
The Annals of Applied Probability
2006, Vol. 16, No. 1, 107–139
DOI: 10.1214/105051605000000656
© Institute of Mathematical Statistics, 2006

A SCHEME FOR SIMULATING ONE-DIMENSIONAL DIFFUSION
PROCESSES WITH DISCONTINUOUS COEFFICIENTS

BY ANTOINE LEJAY1 AND MIGUEL MARTINEZ

Projet OMEGA, INRIA

The aim of this article is to provide a scheme for simulating diffusion
processes evolving in one-dimensional discontinuous media. This scheme
does not rely on smoothing the coefficients that appear in the infinitesimal
generator of the diffusion processes, but uses instead an exact description of
the behavior of their trajectories when they reach the points of discontinuity.
This description is supplied with the local comparison of the trajectories of
the diffusion processes with those of a skew Brownian motion.

1. Introduction. The aim of this article is to provide a scheme for the sim-
ulation of the one-dimensional diffusion process X generated by the differential
operator

L = ρ

2

d

dx

(
a

d

dx

)
+ b

d

dx
.(1)

Here, a, ρ and b denote piecewise smooth functions that may have an infinite
number of discontinuities on a countable set of points J. We assume, however,
that J has no cluster points and that the functions a, ρ and b have everywhere left
and right limits. The triplet (a, ρ, b) will be called the characteristic of L.

If a belongs to C1, L may be transformed into

L = aρ

2

d2

dx2 +
(

a′

2
+ b

)
d

dx
,

and we see that, even if the coefficients are smooth, using a Euler scheme for
the simulation of X requires us to compute the derivative of a, which may be
quite expensive from a numerical point of view. However, if a = 1, it has been
proved in [39] that the Euler scheme converges but, yet, specifying its speed of
convergence still remains an open and challenging problem.

The scheme presented in this article is different from the Euler scheme. It should
rather be seen as a variation of the well-known random walk on spheres.
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The basic idea is the following. First, we replace the differential operator L

by another one whose coefficients are piecewise constant, which provides good
approximations of the solutions of the elliptic and parabolic PDEs involving L

(see Section 8 for a computation of the error). Second, we simulate the stochastic
process generated by the approximation of L at a given time using a description
of its behavior when it is around a point where a or ρ (or both) are discontinuous.
Mainly, we compute quantities related to the first exit time and position on some
intervals. This method is exact in the case of piecewise constant coefficients when
b = 0 because it describes correctly the behavior of the diffusion process when it
reaches a point in J.

Let us explain our approach with a simple example: assume that b = 0 and
suppose that (a(x), ρ(x)) = (a+, ρ+) if x ≥ 0 and that (a(x), ρ(x)) = (a−, ρ−)

if x < 0. Here, a±, ρ± are positive constants. Let u be the weak solution of the
parabolic problem associated with L:

∂u(t, x)

∂t
= Lu(t, x) and u(0, x) = f (x).(2)

It is well known that this problem is equivalent to the following transmission prob-
lem (see [18], e.g.):

∂u(t, x)

∂t
= a(x)ρ(x)

2
�u(t, x), on R

∗+ × R
∗+ and on R

∗+ × R
∗−,

a+∇u(t,0+) = a−∇u(t,0−), for t > 0.
(3)

Now, let us introduce � defined as follows:

�(x) = x√
a+ρ+ 1{x≥0} + x√

a−ρ− 1{x≤0}.

Since the function u is of class C2 on R+ × R \ {0}, it is easy to check that
v(t, x) := u(t,�(x)) is the solution of another transmission problem

∂v(t, x)

∂t
= 1

2
�v(t, x), on R

∗+ × R
∗+ and on R

∗+ × R
∗−,

√
a+√
ρ+ ∇v(t,0+) =

√
a−√
ρ− ∇v(t,0−), for t > 0.

(4)

Formally, this new transmission problem (4) is also equivalent to the parabolic
problem ∂v

∂t
= L̂v(t, x), where L̂ is the formal differentiable operator 1

2� + βδ0∇ ,
with

β =
√

a(0+)/ρ(0+) − √
a(0−)/ρ(0)−√

a(0+)/ρ(0+) + √
a(0−)/ρ(0−)

∈ (−1,1).

As shown in [30, 31] (see also [11]), this differentiable operator L̂ is the infinitesi-
mal generator of the skew Brownian motion. This process can be constructed from
a reflected Brownian motion by simply choosing the sign of each excursion by
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tossing an independent Bernoulli random variable of parameter (β + 1)/2. Heuris-
tically, this means that the particle chooses to go on R+ (resp. R−) with probability
(β + 1)/2 [resp. (1 − β)/2] when it reaches 0. Unfortunately, this description is
not relevant due to the fact that there are infinitely many small excursions. Besides,
this approach does not permit us to understand the real behavior of the particle as a
function of a± and ρ±. However, numerical simulation of the skew Brownian mo-
tion is easy, and using a simple and deterministic change of scale, it is possible to
solve (2) using the probabilistic representation u(t, x) = Ex[f (�−1(Z

β
t ))], where

Zβ is a skew Brownian motion of parameter β .
Instead of working with PDEs, one may prefer to use the Itô–Tanaka formula as

in [29]. This can be achieved using a precise description of the process X related
to L. As shown in [20], Chapter 5, X solves the following SDE:

Xt = X0 +
∫ t

0

√
a(Xs)ρ(Xs) dBs + a(0+) − a(0−)

a(0+) + a(0−)
L0

t (X),

where B is a Brownian motion and L0 is the symmetric local time of X at 0. The
diffusion process �(X) is then a skew Brownian motion with the coefficient β

given above.
The basic idea of this paper is to use this kind of description because of the

particular properties of the skew Brownian motion.
Although this is not the first use of the skew Brownian motion in Monte Carlo

methods (see [21, 40] or, more recently, for financial applications, [9]) or in model-
ing (see [7] for application in ecology), there has been neither a systematic study of
this process in this framework, nor a complete exposition of the interplay between
the different coefficients.

The numerical method presented in this article follows the idea of [22], where
diffusions with constant coefficients on the edges of a graph were simulated. As the
infinitesimal generator provides locally the behavior of the particle, some proper-
ties of the skew Brownian motion allow, in this particular framework, to describe
what happened at the nodes of the graph. These are the main reasons which ex-
plain our choice of approaching nonconstant coefficients using piecewise constant
approximations rather than smoothing the discontinuities around the points of J.
Indeed, this last procedure turns out to be unstable in practice and very expensive
numerically.

We will also provide results concerning the diffusion process generated by L

under more general assumptions than in [20], Chapter 5, mainly by describing it
as the solution of some SDE involving the local time and being aware of the bound-
ary conditions. In his Ph.D. thesis [27], one of the authors gives other results on
diffusion processes generated by divergence-form operators, and uses also space
and time transforms as a very natural tool. Among his results, he studies the speed
of convergence of the Euler scheme with discontinuous coefficients obtained after
making use of some other scale transform.
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One could also think of using a random walk as proposed in [23] (after a proper
change of the scale). The advantage of this method is that the time step is incre-
mented with a constant value and not with a random variable. This perspective is
studied by P. Étoré in the recent article [12]. We also argue that our algorithm can
be implemented locally around the points where discontinuities hold. One may
use more efficient algorithms (Euler scheme, Milstein scheme, . . . ) in the regions
where the coefficients are smooth.

Outline of the article. In Sections 2 and 3 we show how to construct the sto-
chastic process generated by L. In Sections 4 and 5 we study the properties of
the semi-group generated by L and the convergence of the solutions of the PDEs
with respect to a family of differential operators. In Section 6 and 7 we study the
process X generated by L and we show how to transform it into a process that
behaves locally like a skew Brownian motion. The algorithm is explicitly given
in Section 9 and its error is studied in Section 8. Finally, as an example, we show
numerical results concerning the density of a doubly skewed Brownian motion and
we compare this scheme with others for a differential operator with nonconstant
coefficients.

HYPOTHESES. Let � < r be two numbers that belong to R. It is possible that
� = −∞ and/or r = +∞.

Assume that the coefficients a, ρ and b are defined on [�, r] and satisfy

a, ρ and b are measurable,(5a)

for all x ∈ [�, r], ρ(x) ∈ [λ,�] and a(x) ∈ [λ,�],(5b)

for all x ∈ [�, r], |b(x)| ≤ �(5c)

for some constants λ,� > 0.
Let ν(dx) be the measure ρ(x)−1 dx on (�, r) and G denote the open set (�, r).

It is possible that G = R. For technical reasons, we restrict ourselves to the case
where � and r are simultaneously finite or infinite. In fact, all the results given here
can be extended for G = (�,+∞) or G = (∞, r).

We define L2(G) as the space of measurable functions on G that are square inte-
grable with respect to the Lebesgue measure. We also define H1(G) [resp. H1

0(G)]
as the completion of the space of smooth functions (resp. smooth functions with
compact support) on G with respect to the norm

‖f ‖H1(G) =
√

‖f ‖2
L2(G)

+ ‖∇f ‖2
L2(G)

.

