
Research Article

A Scheme for Verification on Data Integrity in
Mobile Multicloud Computing Environment

Laicheng Cao, Wenwen He, Xian Guo, and Tao Feng

School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China

Correspondence should be addressed to Laicheng Cao; caolaicheng@163.com

Received 24 February 2016; Accepted 25 July 2016

Academic Editor: Yuqiang Wu

Copyright © 2016 Laicheng Cao et al. 	is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to verify the data integrity in mobile multicloud computing environment, a MMCDIV (mobile multicloud data integrity
veri
cation) scheme is proposed. First, the computability and nondegeneracy of veri
cation can be obtained by adopting BLS
(Boneh-Lynn-Shacham) short signature scheme. Second, communication overhead is reduced based on HVR (Homomorphic
Veri
able Response) with randommasking and sMHT (sequence-enforcedMerkle hash tree) construction. Finally, considering the
resource constraints of mobile devices, data integrity is veri
ed by lightweight computing and low data transmission. 	e scheme
improves shortage that mobile device communication and computing power are limited, it supports dynamic data operation in
mobile multicloud environment, and data integrity can be veri
ed without using direct source
le block. Experimental results also
demonstrate that this scheme can achieve a lower cost of computing and communications.

1. Introduction

Cloud computing is envisioned as the future IT service para-
digm, it has attracted tremendous attention from academia
and industry [1], and mobile cloud model is the future
development trend of cloud computing [2, 3]; mobile cloud
computing requires cloud data security assurance mecha-
nisms, which can prevent leakage and loss of user data [3, 4].
However, CSP (the cloud service providers) are usually not
trustworthy. 	ey may conceal the data loss or error from
the users for their own bene
t. Even more, they might delete
rarely accessed user data for saving storage space [4, 5]. As a
result, many users are still hesitant to use cloud storage due to
security and con
dentiality threats toward their outsourced
data.

	erefore, how to verify the integrity of customer data
under cloud storage environment is a serious problem. To
solve this problem, [6] presented a data integrity veri
cation
scheme based on the RSA algorithm.	is scheme made RSA
exponentiation for the entire
le, but it has the large compu-
tational overhead. Reference [7] proposed a scheme based on
labeling, which can verify data integrity but does not support
dynamic updates data. Reference [8] used homomorphic ver-
ify label scheme though to reduce communication overhead,

but it does not support dynamic updates data. Considering
the limited computing and storage capacity of mobile devices
in mobile cloud computing environment, the complexity of
the data integrity veri
cation process on the mobile terminal
is inappropriate. 	erefore, [9–11] proposed a scheme that
is suitable for veri
cation on data integrity in mobile cloud
computing environment. But these programs are the circum-
stances under a single cloud environment.

For the general cloud storage case, owning to the security
and control reasons, some data cannot be placed in the public
cloud. In order to save costs, the user wishes to store the lower
security level data on the public cloud; thereby it creates a
hybrid cloud model. However, the mobile cloud users also
face the issue that not all data can be placed in the public
cloud. 	erefore, a solution needs to be proposed to reduce
the cost of mobile cloud computing and communications,
but also to ensure safety and to apply for hybrid cloud
environments. Based on these two needs identi
ed above,
we propose hybrid data integrity veri
cation scheme for the
mobile cloud environment. 	e scheme supports mobile end
users to verify the cloud data integrity and update operations;
what is more, it also supports third-party veri
cation without
the direct involvement of source
le and saved authentication

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 9267608, 6 pages
http://dx.doi.org/10.1155/2016/9267608

2 Mathematical Problems in Engineering

Client TTP

Amazon

Zoho Google

Private
cloud I

Private
cloud II

DVS

CSP

UserDB

Cloud user
interface

Multicloud
Each CSP internal structure

U
pdate veri�cation

D
ata flow

Figure 1: MMCDIV scheme system components.

information state. Our scheme is suitable for mobile multi-
cloud computing environments oriented application data.

	e rest of the paper is organized as follows. Section 2
presents architecture and techniques. Section 3 describes the
proposed scheme in detail. We also provide security analysis
and performance evaluation in Sections 4 and 5. Section 6
concludes the proposed scheme.

2. Architecture and Techniques

2.1. �e Architecture of System. Generally, a mobile multi-
cloud data integrity veri
cation scheme consists of the fol-
lowing components:

(i) Client, the owner of the data, who has a lot of data
stored in the hybrid cloud;

(ii) CSP, multiple cloud storage service providers that
supply client with collaborative data storage services
(there is an organizer, which manages cloud storage
service providers and directly communicates with the
veri
er).

