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ABSTRACT
This paper presents a scheme to deal accurately and efficiently with complex angular masks,
such as occur typically in galaxy surveys. An angular mask is taken to be an arbitrary union of
arbitrarily weighted angular regions bounded by arbitrary numbers of edges. The restrictions
on the mask are (i) that each edge must be part of some circle on the sphere (but not necessarily
a great circle), and (ii) that the weight within each subregion of the mask must be constant. The
scheme works by resolving a mask into disjoint polygons, convex angular regions bounded by
arbitrary numbers of edges. The polygons may be regarded as the ‘pixels’ of a mask, with the
feature that the pixels are allowed to take a rather general shape, rather than following some
predefined regular pattern. Among other things, the scheme includes facilities to compute the
spherical harmonics of the angular mask, and Data–Random and Random–Random angular
integrals. A software package MANGLE that implements this scheme, along with complete
software documentation, is available at http://casa.colorado.edu/∼ajsh/mangle/.
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1 I N T RO D U C T I O N

With massive new data sets shrinking the statistical error bars on cos-
mological quantities, it is becoming increasingly important to avoid
inaccuracies in their modelling and analysis. For example, one of the
less interesting aspects of modern studies of large-scale structure is
having to deal with complex angular masks. This humble but essen-
tial task is rendered more time-consuming by the fact that angular
masks may require updating as a survey progresses. The purpose of
this paper is to describe a scheme intended to remove much of the
drudgery and scope for inadvertent error or unnecessary approxi-
mation involved in defining and using angular masks. The scheme
is implemented in a publically available software package MANGLE,
which can be obtained, along with complete documentation, from
http://casa.colorado.edu/∼ajsh/mangle/. The present paper is not a
software manual: for that, visit the aforesaid website. Rather, the
purpose of this paper is to set forth the philosophy and to detail the
algorithms upon which the software is built.

Angular masks for galaxy surveys have grown progressively more
complicated through the years. The first complete redshift surveys
of galaxies, the first Centre for Astrophysics redshift survey (CfA1;
Huchra et al. 1983), and the first Southern Sky Redshift Survey
(SSRS1; da Costa et al. 1991), had rather simple angular boundaries,
defined by simple cuts in declination and in galactic latitude.

�E-mail: Andrew.Hamilton@colorado.edu (AJSH); max@physics.upenn.
edu (MT)

The level of complexity increased with the IRAS redshift surveys.
The first of these, the IRAS 2-Jy redshift survey (Strauss et al. 1992),
in addition to a cut in galactic latitude, excluded 1465 lunes of
high cirrus or contamination by Local Group galaxies, each lune
being an approximately 1◦ × 1◦ square with boundaries of constant
ecliptic latitude and longitude. The angular masks of subsequent
IRAS surveys followed a similar theme, leading up to the PSCz
survey (Saunders et al. 2000), whose high-latitude mask (the one
most commonly used in large-scale structure studies) consisted of
the whole sky less 11 477 1◦ × 1◦ ecliptic lunes.

The Automatic Plate Measuring (APM) survey (Maddox
et al. 1990a; Maddox, Efstathiou & Sutherland 1990b; Maddox,
Efstathiou & Sutherland 1996) and associated surveys such as the
APM-Stromlo survey (Loveday et al. 1996), consisted of a union of
a couple of hundred photographic plates, cut to 5◦ × 5◦, each drilled
with a smörgåsbord of holes to avoid bright stars, satellite trails,
plate defects and the like. The edges of the excluded holes were
straight lines on photographic plates, but, unlike the IRAS surveys,
the holes were not necessarily rectangles, their boundaries were not
necessarily lines of constant latitude and longitude, and different
holes could overlap.

The Anglo-Australian Telescope 2-degree Field survey (2dF;
Colless et al. 2001; Lewis et al. 2002) is a redshift survey of
galaxies from the APM survey, and thus inherits the holey angu-
lar mask of the APM survey. Superimposed on the APM backdrop,
the 2dF angular mask consists of several hundred overlapping 2◦ di-
ameter circular fields. The various overlaps of the circular fields
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116 A. J. S. Hamilton and M. Tegmark

have, at least in early releases of the data, various degrees of
completeness.

