n · ∇Iν = ην − κνρIν, (1)

where κν is the gas opacity, (cm2 g−1), ρ the gas density (g cm−3),

and ην the plasma emissivity (erg s−1 cm−3 Hz−1 rad−2, usually as-

sumed to be isotropic).

We define the radiation energy density E (erg cm−3), the radiation

flux F (erg cm−2 s−1), and the radiation pressure P (erg cm−3), in

a group of photons over a specified frequency range, as moments

1 This approximation is valid only if the modified light crossing time is still

short compared to the sound crossing time, the recombination time, and the

advection time in the flow. If this is not the case, then the reduced speed of

light approximation is invalid and one has to rely on either RT subcycles

(Aubert & Teyssier 2008) or implicit time integration (Commerçon, Debout

& Teyssier 2014).
2 We will use CGS units (centimetres–grams–seconds) to clarify variable

dimensions, but these are obviously interchangeable for other units systems.
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(i.e. averages) of the radiation intensity over solid angle � and

frequency:

E(x, t) =
1

c̃

∫

ν

∫

4π

Iν(x, n, t) dν d�, (2)

F(x, t) =
∫

ν

∫

4π

Iν(x, n, t) n dν d�, (3)

P(x, t) =
1

c̃

∫

ν

∫

4π

Iν(x, n, t)n ⊗ n dν d�, (4)

where ⊗ denotes the outer product. Taking the zeroth and first

moments of equation (1) and substituting the definitions (2)–(4)

yields the well-known moment equations of radiation energy and

flux (e.g. Mihalas & Mihalas 1984):

∂E

∂t
+ ∇ · F = S − κEρc̃E, (5)

1

c̃

∂F

∂t
+ c̃∇ · P = −κFρ F, (6)

where κE and κF are, respectively, the radiation energy and flux-

weighted mean opacities, and the source function S is the integral

of the emissivity over all solid angles and over the photon groups

frequency range. With multiple photon groups, a separate set of

moment equations exists for each group, which should in principle

be denoted by photon group subscripts, i.e. Ei, Fi , P i , Si, κE, i, and

κF, i. For the sake of simplicity, we omit those subscripts, unless

they are required for clarification.

If the system under study is close to local thermodynamical equi-

librium (LTE), where the gas emits as a blackbody, and the photon

group covers a sufficiently large frequency range, the source func-

tion can be approximated by the frequency integral of a Planckian,

S = κPρcaT 4, (7)

where a is the radiation constant, κP is the Planck mean opacity,

and T is the gas temperature. This approximation is often used to

describe the coupling between dust and IR radiation in the ISM

(Mihalas & Mihalas 1984, chapter 6). We assume a single-fluid

system in this work, where the gas and dust are also in LTE, i.e.

at the same temperature. Note that in the previous equations, the

opacities are computed in the comoving frame, moving with the

gas, while the radiation moments are defined in the laboratory (or

lab) frame. We ignore Doppler effects of these relative motions in

the main text. However including them for non-relativistic flows

introduces important additional terms which are described in the

appendix.

If one assumes that the spectral energy distribution (SED) is close

to a Planckian, then κE = κP. Another traditional approximation,

when the fluid-radiation system is close to LTE and the optical

depth is large, is to take κF ≃ κR, where the latter is the Rosseland

mean. Under these approximations, valid only for systems close to

LTE (such as for ISM dust and IR radiation), equations (5) and (6)

simplify into

∂E

∂t
+ ∇ · F = κPρ

(

caT 4 − c̃E
)

, (8)

∂F

∂t
+ c̃2∇ · P = −κRρc̃F. (9)

These equations are not valid in the optically thin regime and for

systems far from LTE, such as for ionizing radiation coupled to the

non-equilibrium chemistry of hydrogen and helium. Under such

conditions, one can instead use a template spectrum, usually the

SED of stellar populations, to compute the average dust opacities

(see R13).

The HD equations must be modified to account for the transfer of

energy and momentum between radiation and gas. The fluid energy

equation describes the evolution of the gas energy density

Egas =
1

2
ρv2 + e, (10)

where the right-hand side (RHS) terms are kinetic energy, with v

the gas speed, and internal or ‘thermal’ energy e. Assuming LTE,

the fluid energy equation becomes

∂Egas

∂t
+ ∇ ·

(

v(Egas + P )
)

= ρg · v + � + κPρ
(

c̃E − caT 4
)

,

(11)

where v and P are the gas velocity and pressure, g is the local gravi-

tational acceleration, and � represents cooling/heating via thermo-

chemical processes (see R13). The new term here is the last one on

the RHS, describing the internal energy exchange between the gas

and the radiation field.

The fluid momentum equation becomes

∂ρv

∂t
+ ∇ · (ρv ⊗ v + P I) = ρg +

κRρ

c
F, (12)

where I is the identity matrix. Here the new term is again the last one

on the RHS, describing the radiation momentum absorbed by the

gas. Note that the work done by the radiation force is absent. These

terms of order v/c are introduced in the appendix as a relativistic

correction, but we omit them from the main text for the sake of

simplicity.

2.2 The radiation solver

RAMSES-RT solves the radiation advection equations (8) and (9) us-

ing the M1 closure for the Eddington tensor, first introduced by

Levermore (1984). In this approximation, the Eddington tensor,

defined as P = DE, is given explicitly by a simple local relation

D =
1 − χ

2
I +

3χ − 1

2
n ⊗ n, (13)

where n = F/|F| and χ depends only on the reduced flux,

f =
|F|
c̃E

, (14)

as

χ (f ) =
3 + 4f 2

5 + 2
√

4 − 3f 2
. (15)

It is based on the assumption that the angular distribution of the ra-

diation intensity can be approximated by a Lorentz-boosted Planck-

ian, in the direction of the radiation flux. This approximation re-

covers the asymptotic limit of the diffusion regime, when f ≪ 1, so

that χ ≃ 1/3 and D ≃ I/3. It also describes well the free stream-

ing of radiation from a single source, when f ≃ 1, so that χ ≃ 1

and D ≃ n ⊗ n. In the intermediate regime, or in the presence of

multiple sources, this is only an approximation, and the model must

therefore be compared to existing exact solutions to assess its range

of validity (Aubert & Teyssier 2008, R13).

A very important consequence of the M1 closure is that the

resulting system of conservation laws (ignoring the source terms)

is hyperbolic, and can therefore be integrated numerically using

a classical Godunov scheme (Aubert & Teyssier 2008), and an

operator split approach, where the radiation variables E and F in
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each cell are modified first using a conservative and explicit update

from their intercell fluxes, and the source terms are included in

a second step using a local, implicit, subcycling thermochemistry

module (Aubert & Teyssier 2008, R13).

Stability of the numerical integration for the transport step is en-

sured using proper upwinding to compute the numerical flux, using

a Riemann solver. In this paper, we use the Global Lax Friedrich

(GLF) Riemann solver3 (see Aubert & Teyssier 2008, R13), for

which the interface radiation flux is explicitly

F1/2 (UL, UR) =
FR + FL

2
−

c̃

2
(ER − EL) , (16)

where U = (F, E) is a cell state, the ‘1/2’ subscript refers to the

Godunov intercell state, that we use to perform the final conservative

update of the radiation energy, and the subscripts ‘L’ and ‘R’ refer

to the neighbouring left and right cells. A similar formula holds for

the intercell Eddington tensor to conservatively update the radiation

flux. The first term on the RHS of equation (16) is the average of

the right and left cells radiation fluxes. This term alone would give

a second-order but unstable solution. The second term on the RHS

of equation (16) is proportional to the difference of the right and

left cell radiation densities. This is the stabilizing term, also called

the numerical diffusion term. Indeed, one can formally rewrite the

numerical flux as

F1/2 =
FR + FL

2
−

c̃
x

2

∂E

∂x
, (17)

where 
x is the width of the cell. We now see explicitly the nu-

merical diffusion coefficient as νnum = c̃
x/2. We will use these

numerical concepts in Section 2.4.

2.3 A new RHD solver

The microscopic processes that are already included in RAMSES-RT

(see R13) are the non-equilibrium chemistry of hydrogen and he-

lium coupled to the ionizing radiation. We now describe the new

features in RAMSES-RT which can be used to model the coupling

between dust and IR radiation, and to model the injection of mo-

mentum into the gas by the radiation flux.

2.3.1 Modified moment RT equations, for IR and higher energy

photons

In RAMSES-RT, we now make a distinction between the group of IR

photons and all other, higher-energy, groups. The IR photons are

assumed to cover the energy range of dust emission and to be in

LTE with the dust particles, exchanging energy via absorption and

re-emission. Other groups, however, span energies above the dust

emission. These photons can be absorbed by the dust, as well as

by hydrogen and helium via photoionization, but the dust-absorbed

energy is re-emitted at lower (IR) energies. Thus, the IR photons

3
RAMSES-RT also offers the possibility to use the Harten–Lax–van Leer (HLL)

intercell flux function, which is less diffusive than GLF, but also produces

less spherically symmetric radiation from stars, as we showed in R13. Our

method for radiation trapping in the optically thick limit, which we develop

in this paper, is however only strictly compatible with GLF, so we do not

include the HLL function in the current work. Since we prefer the GLF

function over HLL, which produces asymmetric radiation around stellar

sources, we do not have immediate plans to adopt radiation trapping for

HLL.

can be seen as ‘multiscattered’, while all other photons are ‘single

scattered’.

For a group i �= IR of non-IR photons, the moment RT equations,

following from equations (5) and (6), are unchanged from what we

presented in R13, save for new dust absorption terms:

∂Ei

∂t
+ ∇ · Fi = −

H I,He I,He II
∑

j

njσij c̃Ei + Ėi − κiρc̃Ei, (18)

∂Fi

∂t
+ c̃2∇ · P i = −

H I,He I,He II
∑

j

njσij c̃Fi − κiρc̃Fi . (19)

Here we sum over the hydrogen and helium species j which absorb

ionizing photons, with σ ij denoting the ionization cross-section

(cm2) between photon group i and ion species j, which is zero for

non-ionizing photons. Ė is the rate of emission from point sources

(stars, AGN) and hydrogen/helium recombinations. The last terms

in each equation represent dust absorption, which scales with the

dust-opacity (κ i) and the gas density.

The dust-absorbed energy is re-emitted into the IR photon group,

for which the RT equations are

∂EIR

∂t
+ ∇ · FIR = κPρ

(

caT 4 − c̃EIR

)

+ ĖIR

+
other groups

∑

i

κiρc̃Ei, (20)

∂FIR

∂t
+ c̃2∇ · P IR = −κRρc̃FIR. (21)

These equations are the same as the previous equations (18) and

(19) for non-IR photons, except that (i) we omit photoioniza-

tion/recombination terms (in ĖIR), as these photons have subioniz-

ing energies, (ii) the negative dust absorption terms in the previous

equations become additive terms here, representing dust re-emission

into the IR group, and (iii) we have added the first RHS term, which

describes the coupling between IR radiation density and the gas

(dust) temperature.

A great deal of complex physics is encapsulated inside κ i, κR,

and κP, which depend on temperature, the dust content, and the

exact shape of the radiation spectrum. One can use existing models

for temperature-dependent dust opacities (e.g. Draine & Li 2007),

assuming that the dust content scales with metallicity, and include

a cut-off at T � 1000 K to model dust sublimation. In this work,

however, we consider only constant values for the photon opac-

ities, except for Section 3.7, where we use simple temperature-

dependent functions. Updating the opacities to more complex forms

is a straightforward addition to the code, and often specific to the

problem at hand and the level of detail one seeks to achieve. We

defer those considerations to future works.

As described in detail in R13, the RT moment equations are

solved, after the HD step, with an operator splitting approach, where

we solve in sequence the advection terms and the source/sink terms

over an RHD time-step, for all cells in a given refinement level.

The advection is solved explicitly and the source/sink terms are

solved quasi-implicitly, together with the gas temperature, using

thermochemistry subcycling. The only non-trivial addition to the

solver is the coupling term for the gas and radiation, i.e. the first

term on the RHS of equation (20), which is described next.
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2.3.2 IR–dust temperature coupling

Ignoring advection terms and other sources of photon absorp-

tion/emission and gas cooling/heating, which are described in R13,

the coupling between the IR energy density, EIR, and the gas internal

energy density, e, follows from equations (8) and (11), respectively:

∂EIR

∂t
= κPρ

(

caT 4 − c̃EIR

)

, (22)

∂e

∂t
= κPρ

(

c̃EIR − caT 4
)

. (23)

These equations are solved in each thermochemistry substep after

the updates of radiation energy density and gas temperature via

other terms of absorption, emission, heating, and cooling. Keeping

in mind the strong coupling between radiation and temperature, we

solve semi-implicitly using a linear approach. In this formulation,

the change in the state vector UE ≡ (EIR, e), over the thermochem-

istry time-step of length 
t, is


UE = U̇E
t (I − J
t)−1 , (24)

where U̇E is the RHS of equations (22) and (23), and J = ∂U̇E

∂UE
is

the Jacobian matrix, each evaluated at the start of 
t.