(iii) TTP, public information that is stored when a trusted
third-party veri
cation is required.

	e client is installed on amobile device and user can interact
with the CSP, send a request to the CSP, and accept the data
which CSP return. CSP consist of the cloud user interaction
interface, data validation services (DVS), and user database.
DVS performs speci
c validation algorithm logic. User
databases store user information. TTP (trusted third party) is
used to verify the integrity of user data and reduce the burden

on the client computing. 	e system components of mobile
multicloud data integrity veri
cation (MMCDIV) scheme are
shown in Figure 1.

2.2. Short Signature Technology Based on Elliptic Curve Bilin-
ear BLS. In our scheme, elliptic curve bilinear pairing BLS
(Boneh-Lynn-Shacham) short signature scheme [12] is used
as the theoretical basis. BLS short signature scheme is based
on bilinear mapping �: �1 × �2 → ��. Among them,
groups�1 and�2 are twoGapDi�e-Hellman (GDH) groups.
Mapping � has three properties:

(1) Computability. Mapping � is an e�cient algorithm to
calculate the bilinear mapping �.

(2) Bilinear. For any ℎ1, ℎ2 ∈ �, �, � ∈ 	�, 	� is the
nonnegative integers which is less than
 and bilinear
mapping � is

� (ℎ�1 , ℎ�2) = � (ℎ�1, ℎ�2) = � (ℎ1, ℎ2)�� . (1)

(3) Nondegenerative. Consider �(ℎ�1 , ℎ�2) ̸= 1 and � is a
generator of group �. When using BLS method, if
the user client needs his message signature, he can
make � as an any element of the collection of	�; then
his public key is ��. To sign the message, client must
map his/her ownmessage for an element ℎ of group�
and then generates a message signature ℎ�. Another
user wants to verify this message; he needs to check
whether �(ℎ, ��) = �(�, �) is established. Only when
the le� is equal to the right of this formula, this user
can verify this message.

Mathematical Problems in Engineering 3

2.3. Homomorphic Veri	able Response. Reference [13] ex-
tended state veri
cation label HVT (Homomorphic Veri
-
able Tags) to the same state authentication response HVR
(Homomorphic Veri
able Response), which can aggregate
responses from many di�erent CSP into a response. HVR
method can reduce communication overhead but also hide
the location information of user data.

2.4. Sequence-Enforced Merkle Hash Tree. 	e sMHT
(sequence-enforced Merkle hash tree) [14] is a hash tree
structure to solve the problem that the original BLS cannot
verify whether the data of the service provider returned is the
challenge speci
ed data.	ismethodmakes the hash value of
the
le block labels from le� to right in the order correspond
to the hash leaves node and then orderly links two-level
hash sequence and
nally calculates the hash value of the
root node. 	e process of verifying the 2nd data block is the
following.

To verify �2’s value and position, root(�, 4) and Ω2 ={(ℎ1, 1, 1), (ℎ�, 2, 0)} are used:
(1) Calculate rank of � as ℎ� = ℎ(ℎ(�2 ‖ 1) ‖ ℎ1 ‖ 2).
(2) Calculate rank of root as �� = ℎ(ℎ� ‖ ℎ� ‖ 4).
(3) Verify if � = ��.
Note: Ω denotes auxiliary authentication information

(AAI), 1 indicates the le� sibling node, and () indicates the
right one on the proof path. Le�() signi
es all the rank of the
le� sibling node in Ω. 	e process of verifying the 2nd data
block is shown in Figure 2.

3. The Proposed Scheme

In our scheme, we split a
le into � blocks; each of block has a
sector which is notated as �, so a
le � can be expressed as the

le with � × � section, � = {��,	}�∈[1,�]	∈[1,�]. We use � to describe

the private key of the organizer CSP and use � to express
the number of cloud storage
les. � describes the set of tags,� = {��}�∈[1,�]. � describes the set of index-coe�cient pairs,� = {�, V�}. describes the response for the challenge �. !
describes the set of CSP to store a
le.