The Sloan Digital Sky Survey (SDSS; York et al. 2000) has an an-
gular mask comparable in complexity with that of the 2dF survey. It
consists of several stripes from the parent photometric survey, pep-
pered with holes masked out for a variety of reasons. Superimposed
on the stripes are circular fields from the redshift survey. Recently,
the SDSS team used the MANGLE scheme described in the present
paper as part of the business of computing the 3D galaxy power
spectrum (Tegmark et al. 2003). With both the 2dF and SDSS data
going public, it has seemed sensible to publish the scheme so that
others can use it too.

The scheme described in the present paper began life in the de-
lightful atmosphere of an Aspen Center for Physics workshop in
1985. The mathematics of harmonization (Section 4) and other as-
pects of the computation of angular integrals are written up in an
appendix to Hamilton (1993b). The methods described therein were
first applied by Hamilton (1993a), and have been used regularly by
him since that time.

The idea of adapting the methods to deal with angular masks in
a rather general way, and in particular the concept of balkanization,
is new to the present paper. The MANGLE software has been applied
to the 2dF 100-k survey by Tegmark, Hamilton & Xu (2002), and
to the SDSS by Tegmark et al. (2003).

The figures in this paper were prepared from files generated by
the MANGLE software.

2 M A S K D E F I N I T I O N

Fig. 1 shows a zoom of a small piece of the northern angular mask
of the 2dF QSO Redshift Survey (2QZ) 10-k release (Croom et al.
2001). The angular mask of this survey is defined by files (download-
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Figure 1. A small piece of the northern angular mask of the 2QZ 10-k release (Croom et al. 2001). (Top left) Delineation of the 5◦ × 5◦ UKST plates, the holes
in the UKST plates, and the 2◦ spectroscopic fields of the 2QZ survey. (Top right) The angular completeness of the survey, in the 1 arcmin × 1 arcmin pixellated
form provided by the 2QZ team. (Bottom left) The 2QZ mask balkanized into polygons. (Bottom right) The 2QZ mask reconstructed from harmonics up to
� = 1000.

able from http://www.2dfquasar.org/Spec Cat/masks.html) giving
the boundaries of: (1) 5◦ × 5◦ UKST plates, (2) holes in UKST
plates, and (3) 2◦ fields. These boundaries are illustrated in the
top left panel of Fig. 1. The 2QZ team provide the completeness
of the angular mask in the 1 arcmin × 1 arcmin pixellated form
illustrated in the top right panel of Fig. 1. The 2QZ mask is typ-
ical of the way that angular masks are defined in modern galaxy
surveys.

Motivated by common practice, an angular mask is defined in the
present paper to be an arbitrary union of arbitrarily weighted angular
regions bounded by arbitrary numbers of edges. The restrictions on
the mask are

(i) that each edge must be part of some circle on the sphere (but
not necessarily a great circle), and

(ii) that the weight within each subregion of the mask must be
constant.

This definition of an angular mask by no means covers all theoretical
possibilities, but it does reflect the actual practices of makers of
galaxy surveys. The broad utility of spherical polygons to delineate
angular regions is widely appreciated; for instance, they play an
integral part in the SDSS database.

The definition implies that an angular mask is a union of ar-
bitrarily weighted non-overlapping polygons. A polygon is de-
fined to be the intersection of an arbitrary number of caps,
where a cap is defined to be a spherical disc, a region on the
unit sphere above some line of constant latitude with respect to
some arbitrary polar axis. For reference, Table 1 collects defini-
tions of mask, polygon, cap and certain other terms used in this
paper.

The bottom left panel of Fig. 1 shows the 2QZ mask ‘balkanized’
(see Section 3.2 below) into non-overlapping polygons. The bottom
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Complex angular masks for galaxy surveys 117

Table 1. Definitions of terms, in alphabetical order.