Taking advantage of the symmetry of the problem (
EIR =−
e),

the update over 
t is obtained by


EIR = −
e =
caT 4 − c̃EIR

(κPρ
t)−1 + c̃ + 4caT 3C−1
V

, (25)

where CV =
(

∂e
∂T

)

V
= ρkB

mpμ(γ−1)
is the heat capacity at constant vol-

ume, kB the Boltzmann constant, μ the average particle mass in

units of the proton mass mp, and γ is the ratio of specific heats.

After the update of temperature and IR energy via equation (25),

we reapply the 10 per cent thermochemistry rule (R13): if either T

or EIR (or both) was changed by more than 10 per cent from the

original value, the entire thermochemistry substep is repeated with

half the time-step length.

2.3.3 Momentum transfer from photons to gas

In the framework of the RHD method, the fluid momentum equation

is

∂ρv

∂t
+ ∇ · (ρv ⊗ v + P I) = ρg + ṗγ . (26)

This is the same as equation (12), but generalized to the total local

momentum absorption rate, per unit volume, from all photon groups

via all radiation interactions (not only radiation–dust interactions):

ṗγ =
groups
∑

i

Fi

c

⎛

⎝κiρ +
H I,He I,He II

∑

j

σijnj

⎞

⎠ . (27)

The momentum transfer is implemented with an operator split

approach, adding to the gas momentum in each RHD step after

the thermochemistry step. Since both photon fluxes and absorber

densities may change substantially during the subcycling of the

thermochemistry equations over a single RHD time-step, 
tRHD, we

collect the absorbed momentum density over the subcycles, whose

subtime-steps are limited such as to change the evolved quantities

only by a small fraction (10 per cent) per substep:


 pγ =
∑

k


tk

groups
∑

i

Fi,k+1

c

⎛

⎝κiρ +
H I,He I,He II

∑

j

σijnj,k+1

⎞

⎠ . (28)

Here the outermost sum is over the thermochemistry substeps (with
∑

k
tk = 
tRHD). At the end of the thermochemistry subcycling

of a cell, the total absorbed photon momentum density vector 
 pγ

is added to the gas momentum, and the gas specific total energy is

updated to reflect the change in kinetic energy.

In addition to the direct radiation pressure just described, radi-

ation pressure from isotropic diffusive IR radiation is also imple-

mented in RAMSES-RT, as we will discuss in the next subsection.

2.4 Preserving the asymptotic diffusion limit

The diffusion limit is reached when the optical depth of the LTE

radiation becomes unresolved and the photons propagate in a ran-

dom walk.4 Then, since F ≪ c̃E, we get for the Eddington tensor

(equation 13) D = I/3. In this case, we reach the asymptotic regime

where equation (9) reduces to a static form (see Mihalas & Mihalas

1984, section 80)5, giving

F ≃ −
c̃λR

3
∇E, (30)

where λR = (κRρ)−1 is the mean free path. This equation expresses

the fact that in this regime, radiation is a diffusive process, with

diffusion coefficient νrad = c̃λR/3. The previous derivation for our

numerical scheme (see equation 16) explicitly demonstrates that

in the diffusion limit, the numerical diffusion of our M1 solver

dominates over the true radiation diffusion when

νnum > νrad or 3
x > 2λR. (31)

This last inequality is likely to occur in optically thick regions,

where the optical depth of the cell, τ c = 
x/λR, is larger than 1.

As discussed in Liu (1987) and Bouchut (2004), if the equa-

tion (31) inequality occurs, operator splitting is not valid anymore,

as source terms become stiff compared to the hyperbolic transport

terms. The numerical result becomes severely inaccurate: radia-

tion propagates with an effective mean-free-path equal to the cell

size, much larger than the true mean-free-path, manifesting in pho-

tons which travel much too fast through the volume, compared to

equation (30).

One possibility to resolve the problem and recover the correct

diffusion of photons is to exploit the AMR technique and refine the

grid adaptively so that 
x always stays smaller than, say, λR/4.

This is unfortunately not always possible in realistic astrophysical

applications where the opacity can be a highly non-linear function

of temperature and density.

We now propose two different techniques to modify our base

scheme in order to preserve the asymptotic diffusion regime posed

by equation (30): (i) a modification of the Godunov flux that takes

into account the diffusion source term (Section 2.4.1), and (ii) the

4 This section concerns only the IR photon group, since other groups are

assumed to be single scattering.
5 The ratio between the time-dependent and static flux terms in equation (9)

is

∂F
∂t

κRρc̃F
∼

λR

c̃
t
=

(

λR


x

)2

, (29)

where we use the fact that a travelled distance 
x requires (
x/λR)2 in-

teractions in a random walk, and hence the time to travel this distance is


t = 
x2

c̃λR
. If λR ≪ 
x, the time-dependent flux term is thus negligible, and

we can use the static diffusion form (equation 30).
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addition of a new photon (sub) group that we call trapped pho-

tons (Section 2.4.2). As opposed to streaming photons, these new

photons are strictly isotropic in angular space.

2.4.1 Asymptote-preserving Godunov fluxes

Following the methodology presented in Berthon, Charrier &

Dubroca (2007), it is possible to correct for the effect of radia-

tion diffusion by explicitly taking into account the source terms in

the Riemann solver. The Riemann solution becomes much more

complicated (see Berthon et al. 2007), but can be approximated by

a simple modification of the intercell flux (equation 16) as

F1/2 = F1/2(αLUL, αRUR), (32)

where Berthon et al. (2007) introduced the new function α(τ c),

which is, in case one uses the GLF numerical flux,

α(τc) =
1

1 + 3
2
τc

. (33)

This function encodes the modification to the Riemann solver that

accounts for the source terms. It satisfies

α → 1 when τc → 0, and

α →
2

3τc

when τc → +∞.

Our goal is to recover the correct asymptotic limit in the optically

thick regime. Using equation (17) with the above modification, we

indeed find, assuming for simplicity that the mean free path is uni-

form, that the numerical flux has the correct asymptotic behaviour

given by equation (30):

F1/2 ≃
2λR

3
x

(FR + FL)

2
−

c̃λR

3

(ER − EL)


x

≃ −
c̃λR

3

(ER − EL)


x
. (34)

The latter equality comes from the fact that in the limit of optically

thick cells, the absorption terms in equation (20) naturally lead to

F ≪ c̃E.

2.4.2 Trapped versus streaming photons

Although the previous method allows us to upgrade, in a straight-

forward way, our M1 hyperbolic solver for the transport of radiation

in a dense, optically thick medium, we have instead implemented in

RAMSES-RT an alternative technique, that turns out to be equivalent

to the previous one, but allows for a more accurate treatment of

the diffusion limit, where trapped photons are advected with the

gas, and radiation pressure, along with the work performed by that

pressure, is naturally accounted for.

Our technique is based on the ‘IDSA methodology’ (Isotropic

Diffusion Source Approximation), proposed by Liebendörfer,

Whitehouse & Fischer (2009) in the context of neutrino transport in

core collapse SN. The idea is to introduce two different IR photon

groups spanning the same frequency range, splitting the total IR

radiation energy into a trapped radiation energy variable Et and a

streaming radiation energy variable Es satisfying E = Et + Es. The

difference between the trapped and streaming photons is that the

former are assumed to be strictly isotropic in angular space. They

correspond to the asymptotic limit of vanishingly small mean free

path, for which the radiation flux is strictly zero. We can then rewrite

the radiation moment equations, (20) and (21), using Ft = 0 as

∂Et

∂t
+

∂Es

∂t
+ ∇ · Fs = κPρ

(

caT 4 − c̃Et − c̃Es

)

+ Ė, (35)

∂Fs

∂t
+

c̃2

3
∇Et + c̃2∇ · P s = −κRρc̃Fs, (36)

where we used the fact that P t = Et I/3 (equation 13) since trapped

photons are isotropic, and we enclosed the isotropic emission terms

from gas, stars, AGN, and other photon groups in equation (21)

under one term, Ė.

Liebendörfer et al. (2009) proposed to split the previous system

into two sets of equations, one describing the trapped photons only,

∂Et

∂t
= κPρ

(

caT 4 − c̃Et

)

+ Ė, (37)

where the isotropic source of radiation is assigned naturally to the

trapped component, and a second one describing the streaming

photons only, with

∂Es

∂t
+ ∇ · Fs = −κPρc̃Es, (38)

∂Fs

∂t
+ c̃2∇ · P s = −κRρc̃Fs −

c̃2

3
∇Et, (39)

where the last two equations are our standard moment equations (20)

and (21), only with modified source terms. This is the system that we

would like to solve using our Godunov scheme. In the Liebendörfer

et al. (2009) approach, the next step is to introduce an additional fic-

titious source term describing the energy exchange between trapped

and streaming photons (noted � in the IDSA methodology).

We follow a different route, analysing the asymptotic diffu-

sion regime, which gives a straightforward decomposition between

trapped and streaming photons. Indeed, in the diffusion limit, we

have Es ≪ Et, and equation (39) becomes

Fs ≃ −
c̃λR

3
∇Et. (40)

On the other hand, we know that the numerical diffusion term for

streaming photons in the GLF flux function of our Godunov scheme

(equation 17) is

Fs ≃ −
c̃
x

2
∇Es. (41)

It is then straightforward to make a partition between streaming and

trapped photons, such that equation (40) is correctly retrieved in our

photon advection scheme. The relations which ensure this are

Et =
3τc

2
Es and E = Et + Es, (42)

i.e.

Es =
2

2 + 3τc

E, Fs = F, (43)

Et =
3τc

2 + 3τc

E, Ft = 0. (44)

Using this partition, we can describe our streaming photon group

with the classical Godunov solver (equation 16) without the addi-

tional source term in equation (39), namely

∂Fs

∂t
+ c̃2∇ · P s = −κRρc̃Fs, (45)

and still get the correct asymptotic diffusion limit of the mixed

trapped/streaming system.
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In other words, by making the partition of equations (43) and

(44) between streaming and trapped photons, in all cells, before

each photon advection step, the streaming photon variables, Es and

Fs, can be advected using equations (20) and (21), without any mod-

ification to the RT advection solver. The RT solver, however, does

not touch the trapped photon variable, Et. We de-partition between

the trapped and streaming photons before the thermochemistry step,

such that thermochemistry is performed on the total photon density

and flux, and re-partition once the thermochemistry step is finished,

such that the advection is correctly performed in the diffusion limit.

The modification to the RHD code to correctly account for the dif-

fusion limit is thus limited to a single new variable (Et), and a few

lines of code before and after the call to the thermochemistry.

In addition to this simple modification, we need to also make

sure that (i) the trapped photons are advected with the gas, (ii) that

radiation pressure from the trapped photons is correctly accounted

for, and (iii) that the PdV work done on the gas by the trapped

radiation pressure is accounted for, by reducing the trapped radiation

energy accordingly. Fortunately, all these features are automatically

acquired in RAMSES, by storing the trapped radiation as a non-thermal

energy variable. Non-thermal energy variables are a new feature in

RAMSES, adding up the total energy density and pressure which is

used in the classical Euler HD equations (see e.g. R13, equations

39 and 40), and they behave just like the thermal energy. In other

words, the trapped radiation energy is correctly advected with the

gas, the trapped radiation pressure is correctly accounted for, and

so is the PdV work done by the trapped radiation. These relativistic

details are covered in Appendix B. The equation of state relating

the trapped radiation energy and pressure, is

Prad =
c̃

c

Et

3
. (46)

The radiative force is computed as the sum of the trapped and

streaming contributions (from equation 36), which, in our model, is

also equivalent to the Godunov GLF flux of the streaming photons.

The fluid momentum equation (12) thus becomes

∂ρv

∂t
+ ∇ · (ρv ⊗ v + (P + Prad)I) =

κRρ

c
Fs + ρg, (47)

where we omit the contributions from single scattering photon

groups, which have the same form as the first term on the RHS.

In the diffusion limit, for which Es ≪ Et and Fs ≈ 0, we recover

the regime where the radiative force is equal to the radiative pressure

gradient

∂ρv

∂t
+ ∇ · (ρv ⊗ v + P I) = −

c̃

3c
∇Et + ρg. (48)

With the partition given by equations (43) and (44), trapped

photons are only generated in regions of the flow where the mean

free path is smaller than the cell size. In opposite situations where

the mean free path is large enough, it is desirable to make sure that

the fraction of trapped photons very quickly converges to zero. We

therefore modify our trapped versus streaming photons distribution

using

Es =
[

1 − exp

(

−
2

3τc

)]

E, (49)

Et = exp

(

−
2

3τc

)

E. (50)

This model has the same optically thick limit as the original one,

(equations 43 and 44) but trapped photons vanish much faster in the

optically thin limit.