Recall that, for any connected interval G, all functions in the Sobolev space
H1(G) have a continuous version. In all the following we will systematically iden-
tify a function in H1(G) with its continuous version.
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2. Removing the drift. We assume that a, ρ and b are smooth.
When G is finite, choose (L,Dom(L)) to be any of the differential operators:{

L is given by (1),

Dom(L) = {f ∈ C2(G;R)|f (r) = f (�) = 0}
for Dirichlet boundary condition (b.c.) or{

L is given by (1),

Dom(L) = {f ∈ C2(G;R)|f ′(r) = f ′(�) = 0}
for Neumann b.c.

When G = R, let (L,Dom(L)) be the differential operator:{
L is given by (1),

Dom(L) = C2
b(R;R).

Because a, ρ and b are assumed to be smooth, it is well known that (L,Dom(L))

is the infinitesimal generator of a continuous strong Markov process (X, (Px)x∈G)

(see [5], e.g.) and, in addition, this process is the solution to the stochastic differ-
ential equation (SDE)

dXt = √
ρa(Xt) dBt +

(
a′

2
+ b

)
(Xt) dt.

If b = 0, then (L,Dom(L)) can be associated to a symmetric bilinear form

E(u, v) = 1
2

∫
a(x)u′(x)v′(x) dx

defined for u, v in C1
b(G;R) through

E(u, v) =
∫

Lu(x)v(x)ρ−1(x) dx(6)

for (u, v) ∈ Dom(L) × C1
b(G;R).

Since the symmetry of L will play an important role in most of the results given
in this article, we would like to be able to transform (2) into an equivalent form
without drift: as we will now see, this is possible thanks to the crucial fact that we
are working in the one-dimensional space. Let us explain one way of removing the
drift by transforming a and ρ: let 
 be the function


(x) =
∫ x

0
h(x) dx with h(x) = 2

∫ x

0

b(y)

ρ(y)a(y)
dy.(7)

If 
 is given by (7) and is bounded, a simple calculation shows that

e−
 ρ

2

d

dx

(
ae
 d

dx

)
= ρ

2

d

dx

(
a

d

dx

)
+ b

d

dx
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and we see that

e−
 ρ

2

d

dx

(
ae
 d

dx

)
(8)

is a linear operator which is symmetric with respect to the measure ρ(x)−1e
 dx

and, thus, we can manipulate (6).
If G is bounded, then 
 is bounded by a constant that depends only on λ, �

and the Lebesgue measure Meas(G) of G. Hence, this procedure is valid.
If G is not bounded, then 
 is not bounded in general, and we cannot make

this transformation without using further arguments. However, we claim that it is
possible to replace 
 , at least locally, with 
̂ defined, for example, by


̂(x) = 
(x) − 
(n) if x ∈ [n,n + 1] for all n ∈ Z.

Thus, it is possible to repeat our argument and to transform L locally in a linear
operator which is symmetric with respect to the measure ρ(x)−1e
̂(x) dx.

As a matter of fact, instead of considering (a, ρ, b) as the characteristic of L,
one should only consider L related with the new characteristic (e
̂a, e−
̂ρ,0).

Note that the transform used here to remove the drift applies for nonsmooth
coefficients a, ρ and b since it is always possible to use a regularization procedure
and pass to the limit: see regularization results in Section 5.

3. Existence of a stochastic process. In dimension one, results on the exis-
tence of stochastic processes generated by (L,Dom(L)) may be proved using (at
least) three ways: using the properties of the density transition function, using the
scale function and the speed measure, or using the Dirichlet form theory. We will
see that all these methods lead to the same process.

3.1. Using Dirichlet forms. Let us assume at first that b = 0. This will allow
us to use the theory of symmetric Dirichlet forms. We have seen in Section 2 that
this hypothesis is not a restriction.

Let E be the bilinear form

E(u, v) = 1

2

∫
G

a
du(x)

dx

dv(x)

dx
dx for all u, v ∈ Dom(E)

on L2(G;ν(dx)). The domain Dom(E) is

Dom(E) = H1([�, r];ν(dx)
) � H1([�, r]) for the Neumann b.c.,

Dom(E) = H1
0
(
G;ν(dx)

) � H1
0(G) for the Dirichlet b.c.

It is well known that (E ,Dom(E)) is a regular, local Dirichlet form [13]. Hence,
it generates a continuous strong Markov process (X, (Ft )t≥0, (Px)x∈G). Besides,
the process is conservative if G = R or Dom(E) = H1([�, r]) which corresponds
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to the Neumann b.c. See Lemma 1.6.5 of [13]: recurrence follows by applying
Theorem 1.6.3 of [13] and the fact that, in both cases, 1 ∈ Dom(E) and E(1,1) = 0.

Besides, if G = (�, r) and Dom(E) = H1
0(G), the Dirichlet form (E ,Dom(E))

still possesses the local property: thus, we can repeat all the arguments of Exam-
ple 4.5.1, page 166 in [13] and X is absorbing at both end-points of G (see also
Theorem 4.2.2, page 154 in [13]). We are allowed to write Xt = 1{τ≤t}δ+1{τ>t}Yt ,
where δ is the “point at infinity” added to R, Y is the process generated by
(E ,H1

0(R)) with a = ρ = 1 outside G, and τ = inf{t ≥ 0|Yt /∈ G}.

REMARK 1. As the dimension of the space is one, each point x ∈ [�, r] is
nonpolar and has a positive capacity, and all the statements of type “for quasi-
every point of [�, r]” mean in fact “for every point of [�, r].”

REMARK 2. One could assume that the coefficients a and ρ are locally
bounded and locally uniformly elliptic. In this case, the process is not necessar-
ily conservative, which means that it may explode in finite time. This issue is
discussed in [35].

3.2. Using the properties of the semi-group. To the Dirichlet form, (E ,

Dom(E)) may be associated a linear operator (L,Dom(L)) on L2(G;ν(dx)) de-
fined through the relation

E(u, v) = −〈Lu,v〉L2(G)ν(dx) for all (u, v) ∈ Dom(L) × Dom(E).

The operator L is the one given by (1) with domain

Dom(L) = {f ∈ H1
0(G)|Lf ∈ L2(G)} for the Dirichlet b.c.,

Dom(L) = {f ∈ H1([�, r])|Lf ∈ L2(G)} for the Neumann b.c.

It is possible to show that the operator (L,Dom(L)) is the infinitesimal generator
of a semi-group (Pt )t>0. We will see in Section 4 that Pt has a density transition
function p(t, x, y) and that some general estimates hold for it. These estimates
[see (12), e.g.] are sufficient to ensure the existence of a strong Feller, continuous
process (X, (Ft )t≥0, (Px)x∈G).

3.3. Using the scale function and the speed measure. Using the scale func-
tion and the speed measure gives another way to define the stochastic process
(X, (Ft )t≥0, (Px)x∈G).

Let us set, for x in (�, r),

h(x) = 2
∫ x

0

b(y)

ρ(y)a(y)
dy, m(dx) = exp(h(x))

ρ(x)
dx,(9)

S(x) =
∫ x

0

exp(−h(y))

a(y)
dy and V (x) =

∫ x

0
m(x)dx.(10)
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For the Dirichlet b.c. (strictly speaking, the choice of m in this case is that of an
absorbing condition), we set m({y}) = +∞ for y = � or y = r . For the Neumann
b.c., m({y}) = 0 for y = r or y = �. On that topic, see, for example, [5] or [34]. We
will see in Corollary 1 that this process corresponds to the one already constructed
using Dirichlet forms.

Unless a is smooth, the process X is not a semi-martingale in general. It is a
Dirichlet process. Nevertheless, some stochastic calculus for X is possible using
the theory of Dirichlet forms and time reversal techniques: see [13, 26, 32], for
example.

4. Properties of the semi-group. Let G be the open set G = (�, r) or G = R.
For a function u in H1(G), we set ϒu(x) = u(x) if we are interested in the
Dirichlet b.c. and ϒu(x) = du(x)

dx
if we are interested in the Neumann b.c. Note

that du(x)
dx

is a distribution in general and might not be well defined at all points,
but in this section through abuse of notation, we will use this symbol as a notation
for the distributional derivative of u.

Let us consider the parabolic partial differential equation (PDE)

∂u(t, x)

∂t
= ρ(x)

2

∂

∂x

(
a(x)

∂u(t, x)

∂x

)
+ b(x)

∂u(t, x)

∂x
, on (0,∞) × G,

ϒu(t, x) = 0, on (0,∞) × {�, r},
u(0, x) = ϕ(x), x ∈ G.

(11)

Let us consider the parabolic PDE (11). Unless a, ρ and b are sufficiently
smooth, the solution u is a weak solution that can only be chosen in the
space C(0, T ;L2(G)) ∩ L2(0, T ;H1

0(G)) in the case of Dirichlet b.c. and in
C(0, T ;L2(G)) ∩ L2(0, T ;H1([�, r])) in the case of Neumann b.c. Such a solu-
tion exists and is unique as long as ϕ belongs to L2(G).