Term Definition

boundary A set of edges bounding a polygon.
cap A spherical disc, a region above a circle on the unit sphere.
circle A line of constant latitude with respect to some arbitrary polar axis on the unit sphere.
edge An edge is part of a circle. A polygon is enclosed by its edges.
great circle A line of zero latitude with respect to some arbitrary polar axis on the unit sphere. A great circle is a circle, but a circle is not necessarily a

great circle.
group The circles of a polygon partition into groups: two circles are friends, belonging to the same group, if they intersect (anywhere, not

necessarily inside the polygon), and friends of friends are friends.
mask The union of an arbitrary number of weighted polygons.
polygon The intersection of an arbitrary number of caps.
rectangle A special kind of polygon, a rectangular polygon bounded by lines of constant longitude and latitude.
vertex A point of intersection of two circles. A vertex of a polygon is a point where two of its edges meet.
weight The weight assigned to a polygon. The spherical harmonics of a mask is the sum of the spherical harmonics of its polygons, each

weighted according to its weight. A weight of 1 is the usual weight. A weight of 0 signifies an empty polygon, a hole.
In general the weight may be some arbitrary positive or negative real number.

right panel of Fig. 1 shows the mask reconstructed from spherical
harmonics up to � = 1000 (see Section 4 below).

2.1 Polygon files

The information specifying a mask (its angular boundaries and com-
pleteness) is collected in files that we refer to as ‘polygon files’.
Typically a command in the MANGLE suite of software will:

(i) read in one or more polygon files, possibly in different formats;
(ii) do something to or with the polygons;
(iii) write an output file, possibly a polygon file, or files.

The strategy adopted in the MANGLE software is to permit the most
flexible possible input format for polygon files, the idea being to be
able to read the files provided by the makers of a galaxy survey as far
as possible in their original form, or perhaps mildly edited. MANGLE

reads and writes several different formats of polygon files:

(i) circle;
(ii) vertices;
(iii) edges;
(iv) rectangle;
(v) polygon.

For convenience, there are five additional formats that provide
useful information about polygons, but that can only be written,
not read, because the information they provide is too limited, or
ambiguous, to specify polygons completely. The five output-only
formats are: area; graphics; id; midpoint; weight.

An abbreviated description of each format appears below; see
http://casa.colorado.edu/∼ajsh/mangle/ for full details.

The circle format is able to describe polygons in all generality. A
circle is defined by the azimuth α and elevation β of its north polar
axis, and by the angular radius, the polar angle θ , of the circle. Each
circle defines a cap. A polygon is an intersection of caps, and a line
of the form

α1 β1 θ1 · · · αn βn θn

containing 3n angles defines a polygon with n caps.
The vertices format specifies polygons by a sequence of vertices,

assumed to be joined by great circles. The general form of a line
specifying a polygon in vertices format is

α1 β1 . . . αn βn,

which defines a polygon with n caps. In vertices format, a line with
2n angles defines a polygon with n caps.

The edges format is a souped-up version of the vertices for-
mat. Whereas the vertices format joins each pair of vertices with
a great circle, the edges format uses an additional point (or addi-
tional points) between each pair of vertices to define the shape of the
circle joining the vertices. Although the edges format retains more
information about a polygon than the vertices format, in general it
does not retain all information about a polygon.

A rectangle is a special kind of 4-cap polygon bounded by lines
of constant azimuth and elevation. The rectangle format is offered
not only because some masks are defined this way (for example, the
IRAS masks), but also because the symmetry of rectangles permits
accelerated computation of their spherical harmonics (Section 4). A
line in rectangle format looks like

αmin αmax βmin βmax

with precisely four angles.
The polygon format is the default output format for polygon files.

Besides the circle format, it is the only other format that is able to
describe polygons in all generality without loss of information. It
stores each cap, not as three angles as in the circle format, but
rather as a unit vector along the north pole of the cap, together with
a quantity 1 − cos θ , which is equal both to the area of the cap
divided by 2π, and to half the square of the 3-dimensional distance
between the north pole and the cap boundary. It seems doubtful that
one would want to create an original mask file in polygon format,
since it is a bit peculiar, but it is the format used internally by the
MANGLE software, and it specifies polygons in the manner expected
for many years past by the FORTRAN backend. The advantage of the
format is that some computational operations are simpler and faster
if the cap axis is stored as a unit vector rather than as an azimuth
and elevation.

Of the purely output formats, one of the most useful is the graphics
format, which is useful for making plots of polygons. The MANGLE

software does not incorporate any plotting software: it is assumed
that you have your own favourite plotting package. The graphics
format is similar to the edges format, but is generally more eco-
nomical. Whereas in the edges format there is a specified number of
points per edge, in the graphics format there is a specified number
of points per 2π of azimuthal angle along each edge. Thus in the
graphics format curvier edges get more points than straighter edges.
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118 A. J. S. Hamilton and M. Tegmark

The graphics format is implemented only as output, not as input,
because of ambiguity in the interpretation of the format.