3.1. Setup Phase. 	esetup phase of data integrity veri
cation
parameter in MMCDIV scheme is shown as follows.

Phase 1 ("�#���($)). Client takes a security parameter $ as
input and gets the return value of a public-secret key pair(spk, ssk) and then selects random % ∈ 	�, at the same time
selects � randomelements {&1, &2, . . . , &�} ⊂ �1, calculates& =�
, and
nally makes sk = (%, ssk), pk = (&, spk, �, {&	}1≤	≤�).
Phase 2 (������(sk, �, !)). File � is divided into � × �
districts by client, � = {��,	}�∈[1,�]	∈[1,�], the label of � is � =
name ‖ � ‖ Sigssk(name ‖ �), and calculating
le block of the
signature is shown as follows:

��� = ({- (��)} ⋅ �∏
	=1

&��,�)
 (1 ≤ 8 ≤ �, �� ∈ !�) . (2)

Root
R 2

h1

T1 T2 T3
T4

Leaves

Hash

Sequence of ordered set of leaves

A B

C D E F

sMHT

1 h2 2 h3 3 h4 4

hb 2ha 2

H(m1)

ha

h1 = (T1‖

R = (ha ‖ b ‖ 4)h

= (h1 ‖ 2 ‖ 2)h

1)

Figure 2: 	e process of verifying the 2nd data block.

According to-(��) constructing sMHT with a root �, client
uses the private key % for signature for �: Sigsk(-(�)) =(-(�))
. Finally, he sends {��, ��� }��∈�� to each of the CSP,
sends Sigsk(-(�)) to the organizer, and deletes the local
le.

3.2. Proof Phase

3.2.1. Constructing Challenges of the Information. Data
integrity can be veri
ed by client and also can be veri
ed
by TTP for reducing the computation and storage burden of
client. Firstly, TTP requires organizers to send the label � of

le to him and then uses public key pk of client to verify �. If
this veri
cation is not passed, the
le label may be damaged.
Otherwise, challenge is executed. TTP randomly selects sub-
set 9 of set [1, �], for each � ∈ 9, and selects a random number
V� ∈ 	� to construct a challenge � = {(�, V�)}�∈�, which is sent
to a organizer. Lastly, the organizer sends � = {(�, V�)}�∈� to
each of the CSP.

3.2.2. Performing Gen Proof. Each !� obtains �� ={(�, V�)}��∈�� ⊆ �, selects � random elements ;	,� ∈ 	�, < ∈[1, �], then calculates >	,� = (&)��,� , computes corresponding

value ?�	,� = ∑ V	��,	 for each data block, and at the same time

calculates

?	,� = ?�	,� + ;	,�ℎ (>	,�) ∈ 	�,
�� = ∏
(�,V�∈��)

(���)V� ,
>� = ∏
	∈[1,�]

>ℎ(��,�)	,� .
(3)

	en !� returns � = ({?	,�}	∈[1,�], ��, >�) to organizer. A�er
receiving response from each of the CSP, organizer selects a
random number B ∈ 	� and calculates - = V

� ∈ �2. Next,
organizer aggregates these evidences ?	 = B∑��∈� ?	,�, � =(∏��∈���)�, and > = ∏��∈�>�. Last, organizer sends ! =({-(��), Ω�}�∈�, Sigsk(-(�), ,-)) to TTP.
3.2.3. Executing Algorithms Verify Proof. A�er receiving
authentication information !, TTP uses {-(��), Ω�}�∈� to

4 Mathematical Problems in Engineering

reconstruct hash root node � and make the following two
veri
cations:

Veri
cation 1: � (Sigsk (- (�)) , �) = � ((- (�))
 , �) . (4)

Proof. If validation fails, it returns false. If the validation is
successful, it indicates that the root node � and the signature
Sigsk = (-(�)) are matched under the premise of root node
Sigsk = (-(�)) given CSP. It can also show that the label of
le
block {-(��)}�∈� is intact and proceed to the next veri
cation:

Veri
cation 2: � (�, �)
= �(>−1 ⋅ ∏

�∈�
-(��)V� , -) �(�∏

	=1
&��	 , V) . (5)

Proof. We just prove that le� is equal to right (as shown in
(6)):

Le� = �((∏
��∈�

(∏
(�,V�)∈��

���)V�)� , �)
= �((∏

��∈�
(∏
(�,V�)∈��

({- (��)} ⋅ �∏
	=1

&��,�)
)V�)� ,
�) = �(∏

�∈�
(-(��) ⋅ �∏

	=1
&��,�)�V� , �
)