It is standard that (L,Dom(L)) is the infinitesimal generator of a semi-group
(Pt )t>0 on L2(G, ν).

PROPOSITION 1. (i) For any t > 0, Pt has a positive density function
p(t, x, y) with respect to the measure ν. Besides,

u(t, x) =
∫
G

p(t, x, y)ϕ(y) dν(y)

is a version of the solution of (11) which is continuous with respect to (t, x) on
(0,∞) × G.

(ii) The function (t, x, y) �→ p(t, x, y) is (α/2, α,α)-Hölder continuous in
(t, x, y) on every compact of (0,∞) × G, where α depends only on λ, � and
the size of the chosen compact.
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PROOF. The existence of a density of Pt is a classical result in the theory of
PDEs. A proof of (ii) may be found, for example, in [2]. �

PROPOSITION 2. (i) If G = R or G is bounded and the Dirichlet b.c. are used,
then there exists constants C1 and C2 depending only on λ, � and T such that

p(t, x, y) ≤ C1√
2πt

exp
(
−C2|x − y|2

t

)
(12)

for any (t, x, y) ∈ [0, T ] × R × R. If b = 0, then the estimate (12) is uniform in T .
This bound is called Aronson’s estimate. [Note that, however, D. Aronson proved
these estimates in a general case, but it was initially proved simultaneously for
operators of type ∇(a∇·) by E. De Giorgi and J. Nash.]

(ii) If G is bounded and the Neumann b.c. are used, then, for any T > 0 and any
θ > 1/2, there exists some constants C1, C2 depending only on λ, �, θ , r , � and T

such that

p(t, x, y) ≤ C1

tθ
exp

(
C2|x − y|2

t

)
(13)

for all t ∈ (0, T ] and all x, y ∈ [�, r].

PROOF. (i) A proof of (12) can be found, for example, in [2] and in [37].
(ii) Using the continuous injection from H1(G) into the set of continuous,

bounded functions on G, it is clear that there exists a constant C (depending only
on G) such that ‖f ‖2+4/κ

L2(G)
≤ C‖f ‖H1(G)‖f ‖4/ν

L1(G)
for every f ∈ H1(G) and all

κ > 0. Hence, with (5b), it follows that

‖f ‖2+4/κ

L2(G)nu
≤ C

(
E(f, f ) + ‖f ‖2

L2(G)nu

)‖f ‖4/κ

L1(G,ν(dx))

for all f ∈ Dom(E). This is the Nash inequality. It is then possible to apply The-
orem 3.25 in [8] (see [27] for details) which yields that there exists two constants
K1 and K2 depending only on κ , r and � such that

p(t, x, y) ≤ K1

tκ/2 exp(−|αy − αx| − tK2|α|2),(14)

where α = (y0 − x0)/Kt0 for an arbitrary constant K > 0, a time t0 ∈ (0,1] and
fixed points x0, y0 ∈ [�, r]. For a choice of K large enough in function of K2

(hence, K depends only on κ and G) and applying (14) with x = x0, y = y0 and
t = t0, we get (13) on the time interval (0,1]. The Chapman–Kolmogorov equation
can then be used to get (13) on any time interval (0, T ] for any T > 0. �
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5. Convergence results. Let (an, ρn, bn)n∈N be a sequence of functions sat-
isfying (5a)–(5c). Let (Ln,Dom(Ln)) be the differential operator constructed pre-
viously, but with (a, ρ, b) replaced by (an, ρn, bn).

PROPOSITION 3. We assume that

1

an

L2(G)
⇀

n→∞
1

a
,

1

ρn

L2(G)
⇀

n→∞
1

ρ
and

bn

anρn

L2(G)
⇀

n→∞
b

aρ
.

(i) For any α > 0 (and α = 0 if G is bounded), the weak solutions un

of the elliptic PDE (α − Ln)un = f with the Dirichlet (resp. Neumann) b.c.
converge weakly in H1(G) to the weak solution of (α − L)u = f . The con-
tinuous version of un(x) given by

∫
G gn

α(x, y)f (y)ρn(y)−1 dy with gn
α(x, y) =∫ +∞

0 e−αtpn(t, x, y) dt converges uniformly on each compact of G to the con-
tinuous version of u(x) given by

∫
G gα(x, y)f (y)ρ−1(y) dy, where gα(x, y) =∫ +∞

0 e−αtp(t, x, y) dt .
(ii) The weak solution of the parabolic PDE ∂un(t,x)

∂t
= Lnun(t, x) with the

initial condition ϕ ∈ L2(G) converges weakly in L2(0, T ;Dom(E)) to the weak
solution of the parabolic PDE ∂u(t,x)

∂t
= Lu(t, x) with the initial condition

ϕ ∈ L2(G). Moreover, the continuous version of un(t, x) given by
∫
G pn(t, x, y) ×

ϕ(y)ρn(y)−1 dy converges uniformly on each compact of R
∗+ × G to the continu-

ous version of u(t, x) given by
∫
G p(t, x, y)ϕ(y)ρ(y)−1 dy.

PROOF. (i) In fact, solving (α − Ln)un = f in H1(G, ν(x)) is equivalent to
solving (

α

ρn
− 1

2

d

dx

(
an d

dx

)
− bn

ρn

)
un(x) = f

ρn

in H1(G) = H1(G;dx), with respect to the scalar product of L2(G;dx). According
to Proposition 5 and Theorem 17 in [41], this ensures the convergence of un to u

in H1(G).
The estimates on pn(t, x, y) given in Proposition 2 are uniform with respect

to n. This ensures that pn(t, x, y) converges uniformly on each compact of
R

∗+ × G2, at least along a subsequence. Indeed, its limit is necessarily p(t, x, y).
For each compact subset G′ of G, it is well known that any weakly convergent se-
quence in H1(G′) converges strongly in L2(G′). Combining all these facts allows
us to assert that un converges pointwise to u (see [33] for the details).

(ii) If ρn = 1, the weak convergence of un in L2(0, T ;H1(G)) comes, for ex-
ample, from Theorem 29 in [42], page 101.

Otherwise, we have first to use the fact that pn(t, x, y) converges pointwise to
p(t, x, y) in order to deduce that un(t, x) = ∫

G pn(t, x, y)ϕ(y)ρn(y)−1 dy con-
verges pointwise to u(t, x) = ∫

G p(t, x, y)ϕ(y)ρ(y)−1 dy.
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Moreover, it is standard that un is uniformly bounded in L2(0, T ;H1(G)). Thus,
un converges weakly in L2(0, T ;G1

0(G)) to u. �

Let Xn be the process generated by (Ln,Dom(Ln)).

PROPOSITION 4. Set G = R or G = (�, r) and assume that the Neumann b.c.
are used in the latter case. Let G′ = (�′, r ′) ⊂ G, and τ (resp. τn) be the first exit
time from G′ for X (resp. Xn). Under the hypotheses of Proposition 3, for any
starting point x,

Px ◦ (Xn, τn)−1 −→
n→∞Px ◦ (X, τ)−1

with respect to the topology of C([0, T ];R) × R for all T > 0.

PROOF. The convergence of Xn to X in finite-dimensional distribution fol-
lows from the convergence of the density transition function in (3), the estimates
(12) or (13), and the Markov property (see, e.g., the proof of the corresponding
result in [33]).

For the tightness of (Px ◦ (Xn)
−1)n∈N, according to the Aldous criterion [1], it is

sufficient to prove that, for any sequence (τn, δn)n∈N such that τn is a F n· -stopping
time and δn > 0 is deterministic and converges to 0, we have

Px

[∣∣Xn
τn+δn

− Xn
τn

∣∣ > η
] −→
n→∞ 0

for all η > 0. But, with (12) or (13),

Py

[∣∣Xn
δn

∣∣ > η
] ≤

∫
G\(y−η,y+η)

C1

δθ
n

exp
(
−C2|z − y|2

δn

)
dz,

where θ = 1/2 (for G = R) or θ > 1/2 [for G = (�, r) and Neumann b.c.]. Thus,
for n large enough so that η2/δn ≥ 1,

sup
y∈G

Py[|Xn
δn | > η] ≤ C1δ

1/2−θ
n

∫
|z|≥η/

√
δn

exp(−C2z2) dz

≤ 2
C1

C2
δ1/2−θ
n exp(−C2η

2/δn) −→
n→∞ 0.

The tightness of (Px ◦ (Xn)−1)n∈N follows immediately by application of the
strong Markov property to Px[|Xn

τn+δn
− Xn

τn | > η].
For the convergence of (Xn, τn), set �(x) = inf{t ≥ 0|x(t) /∈ G′} for any con-

tinuous function x : R+ → R. Possibly �(x) = +∞ if x(t) stays in G′. It is easy
to see that � is lower semi-continuous: that is, �(x) ≤ lim infn→∞ �(xn) if for
all T > 0, supt∈[0,T ] |x(t) − xn(t)| −→

n→∞ 0.