Another useful output format is the midpoint format, which re-
turns a list containing the angular position of a point inside each
polygon of a mask. This can be helpful in assigning weights to the
polygons of a mask, if you have your own software that returns a
weight given an angular position. See Section 6.3 for more about
how midpoints of polygons are computed.

The area, id and weight output formats give lists of, respectively,
the areas, identity numbers and weights (completenesses) of the
polygons of a mask.

3 R E S O LV I N G A M A S K I N TO
N O N - OV E R L A P P I N G P O LY G O N S

One of the basic tasks that the MANGLE software does is resolve a
mask into a set of non-overlapping polygons. This takes place in a
sequence of four steps, elaborated in the following subsections:

(i) snap;
(ii) balkanize;
(iii) weight;
(iv) unify.

Resolving a mask into non-overlapping polygons greatly sim-
plifies the logic of dealing with a mask, since it allows subsequent
processing (generation of random catalogues, computation of spher-
ical harmonics, plotting, etc.) to proceed without recourse to the
intricate hierarchy of overlapping geometric entities and the asso-
ciated complicated series of inclusion and exclusion rules that tend
to characterize a survey mask.

Each individual polygon is by definition an intersection of caps.
Geometrically, this implies that a polygon is convex: the interior
angles at the vertices of a polygon are all less thanπ. The requirement
that a polygon be an intersection of caps greatly simplifies the logic,
since it means that a point lies inside a polygon if and only if it lies
inside each of the caps of the polygon.

3.1 Snap

The first thing that must be done on all the original polygon files of
a mask is to ‘snap’ them. This process identifies almost coincident
cap boundaries and snaps them together.

The problem is that the positions of the intersections of two al-
most but not exactly coincident circles (cap boundaries) on the unit
sphere may be subject to significant numerical uncertainty. To avoid
numerical problems, such circles must be made exactly coincident.
You might think that that near-but-not-exactly-coincident circles
would hardly ever happen, but in practice they occur often, because
a mask designer tries to make two polygons abut, but imprecision
or numerical roundoff defeats an exact abutment.

The snap process adjusts the edges of each polygon, but it leaves
the number and order of polygons the same as in the input file(s).
Edges that appear later in the input file(s) are snapped to earlier
edges.

The snap process offers the following four tunable tolerances.

(i) Axis tolerance. Are the axes of two caps within this angular
tolerance of each other, either parallel or anti-parallel? If so, change
the axis of the second cap to equal that of the first cap.

(ii) Latitude tolerance. If the axes of two caps coincide, are their
latitude boundaries within this tolerance of each other? If so, change
the latitude of the second cap to equal that of the first cap. The two

caps may lie either on the same or on opposite sides of the latitude
boundary.

(iii) Edge tolerance and edge-to-length tolerance. Are the two
endpoints and midpoint of an edge closer to a cap boundary than the
lesser of (a) the edge tolerance, and (b) the edge-to-length tolerance
times the length of the edge? In addition, does at least one of the
two endpoints or midpoint of the edge lie inside all other caps of
the polygon that owns the cap boundary? If so, change the edge to
align with the cap boundary.

The purpose of the first two of these tolerances, the axis tolerance
and the latitude tolerance, is obvious. The remaining two tolerances,
the edge tolerance and the edge-to-length tolerance, are necessary
because it is possible for two edges, if they are short enough, almost
to coincide even though the axes and latitudes of their corresponding
caps differ significantly.

By default, the three angular tolerances (axis, latitude and edge)
are all 2 arcsec, which is probably sufficient for typical large-scale-
structure masks. The tolerances can be tightened considerably be-
fore numerical problems begin to occur, so it is fine to tighten the
tolerance for a mask whose edges are more precisely defined. The
default edge-to-length tolerance, 0.01, should be fine in virtually all
cases.

The snap process accomplishes its work in two stages:

(i) snap axes and latitudes of pairs of caps together, passing re-
peatedly through all pairs of caps until no more caps are snapped;

(ii) snap edges of polygons to other edges, again passing repeat-
edly through all pairs of caps until no more caps are snapped

As a finishing touch, snap prunes each of the snapped polygons
in order to eliminate superfluous caps, those whose removal leaves
the area of the polygon unchanged.