= �(∏
�∈�

(- (��))�V� , V)�(�∏
	=1

&�∑��∈� V���,�	 , V)
Right = �(∏

��∈�
>−1� ⋅ ∏
�∈�
�V�
� , V�)�(�∏

	=1
&�∑��∈� ��,�	 , V)

= �(∏
�∈�

(- (��))�V� , V) ⋅ �(∏
��∈�

�∏
	=1

>−ℎ(��,�)	,� , V)
⋅ �(�∏
	=1

&�∑��∈� V���,�	 ⋅ �∏
	=1

&�∑��∈� ��,�ℎ(��,�)	 , V)
= �(∏

�∈�
(- (��))�V� , V)�(�∏

	=1
&�∑��∈� V���,�	 , V)

	us, Le� = Right.

(6)

If the validation fails, it shows that documentation block
is corrupt. It returns false. On the other hand, it shows that
documentation block is complete.

3.3. Implementation of Dynamic Operation

(i) Constructing Updates Information. 	e � block data ��
is updated to �∗� (�∗1, �∗2, . . . , �∗�) by client; the steps of
constructing updates information are shown as follows.

Step 1. Client calculates -(�∗�) (the hash value of �∗�) and
computes �∗�� (label of�∗�).
Step 2. Client constructs update information (update = (J, 9,-(�∗�))) and sends it to organizers.

Step 3. Client sends (J, 9,�∗� , �∗��) to the corresponding
CSP.

(ii) Executing Update. A�er the updates information is
constructed, client will execute update data; the process is
described as follows.

Step 1. CSP replace blocks �∗� and �∗� , update the hash tree,

generate a new node �� and updated authentication infor-
mation !update = (Ω�, -(��), Sigsk(-(�)),-(��)), and then
send it to the TTP.

Step 2. TTP uses (Ω�, -(��)) to reconstruct the root node �
and veri
es �(Sigsk(-(�)), �) = �(-(�), V). If veri
cation is
passed, client continues to checkwhether CSP execute update
data option and then uses (Ω�, -(�∗�)) to structure updated

value. Client sends �∗� to TTP and compares �∗� with ��.
If it is consistent, it shows that client completes the update
operation.

Step 3. Client uses his private key sk to calculate the label
(Sigsk(-(��))) of root node �� and then sends it to the CSP.

Step 4. CSP perform the insert operation. CSP
rst input
the location of original
le and the original
le block label
and request (�, �, !insert) that client sends, and then produce
outputs (��, ��, !insert).
Step 5. CSP perform the removal operation. CSP
rst input
the deleted request!delete information which client sends and
then produce outputs !delete operations information.

4. Security Analysis

	is MMCDIV scheme is based on the absence of an
e�ective security algorithm; it can solve elliptic curve discrete
logarithm problem and characteristics of GDH (Gap Di�e-
Hellman).

(1) Resisting Forgery Attack. Suppose the CSP to forge �csp
select the same � random elements {&1, &2, . . . , &�} ⊂ �1 and a
random number B ∈ 	�; they can calculate (7) in accordance
with (5) and (6):

Le�csp = � (�csp, �) = �((∏
��∈�

(∏
(�,V�)∈��

���,csp)V�)� , �)
= �((∏

��∈�
(∏
(�,V�)∈��

({- (��)} ⋅ �∏
	=1

&��,�)
csp)V�)� ,

Mathematical Problems in Engineering 5

�) = �(∏
�∈�

(-(��) ⋅ �∏
	=1

&��,�)�V� , �
csp)
Rightcsp = �(∏

�∈�
(- (��))�V� , V) ⋅ �(�∏

	=1
&�∑��∈� V���,�	 ,

V) .
(7)

Equation (8) is obtained by (6) as follows:

Le� = �(∏
�∈�

(-(��) ⋅ �∏
	=1

&��,�)�V� , �
)
= �(∏

�∈�
(- (��))�V� , V) ⋅ �(�∏

	=1
&�∑��∈� V���,�	 , V)

= Right.
(8)

Because the right of (8) is equal to the right (Rightcsp) of
(7), the forgery attack is going to be carried out; only (9) is
established:

�(∏
�∈�

(-(��) ⋅ �∏
	=1

&��,�)�V� , �
csp)
= �(∏

�∈�
(-(��) ⋅ �∏

	=1
&��,�)�V� , �
) .

(9)

So (10) is obtained by (9):

�
csp = �
. (10)

	e prerequisite of (10) establishment is %csp = %; because
of the hardness problem of GDH, the CSP cannot calculate
the private key % of the client, so they cannot carry out the
forgery attack.