Let x be a path such that there exists (xn)n∈N converging uniformly to x

on [0, T ] for all T > 0 and �(x) < lim infn→∞ �(xn). It is easily seen that
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this means that x remains in the closure of G′ between the time �(x) and
lim infn→∞ �(xn). But one knows that this almost surely never happens for a tra-
jectory of a one-dimensional regular diffusion process (see [34], Lemma V.46.1,
page 273, e.g.). Thus, the set of discontinuities of � is a set of null measure for
the distribution Px . Since τn = �(Xn) by definition of �, it follows that (Xn, τn)

converges in distribution to (X, τ). �

6. On diffusions with discontinuous coefficients. In this section we assume
that, if there is a Dirichlet b.c. at � (resp. r), then we extend the coefficients over
(−∞, �] (resp. [r,+∞)) with ρ = a = 1 and b = 0. This is justified by the results
of Section 3.1 and Proposition 4.

If � > −∞ or r < +∞ and we are working with Dirichlet b.c., we extend the
coefficients on R with ρ = a = 1 and b = 0.

Let J be a (countable) set of points of (�, r), and assume the following hypothe-
ses:

a, b and ρ are right-continuous with left-limit,(15a)

a, b and ρ belong to C1([�, r] \ J),(15b)

J is at most countable,(15c)

there exists ε > 0 such that |x − y| > ε for any x, y ∈ J.(15d)

Let us remark that (15a)–(15d) ensure that the coefficients are of finite variation
on [�, r]. For a function f satisfying (15a)–(15d), we will denote f ′(x) the den-
sity of the part of its derivative which is absolutely continuous with respect to the
Lebesgue measure.

PROPOSITION 5. (i) We assume that G = R. For any given Brownian mo-
tion B constructed on a probability space (�, (Ft )t≥0,F ,P) with (Ft )t≥0 as its
natural filtration (transformed to satisfy the usual conditions), (L,Dom(L)) is the
infinitesimal generator of the unique strong solution X to the SDE

Xt = X0 +
∫ t

0

√
ρ(Xs)a(Xs) dBs +

∫
R

ν(dx) dLx
t (X)(16)

with

ν(dx) = ∑
x∈J

β(x)δx +
(

a′(x)ρ(x)

2
+ b

)
dx

a(x)
(17)

and

β(x) = a(x+) − a(x−)

a(x+) + a(x−)
.(18)

(ii) The operator (L,Dom(L)) with the Neumann b.c. at r and � is the infin-
itesimal generator of the unique solution to (16), where ν and β are defined by
(17) and (18) and, in addition, ν({r}) = −1 and ν({�}) = 1.
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PROOF. The existence and the uniqueness of a strong solution to (16) follow
from the results of J.-F. Le Gall in [23] (see also [3]). Thus, it is sufficient to prove
that the process X generated by (L,Dom(L)) is a weak solution to (16).

(ii) Case of Neumann boundary condition.
We assume at first that b = 0.
It follows from the results on Dirichlet forms that a Revuz measure corresponds

to a continuous additive functional under Px0 for any x0 ∈ [�, r]. For x in [�, r],
let (L̂x

t (X))t≥0 be the continuous additive functional associated to the Dirac mea-
sure δx at x. We know that, for a Borel measurable bounded function g, the process
(
∫ t

0 g(Xs)ρ(Xs) ds)t≥0 is the unique continuous additive functional corresponding
to the Revuz measure g(x) dx.

Let g be the continuous version of a function g in H1([�, r]). If Id :x �→ x, an
integration by parts leads to

E(Id, g) = 1
2

∫ r

�
a(x)g′(x) dx

= 1
2

∫ r

�
a′(x)g(x) dx + 1

2

∑
y∈J

(
a(y+) − a(y−)

)
g(y)

(19)
+ 1

2a(r)g(r) − 1
2a(�)g(�)

=
∫ �

r
g(x)µN(dx),

where

µN = 1
2a′(x) dx + ∑

y∈J

1
2

(
a(y+) − a(y−)

)
δy + 1

2a(r)δr − 1
2a(�)δ�.

On the other hand,

2E(Id · f,f ) − E(f, Id2) =
∫ r

�
a(x)f (x) dx =

∫ r

�
f (x)µM(dx).(20)

Under Px0 , for any x0 ∈ [�, r], the process X can be written Xt = x0 + Mt + Nt ,
where M is a martingale and N is a continuous additive functional locally of zero
quadratic variation. The bracket 〈M〉 of M is a continuous additive functional char-
acterized by the measure µM in (20) (see [13], equality (3.2.14), page 110), and is

〈M〉t =
∫ t

0
a(Xs)ρ(Xs) ds,

so that there exists a Brownian motion B , possibly on an enlarged probability
space, such that

Mt =
∫ t

0

√
a(Xs)ρ(Xs) dBs.
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The process N is characterized by the measure µN in (19) (see [13], Theo-
rem 5.1.3, page 187 and Corollary 5.4.1, page 224), and is then

Nt = 1
2

∫ t

0
a′(Xs)ρ(Xs) ds + 1

2a(r)L̂r
t (X) − 1

2a(�)L̂�
t (X)

+ ∑
y∈J

1
2

(
a(y+) − a(y−)

)
L̂

y
t (X).

Let (Lx
t (X))t≥0 [resp. Lx+(X), Lx−(X)] be the symmetric (resp. right, left)

local time of X at the point x. As both L̂x(X) and Lx(X) are continuous additive
functionals that increase only on {t ≥ 0|Xt = x}, there exists a real number γ (x)

such that L̂x(X) = γ (x)Lx+(X) (see, e.g., [34], Proposition 45.10, page 409).
The occupation time formula for the local time reads∫ r

�
g(x+)Lx+

t (X)dx =
∫ r

�
g(Xs) d〈M〉s =

∫ r

�
a(Xs)ρ(Xs)g(Xs) ds.(21)

On the other hand, ∫ r

�
g(x)L̂x

t (X)dx =
∫ t

0
g(Xs)ρ(Xs) ds.(22)

As (21) and (22) are true for any measurable and bounded function g,

γ (x) = 1

a(x+)
.

One knows that

Lx+
t (X) − Lx−

t (X) = 2
∫ t

0
1{Xs=x} dXs.

Thus, for any x ∈ J,

Lx+
t (X) − Lx−

t (X) = (
a(x+) − a(x−)

)
γ (x)Lx+

t (X)(23)

if x ∈ J. As, by definition,

Lx
t (X) = 1

2

(
Lx+

t (X) + Lx−
t (X)

)
,

one gets easily the value of β(x).
At point �, L̂�

t (X) = γ (�)L�+
t (X) and L̂�

t (X) = 1
2 L̂�+

t (X). Thus, a(�)
2 L̂�(X) =

L�
t (X). A similar result holds for Lr−

t (X). Hence, X is a weak solution to (16).
If b �= 0, substituting ae
 and ρe−
 , where 
 is defined in (7), to a and ρ

yields immediately the result.
(i) If G = R.
The previous computations can be used with a localization procedure. But it is

possible to avoid using the theory of Dirichlet forms. With the Itô–Tanaka formula
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(see, e.g., [34], Chapter IV.45, page 102) and the results from [23], X = S−1(Y ) is
a solution to (16) if Y is the strong solution of

Yt = S(x) +
∫ t

0
e−
(S−1(Ys))

√
ρ(S−1(Ys))/a(S−1(Ys)) dBs

and the proof of Proposition 5 is now complete. �

The next results follow from the Itô–Tanaka formula (see [34], Chapter IV.45,
page 102, e.g.) applied to S(Xt), where S is given by (10), and X is the solution
to (16).

COROLLARY 1. The speed measure m and the scale function S of (X, (Px)x∈G)

are given in (9) and (10).

REMARK 3. If G = R, this result could also be proved using a smooth ap-
proximation of the coefficients and the results of [14].

7. Approximation by diffusions with piecewise constant coefficients. In
this section we assume that b = 0, and we have seen in Section 2 that it is pos-
sible to transform a and ρ in order to remove the drift. Yet, the results of this
section may easily be extended to the case b �= 0.

7.1. The SDEs satisfied by the approximations. To simplify the notation, we
assume that � > −∞, r = ∞ and we set, for n ∈ N, Jn = {xi |� = xn

0 < xn
1 < · · · }

for some points xn
0 , xn

1 , . . . . If � = −∞ and r = +∞, we have to pick a reference
point on R and to use doubly indexed sequences.

Thus, we set, for f = a and f = ρ,

f n(x) = ∑
k≥0

1[xn
i ,xn

i+1)
(x)f (x̂n

i ),

where x̂n
i is a point in [xn

i , xn
i+1).

HYPOTHESIS 1. For any n ∈ N, the points xn
0 < xn

1 < · · · are chosen such that
J ⊂ Jn, the minimal distance between two points of Jn is positive, and

‖a − an‖∞ + ‖ρ − ρn‖∞ −→
n→∞ 0.