3.2 Balkanize

The process of resolving a mask into disjoint polygons we dub
‘balkanization’, since it fragments an input set of possibly overlap-
ping polygons into many non-overlapping connected polygons. The
process involves two successive stages:

(i) fragment the polygons into non-overlapping polygons, some
of which may be disconnected;

(ii) identify disconnected polygons and subdivide them into con-
nected parts.

3.2.1 Balkanization stage 1

The algorithm for the first stage of balkanization is simple and pretty.

(a) Is the intersection of two polygons neither empty nor equal to
the first polygon? If so, find a circle, a cap boundary, of the second
polygon that divides the first polygon, and split the first polygon
into two along that circle.

(b) Iterate.

Notice that only one of the two parts of the split polygon overlaps the
second polygon, and that only the overlapping part needs iterating.
For any pair of polygons, iteration ceases when the overlapping part
lies entirely inside the second polygon. The final overlapping part
is equal to the intersection of the original first polygon with the
second polygon. All other fragments of the first polygon lie outside
the second polygon.

Fig. 2 illustrates an example of the first stage of balkanization for
two overlapping polygons A and B. First, A is split against B, which
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(a)

A

B
(b)

(c) (d)

(e) (f)

Figure 2. An example of stage 1 of the balkanization procedure. (a) The
original system consists of two overlapping polygons, A at upper left, B at
lower right. (b) First, polygon A is split against polygon B, which takes two
iterations. In the first iteration, A is split along an edge of B. Only one of the
two parts of the split A, the right part, overlaps B. (c) In the second iteration,
the overlapping part of A, the right part, is further split along another edge of
B. Again, only one of the two parts of the now doubly split A, the lower right
part, overlaps B. Since this lower right part is equal to the intersection AB of
A and B, the process of splitting A against B terminates. (d) Now, polygon
B is split against polygon A. Again, this takes two iterations. In the first
iteration, B is split along an edge of A. Only one of the two parts of the split
B, the left part, overlaps A. (e) In the second iteration, the overlapping part
of B, the left part, is further split along another edge of A. Again, only one of
the two parts of the now doubly split B, the upper left part, overlaps A. Since
this upper left part is just equal to the intersection AB, the process of splitting
B against A terminates. (f) The final system comprises five non-overlapping
polygons, consisting of two polygons inside A and outside B, two more
polygons inside B and outside A, and one polygon – the intersection AB of
A and B.

takes two iterations of the above cycle. Then, B is split against A.
Again, this takes two iterations of the above cycle. The final system
consists of five non-overlapping polygons.

Note that splitting the system shown in panel (a) of Fig. 2
into its three connected parts (the part of A that does not inter-
sect B, the part of B that does not intersect A, and the intersec-
tion AB of A and B) would not constitute a successful balka-
nization, since two of these regions are not convex and hence not
polygons.

One might ask, ‘why not stop at panel (c) in Fig. 2? Do not
the three polygons there already form a satisfactory set of non-
overlapping polygons?’ The answer is that the intersection poly-
gon AB may well have a weight different from those of the non-
overlapping parts of the parent A and B polygons (this is typically
true for example in the 2dF and SDSS surveys). To deal with this
eventuality, balkanization must continue to completion, as illus-
trated in panel (e).

The question of whether two polygons overlap is determined by
computing the area of the intersection of the polygons. The area
is proportional to the monopole harmonic, computed as described
in Section 4. The intersection of two polygons is itself a polygon,
consisting of the intersection of the two sets of caps defining the
polygons.

Figure 3. A polygon (shaded) that contains two connected parts. The poly-
gon is the intersection of three caps, the regions bounded by solid lines, and
therefore qualifies as a legitimate single polygon, even though it contains
two connected parts. Stage 2 of the balkanization procedure subdivides such
disconnected polygons into connected parts by computing the connected
boundaries of the polygon, and lassoing each connected boundary with an
extra circle (dashed lines).

Figure 4. A polygon (shaded) that is connected but not simply connected.
The polygon, which is the intersection of four caps, has two distinct con-
nected boundaries, but the two boundaries belong to two separate groups,
and therefore do not need to be lassoed. Stage 2 balkanization accepts the
polygon as is. Note that the hole in the polygon is formed by two caps each
of which consists of the whole sky less a small circular hole.