To summarize, our new method starts by initializing the trapped

and streaming radiation variables using equations (49) and (50).

Only the streaming photons are advected using our original Go-

dunov scheme,

∂Es

∂t
+ ∇ · Fs = −κPρc̃Es, (51)

∂Fs

∂t
+ c̃2∇ · P s = −κRρc̃Fs. (52)

For the thermochemistry, including the radiation/matter coupling

term, the IR radiation used is the sum of the free streaming and

trapped photons,

E = Et + Es, F = Fs. (53)

In our operator splitting approach, the streaming radiation density is

in practice advected with equation (51) with the RHS = 0, while the

RHSs of equations (37) and (51) are accounted for in the thermo-

chemical coupling of the dust temperature to the total IR radiation

temperature, as in equations (22) and (23):

∂

∂t
(Es + Et) = κPρ

(

caT 4 − c̃(Es + Et)
)

, (54)

∂e

∂t
= κPρ

(

c̃(Es + Et) − caT 4
)

. (55)

3 TESTS

We now describe tests of our RHD implementation, focusing on the

new additions. We start with tests of the M1 closure dealing with free

streaming and dust-coupled photons, in Section 3.1 and Section 3.2,

respectively. Then, in Section 3.3, we analyse the effect of direct

radiation pressure from ionizing photons, testing the validity of the

momentum transfer from photons to gas. In Sections 3.4–3.6, we

go on to test our trapping method for the diffusion of photons in

underresolved optically thick regimes. Finally, in Section 3.7 we

test the full RHD implementation of multiscattered IR radiation

interacting with dust via momentum and temperature exchange,

in an occasionally optically thick limit, reproducing the recent 2D

experiments of Davis et al. (2014) on the competition between

radiation pressure and gravity.

3.1 Free-streaming radiation from a thin disc

In R13, it was demonstrated that while the M1 closure deals well

with single sources of radiation, it fails in-between multiple sources,

creating spurious sources of perpendicular radiation where opposing

radiation flows should more realistically pass through each other.

The point of this first test is to investigate how well the M1 method

does in a geometry where we might expect it to fail. We are inspired

here by a similar test which has been performed by Jiang et al. (in

preparation), to compare the behaviour of their variable Eddington

tensor (VET; e.g. Jiang et al. 2012) closure against M1 and flux-

limited diffusion (FLD).

We consider a multiple source geometry which is quite relevant

in the astrophysical context: emission from a thin (galactic) disc,

surrounded by a torus of optically thick gas. We compare, in a 2D

setup, the converged result of a hydrodynamically static RAMSES-RT

experiment to an analytically derived result.

The setup is as follows. The simulation box is a square of 1 cm on

a side, resolved by 1282 cells. At 0.1 cm from the bottom of the box,
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centred along the box width, is an emitting horizontal disc, or line in

2D, since the disc plane is perpendicular to the simulated 2D plane.

The disc spans one cell in height, and has a length of L = 0.125 cm,

which corresponds to 16 cell widths. For convenience, we define

the origin to lie at the centre of the emitting disc, so the disc end

coordinates are ±(L/2, 0). The disc has a constant energy density,

E0, (imposed in every time-step) of monochromatic radiation that

only interacts with the gas via hydrogen ionization.

In the background the box contains hot and diffuse ionized gas,

while surrounding the disc is a one-cell high torus, in the same plane

as the disc, of cold and dense neutral gas which is optically thick

to the radiation. The important point is that the background gas

is optically thin, allowing the radiation to pass unhindered, while

the torus instantly absorbs all radiation that enters it, and re-emits

nothing.6

For such a setup, the field morphology can be expressed analyti-

cally. For any point (x, y) in the box, a length element dℓ at location

(ℓ, 0) along the emitting disc subtends an angle

d� =
y dℓ

y2 + (x − ℓ)2
. (56)

Assuming isotropic emission and a razor-thin disc, the contribution

from dℓ to the radiation density at (x, y) is

dE(x, y) =
E0

2π
d�. (57)

The energy density at (x, y) can then be obtained by integrating the

contributions from the whole disc:

E(x, y) =
∫

disc

dE(x, y) =
∫ L/2

−L/2

E0

2π

y dℓ

y2 + (x − ℓ)2

=
E0

2π

[

arctan
L/2 − x

y
+ arctan

L/2 + x

y

]

. (58)

In Fig. 1 we map the converged radiation density obtained from

RAMSES-RT, in the colour scheme and solid contours, and compare

it to equation (58), shown as dashed contours. Comparison of the

contours reveals that the M1 scheme does well, though not perfectly,

at reproducing the correct result in this astrophysically relevant

setup. The discrepancy stems from the well-known disadvantage

of the M1 method in dealing with radiation streaming in different

directions in the same point, which results in the radiation being

too collimated perpendicular to the disc. We stress, however, that

qualitatively, but not exactly quantitatively, the correct morphology

is obtained by RAMSES-RT.

3.2 Dust absorption

In this test, which is inspired by a similar one from González, Audit

& Huynh (2007), we examine how well the M1 method performs

in producing the correct radiation morphology in the case of ab-

sorption in the optically semithick regime. This is again a pure RT

test, with the HD turned off. A 2D square box 7.48 × 1012 cm

on a side is resolved with 642 cells and contains a homoge-

neous medium with κPρ = κRρ = 10−12 cm−1, making the opti-

cal depth of the box τ box = 7.48. The box is illuminated from

6 For completeness, the properties of the radiation, source, and gas are

as follows: the source energy density is E0 = 2.2 × 1019 erg cm−3, the

photon energy is 13.6 eV, and the hydrogen ionization cross-section is

σH I = 3 × 10−18 cm2. The background gas has density 10−10 g cm−3 and

temperature 106 K, while the torus that surrounds the radiation source has

density 1030 g cm−3 and temperature 100 K.

E/E0

0.001 0.010 0.100 1.000

Figure 1. Emission from a thin disc. The colour scheme and solid contours

show the radiation density obtained by RAMSES-RT, relative to the injected

density in the disc at the bottom centre, while the dashed contours show

the exact analytic result from equation (58). The contour values are marked

in the colour bar. The RAMSES-RT results agree fairly well with the analytic

prediction.

the left-hand side by an incoming horizontal flux of radiation

F∗ = 5.44 × 104 erg s−1 cm−1. We impose the incoming radiation

by setting a constant c̃E = Fx = F∗, and Fy = 0 in the left ghost7 re-

gion, and for the remaining three boundaries we set E = Fx = Fy = 0.

We run until a converged static state has been reached (which we

verified is independent of the light speed used).

The resulting converged gas temperature profile does not depend

on the chosen value for κP, as long as it is non-zero to ensure cou-

pling between the radiation and gas temperature, and thus eventual

convergence towards T = Tr (only the time to reach convergence

depends on κP). The test is thus equivalent to a pure scattering test.

We exploit this by comparing the RAMSES-RT results to an equivalent

setup run with a computation routine, described in Appendix C, that

solves the full RT equation (1) on a four-dimensional grid – with

642 physical dimensions, and 322 angular bins. We emit radiation

at the rate F∗ in the x-direction into the left-hand side of the box,

and otherwise set zero-valued boundaries for the radiation. The full

RT routine does not evolve (or store) the gas temperature, but is run

instead in pure scattering mode, with the scattering opacity equal

to κR. We compare the RAMSES-RT gas temperature to the radiation

temperature produced by the full RT routine, which should ideally

converge to the same values.

The results are shown in Fig. 2, where we map with colour and

solid contours the gas temperature in RAMSES-RT. For comparison, we

plot in dashed contours the converged radiation temperature in the

full RT calculation. The results agree well in terms of the shape of the

radiation field, and the accuracy of the RAMSES-RT produced radiation

field is at the ∼10 per cent level compared to the full RT calculation.

7 Ghost cells lie exterior to the box boundary on all sides, and define the

box boundary conditions. They are necessary for the advection in and out

of cells interior to the box boundaries.
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Figure 2. Two-dimensional photon scattering test, with an optical depth

from side to side of τ box = 7.48. The image shows the equilibrium state

reached in the test. The colours and overlaid solid contours indicate the

RAMSES-RT gas temperature. For comparison, the dashed contours show re-

sults, in the form of radiation temperature, from an identical test run with a

full RT code. The results produced by RAMSES-RT are qualitatively similar to

the full RT results, but differ in value by 10–20 per cent.

The discrepancy can be attributed in part to the M1 moment method

directly and its approximative approach to the collisionless nature

of radiation, but in part the boundary conditions are to blame, which

are not exactly equivalent in RAMSES-RT on one hand and in the full

RT code on the other. The zero-valued boundary conditions in M1

‘suck’ radiation out from the top, bottom, and right-hand sides,

while the inwards flux at the right boundary (where the discrepancy

is worst) prevents scattered radiation from flowing back out of the

box.

3.3 Tests of direct pressure from ionizing radiation

We aim to demonstrate with the following RHD tests that radiation

pressure in RAMSES-RT is robustly implemented, i.e. momentum is

correctly deposited from photons to gas. In what follows, we assume

an idealized case of pure hydrogen gas, which is initially homoge-

neous and isothermal, and monochromatic photons, and we ignore

the effect of gravity. The setup is a radiation source of luminosity

L placed at the origin in a medium of homogeneous density ρ0

which turns of at time t = 0, and we are interested in following the

expansion of the gas due to the direct ionizing radiation pressure.

For the tests to be meaningful, we first need analytic expressions to

compare against.

3.3.1 Analytic expectations

Wise et al. (2012) present a simple analytic argument to demonstrate

the effect of radiation pressure in dwarf galaxies. The expression is

derived from requiring momentum conservation in the swept-up gas

around the radiation source, ignoring gravity and thermal pressure,

and describes the radial position r of the expanding density front,

r(t) =
(

r4
S + 2At2

)1/4
, (59)

where A = 3L/4πρ0c, and rS is the Strömgren radius, at which an

optically thick shell forms at t ≈ 08,

rS =

(

3L

4παBn2
H,0ǫγ

)1/3

= 1.8 pc

(

L

L⊙

)1/3
( nH

1 cm−3

)−2/3

. (60)

Here, αB is the case B recombination rate, which we take to be

equal to 2.5 × 10−13 cm3 s−1, approximately valid in photoionized

hydrogen gas, nH, 0 = ρ0/mp is the hydrogen number density, ǫγ is

the monochromatic photon energy, which we take to be the hydrogen

ionization energy of 13.6 eV, and we assume a solar luminosity of

L⊙ = 3.84 × 1033 erg s−1 (in ionizing photons).

We will present expanding H II region experiments where we

compare the front position against equation (59). However, we find

at best, that the simulated expansion only partially follows the an-

alytic prediction. First, the expansion tends to be dominated by

photoionization heating, which is not described by equation (59).

Secondly, even if the effect of heating is negligible, the expansion

eventually stalls due to thermal gas pressure on the far side, leav-

ing a semistable bubble of diffuse ionized gas surrounded by a

denser neutral gas. The final radius of the bubble is dictated by the

combined effect of photoionization heating and the direct radiation

pressure.

We can consider separately, for radiation pressure and photo-

heating, roughly how far each of these mechanisms are expected to

sweep the gas.

For the radiation pressure, ignoring the effect of photoheating,

the bubble will reach a radius rγ where the gas pressure outside the

bubble equals the outwards radiation pressure at the surface, i.e.

nH,0kBT0 =
L

4πr2
γ c

, (61)

where T0 is the outer gas temperature and kB is the Boltzmann

constant. Solving for the bubble radius gives

rγ =

√

L

4πcnH,0kBT0

= 0.28 pc

(

L

L⊙

)1/2
( nH

1 cm−3

)−1/2
(

T0

102 K

)−1/2

. (62)

With photoionization heating dominating, the underdense bubble

is supported by inner gas pressure, i.e.

nH,ionTion = nH,0T0, (63)

where nH, ion and Tion are the gas density and temperature inside the

bubble, somewhat incorrectly assumed to be homogeneous, and the

density and temperature outside are just the initial homogeneous

values. Given a radius rT of the thermally supported bubble, the

ionizing luminosity of the central source supports an equal rate of

8 The creation time of the Strömgren sphere, which is approximately the

recombination time, is assumed to be short compared to the hydrodynamical

response of the gas, an assumption which holds in our tests (see Fig. 5, though

it barely holds in the highest density case).
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recombinations in the bubble, i.e.

L

ǫγ

=
4

3
πr3

TαBn2
H,ion. (64)

From this we can solve for the gas density inside the bubble, which

we insert into equation (63), giving

rT =
(

Tion

T0

)2/3

rS

= 39 pc

(

L

L⊙

)1/3
( nH

1 cm−3

)−2/3

×
(

Tion

104 K

)2/3 (

T0

102 K

)−2/3

. (65)

We can now compare the radius of the radiation pressure sup-

ported bubble versus the radius of the thermally supported bubble.