(2) Resisting Replacing Attack. According to (2), we suppose
MAC = -(��) (1 ≤ 8 ≤ �, �� ∈ !�), where the MAC is
message authentication code, and theMACofMD5 (Message
Digest Algorithm v5) is 128 bit; namely, |MAC| = 128 and the
CSP replace�� as��� .

Because the hash function has WCR (Weak Collision
Resistance) and SCR (Strong Collision Resistance), thus

Pr [- (���) = - (��)] = 2−|MAC| = 2−128
Pr [- (O (���)) = - (��)] = 2−|MAC| = 2−128

(1 ≤ 8 ≤ �, �� ∈ !�) ,
(11)

where Pr[�] is the probability of � and O(�) is a transforma-
tion of �.

Equation (11) shows the probability of the CSP replacing�� as��� is very small, so it is almost impossible that the CSP
carry out replacing attack.

5. Performance Evaluation

In order to solve the problem that the original BLS cannot
verify whether the data of the service provider returned is
the challenge speci
ed data, MMCDIV scheme adopts the
sMHT; meanwhile, the computability and nondegeneracy
of veri
cation are obtained by using BLS short signature
scheme.

In integrity veri
cation stage, �(Sigsk(-(�)), �) =�(-(�), V) is veri
ed to determine whether CSP returns the
original authentication information by comparing the root
node � with �� which is stored in TTP. Our scheme does
not directly use the BLS procedure to calculate ��� but uses({-(��)} ⋅ ∏�	=1&��,�)
 to calculate ��� . 	is is done, because

theCSPmay delete user data, leaving only-(��); they are not
related when client veri
es
le blocks, so in case of the label
intact, veri
cation can still be carried out. But the actual data
blocks may be deleted, so the
le blocks must be generated as
parameters into the calculation of the signature
le blocks.
In addition, MMCDIV supports outsourcing veri
cation;
client and TTP do not verify any results returned but can
directly use, even if TTP and CSP deceit together client, user
data and private information will not be leaked to the TTP;
therefore �(Sigsk(-(�)), �) = �(-(�), V) and �(�, �) = �(>−1 ⋅∏�∈�-(��)V� , -)�(∏�	=1&��	 , V) are the guarantee of the TTP’s
reliability in our MMCDIV scheme.

In client end, client needs to establish complete hash tree
operations, signature for nonleaf nodes, and the root
lling
and uses � to describe un
lled leaf node (the number of
uploaded
le blocks). When constructing hash tree, (2� −1) times operations need to calculate the hash value. 	e
signature number is (� + 1), so total time is �total = (2� − 1) ⋅�hash+(�+1)�tag. For CSP, inGenProof stage, when traversing
a hash tree, it needs to calculate �� and ��. So total time is�total = �(2�+1 − 1) ⋅ �hash + �� + �� and � is the number of
AAI nodes and P represents the average height of the � node.
Client (or TTP) requires reconstructing root and completing
two veri
cations in verifying proof stage, so total time AAI is�total = (AAInum ⋅ (2�−��+1 − 1) + ��(2��+1 − 1))�hash + �test1 +�test2, num is the number of nodes AAI, P is the hash tree
height, andP� represents the average height of the nodewhere
AAI is located. !� is the number of sibling nodes in the same
subtree when challenge appears. Figures 3 and 4 denote the
increase trends of server-side program (Intel Core i5 2.5 GHz,
8G memory, Windows 7 operating system) and the client
(armeabi-v7a, Android 2.3.3 system) with the actual running
time
le size which is 1024 bytes. As shown, when
le size
is 2 kb, 4 kb, 5 kb, 10 kb, 20 kb, 30 kb, 40 kb, and 50 kb, the
constructing authentication information time (CAI-Time)
steadily rises with rapid increase of the uploading and
processing time (UP-Time), comparing Sheng [9] and Yan
scheme [10]; the time complexity of MMCDIV scheme is
much lower. In this process, the CAI-Time in client is much
lesser than the UP-Time.

6 Mathematical Problems in Engineering

0 10 20 30 40 50

File size (kb)

MMCDIV’s UP-Time

Sheng’s UP-Time

MMCDIV’s CAI-Time
Sheng’s CAI-Time

0

1000

2000

3000

R
u

n
ti

m
e

o
f

se
rv

er
 (

s)

Figure 3: Runtime of server.