3.2.2 Balkanization stage 2

Stage 1 of the balkanization procedure yields polygons that can
contain two or more connected parts, as illustrated in Fig. 3. Stage 2
attempts to subdivide such disconnected polygons into connected
parts by computing the connected boundaries of the polygon, and
lassoing (see Section 3.2.3) each connected boundary with an extra
circle.

Fig. 4 illustrates a polygon that has two distinct connected bound-
aries by virtue of being not simply connected rather than not con-
nected. A region is said to be simply connected if, according to
the usual mathematical definition, it is connected and any closed
curve within it can be continuously shrunk to a single point. Loosely
speaking, this means that a simply connected polygon has no holes.
Because it is connected, the polygon of Fig. 4 need not be split.

The empty holes that drill the polygon of Fig. 4 (and the polygons
of several other figures below) are formed by caps consisting of
the whole sky less a small circular hole. It is possible to construct
intricately complicated polygons from the intersection of many such
caps, each consisting of the whole sky less a small hole.

The strategy to deal with non-simply connected polygons is based
on the following theorem, proven in the appendix: a connected part
of a polygon is simply connected if and only if all the boundaries of
the connected part belong to a single group. A group1 is defined here
as follows: two circles are friends, belonging to the same group, if
they intersect (anywhere, not necessarily inside the polygon), and
friends of friends are friends. According to this definition of group,
the circles on a single connected boundary necessarily all belong
to the same group. However, the circles on two distinct connected
boundaries may or may not belong to the same group.

1 Strictly speaking, the entities herein called groups are equivalence classes,
not mathematical groups.
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Figure 5. A polygon (shaded) similar to that of Fig. 3, but with the addition
of two circular holes. The polygon has four distinct connected boundaries
belonging to three groups of circles. Only the two boundaries in the same
group need lassoing (dashed lines). The two holes form separate groups,
which do not need lassoing. Stage 2 balkanization subdivides the polygon
successfully into two parts.

This theorem implies that it is necessary to lasso only those bound-
aries of a polygon that belong to the same group. In Fig. 3, for exam-
ple, the two boundaries of the polygon belong to the same group of
three intersecting circles, so these two boundaries must be lassoed,
partitioning the polygon into two parts. In Fig. 4, on the other hand,
the two boundaries belong to two separate groups, and need not be
lassoed.

Fig. 5 illustrates a more complicated polygon, similar to the poly-
gon of Fig. 3 but pierced with two circular holes. The polygon con-
tains four boundaries belonging to three groups. The two original
boundaries inherited from Fig. 3 belong to the same intersecting
group of circles, but the additional two holes form two separate
groups. Here only the two boundaries belonging to the same group
need lassoing.

Fig. 6 illustrates a yet more complicated multiply connected poly-
gon. The MANGLE software balkanizes this polygon correctly into
seven polygons, a stringent test of the algorithms.

A corollary of the theorem proven in the appendix is that the
polygon formed by the intersection of the caps bounded by the
circles of a single group must be a union of simply connected parts.
For example, the two parts of the polygon in Fig. 3 must be simply
connected – which evidently they are – because the circles of the
polygon all belong to the same group.

In the course of the proof in the appendix, it is shown that if the
boundary of a polygon falls into two (or more) groups, then the

Figure 6. A multiply connected polygon (shaded) containing seven con-
nected parts bounded by thirteen distinct connected boundaries belonging
to seven groups of circles. Stage 2 balkanization subdivides the polygon
successfully into its seven parts.

Figure 7. A simply connected polygon (shaded) with a large number of
caps. None of these caps can be discarded, since each excludes a small piece
of sky. Stage 2 balkanization lassos the polygon with an extra circle (dashed
line), and, by incorporating the cap bounded by this circle, is able to discard
many of the original caps as superfluous.

circles of a second group must lie entirely inside exactly one of the
simply connected parts of the polygon bounded by the first group.
For example, each of the two circles bounding the two holes in the
polygon of Fig. 5 must lie entirely inside exactly one of the two
simply connected parts of the original polygon from Fig. 3, which
again is evidently true.

It follows from the statement of the previous paragraph that in
lassoing the connected boundaries of a group, it is necessary to
consider only the boundaries belong to the same group: any bound-
ary belonging to another group can be ignored, because it must lie
entirely inside one of the simply connected parts bounded by the
first group. Thus, each lassoing circle is required fully to enclose
its connected boundary, while fully excluding all other connected
boundaries belonging to the same group; there is no constraint on
the lasso resulting from boundaries belonging to other groups.