The condition for radiation pressure to start dominating over pho-

toionization heating is

rγ > rT. (66)

Substituting equations (60), (62), and (65) then gives the condition

L >
1

nH,0

T 4
ion

T0

36πc3k3
B

α2
Bǫγ

2

= 7 × 1012 L⊙
( nH,0

1 cm−3

)−1
(

T0

102 K

)−1

×
(

Tion

104 K

)4
( ǫγ

13.6 eV

)−2

. (67)

Admittedly, a range of assumptions and approximations go in, but

equation (67) nevertheless gives an idea of the luminosities required

for ionizing radiation pressure to give a strong boost over the ef-

fect of photoionization heating. Clearly both large luminosities and

gas densities are required for this to happen. However, the relative

difference in the equilibrium radii scales only very weakly with the

density and luminosity, i.e.

rγ

rT

∝ (L nH,0)1/6, (68)

so even if the condition of equation (67) is far from met, radiation

pressure may well give a modest boost to the thermally driven ex-

pansion. Conversely, this also means that a prodigious luminosity

and/or density is required for the photoionization heating to be-

come negligible, as is generally acknowledged in the literature (see

Krumholz & Matzner 2009, and references therein).

We can also consider the relevant physical scales for ionizing

radiation pressure by requiring that it is stronger than the thermal

pressure in a Strömgren sphere,

L

4πcr2
S

> nH,0kBTion. (69)

Solving directly for the luminosity gives equation (67) with the

outer temperature, T0, removed. But for the physical scale, we can

instead use equation (60) to eliminate nH, 0, giving the requirement

on the Strömgren radius that

rS <
αB

12πc2k2
B

Lǫγ

T 2
ion

= 0.1 pc

(

L

106 L⊙

)

( ǫγ

13.6 eV

)

(

104 K

Tion

)2

. (70)

Table 1. Expanding H II region tests. All tests are run in a square box

with 1283 cells, with a source luminosity of 106 L⊙, a monochromatic

photon energy of 15 eV, and a reduced speed of light factor fc = 10−3.

The columns list, from left to right, the initial homogeneous gas num-

ber density, nH, 0, the expected thermally supported bubble radius, rT,

direct radiation pressure supported bubble radius, rγ , the box width,

Lbox, the run time of each test, tf, and, for comparison, the recombina-

tion time trec = (nH, 0αB)−1, which is approximately the time it takes

for the Strömgren sphere to develop.

nH, 0 rT rγ Lbox tf trec

(cm−3) (pc) (pc) (pc) (Myr) (Myr)

100 291 36 450 103 10−1

103 2.9 1.1 5.5 10 10−5

105 0.13 0.11 0.3 0.3 10−6

107 6 × 10−3 11 × 10−3 2 × 10−2 10−2 10−8

109 2 × 10−4 11 × 10−4 1.4 × 10−3 10−3 10−10

Comparing with equation (60), this translates to a young stellar

population of ≈103 M⊙ (L ≈ 106 L⊙), embedded in gas with

nH, 0 ∼ 105 cm−3, which is currently beyond, but not far from, the

resolution limits of most galaxy-scale simulations.

3.3.2 Expanding H II regions

We set up a square 3D box and place in the corner a source of

luminosity L = 106 L⊙, emitting monochromatic ionizing photons

with energy ǫγ = 15 eV9 (1.8 × 1050 photons s−1) and hydrogen

ionization cross-section σH I = 3 × 10−18 cm2, into an initially ho-

mogeneous neutral pure hydrogen gas (no helium, metals, or dust)

at a temperature of 104 K. The box boundaries adjacent to the

source are reflective and the opposite sides have outflow bound-

aries. We use 1283 cells, and reduce the speed of light by a factor

fc = 10−3. Even at this low light speed the run-time is hundreds of

light-crossing times in each run, so this has no effect on the later

stages of development.

To compare regimes where either ionization heating or ionization

pressure dominates, we compare sets of runs at five different initial

densities nH, 0, presented in Table 1. For each initial density we run

two tests: with and without direct radiation pressure. The table also

shows the run time (tf), the box width (Lbox), and our estimates

for the thermally supported bubble radius (rT, equation 65) and the

direct radiation pressure supported radius (rγ , equation 62), where

we have used a bubble temperature of Tion = 1.3 × 104 K and an

external temperature of T0 = 6 × 103 K, based approximately on

the temperature profiles in the end results (see Fig. 4: the radiation

heats the ionized gas, and the shielded neutral gas eventually cools

due to residual collisional ionization). Comparing the rT and rγ

values in the table, photoionization heating should dominate in the

test with the lowest initial density, nH, 0 = 1 cm−3, but with higher

densities radiation pressure should have an increasing effect, and

should dominate at the highest initial density of nH, 0 = 109 cm−3.

Fig. 3 shows slices, at the side of the box containing the radiation

source, of gas density at the end of each run. Comparing the maps

with and without direct radiation pressure, i.e. the upper versus

lower row of maps, it is clear that radiation pressure has a negligible

9 Average ionizing photon energies from young stellar populations are larger

by a few eV. However, we use a low photon energy to minimize photoion-

ization heating and give radiation pressure a head start, as higher photon

energies increase the heating rate in the H II region.
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Figure 3. Slices of the simulation box, on the side containing the radiation source, showing gas density, normalized to the initial density, at the end of the

expanding H II region tests. The upper row shows tests with direct ionizing radiation pressure turned off, i.e. photoionization heating only, and the lower

row shows the corresponding runs with the radiation pressure turned on. The panels are ordered from left to right by the initial homogeneous gas density, as

indicated in the top-right corner of the upper row panels.

effect at the lowest initial densities, while it gradually overtakes the

effect of photoionization heating at higher gas densities. It can also

be seen that radiation pressure, once it becomes effective, is more

efficient at driving the gas out of the bubble, creating much lower

internal densities than with photoionization heating only.

Fig. 4 shows radial profiles of, from top to bottom, gas density,

neutral fraction, temperature, and thermal pressure, taking average

values in radial bins from the source. We show profiles for two sets

of initial densities, one at which radiation pressure is just starting

to have an effect (nH, 0 = 103 cm−3, left-hand panel), and the high-

est initial density, at which radiation pressure clearly dominates

(nH, 0 = 109 cm−3, right-hand panel). The density profile plots (top)

show how shells of overdense gas are ejected from the ionization-

front, leaving behind a semistable bubble of diffuse gas. For the

lower-density case (left-hand panels), the profiles with/without ra-

diation pressure are quite similar. The addition of radiation pressure

only slightly advances the bubble and yields a slightly lower den-

sity and gas pressure at the bubble centre. We note that a similar

comparison of profiles at the lowest initial density, nH, 0 = 1 cm−3,

reveals negligible differences between the runs with radiation pres-

sure on or off (not shown), so we are indeed considering densities

where radiation pressure is just beginning to have a non-negligible

effect compared to photoionization heating.

For the high-density case (right-hand panels in Fig. 4), turning

on the radiation pressure has a very substantial effect. Compared to

the photoionization heating only case, both the inner bubble density

and pressure are almost two orders of magnitude lower, while the

temperature remains nearly unchanged. The bubble is now mostly

supported by direct radiation pressure, as can be clearly seen by

comparing the thermal pressure profiles (bottom-left plot). With

only photoionization heating the bubble is supported by thermal

pressure, which is identical inside and outside the bubble. With ra-

diation pressure turned on, the thermal pressure drops dramatically

inside the bubble and the direct radiation pressure compensates to

maintain the large steady bubble, such that the sum of gas and

radiation pressure is identical on each side of the interface.

Finally, Fig. 5 shows the expansion of the ionization front (I-

front, which we define to be at xH I = 0.5), which here is a proxy

for the radius of the underdense bubble, in each of the runs, with

the plots ordered by increasing density from top to bottom. We

show the I-front expansion as predicted by analytic momentum

conservation (equation 59, dashed black), and from the runs, with

photoionization heating only (dotted red) and with added direct

radiation pressure (solid blue). Grey lines show our estimate of the

radiation pressure supported radius rγ (equation 62, dotted), and

the thermally supported radius rT (equation 65, dashed), given in

Table 1. If the numerical I-front expansion is regarded closely, it

can be seen that the front overshoots slightly in all runs, due to

the momentum of the expanding gas, and then backtracks to reach

a radius where the inner and outer pressure is in equilibrium. This

effect can also be seen in the right-hand panel of Fig. 4, if the curves

for 3 × 102 and 103 yr are compared.

Two important points can be inferred from Fig. 5. First, the nu-

merical experiments roughly reproduce the analytic expectations,

laid out in Section 3.3.1, for the relative roles of photoionization

heating and direct radiation pressure. For the lowest initial den-

sity (top plot), the bubble radius ≈rT, while at the highest density

(bottom plot) it goes out to ≈rγ . The second point is that when

radiation pressure dominates the bubble expansion, and while the

bubble is expanding towards its final radius, the momentum con-

serving prediction, equation (59), is reproduced by the numerical

results (bottom plot).10

All in all, these results strongly indicate that RAMSES-RT correctly

models direct radiation pressure and photoionization heating. As a

further validation, the results are qualitatively in good agreement

with the numerical experiments of Sales et al. (2014), where ionizing

radiation pressure begins to dominate over photoionization heating

at similar luminosities and densities as in our case (see their fig. 6).

10 The analytic result is not reproduced at the very start, at t � 0.001 tf .

This is the I-front expansion towards the Strömgren radius, ignored in the

arguments leading to equation (59), and during which the gas density stays

more or less constant.
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Figure 4. Radial profiles of, from top to bottom, the gas density, neutral fraction, temperature, and gas pressure, for the expanding H II region tests, with a

106 L⊙ source radiating ionizing photons into an initially homogeneous neutral medium. The plots to the left show the case with nH, 0 = 103 cm−3, where

radiation pressure has only a marginal effect compared with photoionization heating, and the plots to the right show nH, 0 = 109 cm−3, where radiation pressure

dominates over photoionization heating. Runs with only photoionization heating are represented by dotted curves, while runs that in addition include direct

pressure from the ionizing photons are represented by solid curves. The curve colours (and thickness) represent the profile times, as indicated in the ionization

fraction plots.

3.4 Resolved versus unresolved photon diffusion

We will show quantitative tests of photon trapping in the next sub-

sections, but we shall start with a simple demonstration of how it

produces robust results when the mean free path is unresolved.

We consider a simple 2D pure RT test, i.e. with the HD turned off.

The box contains a homogeneous medium which is optically thick

to IR radiation, with an optical depth of τ box = 200. Through the left

boundary we emit a constant IR flux of 5.44 × 104 erg s−1 cm−1.

The remaining sides of the box have zero-value boundaries. We use

a full light speed, but note that the results are independent of the

light speed used.

We use this setup in four RAMSES-RT experiments, each running

until a steady-state is reached. We run with a low resolution of 322

cells and a high resolution of 10242 cells, such that the mean free

path is 0.16 and 5.12 cell widths, respectively. For each resolution,

we run with and without photon trapping activated.

Without trapping, we should expect more or less correct results in

the high-resolution run, where the mean free path is well resolved,

but incorrect results in the low-resolution run, where the photons

diffuse artificially between the optically thick cells. With trapping

turned on, photon diffusion is also handled on unresolved scales,

and there should ideally be no difference between the high- and

low-resolution runs (on scales larger than the low-resolution cell

width). The low-resolution results with trapping should resemble

those of the high-resolution run without (and with) trapping.

This is indeed the case, as shown in Fig. 6, where we map the

steady-state radiation temperature, Tr = (E/a)1/4, in the four runs.

Comparing the low- and high-resolution runs without trapping (top-

left and bottom-left, respectively), we see a large qualitative differ-

ence in the steady-state radiation field. With the unresolved mean

free path, the photons diffuse numerically from the optically thick

cells, and there is much less build-up of radiation compared to

the higher resolution case, where numerical diffusion is negligible.

Comparing instead the two runs with trapping turned on (top- and

bottom-right), we find similar results, even if the cell widths differ

by more than an order of magnitude. Furthermore, the results with

photon trapping are also similar to the high-resolution case without

trapping, indicating strongly that the photon trapping method (i) re-

produces the correct results when the mean free path is unresolved,

and (ii) converges to the correct result when the mean free path

becomes well resolved.