Since (a, ρ) satisfies (15b) and we assume that J ⊂ Jn, it is clear that one may
construct, at least on a compact subset of (�, r), such a sequence (Jn)n∈N. For
each n ∈ N, the piecewise constant coefficients an and ρn and the set Jn satisfy
(5a)–(5b) and (15a)–(15d), so that the results of the previous sections apply.
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Using the occupation time density formula, it follows from Proposition 5 that
the diffusion Xn is solution to the SDE

Xn
t = Xn

0 +
∫ t

0

√
anρn(Xn

s ) dBs + ∑
k≥0

β̃n
k L

xn
k

t (Xn),(24)

where B is a Brownian motion,

β̃n
k = an(xn

k +) − an(xn
k −)

an(xn
k +) + an(xn

k −)
if k �= 0,

and Lx
t (X

n) is the symmetric local time of Xn at point x and time t . If the Neu-
mann b.c. is used at �, then βn

0 = 1. If the Dirichlet b.c. is used at �, then we
consider (24) up to τ = inf{t ≥ 0|Xn

t = �}.
Let �n be the piecewise linear function

�n(x) =
kn(x)−1∑

k=0

xn
k+1 − xn

k√
an(xn

k
)ρn(xn

k )
+ x − xn

kn(x)√
an(xn

kn(x))ρ
n(xn

kn(x))
,

where kn(x) is such that xn
kn(x) ≤ x < xn

kn(x)+1. Then the symmetric Itô–Tanaka
formula (see [34], Chapter IV.45, page 102, e.g.; see also [29] for a treatment of
this case) applied to Xn yields that Yn = �n(Xn) is the solution to the SDE

Yn
t = Yn

0 + Bt + ∑
k≥0

βn
k L

yn
k

t (Y n),(25)

where yn
k = �(xn

k ) and

βn
k =

√
an(xn

k +)/ρn(xn
k +) −

√
an(xn

k −)/ρn(xn
k −)√

an(xn
k +)/ρn(xn

k +) +
√

an(xn
k −)/ρn(xn

k −)
if k �= 0.(26)

Of course, if the Dirichlet b.c. is used at �, then we consider only Y up to τ =
inf{t ≥ 0|Yt = �(�)}. If the Neumann b.c. is used at �, then we set βn

0 = 1. The
b.c. at r is treated the same way.

The infinitesimal generator of Yn is LYn = 1
2� on (�,+∞)\Jn, whose domain

Dom(LYn
) is the closure of the set of continuous, bounded functions f of class C2

b
on (�,∞) \ Jn such that f (�) = 0 for the Dirichlet b.c. and f ′(�) = 0 for the
Neumann b.c. and

1 + βn
k

2
f ′(xn

k +) = 1 − βn
k

2
f ′(xn

k −)

for each integer k and n.

REMARK 4. If ρ = 1 and a(x) = a+ on R+ and a(x) = a− on R− with
a+, a− > 0, then one derives from (25) and (26) that P0[Xt > 0] = β =
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√
a+/(

√
a+ + √

a− ) for any t > 0. The geophysical community has already no-
ticed that, in a heterogeneous media with a diffusion coefficient taking two values
a+ and a−, the parameter β gives the ratio of concentration of a fluid in the upper
half-space (see [36], e.g.).

7.2. The skew Brownian motion. Equation (25) shows that the process Yn be-
haves around xn

k like a skew Brownian motion of parameter (1 + βn
k )/2. Various

points of view and constructions of this process may be found in [4, 16, 17, 38]. . . .
Of course, the skew Brownian motion of parameter 1 (resp. 0) is the posi-
tively (resp. negatively) reflected Brownian motion (this is used to deal with the
Neumann b.c.).

Let Zθ be a skew Brownian motion of parameter θ ∈ [0,1], and set

τ = inf{t ≥ 0||Zθ
t | = ρ}(27)

for some ρ > 0. We will use the following construction of the skew Brownian mo-
tion, which may be found in [17], Problem 1, page 115: a skew Brownian motion
can be constructed by flipping the excursions of a reflected Brownian motion with
a probability θ .

To be more precise, let R be a reflected Brownian motion, and {(�n, rn)}n∈N be
the family of its excursions intervals. These intervals are such that R�n = Rrn = 0,
Rt > 0 on (�n, rn),

⋃
n∈N(�n, rn) = R+ and (�n, rn) ∩ (�k, rk) = ∅ for n �= k

(see [34], e.g., for the existence of these intervals). Let en be the excursion attached
to the interval n, that is, en

t = R(t−�n)∧(rn−�n) [note that these intervals (�n, rn) may
not be ordered, which implies that n is just understood as a label with a priori no
other meaning]. To the excursion n, we associate an independent Bernoulli random
variable σn of parameter θ with value in {−1,1}. The process Zθ constructed by

Zθ
t = σne

n
t−�n if t ∈ [�n, rn]

is then the skew Brownian motion of parameter θ .
The core idea of the algorithm is contained in the following lemma.

LEMMA 1. The random variables (τ,Zθ
τ ) are independent. Moreover, the dis-

tribution of τ does not depend on θ (in particular, τ is equal in distribution to the
first exit time of [−ρ,ρ] for a Brownian motion), and P0[Zθ

τ = ρ] = θ .

PROOF. This is a direct consequence of the previous construction of the skew
Brownian motion. �

As we will see in the sequel, we will need to simulate a realization of Zθ
t given

{t < τ } under P0 for some ρ > 0, where τ is defined by (27).
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LEMMA 2. Let R be a reflected Brownian motion. Then, if 0 ≤ y0 ≤ y1 ≤ ρ,

P0
[
Zθ

t ∈ [y0, y1]; t < τ
] = θP0

[
Rt ∈ [y0, y1]; t < τρ(R)

]
(28)

and if −ρ ≤ y0 ≤ y1 ≤ 0,

P0
[
Zθ

t ∈ [y0, y1]; t < τ
] = (1 − θ)P0

[
Rt ∈ [−y1,−y0]; t < τρ(R)

]
,(29)

where τρ(R) = inf{t ≥ 0|Rt = ρ}.

In other words, to simulate Zθ
t , one needs to simulate the position of a re-

flected Brownian motion R at time t given t < τρ(R) [or to reflect the position
of a Brownian motion at time t given t < τ , whose density is given by either
(39) or (40)], and to use an independent Bernoulli random variable for the sign
of Zθ

t .

PROOF OF LEMMA 2. For a trajectory of the skew Brownian motion Zθ ,
set {(�n, rn)}n∈N as the excursions intervals of Zθ . For each n ∈ N, set en

t =
Zθ

(t−�n)∧(rn−�n) if t ∈ [�n, rn], which are the excursions of Zθ . We assume that
0 ≤ y0 ≤ y1 ≤ ρ. Then

P0
[
Zθ

t ∈ [y0, y1]; τ−ρ,ρ(R)
]

= ∑
n∈N

P0

[
|en

t−�n | ∈ [y0, y1]; sgn(en) = 1;

τ−ρ,ρ(en) > t − �n; sup
k s.t. rk<�n

sup
s∈[0,rk−�k]

|ek(s)| < 1
]
,

where sgn(en) is the sign of the excursion en, and τ−ρ,ρ(en) is the first time (pos-
sibly infinite) when the excursion en reaches −ρ or ρ. By construction (see Sec-
tion 7.2), the sign sgn(en) of the excursion en is a Bernoulli random variable of
parameter θ which is independent from any other random variables involved in
this construction. Equality (28) follows easily, and (29) is proved in a similar way.

�

8. Error estimates.

8.1. The elliptic case. Set the Dirichlet problem{
Lu = 0 on [r, �],
u(r) = ur and (�) = u�.

(30)

We study the error of the solution when (a, ρ, b) is replaced by (an, ρn, bn) in (30)
and when

sup
x∈G

‖(an, ρn, bn)(x) − (a, ρ, b)(x)‖ −→
n→∞ 0.
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PROPOSITION 6. There exists a constant C depending only on λ, �, r and �

such that

sup
x∈G

|u(x) − un(x)| ≤ C|ur − u�| sup
x∈G

‖(an, ρn, bn)(x) − (a, ρ, b)(x)‖.

PROOF. We use for L the operator L = 2−1e−�ρ d
dx

(e�a d
dx

). Let ân and ρ̂n

be some approximations of â = ae� and ρ̂ = ρe−�, such that ân and ρ̂n converge
uniformly to â and ρ̂.

Let un be the solution of (30) with L replaced by Ln, and u the solution of (30).
Then, using vn = un − u ∈ H1

0(G) as a test function, one gets∫
G

ân

(
dvn

dx

)2

dx =
∫
G
(ân − â)

du

dx

dvn

dx
dx.