If a group of circles of a polygon defines a single boundary, then
that boundary needs no lassoing, but stage 2 balkanization never-
theless attempts to lasso the boundary if the number of caps of the
group exceeds the number of vertices. For example, in its origi-
nal configuration the polygon shown in Fig. 7 has a large number of
caps. None of the caps can be discarded, since each excludes a small
piece of the sky. Here it is advantageous to lasso the polygon with
an extra circle, allowing most of the original caps to be discarded
as superfluous.

A lasso that lassos the lone boundary of a group is discarded if the
lasso completely encloses all the circles of the group to which the
boundary belongs. For then either the lasso completely encloses
the polygon, in which case it is superfluous, or else the lasso lies
completely inside the simply connected region bounded by the lone
boundary, in which case the lasso, if kept, would divide the simply
connected region in two, which would be incorrect. If on the other
hand the lasso of a lone boundary of a group intersects at least one of
the circles of the group, then the lasso must completely enclose the
simply connected region bounded by the lone boundary, as in Fig. 7;
the lasso cannot lie inside the simply connected region because it is
being assumed that the lasso intersects a circle of the group, whereas
no such circle can exist within the simply connected region.

Stage 2 balkanization may need more than one pass to succeed.
Fig. 8 shows an example of a polygon, bounded by one large cap
punctuated by fifteen small caps, that contains four parts bounded by
four boundaries all belonging to the same single group. The top and
bottom boundaries can be lassoed successfully with single circles,
but the middle two boundaries cannot: any circle that encloses either
of the middle boundaries necessarily intersects another boundary
somewhere. Here stage 2 balkanization succeeds by submitting the
polygon to two passes. In the first pass, the polygon is split into
three polygons, consisting of the top and bottom connected parts,
plus a third polygon containing the two middle parts. In the second
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Complex angular masks for galaxy surveys 121

Figure 8. A polygon (shaded) consisting of four connected parts bounded
by four boundaries that all belong to the same group. Here stage 2 balka-
nization takes two passes to succeed. In the first pass, the top and bottom
boundaries of the polygon are lassoed successfully (dotted lines), but the
middle two boundaries cannot be lassoed with single circles that fully en-
close one boundary while fully excluding all other boundaries. In the second
pass, the middle two boundaries are successfully partitioned with a final
lasso (dashed line).

Figure 9. A polygon (shaded) consisting of two connected parts bounded
by two boundaries that belong to the same group. Neither boundary can be
lassoed with a circle that fully encloses one boundary while fully excluding
the other boundary. Stage 2 balkanization splits the polygon into two with
a best-attempt lasso (dashed line) that encloses as much as possible of one
boundary (the upper boundary), while fully excluding the other boundary
(the lower boundary), and then submits each of the two polygons to a second
pass. In the second pass, the polygon enclosed by (above) the best-attempt
lasso is found to contain one boundary, and therefore needs no further split-
ting, while the polygon outside (below) the lasso is found to have three
connected boundaries, which are successfully partitioned with two more
lassos (thin dashed lines). Stage 2 balkanization thus successfully splits the
original polygon into a total of four non-overlapping parts.

pass, the third polygon is split into two, completing the partitioning
of the original polygon into its four parts.

In certain convoluted cases, such as the polygon shown in Fig. 9,
it can be impossible to lasso any of the connected boundaries of the
polygon with a circle that wholly encloses a connected boundary
while wholly excluding all other connected boundaries in the same
group. Stage 2 balkanization gives up attempting to lasso a boundary
after a certain maximum number of attempts, but it keeps a record
of the best-attempt lasso, the one that encloses as much as possible
of a boundary while wholly excluding all other boundaries in the
same group. Stage 2 balkanization proceeds to split the polygon
into two parts with the best-attempt lasso, and then submits the
two parts to a further pass. The polygon of Fig. 9, for example,
contains two parts bounded by two connected boundaries, neither
of which can be lassoed with a circle that completely encloses one
boundary while completely excluding the other boundary. Finding
no satisfactory lasso, stage 2 balkanization splits the polygon into
two polygons with a best-attempt lasso, shown as a dashed line
in Fig. 9. The two polygons are then submitted to further passes of
stage 2 balkanization, which in this case succeeds with one pass. The
upshot is that the original polygon is balkanized into four polygons.