The agreement is not perfect, as can be seen from a careful

comparison of the contours and the box edges. This disagreement

stems partly from the fact that the non-trapping result is still not quite

resolution converged, but more importantly, with trapping turned on,

the box boundary does not behave in the same way along optically

thin cells as it does along optically thick ones. In the optically thin

limit (lower right), the photons freely escape along the boundaries

on scales shorter than the mean free path, and accurately so, since

the boundaries are zero-valued. However, when the mean free path is

not resolved (upper right), the escape of photons along the boundary

is suppressed by the trapping, which essentially assumes the same

mean free path everywhere within the cell, resulting in larger values

for the radiation temperature.
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Figure 5. Evolution of radiation-powered H II region radius (the radius at

which the ionized fraction is 0.5), for increasing initial gas density (top to

bottom plot). In each plot, the solid blue (dotted red) curve shows the bubble

radius with direct radiation pressure turned on (off), and the black dashed

curve shows the analytic expectation from momentum conservation (equa-

tion 59). Dashed grey horizontal lines show the expected thermally supported

bubble radius (rT, equation 65), while dotted grey horizontal lines show the

expected radiation pressure supported radius (rγ , equation 62), where we

have used a bubble temperature of Tion = 1.3 × 104 K and an external

temperature of T0 = 6 × 103 K, based approximately on the temperature

profiles in the end results (see Fig. 4). As those simple analytic estimates

predict, photoionization heating dominates at the lower densities, but radia-

tion pressure starts to take over at high densities, with an expansion towards

the final bubble radius that is well described by momentum conservation.

The early deviations from the analytic results, at t � 0.001 tf , correspond to

the ionization front expansion towards the Strömgren radius, which in the

analytic arguments was assumed to happen instantaneously.

3.5 Diffusion of a radiation flash in 2D

We now test whether our implementation of radiation trapping

agrees with analytic expectations of diffusing radiation. We con-

sider two test cases, in this and the next subsection. In both cases,

HD is turned off.

The first test is a 2D version of the 1D test described in

Commerçon et al. (2011). The simulation box is a 1-cm wide square

composed of 1282 gas cells, which contain a homogeneous medium

with κRρ = 103 cm−1 (i.e. τ box = 103). The box is initially empty

of radiation, except for N0 = 105 photons that are distributed uni-

formly over four cells at the centre of the box, at which we define the

origin of our coordinate system. We then turn on the RT, allowing

the photons to diffuse out of the box. For the boundary conditions,

we apply linear extrapolation to all the RT variables, from a buffer

of two cells inside the border, to determine the values in ghost cells

outside the border. We run this test with the full light speed, i.e.

with c̃ = c.

No trapping 
 
32 x 32

Trapping 
 
32 x 32

No trapping 
 
1024 x 1024

Trapping 
 
1024 x 1024

Tr [K]

0 100 200 300 400 500

Figure 6. A demonstration that our method for photon trapping produces

robust results in an optically thick medium, with τ box = 200. All maps

show time-converged results from 2D RAMSES-RT runs, with a constant flux

of photons into the box from the left. The colour represents the radiation

temperature, Tr, as indicated by the colour bar, and contours mark centennial

values, also marked in the colour bar. The top-left map shows the results

without photon trapping in a low-resolution run, 322 cells. The bottom-left

map shows an identical run, i.e. no trapping, with a much higher resolution

of 10242 cells. The results are different, since the mean free path is resolved

by ≈5 cell widths in the high-resolution run, whereas a cell width contains

≈6 mean free paths in the low-resolution run. In the right-hand column

of maps we show the results of running with the same pair of resolutions,

but with photon trapping activated. With photon trapping on, the results are

much better converged with resolution.

The evolution, with time t and radius r from the origin, of the

photon number density N, is given by (Commerçon et al. 2011)

N (r, t) =
N0

2p (πχt)p/2
e
− r2

4χt , (71)

where χ = c/(3κRρ), and p = 2 is the number of dimensions.

Fig. 7 shows the time-evolution of the analytic radiation density

profile (solid curves), and compares it to the test results (dashed),

up to 5.5 × 10−9 s, which corresponds to 165 box crossing times

in the free-streaming limit. The numerical results show the sum

of the trapped and free-streaming photons (see equation 42). The

agreement is excellent. The main discrepancy, at the box edges at

late times is caused by the boundary conditions, which release the

photons too efficiently.

We note that we also ran the test with a reduced light speed

c̃ = c × fc = c/100, reproducing exactly the former results, if the

replacement c → c̃ is made in equation (71), and the profiles are

plotted at the times t/fc, where t is the profile times in Fig. 7. In

other words, reducing the speed of light simply slows the diffusion

speed by a factor fc.

We also ran the test with 10 times higher and lower optical depth

(via κR). At the higher optical depth, the numerical results come
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Figure 7. Two-dimensional flash diffusion test. Each set of solid (analytic

solution) and dashed (numerical solution) curves represents the radial radi-

ation profile at the time given by the line colour, as indicated in the legend.

Except near the boundary of the box (r = 0.5 cm), the numerical and analytic

results agree well.

even closer to the analytic ones. Conversely, at the lower optical

depth, the results visibly diverge from equation (71), as should be

expected in the free-streaming radiation limit.

3.6 Diffusion of constant luminosity radiation in 3D

We now consider again radiation diffusion with the HD turned off,

but in 3D, and with a constant luminosity source. We use a setup,

which is relevant for cosmological simulations in terms of the source

luminosity, gas density, metallicity, and spatial resolution. We put

a source with a luminosity L = 1050 photons s−1 into the centre

of a box which is resolved by 323 cells, and allow the radiation to

propagate through the homogeneous gas with the trapping model

presented in Section 2.4.2, assuming an opacity κR = 10 cm2 g−1,

until a converged steady-state has been reached. The box width is

Lbox = 500 pc, which gives a cell size of 15.6 pc. We then run

variants of this setup with varying gas density, spanning nH = 5–

105 cm−3, corresponding to optical depths (through the box) of

τ box ≈ 0.2–3 × 103.

We compare the converged, steady-state, numerical radiation

density profile, as a function of distance from the source, to an

analytic expression which is derived as follows.

In a homogeneous optically thick medium of density ρ and emit-

tance L (i.e. luminosity per volume), the local photon number den-

sity, N, is described by the diffusion equation,

∂N

∂t
−

c̃

3κRρ
∇2N + L = 0. (72)

In the steady-state limit, this reduces to the Poisson equation,

c̃

3κRρ
∇2N = L. (73)

In three dimensions, assuming a single point source of radiation,

the solution is

N (r) =
3ρκRL

4πc̃r
, (74)

where r is the distance to the radiation source, and L is the point

source luminosity. Equation (74) is the analytic expression we can

compare to our numerical results.

The analytic argument leading to equation (74) essentially as-

sumes infinity in both space and time, i.e. there are no boundaries

or ‘box’ limits, and steady-state can thus only be reached in an in-

finite time. For time, we simply run the tests until they converge to

a final solution, but to approximate the infinite spatial dimensions,

we set up the boundaries of the box to roughly match the expected

slope given by equation (74).11 The boundary condition for this test

is thus

U0 = U1

(

1 −

x

Lbox

)

, (75)

where U = (F, N ) is a cell state, 
x is the cell width at the bound-

ary, and the subscripts 0 and 1 refer to the ghost cell and the boundary

cell inside the computational domain, respectively. The boundary

can only approximately ‘mimic’ the infinite space assumption, since

the box has a square shape.

Fig. 8 shows the results of the diffusion tests, where we have

run with a reduced speed of light, c̃ = c/200. The steady-state

limit for radiation flux is the same as with a full light speed, but

it takes longer, by a factor fc
−1, to reach that state. From left to

right, the plots in Fig. 8 show the test results for the different gas

densities, which translate to different optical depths. In each plot, the

grey dash–dotted lines show the N ∝ r−2 profile expected for free-

streaming radiation, while the solid black lines show the optically

thick prediction made by equation (74). The dashed green curves

show the converged test results where photon trapping is applied.

For comparison, the dotted red curves show the converged results

of identical tests where photon trapping is deactivated.

In the optically thick case (leftmost two plots), the radiation pro-

file evolves towards the correct diffusion solution when trapping

is included. On close inspection it can be seen that the test results

(green dashed) do not perfectly follow the analytic prediction near

the edge of the box, but this is purely due to the boundary condi-

tions, which as we remarked are not correct everywhere due to the

geometry of the box. If the slope at the boundaries is steepened, the

agreement with the analytic result becomes better at r ≈ 250 pc,

where the edge of the box is closest, but at the same time it becomes

worse at r ≈ 350 pc, corresponding to the box corners, where the

gradient should be shallower.

The third plot from the left shows worse agreement with the ana-

lytic solution, but here the gas is also coming close to the optically

thin regime, and equation (74) no longer holds. In the rightmost plot

we have the situation where τ box ≪ 1, and the results agree with the

free-streaming limit, regardless of whether trapping is turned on or

off.

The curve without trapping assumes the correct ∝ r−1 shape

where τ box > 1 due to the scattering which isotropizes the radiation

in every cell, but the curve fails to follow the correct scaling with

increasing τ box.

Again we find that our scheme for trapped radiation (Sec-

tion 2.4.2) robustly reproduces analytic expectations. We ran this

test as well with an alternative version of our method for handling

the optically thick regime, suggested in Section 2.4.1, where instead

11 In the tests with the most optically thick gas, free-flow boundary condi-

tions result in an overestimate of the radiation in the box, since the gradient

at the box edge is zero, giving too much backflow of radiation from the

boundaries, while zero-valued boundaries give an underestimate because

the gradient is infinite, and hence no backflow comes from the boundaries.
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Figure 8. Test of radiation diffusion in a medium of decreasing optical thickness (from left to right). The plots show time-converged radiation profiles from

the source at the centre of the box in radiation tests with and without trapping (green dashed and red dotted lines, respectively). The solid black lines show the

analytic solution to the diffusion equation, equation (74), which the tests with trapping should reproduce in optically thick gas. The grey dot–dashed lines show

the analytic solution for free-streaming radiation, which the tests should reproduce for vanishing optical thickness, regardless of whether trapping is turned on

or off.

of splitting the photons into trapped and free-streaming, we apply

directly a diffusion operator α(τ c) = (1 + 3/2 τ c)−1, where τ c is

the cell optical depth, to the GLF intercell flux function, as in equa-

tion (34). The results using this alternative version were identical to

using the trapped/streaming photons scheme, which is no surprise,

since the trapped/streaming split essentially amounts to the same

thing for the intercell flux. However, the trapped/streaming scheme

has the further advantages of the trapped photons moving with the

gas, and of a natural inclusion of radiation pressure in the optically

thick regime, neither of which is an issue in this test.

3.7 Levitation of optically thick gas

As a final test of radiation pressure, the radiation–temperature cou-

pling, multiscattering, and photon trapping, we repeat the 2D ex-

periment described by Krumholz & Thompson (2013) and Davis

et al. (2014), hereafter KT13 and D14, respectively, which explores

the competition between gravity and radiation pressure.

The experiment is interesting in the context of radiation feed-

back, because it gives insight into how gravitationally bound gas

responds to multiscattering radiation pressure. The setup, which

represents a stellar nursery or the central plane of an optically thick

galactic disc, consists of a thin bottom layer of gas, kept in place

by gravity, which is then exposed to an opposing flux of IR radi-

ation. Even though the radiation flux is sub-Eddington, the effect

of multiscattering may still lift the gas if the radiation is efficiently

trapped by the gas. However, radiative Rayleigh–Taylor instabil-

ities, if they develop, suppress the radiation pressure by creating

‘chimneys’ through which the radiation may escape without effi-

ciently coupling to the gas.

KT13 ran the experiment using the FLD method, which essen-

tially solves equation (30), while making sure the radiation does not

surpass the speed of light in the optically thin limit. They found that

the radiation tends to escape through the gas rather than coherently

lifting it, resulting in a ‘steady-state’ of turbulent gas boiling near

the radiating bottom surface.

D14 investigated the idea that the failure to lift the gas has to

do with the RT method. This is a valid concern, since the mean

free paths are, for the most part, resolved in the experiment, but

FLD is strictly only valid in the optically thick regime. They ran the

experiment with the ATHENA moment method RHD code, comparing

the FLD closure against the more accurate VET closure, which

constructs the radiation flux vector on the fly in every volume by

sweeping the grid with short characteristics rays, thus incorporating

the contribution from all radiation sources and absorbers. They

found that the qualitative result is sensitive to the closure used,

with their FLD implementation giving a similar result as found

by KT13, while the VET version coherently lifts the gas out of

the frame. However, while the average horizontal velocity of the

gas is considerably higher with VET, the average optical depths

and radiation force on the gas are quite similar between the two

methods: the defining difference appears to be that the radiation

force with VET is just enough to lift the gas while with FLD it is

just below what is needed. The reason, the authors conclude, is that

as the gas is being lifted, the FLD closure tends to create chimneys

in the gas though which most of the radiation escapes, and hence the

force is enough to get the gas moving and forming those chimneys,

but the radiation never builds up sufficiently to evacuate the gas.