As xy ≤ λx2/2 + 2λ−1y2 for all x, y ≥ 0 and all λ > 0, it follows classically that

λ

2

∥∥∥∥dvn

dx

∥∥∥∥2

L2(G)

≤ 2λ−1‖ân − â‖∞
∥∥∥∥du

dx

∥∥∥∥2

L2(G)

.

Let ϕ be the linear function ϕ(x) = (ur − u�)(x − �)/(r − �) + u�. Then, u − ϕ

belongs to H1
0(G), and then∫

G
a

(
du

dx

)2

dx = ur − u�

r − �

∫
G

a
du

dx
dx.

Hence, there exists some constant C, depending only on �, r , �, ur and u� such
that ∫

G

(
du

dx

)2

dx ≤ C

(
ur − u�

r − �

)2

.

As un and u satisfy the same boundary condition, vn belongs to H1
0(G), and from

the Poincaré inequality,

‖vn‖2
L2(G)

≤ C

∥∥∥∥dvn

dx

∥∥∥∥2

L2(G)

.

Moreover, H1(G) can be continuously injected in the space of continuous func-
tions on G. Thus, for some constant C′, supx∈G |vn(x)|2 ≤ C′‖vn‖2

H1(G)
. It follows

that

sup
x∈G

|un(x) − u(x)| ≤ C′′‖ân − â‖∞
∣∣∣∣ur − u�

r − �

∣∣∣∣
for some constant C′′ depending only on r , �, ur , u�, λ and �.
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To conclude the proof, it remains to see that

|̂an(x) − â(x)| ≤ C1 sup
x∈G

|an(x) − a(x)|

+ C2 sup
x∈G

|ρn(x) − ρ(x)| + C3 sup
x∈G

|bn(x) − b(x)|
for some constants C1, C2 and C3 depending only λ, �, r and �. �

8.2. The parabolic case. The parabolic case is harder to deal with, and we are
not able to give a full treatment of it.

Let u be the solution of ∂u
∂t

= Lu on R+ × G, with the Dirichlet or Neumann
b.c. on R+ × {�, r} and initial condition ϕ(x). Let also un be the solution of the
similar problem where L is replaced by Ln.

PROPOSITION 7. (i) Assume that ρ ≡ 1. Then, for any finite open interval
(�′, r ′) ⊂ G, there exists a constant C depending on λ, �, ‖ϕ‖L2 , �′, r ′ and T such
that

sup
(t,x)∈[0,T ]×(�′,r ′)

|un(t, x) − u(t, x)| ≤ C(‖an − a‖∞ + ‖bn − b‖∞).

(ii) When ρ �= 1, assume that ϕ belongs to H1(G). Then, for any finite open
interval (�′, r ′) ⊂ G, there exists a constant C depending on λ, �, ‖ϕ‖H1 , �′, r ′
and T such that

sup
(t,x)∈[0,T ]×(�′,r ′)

|un(t, x)− u(t, x)| ≤ C(‖ρn − ρ‖∞ +‖an − a‖∞ +‖bn − b‖∞).

PROOF. We set G′ = (�′, r ′). For T > 0, we denote by | · |G′,T the norm de-
fined by

|v|G′,T =
(

sup
t∈[0,T ]

‖v(t, ·)‖2
L2(G)′ +

∫ T

0
‖∇v(t, ·)‖2

L2(G)′ dt

)1/2

for any v ∈ C(0, T ;L2(G)′) ∩ L2(0, T ;H1(G)′). The convergence relies on the
following estimate (which is easily derived from [19], Chapter II.3 inequality (3.1),
page 74 and the Poincaré inequality, e.g.):

sup
(t,x)∈R+×G′

|v(t, x)| ≤ C|v|G′,T(31)

for a constant C that depends only on T and G′.
We now apply (31) to vn = un − u. Indeed, it is easily seen that vn is the weak

solution to
∂vn(t, x)

∂t
= Lnvn(t, x) + 1

2
∇((

an(x) − a(x)
)∇u(t, x)

)
(32)

+ (
bn(x) − b(x)

)∇u(t, x) +
(

1

ρn
− 1

ρ

)
∂tu(t, x),
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where ∂tu(t, x) is a priori a distribution in L2(0, T ;H−1(G)), where L2(0, T ;X)

is the space of L2-functions with values in a Banach space X.

(i) In this case, the last term in the right-hand side of (32) vanishes. If G is
finite, we use vn as a test function in (32). After integrating with respect to t , we see
that we are in the same position as in the elliptic case and standard computations
yield the desired result.

If G is not finite, we fix �′ < r ′ and we choose a smooth function ξ with compact
support such that ξ(x) = 1 on (�′, r ′). Then, since any function v in H1(G) is
locally bounded, ∇(vξ) = ξ∇v + v∇ξ . We use vnξ as a test function in (32) and
the expansion of ∇(vξ): this reduces the problem to the case where G is finite.
Hence, the proposition is proved.

(ii) As in [19], Theorem III.6.1, page 178, we show that ∂tu(t, x) belongs in-
deed to L2(0, T ;L2(G)). For that, we assume at first that a, ρ and b are smooth, so
that u is also smooth. We transform L into a divergence form operator with charac-
teristic (â, ρ̂,0) = (e
̂a, e−
̂ρ,0) as in Section 2. We assume that ϕ ∈ C1

c (G;R).
In this case, using ∂tu as a test function for the PDE ∂tu = Lu, and integrating by
parts against e
̂/ρ with respect to x and with respect to t , one obtains∫ T

0

∫
G

ρ̂(x)|∂tu(t, x)|2 dx dt

= −
∫ T

0

∫
G

â(x)|∂t,xu(t, x)|2 dx dt(33)

+
∫
G

â(x)|ϕ′(x)|2 dx −
∫
G

â(x)|∂xu(T , x)|2 dx.

As â and ρ̂ are bounded and positive, (33) yields∫ T

0
‖∂tu(t, ·)‖2

L2(G)
dt ≤ C‖ϕ‖2

H1(G)
,(34)

where C depends only on the constants λ and �.

If the characteristic of L is not smooth and ϕ belongs only to H1(G), an ap-
proximation procedure shows that (34) is still true.

Hence, with the additional assumption that the initial condition ϕ belongs
to H1(G), it is possible to proceed as in (i). �

9. Numerical simulations: the algorithm. In this section we give two al-
gorithms to simulate either Xt for a given time t , or (Xτ , τ ) (or Xt given by
t < τ ), where τ is the first time the process X reaches the points r or � where
a Dirichlet b.c. holds.
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9.1. What is computed? Our algorithm can be used to approximate the fol-
lowing quantities:

• For any initial distribution µ and any t > 0, we may compute the probabil-
ity density function u∗(t, y) = ∫

G µ(dx)p(t, x, y) with respect to dy/ρ(y), since
u∗(t, y) is the solution to the PDE

∂u∗(t, y)

∂t
= L∗u∗(t, y) and u∗(t, y) dy ⇀

t→0
µ.

In this case, we use the approximation, for a given ε > 0,

u∗(t, y) � ρ(y)

n2ε
Card{i = 1, . . . , n|Zi ∈ [y − ε, y + ε]},

where Zi are n independent realizations of Xt for which t > τ with the initial
measure µ.

• For any fixed x ∈ (�, r) and any fixed t > 0, we may compute the solution
u(t, x) of the parabolic PDE (11) for any initial condition ϕ. In this case, we use
the approximation

u(t, x) � 1

n

n∑
k=1

ϕ(Zi),

where the Zi’s are defined as previously with the initial distribution µ = δx .
Indeed, it is possible to deal with nonhomogeneous Dirichlet, Neumann or

Robin b.c. by possibly coupling our algorithm locally with another algorithm: see
Section 9.5.

• For any fixed x ∈ (�, r), we may compute the solution u(x) to the elliptic PDE

Lu = 0 on (�, r), u(r) = ur and u(�) = u�

for any (ur, u�) ∈ R
2. In this case, we use the approximation

u(x) � 1

n

n∑
k=1

(
ur(Y

i)1{Y i=ur } + u�(Y
i)1{Y i=u�}

)
,

where the Y i ’s are n independent realizations of Xτ under Px . If there is a Dirichlet
b.c. at one of the endpoints, one may also consider a Neumann or Robin condition
at the other endpoint, since a probabilistic representation of the solution similar to
the one given in the parabolic case still holds.

Besides, if ρ = 1 and b = 0, then L is self-adjoint with respect to the Lebesgue
measure, and computing

∫ �
r ϕ(x)p(t, x, y) dx is sufficient to compute the solu-

tion u(t, x) for any x ∈ (�, r), since p(t, x, y) = p(t, y, x) for all t > 0 and all
x, y ∈ (r, �).

REMARK 5. It is possible to get an analytical expression of p(t, x, y) when
(x, y) belongs to a certain subspace of G (see [15]), but it leads to rather compli-
cated expressions involving spectral decompositions.
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If (a, ρ) are piecewise constant and b = 0, then the numerical errors come from
the following: (1) The approximations of series by keeping a finite number of terms
(see Section 9.3); (2) The fact that we use a pseudo-random generator instead of
independent random variables; (3) The Monte Carlo error, that is, the replacement
of E[Y ] by N−1 ∑N

k=1 Y i , where Y is a random variable, and the Y i ’s are copies
of independent random variables with the same distribution as Y .