0 10 20 30 40 50

File size (kb)

MMCDIV’s CAI-Time

Sheng’s CAI-Time

MMCDIV’s UP-Time

Sheng’s UP-Time

0

5000

10000

15000

20000

25000

30000

35000

R
u

n
ti

m
e

o
f

cl
ie

n
t

(s
)

Figure 4: Runtime of client.

6. Conclusion

We use BLS short signature algorithm, homomorphic
response technology, and sMHT to propose a MMCDIV
scheme for veri
cation on data integrity inmobilemulticloud
computing environment.	e scheme improves shortage that
mobile device communication and computing power are
weak. Experimental results also demonstrate that this scheme
can achieve a lower cost of computing and communications.
At the same time, it also has the following advantages: (1)
it supports third-party veri
cation and reduces the compu-
tational burden of storage mobile terminal; (2) it is suitable
for hybrid cloud environments; (3) it can be applied to ver-
i
cation without source
les; no authentication information
saved state; (4) it supports dynamic data update operations.

Competing Interests

	e authors declare that they have no competing interests.

Acknowledgments

	is work was supported by the National Nature Science
Foundation of China (no. 61562059 and no. 61461027).

References

[1] D.-G. Feng, M. Zhang, Y. Zhang, and Z. Xu, “Study on cloud
computing security,” Journal of So�ware, vol. 22, no. 1, pp. 71–88,
2011.

[2] P. Mell and T. Grane, �e NIST Cloud Computing De	nition,
NIST Special, New York, NY, USA, 2011.

[3] J. Yang, H. Wang, J. Wang et al., “Provable data possession of
resource constrained mobile devices in cloud computing,” Jour-
nal of Networds, vol. 6, no. 7, pp. 1033–1040, 2011.

[4] A. N. Khan, M. L. Mat Kiah, S. U. Khan, and S. A. Madani,
“Towards secure mobile cloud computing: a survey,” Future
Generation Computer Systems, vol. 29, no. 5, pp. 1278–1299, 2013.

[5] Q. Wang, C. Wang, J. Li et al., “Enabling public veri
ability
and data dynamics for storage security in cloud computing,”
in Proceedings of the 14th European Conference on Research in
Computer Security (ESORICS ’09), pp. 355–370, Springer, 2009.

[6] D. L. G. Filho and P. S. L. M. Baretto, “Demonstrating data pos-
session and uncheatable data transfer,” in IACR Eprint Archive,
International Association for Cryptologic Research, 2006.

[7] A. Juels and B. S. Kaliski Jr., “Pors: Proofs of retrievability
for large
les,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS ’07), pp. 584–597,
Alexandria, Va, SA, November 2007.

[8] G. Ateniese, R. Burns, R. Curtmola et al., “Provable data posses-
sion at untrusted stores,” in Proceedings of the 14th ACM Con-
ference on Computer and Communications Security (CCS ’07),
pp. 598–609, ACM, Scottsdale, Ariz, USA, November 2007.

[9] Z.-D. Shen, C. Lin, and Q. Tong, “A method for lightweight
veri
cation on data integrity in mobile cloud computing envi-
ronment,” Journal of Northeastern University, vol. 36, no. 11, pp.
1563–1566, 2015.

[10] L. Yan, R.-H. Shi, H. Zhong, J. Cui, S. Zhang, and Y. Xu,
“Integrity checking protocol with identity-based proxy signa-
ture in mobile cloud computing,” Journal on Communications,
vol. 36, no. 10, pp. 278–286, 2015.

[11] Z. Xiulong, A Data Integrity Veri	cation Scheme Suitable for
Mobile Cloud Computing Environment: Design and Prototype
Implementation, JILIN University, Jilin, China, 2014.

[12] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
Weil pairing,” in Advances in Cryptology—ASIACRYPT 2001:
7th International Conference on the �eory and Application
of Cryptology and Information Security Gold Coast, Australia,
December 9–13, 2001 Proceedings, vol. 2248 of Lecture Notes in
Computer Science, pp. 514–532, Springer, London, UK, 2001.

[13] Y. Zhu,H.Hu,G.-J. Ahn, andM.Yu, “Cooperative provable data
possession for integrity veri
cation inmulticloud storage,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 12,
pp. 2231–2244, 2012.

[14] R. Merkle, Security, Authentication, and Public Key Systems,
UMI Research, Stanford, Calif, USA, 1982.

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