The M1 closure can be seen as an intermediate approach between

those of FLD and VET: instead of simply following the energy gra-

dient as in FLD, M1 stores locally the bulk direction of radiation,

keeping some ‘memory’ of where it was emitted. However, the di-

rectionality of radiation from multiple sources tends to mix locally,

creating an artificial diffusion which should be more or less absent

with the VET closure, provided good angular resolution in the VET

ray-sweeping scheme. We should therefore expect our results with

M1 to lie somewhere between those of FLD and VET, though a

priori it is unclear exactly where. None the less, the quantitative

results using the FLD and VET closures in D14, in terms of ef-

fective optical depths, radiation force, and even gas velocities, lie

within a fairly narrow margin, making this a good test case for our

implementation. We thus repeat the test from D14 and validate our

implementation by comparing our results to theirs.

The setup of the experiment is as follows: the simulation box is

a 2D square of height Lbox = 1024 h∗, where h∗ = 2 × 1015 cm

is the scaleheight for the initial gas density profile. The box is re-

solved by 20482 cells, and the resolution is fixed, i.e. we do not

use adaptive refinement. The physical resolution and box height

is identical to that of D14, while the box width, constrained by

the square geometry of RAMSES, is twice as large. A layer of gas

is placed at the bottom of the box, and given an exponential den-

sity profile with distance from the bottom, ρ(h) = ρ∗exp (−h/h∗),
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where12 ρ∗ = 7.1 × 10−16 g cm−3, resulting in a column density of

� = 1.4 g cm−2. Following D14, we add fluctuations to the initial

gas density profile, of the form

∂ρ

ρ
= 0.25 (1 ± χ ) sin (2πx/Lbox) , (76)

where χ is a random number in the range [−0.25, 0.25]. The initial

gas profile is floored at a minimum density of 10−10ρ∗, and the

gas is given a homogeneous initial temperature of T∗ = 82 K. The

only non-adiabatic source of heating and cooling for the gas is

the dust–radiation interaction,

∂e

∂t
= −

∂E

∂t
= κPρ

(

c̃E − caT 4
)

. (77)

The bottom boundary of the box emits a radiation flux of

F∗ = 1.03 × 104 erg cm−2 s−1 (2.54 × 1013 L⊙ kpc−2), and the box

is initialized to contain an upwards radiation flux of the same mag-

nitude, with c̃E = Fy = F∗ and Fx = 0, and thus a radiation tem-

perature

Tr∗ =
(

F∗

ca

)1/4

= T∗. (78)

The radiation is coupled to the gas via Rosseland and Planck opaci-

ties which, vitally to the mechanics of this experiment, are functions

of the gas temperature:

κP = 0.1

(

T

10 K

)2

cm2 g−1,

κR = 0.0316

(

T

10 K

)2

cm2 g−1. (79)

These opacity functions originate from KT13 and are approximately

in agreement with dust models at T � 150 K (Semenov et al. 2003).

Given the initial temperature, T∗ = 82 K, the initial Rosseland

opacity is κR∗ = 2.13 cm2 g−1.

The radiation force is countered by a homogeneous grav-

itational acceleration field pointing downwards, of magnitude

g = 1.46 × 10−6 cm s−2. The local competition between down-

wards gravity and upwards radiation pressure is described by the

Eddington ratio,

fE =
fy,rad

gρ
, (80)

where fy,rad is the vertical radiation force,

fy,rad =
κRρFy

c
+

1

3
∇Et. (81)

Given the initial conditions, the Eddington ratio is fE, ∗ = 0.5, so the

radiation initially cannot lift the gas against the opposing force of

gravity. However, the gas is optically thick to the radiation with an

initial optical depth of, from bottom to top,

τ∗ = κR∗� = 3. (82)

Thus, the radiation can be trapped and accumulated by the layer

of optically thick gas, which boosts the radiation temperature. Due

to the coupling in equation (77), this in turn heats the gas, which

may via equation (79) increase κR to the extent that fE > 1. This of

12 Since the experiment is in 2D, the units for density and column density

should be g cm−2 and g cm−1, respectively. However, following KT13 and

D14, we use 3D units in the description for this experiment.

course requires efficient trapping of the radiation, which is the vital

factor that in the end decides whether the gas is lifted or not.

It should be noted that trapping here not only refers to our

method for trapping radiation in regions where the optical depth

is unresolved, but also to radiation which may be free-streaming in

optically thin gas, but is trapped bouncing back and forth between

the confinements of optically thick shells. We do apply our method

of trapping photons inside gas cells of unresolved mean free path,

which turns out to be relevant only to the early lift of gas, as we

shall see in the following analysis.

The box is periodic in the horizontal direction, both for the radi-

ation and matter. For the matter content, the bottom of the box

is reflective, allowing no escape or entry of gas, and Dirichlet

boundary conditions, i.e. fixed values, are applied to the top, with

ρ = 10−13 ρ∗, T = 10−3 T∗, and zero velocity, in pressure balance

with the initial conditions, and allowing easy escape of upwards

moving gas. For the radiation, we also apply Dirichlet boundary

conditions at the top, with zero flux and energy density. The bot-

tom boundary needs to emit radiation vertically at the rate F∗. We

accomplish this by solving the GLF intercell flux function (equa-

tion 16) to give an intercell flux of F1/2 = F∗ at the interface between

each cell at the lower box boundary and its ghost neighbour, with

the additional requirement that the ghost region cell has a photon

flux of F0 = (0, F∗). This gives a radiation energy density for the

ghost cell of

c̃E0 = F∗ − Fy,1 + c̃E1, (83)

where the subscripts 0 and 1 refer to the ghost cell and the boundary

cell inside the computational domain, respectively. As with all other

tests presented in this paper, we use here the GLF intercell flux

function for calculating the photon advection between cells. We

tried as well with the HLL intercell flux function, which is better

at maintaining the directionality of radiation (see R13), though

photon trapping is strictly not supported with it (see comment in

Section 2.2). Using HLL results in slightly more efficient early lift of

gas than with the GLF function, but eventual convergence towards

the same qualitative situation at the end of the run.

We follow the evolution of the system for 200 t∗, where t∗ = h∗/c∗
is the characteristic sound crossing time, and c∗ =

√
kBT∗/(μmH) =

0.54 km s−1 is the characteristic sound speed. We run the experiment

using a reduced light speed of c̃ = 3 × 10−3 c, which is more than

two orders of magnitude faster than c∗ (and much faster than any

gas velocities attained in the experiment). We start the experiment

at a full light speed and converge exponentially towards c̃ over

3 × 104 RHD time-steps. We do this specifically to capture the

sudden and short lived pile-up of trapped photons by the gas which

is accumulated mostly in the bottom layer of cells. This only affects

the acceleration of gas in the initial few t∗, compared to running at

c̃ for the whole experiment. We have run as well with a factor of 10

lower value for c̃, which gives a very similar evolution, implying

light speed convergence around the default value. In all the results

presented here, we use the relativistic corrections described in the

appendix, but note that they have no visible effect on the results.

To illustrate the effect and importance of photon trapping, we

present results from two RAMSES-RT runs, one with and one without

photon trapping. The run without trapping uses c̃ for the whole run,

without the initial decrement from the full light speed, as this has

no effect without the trapping mechanism which is responsible for

the initial pile-up of radiation. Also, since the run without trapping

has much less initial vertical acceleration of gas, it has half the

box width (and height) as the one with trapping activated, while
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Figure 9. Maximum (solid) and mass-weighted average (dashed) cell op-

tical depths in the gas levitation test. The thin bright-green curves show a

run without radiation trapping, while the thick dark-green curves show the

main run with radiation trapping. The high optical depths of cells indicate

that the diffusion limit is somewhat relevant in this experiment, especially

at the very start of the runs (t � 5t∗), where most of the gas mass is in the

diffusion limit (τc � 1).

keeping the same physical resolution, i.e. the box has a height of

Lbox = 512 h∗ and is resolved by 10242 cells.

Fig. 9 shows the evolution of cell optical depths, τ c. Focusing

first on the run without trapping (light green curves), we find that

the mass-weighted average and maximum cell optical depths start at

〈τ c, M〉 ≈ 2 and τ c, max ≈ 4, respectively, showing that the mean free

paths are unresolved at the start of the run, which implies that the

diffusion limit, and thus the photon-trapping mechanism, is relevant

at the start. The cell optical depths quickly decline in value as the gas

rises from the bottom and becomes more diffuse, such that the mean

free path becomes better resolved. For the remainder of the run the

average cell optical depths are mostly well below unity, although

there always remain cells with large optical depths. With trapping

turned on (darker green curves), the optical depths start well above

the values from the non-trapping run, due to the larger concentration

of photons that now accumulates in the optically thick gas, which

leads to higher gas opacity via equation (79). However, once the gas

starts to lift, the cell optical depths are reduced to smaller values

than in the non-trapping run, as a result of the diffusive pressure of

the trapped photons. After the experiment has reached a turbulent

equilibrium state, around 100 t∗, the opacities are consistently lower

than when trapping is not used.

Fig. 10 shows maps of gas density and radiation temperature at

different snapshots of the run with photon trapping. The evolution

is qualitatively similar to the results in D14, and we see the same

features of filamentary gas concentrations interspersed with more

diffuse ‘chimneys’ through which the radiation escapes to the top

of the box. Visual inspection of the gas density and radiation tem-

perature suggests that the results fall in between those of FLD and

VET in D14 (their figs 3–5). Focusing on the gas densities, the gas

is initially levitated quite efficiently, even more so than in either

FLD or VET, due to the strong initial trapped photon pressure (a

point which we will revisit later). About 1 per cent of the total mass

is ejected from the top of the box in the first upwards burst of gas.

The rest of the gas drops back to the bottom, to �200 h∗, where it

is kept turbulent by the competition between radiation pressure and

gravity. Unlike with VET, the gas is not coherently lifted beyond

h ≈ 500 h∗.13 It settles to eventually occupy similar heights as in the

FLD results, where it is concentrated below ≈200 h∗ at t = 150 t∗.

The radiation temperature maps show trapped radiation beneath co-

herent layers of gas, which extends quite high initially, but is kept at

much lower heights once the gas breaks up due to Rayleigh–Taylor

instabilities.

The first two density maps from the left (t = 25 and 50 t∗) contain

a conspicuous perfectly vertical feature at x ≈ 575 h∗. This gas is

flowing downwards in a thin stream, which is limited in thickness

only by the cell width. The horizontal forces on the gas stream are

negligible for some time, and thus, guided by the grid alignment,

the stream can maintain this perfect shape from t ≈ 22 t∗ until it is

destroyed by laminar gas flows at t = 64 t∗. No other such numerical

features appear in the simulation.

In Figs 11 and 12 we compare our results directly to those of

FLD and VET from D14 (courtesy of Shane Davis). The top plot in

Fig. 11 shows the volume-averaged Eddington ratio,

fE,V =
〈

fy,rad

〉

〈gρ〉
. (84)

This ratio expresses the competition between radiation pressure and

gravity, with fE, V > 1 when radiation pressure has the upper hand.

By construction, fE, V = f∗ = 0.5 at the start of the run. The middle

plot shows the volume-averaged optical depth from bottom to top,

τV = Lbox 〈κRρ〉 . (85)

The evolution of this quantity is closely linked to fE, V through that

of κR, which sets both the optical depth and the strength of the

radiation pressure. The bottom plot shows the ratio of the photon

flux-weighted mean optical depth,

τF = Lbox

〈

κRρFy

〉

Fy

, (86)

to τV.

We first focus on the effect of photon trapping in the RAMSES-RT

runs (Fig. 11, light and dark green curves). With photon trapping

turned on, there is an almost instantaneous rise from the initial

values, fE, V = 0.5 and τV = 3, quickly followed by a steep decline

in both. This early evolution is absent in the non-trapping run,

which just shows a gradual and much slower initial rise for both

quantities. The steep rise is due to the sudden build-up of trapped

photons in the bottom layer of cells, which increases κR. This results

in a strong force from the diffusive radiation, which quickly pushes

the gas upwards. The rapid diffusion of the gas in turn leads to

a rapid decrease of κR, and some of the trapped radiation escapes

upwards, reducing the opacity and the radiation push. With trapping

turned off, there is much less initial build-up of radiation, and the

initial push is gentler. In the long run, ignoring the evolution in the

first ≈10 t∗, the evolution with/without trapping, however, is quite

similar.

The same can be said if we compare the RAMSES-RT results to those

from D14. The results agree quite well overall, showing similar early

reaction and then settling on similar semiconstant values of fE, V, τV,

and τ F/τV. In the early reaction phase, t � 75t∗, the results in places

resemble an interpolation between the FLD and VET results, in line

with our argument that M1 is an intermediate approach between

FLD and VET.

13 The VET simulation is restarted with an extended box height at t = 80 t∗,

when the gas approaches the upper boundary, and the gas is approaching the

(new) upper limit at h ≈ 2048 h∗ when the run is stopped at ≈150 t∗.
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Figure 10. Maps of the gas density (upper row) and radiation temperature (lower row) in selected snapshots from the gas levitation experiment. We show the

full height of the box, but to fit the maps on the page, we show only half of the width, along the centre.