The errors of type (1) and (2) are very small, and the error of type (3) occurs in
all Monte Carlo methods and depends on the variance of Y .

9.2. The algorithm. For a general (a, ρ, b), we may transform the diffusion
process into a diffusion process with characteristics (ã, ρ̃,0) and then use piece-
wise constant approximations (ãn, ρ̃n,0) of (ã, ρ̃,0). An additional error comes
from these approximations, which is discussed in Section 8.

Let Xn be the process generated by (ãn, ρ̃n,0). We have seen in Section 7 that
one can find a deterministic bijection �n such that Yn

t = �n(Xn
t ) is the solution to

the SDE

Yn
t = Yn

0 + Bt + ∑
k≥0

βn
k L

yn
k

t (Y n),

with yn
k = �n(xn

k ) and βn
k given by (26).

In this section we give an algorithm to simulate (τ ∧ T ,Y n
τ∧T ) for a given

time T > 0, where τ is the first time the process Yn reaches a point at which
there is a Dirichlet b.c. The computation of (τ ∧ T ,Xn

τ∧T ) is done by setting
Xn

τ∧T = �−1(Y n
τ∧T ).

This algorithm is easily simplified to simulate (Y n
τ , τ ).

Around each point yn
k , Yn behaves like a skew Brownian motion of parame-

ter βn
k . The justification of our algorithm relies on Lemmas 1 and 2.

For each yn
k ∈ �n(Jn), one picks two points y

n,−
k and y

n,+
k such that

yn
k−1 ≤ y

n,−
k < yn

k < y
n,+
k ≤ yn

k+1 and y
n,+
k − yn

k = yn
k − y

n,−
k .

Let us denote by Kn the set Kn = ⋃
k≥0{yn,−

k } ∪ ⋃
k≥0{yn,+

k }. The sets Kn

and �n(Jn) may have commons elements. The points of Kn have been intro-
duced in order to use Lemma 1, and then to use random variables which are easily
simulated.

The idea is to compute the successive times and positions on Kn ∪ �n(Jn)

of a particle, with a special treatment to deal with the final time. The successive
positions of the the particle on Kn ∪ �n(Jn) give simply a Markov chain on a
discrete space, but dealing with the time requires a special treatment.

Let us fix n large enough to get a fine approximation of the diffusion process.
Since n is fixed once and for all, we omit future reference to this integer.

The following algorithm takes as an input a horizon time T and the starting
point ỹ of the particle. It returns (τ ∧T ,YT ∧τ ), where τ is the first time the particle
hits one of the endpoints of [�, r] where the Dirichlet b.c. holds.
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NOTATION. We denote by B a Brownian motion and Zβ a skew Brownian
motion of parameter β ∈ [−1,1]. All the random variables simulated in this algo-
rithm are assumed to be independent.

THE MAIN LOOP. We now explain how to update the position of the particle
when it lies at a point y = yk at time t . We start with y = ỹ and t = 0, and this loop
is executed until the algorithm stops.

Case y ∈ �(J): Here, yk corresponds to a point in which the coefficients
a and ρ may be discontinuous.

• If yk is at one of the endpoints of [�, r] where the Dirichlet b.c. holds, then return
(t, yk) and stop.

• Let Z(βk+1)/2 be a skew Brownian motion of parameter (βk + 1)/2 such
that Z

(βk+1)/2
0 = yk . Set τ = inf{s ≥ 0|Z(βk+1)/2

s ∈ {y−
k , y+

k }} and compute
γ = Pyk

[T − t < τ ]. (Note that from Lemma 1, γ does not depend on βk since
yk − y−

k = y+
k − yk .)

• Use a Bernoulli random variable of parameter γ to decide if τ > T − t or
τ < T − t (note that τ has not yet been simulated).

• If τ > T − t , then the particle does not exit from [y−
k , y+

k ] before T : draw a

realization z of Z
(βk+1)/2
T −t given {τ > T − t}. Finally, return (T , z).

• If τ < T − t , draw a realization (t ′, z) of (τ,Z
(βk+1)/2
τ ) given {τ < T − t}.

Indeed, τ and Z
(βk+1)/2
τ are independent, and Z

(βk+1)/2
τ is a Bernoulli random

variable of parameter (βk +1)/2 with values in {y−
k , y+

k }. Update the current po-
sition of the particle by setting y ← z and the current time by setting t ← t + t ′.
Restart at the beginning of the loop.

Case y /∈ �(J): Except maybe for the initial point ỹ, this means that y ∈ K \
�(J). Indeed, the operations are similar to the previous ones, except that one uses
a Brownian motion instead of a skew Brownian motion.

• Compute γ = Py[T − t < τ ] with τ = inf{s ≥ 0|Bs ∈ �(J)}.
• Use a Bernoulli random variable of parameter γ to decide if τ < T − t or

τ > T − t .
• If τ > T − t , then draw a realization z of BT −t given T − t < τ under Py . Then

return (T , z) and stop.
• If τ < T − t , then draw a realization z of Bτ given τ < T − t and afterward a

realization t ′ of τ given τ < T − t and Bτ = z. Update the current position of
the particle by setting y ← z and the current time by setting t ← t + t ′. Restart
at the beginning of the loop.

9.3. The random variables that should be simulated. Let (B, (Px)x∈R) be a
Brownian motion. Let τa,b = inf{t ≥ 0|Bτ ∈ {a, b}} for a < b. Using the scaling
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property, Px ◦τ−1
a,b is equal to P(x−b)/(b−a)◦((b−a)2τ)−1. Hence, we set τ = τ−1,1

and we assume that a = −1, b = 1.
Mainly, we need to simulate τ or some random variables whose distributions

are related to that of τ . From a numerical point of view, in order to simulate a
random variable with distribution function F , we may compute F−1(U), where
U is a realization of a uniform random variable over [0,1] (about the simulation
of random variables, see, e.g., [10]).

We give then explicit expressions of the densities of the random variables of
interest (see [6] or [28], e.g.). Their distribution functions are easily computed,
and may then be efficiently inverted using Newton’s method.

If G(t, x) = Px[τ < t], then

∂G

∂t
(t, x)

(35)

=
∞∑

k=−∞

(
1 + x + 4k√

2πt3/2
e−(1+x+4k)2/2t + 1 − x + 4k√

2πt3/2
e−(1−x+4k)2/2t

)
or

∂G

∂t
(t, x)

(36)

= π

2

+∞∑
k=0

(−1)k(2k + 1) exp
(−π2(2k + 1)2t

8

)
cos

(
xπ

(
k + 1

2

))
.

Besides, if H(t, x) = Px[τ < t |Bτ = 1], then

∂H

∂t
(t, x) = 2

1 + x

∞∑
k=−∞

(
1 − x + 4k√

2πt3/2
e−(1−x+4k)2/2t

)
(37)

or

∂H

∂t
(t, x) = −π

2(1 + x)

+∞∑
k=1

(−1)kk exp
(−π2k2t

8

)
sin

(
kπ

2
(x + 1)

)
.(38)

The Bayes formula allows then to compute Px[Bτ = 1|τ < t] and by symmetry,
Px[Bτ = −1|τ < t] = P1−x[Bτ = 1|τ < t].

We also need Px[Bt < y|t < τ ] = F(t, x, y)/Px[t < τ ], where F(t, x, y) is de-
fined as F(t, x, y) = Px[Bt < y; t < τ ]. The density of the Brownian motion killed
when exiting from [−1,1] is

∂F

∂y
(t, x, y) = 1√

2πt

+∞∑
k=−∞

(
exp

(
−(x − y − 4k)2

2t

)
(39)

− exp
(
−(x + y + 2 + 4k)2

2t

))
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or, using a spectral decomposition,

∂F

∂y
(t, x, y) = 1

2

+∞∑
k=1

exp
(
−k2π2t

8

)
sin

(
kπ

2
(x + 1)

)
sin

(
kπ

2
(y + 1)

)
.(40)

The series giving F , G and H converge very quickly and do not create numerical
problems. The series (35), (37) and (39) are numerically suitable for small time,
while (36), (38) and (40) are numerically suitable for large time.

9.4. Efficiency. Most of the computation time is spent in the simulation of the
exit time from an interval for the Brownian motion.

If we denote by Mn = Jn ∪ Kn, where Kn has been introduced at the end
of Section 9.1, then we need to simulate the exit time of intervals of type
In
k = [zn

k−1, z
n
k+1] if the zn

i ’s are the ordered points of Mn. Thus, the “cost” of
our algorithm may be identified with the number of times one needs to simulate
the exit time of some In

k .
However, it is difficult to estimate this number Nτ of computations since it

depends strongly on (a) the distance between zn
k−1 and zn

k+1 for k ≥ 1, and (b) the
number of passages on each interval In

k = [zn
k−1, z

n
k+1] for k ≥ 1.