The run with photon trapping very quickly reaches peaks of

fE, V = 10 and τV = 32 at 0.023 t∗, which disappear rapidly as the

gas starts moving. We do not show these peaks in the plots in Fig. 11

for the sake of not stretching out the y-axes. The magnitude of the

peaks depends on the speed of light, which is the reason why we

start the trapping run with a full speed of light and converge to c̃

in the first ≈3 × 104 time-steps. We verified in hydrodynamically

static runs (i.e. with RT turned on but the HD turned off) that an

equilibrium is reached with constant values of fE, V = 10.7 and

τV = 32.5, regardless of the speed of light. The important differing

factor is simply the time it takes to reach that equilibrium, which

with reduced light speed becomes longer than the duration of the

peak.

This rather large discrepancy in optical depth from the FLD and

VET implementations at early times demands further investigation

to justify our ballpark numerical value. If we assume, for the sake

of simplicity, that all the gas is initially placed in a single horizontal

cell layer,14 we can derive an expression for the equilibrium value

14 This is a good approximation: 25–60 per cent of the column density is

initially in the bottom layer of cells, depending on the sinusoidal and random

fluctuations.

of the cell optical depth, τ c, at which the upwards flux from the cell

equals F∗. In the framework of M1 using the GLF intercell flux,

with photon trapping, such an equilibrium is met when

c̃Es =
[

1 − exp

(

−
2

3τc

)]

c̃E = 2F∗, (87)

where Es is the τ c-dependent streaming photon density (equa-

tion 49). We can then combine the relation τ c = κR�, equa-

tion (79) describing κR(T), and the relation between radiation tem-

perature and radiation energy, yielding

τc(E) = 3.16 × 10−4 cm2 g−1

K2
�

√

c̃E

ca
, (88)

assuming Tr = T. Substituting equation (88) into equation (87), and

using �∗, then gives an equilibrium condition that can be solved for

τ c, which yields a median value of τ c = 27, in fair agreement with

our peak optical depth of 32. Allowing for the maximum fluctuation

amplitude in �∗ gives an upper limit of τ c = 67, and looking at

Fig. 9, we find that the maximum initial values for τ c are within this

limit.
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Figure 11. Comparison of gas levitation test for RAMSES-RT with and without

trapping (light green and darker green curves, respectively), and for the

ATHENA code, taken from D14, using FLD (red) and VET (blue). Top panel:

Eddington ratio fE (=0.5 at t = 0) between the upwards force of radiation

pressure and the downwards force of gravity. Middle panel: average volume-

weighted optical depth along lines of sight from the bottom to the top of

the box (=3 at t = 0). Bottom panel: ratio between the flux-weighted and

volume-weighted average optical depths (=1 at t = 0). All plots show

strong similarity between the different methods and codes. Comparison of

the RAMSES-RT results with and without trapping reveals that the diffusion

limit is important at the beginning of the run, where a pile-up of radiation

results in very strong optical depth and in turn a strong radiation force.

With FLD we can make a similar estimate. Here the equilibrium

condition is

c̃E

3τc

= F∗, (89)

and again using equation (88) gives the same median and upper limit

for τ c as in the photon-trapping framework. While these simplified

estimates do not predict the exact equilibrium value of the optical

depth, they demonstrate that the high initial peak reached in our run

is indeed plausible.

We now turn our attention to the gas velocities. The upper panel

in Fig. 12 shows the ratio of the mass-weighted mean (i.e. bulk)

vertical velocity and the characteristic sound speed, while the lower

plot shows velocity dispersions in the gas (i.e. turbulence). With-

out trapping, the M1 results show relatively weak initial upwards

acceleration of the gas, followed by a drop, a bounce, and then an

turbulent equilibrium state, with the velocity dispersions well be-

low the constantly rising ones of VET, but somewhat above those

of FLD. With trapping turned on, there is a much more dramatic

initial acceleration of gas, even stronger than that of VET, which we

already attributed to the strong initial build-up of trapped radiation

in and below the bottom layer of gas. This is followed by a very

strong deceleration and drop back to the bottom of the box, which
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Figure 12. Gas velocity comparison in gas levitation test, for RAMSES-RT

with and without trapping (light green and darker green curves, respectively),

and for the ATHENA code from D14, using FLD (red) and VET (blue). Top

plot: mass-weighted mean vertical velocity. Bottom plot: mass-weighted

velocity dispersions. The plots show good comparison between RAMSES-RT

and ATHENA, but the RAMSES-RT results are more in line with the ones obtained

with FLD than VET. The main effect of photon trapping in RAMSES-RT can

again be seen in the faster early acceleration due to the combination trapped

photon pressure and the higher opacity of the gas that results from the

trapped photons (equation 79).
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Figure 13. Contributions, in the M1 levitation test with trapping, to the

total Eddington ratio (grey), from the free-flowing photon flux (red) and the

diffusion pressure from trapped photons (blue). The diffusion pressure is

important, but only at the very start of the run where almost all the gas mass

is concentrated in one row of cells at the bottom of the box.

is even stronger than with FLD. The strong drop is likely due to

the reduced speed of light: the incoming radiation flux cannot keep

up with filling the growing ‘bubble’ between the bottom of the box

and the rising layer of gas, and as a result the radiation pressure de-

flates as the gas lifts. At the same time, radiative Rayleigh–Taylor

instabilities fragment the gas, allowing the radiation to escape, and

the gas falls hard back to the bottom. However, it also bounces

back, and eventually reaches a turbulent state quite similar to the

non-trapping run, and to FLD, though the velocity dispersions are

stronger than with FLD.

We finally illustrate, in Fig. 13, the relative contributions to the

average Eddington ratio fE, V (grey) from the free-streaming photon

flux,
κRρFy

c
(red) and from the trapped photon diffusion pressure

1
3
∇Et (blue). As suggested by the previous plots, the diffusion
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pressure dominates strongly during the first few t∗, but is more or

less negligible for the remainder of the run.

Summarizing this final test, we repeated with RAMSES-RT the gas

levitation experiment described in D14, in which FLD and VET

closures were used for solving the moment equations of RT. We

ran the same setup as described therein, modulo differences in the

initial and boundary conditions required by the different methods.

With FLD, the bottom boundary condition requires that

cλ

κRρ

∂E

∂y
= F∗, (90)

where λ is the flux-limiter that limits the speed of radiation transport

to the speed of light. With VET, the comoving radiation flux in the

bottom boundary ghost zone is set to Fy = F∗ which is quite similar

to the boundary condition we apply with M1, but they also add a

‘diffusion limit’ correction to the flux, enhancing it according to the

optical thickness of the layer of cells just above the boundary. We

need not apply any such correction, since the trapping of photons

automatically takes care of the diffusion limit. However, the similar

early evolution suggests that the correction made in VET is valid,

and that the diffusion limit is indeed mostly relevant in the very

bottom layer of gas cells.

All in all, our results using the M1 closure agree well with the

other closures, though they are qualitatively more similar to FLD

than VET: while both M1 and FLD manage to build up, after 50 t∗,

a quasi-hydrostatic extended gas layer, VET still continues to evac-

uate gas at a significant rate. In light of this, since the M1 closure

does not follow the gradient of radiation energy as the FLD clo-

sure does, the difference between the fate of the gas with different

closures is likely to have a more nuanced explanation than just the

FLD closure tending to magnify radiative Rayleigh–Taylor insta-

bilities. It is non-trivial to read much in terms of physics into those

differences, especially since it remains to be seen how far the gas

can levitate with VET before reaching a turbulent equilibrium state,

and whether this state eventually resembles the results with FLD

and M1.

While we cannot point out specifics in the other implementations

which could affect the experiment results, we can point out two

factors which might affect our own results. One is the reduced

speed of light. While our convergence tests that change the speed of

light by a factor of a few in each direction give very similar results,

it is possible that the results would be quite different if we used the

real speed of light, or a value close to it. Indeed we have seen that the

early acceleration of the gas is quite sensitive to the speed of light, so

is likely the relatively strong deceleration, and the same may indeed

apply later in the experiment. Possibly the gas can spontaneously

form a coherent layer that efficiently traps the radiation. In such a

scenario, the radiation builds up faster with an increasing speed of

light, and with a low speed of light the trapping layer of gas may

be destroyed by gravity ahead of the radiation build-up, essentially

keeping the gas from being lifted. Another factor is the limitation

of the M1 closure in dealing with multiple sources. In the case of

efficient trapping, the radiation essentially bounces between the gas

layer and the bottom of the box, and in such a case the M1 closure

may create an overtly diffusive radiation field that tends to blow

holes in the trapping layer of gas.

There are also limitations to the setup of this experiment, which

ultimately are probably more severe than the implementation de-

tails mentioned, e.g. the lack of resolution in the initial setup, the

close competition between gravity and radiation, the monogroup

approach, and the lack of a third dimension.

In conclusion, and regardless of the physical limitations, this last

test gives support in favour of the robustness of the new additions to

RAMSES-RT, as we test all the new aspects of the code, i.e. radiation

pressure, radiation–temperature coupling, radiation trapping, and

relativistic corrections (though the last factor turns out to have no

effect on the results). The results using RAMSES-RT are very similar

to those obtained by FLD and VET in terms of the evolution of

the Eddington ratio between the forces of radiation and gravity, the

volume-averaged optical depth, and the ratio between the flux aver-

aged and volume-averaged optical depths. The early acceleration of

the gas is quite similar to the VET case, but instead of continuing to

lift, the gas drops back to the bottom and reaches a turbulent equi-

librium state, with velocity dispersions in-between those of FLD

and VET.

4 C O N C L U S I O N S

We have presented several important modifications to the RHD

implementation in RAMSES-RT. Previously, as described in R13, the

implementation focused on the interaction of photons and gas via

photoionization and the associated gas heating. In the current work,

three features were added.

(i) Multiscattered IR radiation, which is coupled to the evolution

of the gas/dust temperature. A vital ingredient here is the novel

treatment of radiation diffusion in a medium where the mean free

path is unresolved, by partitioning the radiation into subgroups of

trapped and streaming photons. In the optically thick limit, the

method accurately reproduces the results of FLD, but has the great

advantage over FLD that free-streaming photons are much more

accurately modelled, and that photons can ‘adaptively’ alternate

between trapped and free-streaming, depending on the local prop-

erties of the gas.

(ii) Relativistic v/c corrections to the implementation of dust-

coupled radiation, accounting for Doppler effects and hence the

work done by the radiation on the gas.

(iii) Momentum transfer from radiation to gas, allowing for re-

alistic modelling of the effects of radiation pressure, both direct

pressure from ionizing radiation, and from reprocessed multiscat-

tered radiation.

We used a series of test to validate our new additions. These

included a morphological assessment of a radiation field produced

by the M1 closure around a galaxy disc (Section 3.1), a test of dust-

absorbed radiation in a homogeneous optically semithick medium,

where we compared to a full RT solution (Section 3.2), tests of direct

ionizing radiation pressure in an initially homogeneous gas around

a luminous young stellar population (Section 3.3), a qualitative res-

olution convergence test for photon trapping in a resolved versus

unresolved optically thick gas (Section 3.4), quantitative tests of ra-

diation diffusion in optically thick gas, with a radiation flash in 2D

(Section 3.5), and a constant radiation source in 3D (Section 3.6),

and, finally, a 2D test of the competition of gravity and multiscatter-

ing IR radiation where we compared our results in terms of average

optical depths, Eddington ratios, bulk gas velocities, and turbu-

lence, against previously published results with the ATHENA code,

from D14. With the tests, we can demonstrate a robust treatment in

RAMSES-RT of the interaction of radiation and gas via photoionization

heating, direct pressure from ionizing radiation, dust heating, and

momentum deposition by multiscattering photons.

There are limitations to the RHD approach that we use in RAMSES-

RT. As discussed in both this work and R13, the M1 moment

method which we employ has problems in dealing with situations of
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overlapping radiation from different sources, especially in between

those sources. We have presented demonstrations of this particu-

lar limitation, but we argue that even if the radiation is not always

propagated to full quantitative precision, it is qualitatively robust,

and generally adequate in relevant astrophysical scenarios. Another

limitation of the code is that while it does offer a multifrequency

approach, it is quite crude, with only a handful of frequency bins

realistically attainable in standard simulations. However, (Mirocha

et al. 2012) have shown that as few as four bins of (ionizing) ra-

diation, if optimally placed in the frequency range, can eliminate

frequency resolution errors to high precision, and other factors, such

as resolution, likely become more limiting in studying the effects

of radiation feedback on galaxy evolution.

We will follow up on this work with RHD simulations to study

the effects of radiation feedback from stars and AGN on galaxy

evolution, morphology, and outflows, on cosmological, galactic,

and ISM scales.