Besides, the number of such intervals In
k depends on the variation of the coeffi-

cients. Intuitively, the flatter the coefficients, the more efficient is our algorithm.
In a simple but realistic case, we can give a rough estimate of the cost of our

algorithm, which is matched by some numerical experiment (see Figure 3 in Sec-
tion 10.2).

We assume that the coefficients a, ρ and b are of class C1 on R \ {0}.
Fix n large enough and set � = 1/n. We choose the map �n so that the
set �n(Jn) = {k�|k ∈ Z}. We set (an, ρn, bn)(x) = (a, ρ, b)(k�+) if x ∈ [k�,

(k + 1)�] with k ∈ Z. Let u (resp. un) be the solution of the parabolic PDE
∂u/∂t = Lu with u(0, x) = f (x) [resp. ∂un/∂t = Lnun with un(0, x) = ϕ(x)],
where L (resp. Ln) is a differential operator with characteristics (a, ρ, b) [resp.
(an, ρn, bn)]. Then, for any (t, x), |un(t, x) − u(t, x)| is of order O(�), since the
coefficients are Lipschitz continuous on R

∗+ and R
∗−. Moreover, the Monte Carlo

error in the evaluation of un(t, x) is of order O(1/
√

N ), where N is the number of
random independent particles, which gives a total error in the evaluation of u(t, x)

of order O(1/
√

N ) + O(�).
As the intervals In

k are of type [(k − 1)�, (k + 1)�], in order to simulate Xn
1 ,

we have to simulate Nτ independent random variables τ 1, τ 2, . . . giving the exit
time from [−�,�] for the Brownian motion starting from 0, where Nτ is such that
τ 1 +· · ·+τNτ −1 ≤ 1 < τ 1 +· · ·+τNτ

. Replacing τ by its average E[τ ] = �2, one
gets that Nτ ∼ 1/�2. This means that the cost is of order O(1/�2) for a trajectory.
Thus, if one wants |u(t, x)−un(t, x)| to be of order O(�), then one has to choose
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N = 1/�2. This means that, for a weak error of order �, the number of times the
random variable τ is simulated is of order 1/�4 with our algorithm.

9.5. Coupling with other algorithms. Of course, this algorithm can be coupled
with other algorithms (such as the Euler scheme, e.g.) if the coefficients are smooth
enough outside some subset I of (�, r). Let us explain our idea: assume that the
coefficients are smooth outside some interval (�′, r ′). Then, one can pick some
points r ′′ and �′′ such that r < r ′′ < r ′ and �′ < �′′ < �. One can then use the
algorithm which is the most adapted to the situation for the simulation X outside
(�′, r ′) and this shall be done until X hits r ′ or �′. Inside (�′, r ′) one can use the
algorithm proposed here for the simulation X until it hits r ′′ or �′′.

One can also use a scheme where the process is killed at the discontinuities
(there are efficient adaptations of the Euler scheme in this case). Thus, the distri-
butions related to the skew Brownian motion may be used to re-inject the particle
in the media.

Another way of coupling consists in using locally a scheme to deal with non-
homogeneous Dirichlet, Neumann or Robin boundary conditions. For that, we use
the following representations when the lateral function ψ : R∗+ → R is bounded
and continuous (to simplify the notation, we assume that r = +∞ and we set
τ = inf{t > 0|Xt = �}):

u(t, x) = Ex[ϕ(Xt); t < τ ] + Ex[ψ(τ)] if u(t, �) = ψ(t),

u(t, x) = Ex[ϕ(Xt)] + Ex

[∫ t

0
ψ(s) dL�

s(X)

]
if u′(t, �) = ψ(t),

u(t, x) = Ex

[
e−αL�

t (X)ϕ(Xt)
] + Ex

[∫ t

0
e−αL�

s (X)ψ(s) dL�
s(X)

]
if αu(t, r) + u′(t, r) = ψ(t) and α > 0.

With a Neumann or Robin b.c. at �, one has to consider the diffusion process
which is reflected at this point. The Lépingle scheme [24, 25] gives an easy way to
simulate the couple (|Bt −�|,L�

t (B)) for any t > 0, where B is a Brownian motion.
Thus, one may then simulate (Xt+δt ,L

�
t+δt (X)) by this way when Xt = � and δt

is small enough. This gives approximations of integrals of type
∫ t

0 ψ(s) dL�
s(X),

and allows to compute u(t, x) using the previous formulae.

9.6. Localization. If G = R, it follows from Aronson’s estimates (see Propo-
sition 2) that

sup
x∈R

Px

[
sup

s∈[0,t]
|Xs − x| ≥ R

]
≤ C1 exp(−C2R

2/t)

for some constants C1, C2 depending only on λ, � (see, e.g., [37] for a proof ).
Thus, one can assume that the coefficients a, ρ and b are constant far enough from
the starting point, or that the process can be killed when it reaches the edges of a
finite interval rather than dealing with a process that lives on the whole space R.



134 A. LEJAY AND M. MARTINEZ

10. Examples

10.1. The doubly skew Brownian motion. We apply our algorithm to simulate
the density of the solution to the SDE

Xt = X0 + Bt + 2
3L

−1/2
t (X) − 2

3L
1/2
t (X),

where B is a Brownian motion. Such a process may be called a doubly skew Brown-
ian motion.

This process is then generated by

L = ρ

2

d

dx

(
a

d

dx

)
with

(
a(x), ρ(x)

) =
{

(1,1), if x /∈ (−1/2,1/2),

(2,1/2), if x ∈ (−1/2,1/2).

In Figure 1 we represent the density at four different times. As expected, the
density is more concentrated on the interval (−1/2,1/2), which agrees with our
intuition, thanks to the choice of the coefficients.

FIG. 1. Density p(t, x, y) of the doubly skew Brownian motion with x = 1 and t = 0.5, t = 1,
t = 1.5 and t = 2 (with 50.000 particles).
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FIG. 2. Densities p(t, x, y) of the diffusion of Section 10.2 with t = 1.0 and x = 0.5: The full line
is for the histogram obtained with the scheme presented in this article. The dashed line is for the
histogram obtained with an Euler scheme.

10.2. Diffusion with a coefficient discontinuous at one point. We consider now
that b = 0, ρ = 1 and that

a(x) =
{

2 + sin(x), if x < 0,
5 + sin(x + π), if x ≥ 0.

We choose the points of In such that �n(In) = {k�|k ∈ Z} with � = 1/n. The
density p(t, x, y) for t = 1.0 and x = 0.5 of the process is represented in Figure 2
for � = 0.1 and 10.000 particles, while the number of times the exit time from an
interval for the Brownian motion have been drawn is shown in Figure 3. Figure 3
is fully in agreement with the rough estimate of Section 9.4.

10.2.1. Comparison with the Euler scheme. In Figure 2 we have also drawn
the density obtained with the Euler scheme presented by one of the authors in [27].

FIG. 3. 1/
√

N in function of �, where N is the average number of simulations of an exit time.
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Indeed, the process X is solution to the SDE

Xt = X0 +
∫ t

0
σ(Xs) dBs + 1

2

∫ t

0
a′(Xs) ds + a(0+) − a(0−)

a(0+) + a(0−)
L0

t (X).

Using the function

φ(x) = 1 − 2β

1 − β
1R+(x) + 1

1 − β
1R−(x)

with

β = (
a(0+) − a(0−)

)
/2a(0+),

one obtains from Itô–Tanaka that Yt = φ(Xt) is the solution to some SDE with
coefficients that are discontinuous at 0, but without local time, for which an Euler
scheme is possible and may be applied. The convergence of this scheme with dis-
continuous coefficients is proved in [39], and [27] provides an estimation of the
speed of convergence of this scheme in this particular case. In Figure 2 we use the
time step δt = 0.01 and we see that the two empirical densities agree.

10.2.2. Comparison with a deterministic scheme. We consider now the PDE

∂u

∂t
(t, x) = Lu(t, x) with u(0, x) = ϕ(x),(41)

where ϕ(x) = cos(x) if |x| ≤ π/2 and ϕ(x) = 0 otherwise.
With our scheme, we computed u(t, x) at time t = 0.5 and time t = 1.0 and at

the points k/2 with k ∈ Z. We also use the one-dimensional solver pdepe pro-
vided with MATLAB to solve (41) (indeed, we use Dirichlet boundary conditions
at −15 and 15, but this does not affect the computations for small times). In Fig-
ures 4 and 5, we see that the interpolated curves agree, even with a small amount
of particles (here, 5.000 were used for each starting point).

FIG. 4. Interpolation of the solution u(t, x) of (41) computed at points k/2 with k ∈ Z for t = 0.5.



SIMULATING ONE-DIMENSIONAL DIFFUSIONS 137

FIG. 5. Interpolation of the solution u(t, x) of (41) computed at points k/2 with k ∈ Z for t = 1.0.
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