The RAMSES-RT implementation, including all the new features

described here, is publicly available, as a part of the RAMSES code.15
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Commerçon B., Debout V., Teyssier R., 2014, A&A, 563, 11

Creasey P., Theuns T., Bower R. G., Lacey C. G., 2011, MNRAS, 415, 3706

Dalla Vecchia C., Schaye J., 2012, MNRAS, 426, 140

Davis S. W., Jiang Y.-F., Stone J. M., Murray N., 2014, ApJ, 796, 107 (D14)

Draine B. T., Li A., 2007, ApJ, 657, 810

Gayley K. G., Owocki S. P., Cranmer S. R., 1995, ApJ, 442, 296
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APPENDI X A : R ELATI VI STI C CORRECTIO NS

TO T H E R H D E QUAT I O N S

We describe briefly the RHD equations, taking into account v/c

terms that were missing in this paper so far, which represent rela-

tivistic Doppler effects between the rest frames of the gas and the
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radiation. These equations are derived from the classical textbook

on RHD, Mihalas & Mihalas (1984).

We now distinguish between the radiation energy expressed in

the gas comoving frame, noted E0, from the radiation energy in the

lab frame, noted E in the main text. We also define the radiation flux

vector in the comoving frame as F0, and the lab frame radiation

flux F. The gas total energy is defined as usual by

Egas =
1

2
ρv2 + e, (A1)

where we recall ρ and v are the gas density and speed, respectively,

and e is the gas internal thermal energy.

We now add v/c terms to the radiation momentum equations (8)

and (9), neglecting only (v/c)2 terms (see Mihalas & Mihalas 1984,

page 423).

∂E

∂t
+ ∇ · F = κρ

(

caT 4 − c̃E + v ·
1

c
F

)

, (A2)

∂F

∂t
+ c̃2∇ · DE = κρc̃

(

−F + vaT 4 + v ·
c̃

c
DE

)

. (A3)

Note that λ = (κρ)−1 is the frequency-averaged mean free path

computed in the comoving frame. Doppler effects are therefore

only accounted for up to v/c in the previous explicit form, and the

radiation variables are still in the lab frame. This formulation is

therefore referred to as the mixed frame equations.

We find it convenient to re-express these equations using the co-

moving radiation variables, when coupled to the thermochemistry.

For this, we use the Lorentz transform up to first order in v/c to com-

pute comoving variables as a function of the lab frame variables.

We have (Mihalas & Mihalas 1984, page 417):

E0 = E −
2

c̃c
v · F, (A4)

F0 = F − v ·
c̃

c
E (I + D) . (A5)

Injecting these relations into the mixed frame equations (A2) and

(A3) leads to the form

∂E

∂t
+ ∇ · F = κρ

(

caT 4 − c̃E0

)

− v ·
κρ

c
F, (A6)

∂F

∂t
+ c̃2∇ · DE = κρc̃F0 + v

κρc̃

c

(

caT 4 − c̃E
)

. (A7)

The source terms are now easier to interpret: the first term on the

RHS of the energy equation is the classical radiation and matter

coupling term in the comoving frame. The second term is equal

to minus the work of the radiation force in the lab frame. In the

radiation flux equation, the first term is the radiation force in the

comoving frame, while the second one is a purely relativistic term

usually identified as a frame dragging effect between matter and

radiation. The gas energy and momentum equations (11) and (12)

(ignoring gravity and other heating/cooling processes) are modified

accordingly and are written using a globally strictly conservative

form

∂Egas

∂t
+ ∇ ·

(

v(Egas + P )
)

= κPρ
(

c̃E0 − caT 4
)

− v ·
κPρ

c
F,

(A8)

∂ρv

∂t
+ ∇ · (ρv ⊗ v + P I) =

κRρ

c
F0 − v

κRρ

c2

(

caT 4 − c̃E
)

.

(A9)

We directly exploit this form of the RHD equations in our nu-

merical implementation, by adding each contribution in a classical

operator splitting approach.

APPENDI X B: TRAPPED V ERSUS STREAMING

P H OTO N S IN A M I X E D FR A M E FR A M E WO R K

In order to deal with extremely opaque conditions, for which the

mean free path, λR = (κRρ)−1, is much smaller than the grid spac-

ing 
x, we have developed in Section 2.4.2 a trapped/streaming

radiation approach that properly captures the diffusion limit, even if

one does not resolve the mean free path. This method was presented

without taking into account the relativistic corrections discussed in

the previous section. We now consider both the comoving and the

lab frame, and our trapped photons are assumed to be isotropic in

the comoving frame. This means that F0
t = 0 and, to first order in

v/c, one has from equations (A4) and (A5):

Et = E0
t , P t =

E0
t

3
I and Ft =

4

3

c̃

c
E0

t v, (B1)

where we now express the comoving variables with a ‘0’ superscript

rather than a subscript. We split the radiation energy into trapped

and streaming components E = E0
t + Es, using the decomposition

of Section 2.4.2 based on the local cell optical depth. The total

radiation energy equation (equation 35, ignoring the Ė source term)

then becomes

∂E0
t

∂t
+

∂Es

∂t
+ ∇ ·

(

Fs +
4

3

c̃

c
E0

t v

)

= κPρ
(

caT 4 − c̃E0
t − c̃E0

s

)

− v ·
κPρ

c
F, (B2)

and the total radiation flux equation (equation 36) becomes

∂Fs

∂t
+

c̃2

3
∇E0

t + c̃2∇ · (DEs)

= −κRρc̃F0
s + v

κRρc̃

c

(

caT 4 − c̃E
)

. (B3)

In the diffusion regime, we would like to recover equation (40) in

the comoving frame, i.e.

F0
s ≃ −

c̃λR

3
∇E0

t . (B4)

In order to enforce our scheme to satisfy this limit when the cell size

is large compared to the mean free path, we exploit our GLF flux

function (equation 17) and we fix the streaming to trapped photon

ratio by

E0
t =

3τc

2
Es. (B5)

We then solve for the streaming photon energy and flux variables

in equations (B2) and (B3) using our mixed frame M1 Godunov

solver

∂Es

∂t
+ ∇ · Fs = −κPρc̃E0

s − v ·
κPρ

c
Fs, (B6)

∂Fs

∂t
+ c̃2∇ · DEs = −κRρc̃F0

s + v
κRρc̃

c

(

caT 4 − c̃E
)

. (B7)

The total radiative force is decomposed into a streaming and a

trapped component as before,

κRρ

c
F =

κRρ

c
Fs −

1

3

c̃

c
∇E0

t . (B8)
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The work of the radiation force (with a minus sign) is decomposed

between the streaming and the trapped photon energy equation. For

the latter, we solve the trapped part of the radiation energy equation

(B2), namely

∂E0
t

∂t
+∇ ·

(

4

3

c̃

c
E0

t v

)

=κPρ
(

caT 4−c̃E0
t

)

+v ·
1

3

c̃

c
∇E0

t , (B9)

which can be rewritten as the classical comoving radiation energy

equation

∂E0
t

∂t
+ ∇ ·

(

c̃

c
E0

t v

)

+ Prad∇ · v = κPρ
(

caT 4 − c̃E0
t

)

, (B10)

where the trapped radiation pressure is Prad = 1
3

c̃
c
E0

t . The gas mo-

mentum equation (47) (ignoring the gravity term) is also modified

into

∂ρv

∂t
+ ∇ · [ρv ⊗ v + (P + Prad)I]

=
κRρ

c
F0

s − v
κRρ

c2

(

caT 4 − c̃E
)

, (B11)

as well as the gas total energy equation (11) (ignoring gravity and

�),

∂

∂t

(

Egas + E0
t

)

+ ∇ ·
[

v(Egas + E0
t + P + P 0

t )
]

= κPρc̃E0
s + v ·

κPρ

c
Fs. (B12)

We now see quite clearly that in very optically thick regions, where

Es ≪ E0
t , the streaming photons energy and flux can both be ig-

nored and the previous set of equations just becomes a classical HD

system with two pressure and energy components (gas and trapped

radiation), that can be solved with a multifluid Godunov scheme.

We incorporate the trapped energy radiation energy and pressure

into all components of the fluid solver, as in Commerçon et al.

(2011).

APP ENDIX C : A FULL RT SOLV ER

In Section 3.2 we compare RAMSES-RT results to a full RT calculation,

which we will now describe.

The full RT solver takes a ‘bulldozer’ approach in solving the

full RT equation (1), in the four-dimensional space (x, y, φ, θ ),

where the first two dimensions are location and the latter two are

the standard solid angle, with φ the angle from the x-axis in the

xy-plane and θ the angle from the normal vector to the xy-plane.

The four-dimensional space is discretized into a four-dimensional

grid (i, j, k, ℓ), with a total number of elements Nx × Ny × Nφ × Nθ ,

where the Ns denote the number of bins in each dimension. Each

grid element contains the radiation specific intensity I(i, j, k, ℓ) (in

a single group approach). The radiation energy density (energy per

unit volume) in a cell (i, j) is retrieved by summing the specific

intensity over all angles:

E(i, j ) =
1

c

Nφ
∑

k=1

Nθ
∑

ℓ=1

I (i, j , k, ℓ) sin θ 
θ 
φ, (C1)

where


φ =
2 π

Nφ

(C2)


θ =
π

Nθ

, (C3)

φ(k) = (k − 1.)
φ, (C4)

θ (ℓ) = (ℓ − 0.5)
θ. (C5)

The specific intensity is integrated on the whole grid, according

to equation (1), in discretized time-steps of length 
t = 0.5 
x
c

. In

each time-step, the specific intensity is updated from It to It + 
t

in three operator-split steps: injection, advection, and scattering,

which are performed as follows.

C1 Injection

This step corresponds to solving equation (1) with only the first

term on the RHS, i.e.

1

c

∂I

∂t
= η. (C6)

Here, photons are simply added to I(i, j, k, ℓ) where appropriate.

In our Section 3.2 test, no such injection inside the box bound-

aries is in fact needed. Here, it suffices to initialize the boundary

conditions such that the correct flux is emitted from the left-hand

side. For all but the left boundary, the ghost cells, i.e. static cells just

outside the box boundary, are initialized to zero radiation intensity,

while for the left-hand side ghost cells we set

I (0, j , 1, ℓ) =
1

2

F∗

sin θ
φ
θ
, (C7)

for j = (1, . . . , Ny) and ℓ = (Nθ/2 − 1, Nθ/2), assuming even Nθ .

C2 Advection

Here, we solve equation (1) over 
t with only the advection term,

i.e.

1

c

∂I

∂t
+ n · ∇I = 0. (C8)

First, fluxes are calculated across each intercell boundary inside the

grid (and at the grid boundaries). The x-fluxes are

fx

(

i +
1

2
, j , k, ℓ

)

= cnxI↓

(

i +
1

2
, j , k, ℓ

)

, (C9)

where nx = cos φ sin θ , and I↓ is the downstream radiation intensity,

i.e.

I↓

(

i +
1

2
, j , k, ℓ

)

=

{

I (i, j , k, ℓ) if nx > 0,

I (i + 1, j , k, ℓ), otherwise.

Likewise, the y-intercell fluxes are

fy

(

i, j +
1

2
, k, ℓ

)

= cnyI↓

(

i, j +
1

2
, k, ℓ

)

, (C10)

where ny = sin φ sin θ , and

I↓

(

i, j +
1

2
, k, ℓ

)

=

{

I (i, j , k, ℓ) if ny > 0,

I (i, j + 1, k, ℓ), otherwise.

The radiation is then explicitly advected between cells, using the

intercell fluxes:

I ′(i, j , k, ℓ) = I (i, j , k, ℓ) +

t


x
[

fx

(

i −
1

2
, j , k, ℓ

)

− fx

(

i +
1

2
, j , k, ℓ

)

+fy

(

i, j −
1

2
, k, ℓ

)

− fy

(

i, j +
1

2
, k, ℓ

)

]

, (C11)
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for each i ∈ (1, . . . , Nx), j ∈ (1, . . . , Ny), k ∈ (1, . . . , Nφ), ℓ ∈
(1, . . . , Nθ ).

C3 Scattering

In the final operator-split step in the full RT calculation, the radiation

is scattered isotropically. First, the radiation intensity in each cell

and over all angles is semi-implicitly ‘absorbed’:

I ′′(i, j , k, ℓ) =
I ′(i, j , k, ℓ)

1 + 
t ρκc
. (C12)

Then these photons are emitted isotropically (i.e. scattered):

I t+
t (i, j , k, ℓ) = I ′′(i, j , k, ℓ) +
fsc(i, j )

4π
, (C13)

where fsc is the scattered flux over the time-step,

fsc(i, j ) =
Nφ
∑

k=1

Nθ
∑

ℓ=1

[

I ′′(i, j , k, ℓ) − I ′(i, j , k, ℓ)
]

sin θ
φ
θ.

(C14)

With equation (C13), the radiation specific intensities are fully up-

dated to time t + 
t, and now the sequence of operator splitting

steps (C1)–(C3) can be repeated for consecutive time-steps.
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