It is conceivable that the algorithm of the above paragraph could
continue for ever, continually splitting a polygon into two and con-
tinually failing successfully to lasso all the boundaries of the split
polygons. However, polygons that defy lassoing have to be fila-

Figure 10. A tortuous polygon with parts designed to be difficult to
lasso. Stage 2 balkanization splits the polygon forcibly eight times (dashed
lines), ultimately balkanizing the 13 connected parts of the polygon into
34 polygons.

mentary in character (long, thin and windy), such as that shown in
Fig. 10, and splitting such a polygon in two generally makes it less
filamentary, like putting spaghetti in a blender. In the case of the
polygon of Fig. 10, stage 2 balkanization forcibly splits the poly-
gon eight times, eventually balkanizing the 13-part polygon into 34
disjoint parts. Suffice to say that we know of no polygon that fails
the algorithm, and it is possible that no such polygon exists. If the
reader finds one, please tell us about it.

In practice, the MANGLE software bails out if a polygon has to be
split forcibly in two more than a certain maximum number (100)
of times. Even in this last gasp case, the set of polygons output by
balkanization still constitutes a valid set of non-overlapping poly-
gons that completely tile the mask. The only problem is that the
‘failed’ polygons, those which could not be partitioned completely,
may contain two or more disjoint parts with different weights.

To finish, balkanization prunes each of the balkanized polygons
in order to eliminate superfluous caps, those whose removal leaves
the area of the polygon unchanged. For example, pruning discards
the many superfluous caps of the polygon of Fig. 7. The caps are
tested in order, with any new lassoing cap being tested last, so that
the many superfluous caps are discarded, and the lassoing cap is
kept.

3.2.3 Lasso

The algorithm for lassoing a connected boundary of a polygon picks
a point, initially taken to be the barycentre of the centres of the
edges of the connected boundary (or, if the connected boundary
consists of a single circle, the centre of that circle), and finds the
circle centred on that point that most tightly encloses the boundary.
The lassoing circle is enlarged slightly if possible, as a precaution
against numerical problems that might potentially occur if the lasso
just touched an edge or vertex of the boundary.

A lasso that lassos, i.e. that encloses completely, one connected
boundary of a polygon, is required to exclude completely all other
connected boundaries belonging to the same group. A lasso attempt
can sometimes fail if a polygon has two or more connected bound-
aries.2 A lasso attempt fails if the angular distance from the centre

2 Actually a lasso attempt can in some circumstances fail if a polygon has
just one connected boundary, if the centre point of the lasso is chosen in a
maximally inappropriate fashion. For example, if the connected boundary
is a single great circle, and if the centre of the lasso is chosen to lie on that
great circle, then the lasso will fail. The problem is trivial to guard against.
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122 A. J. S. Hamilton and M. Tegmark

Figure 11. Example of how the topology near multiply intersecting circles
can vary as a result of a tiny change in the location of the circles, and can
therefore be sensitive to numerical roundoff. The horizontal edge crosses
in the left panel just above, in the middle panel exactly at, and in the right
panel just below the intersection of the diagonal edges. The strategy to deal
with the problem is to test the topology of each vertex around a polygon for
consistency, as described in the text. If an inconsistency is detected, then
the angular tolerance for considering nearly coincident intersections to be
exactly coincident is increased, until consistency is achieved.

of the lasso to the farthest point x on the to-be-lassoed connected
boundary is greater than the angular distance from the centre of the
lasso to the nearest point y on all other connected boundaries belong-
ing to the same group. If a lasso attempt fails, then the centre point
of the lasso is shifted over the unit sphere along the vector direction
from y to x, by an amount that puts the centre point just slightly
closer to x than y. The lasso is then reattempted. The process of
shifting the centre point and retrying a lasso is repeated until either
the lasso succeeds or until a certain maximum number of attempts
has been made.

3.2.4 Multiply intersecting and kissing circles

Multiple intersections occur where three or more circles (cap bound-
aries) intersect at a single point. Multiple intersections pose a po-
tential source of numerical problems, because the topology around
multiple intersections may vary depending on numerics, as illus-
trated in Fig. 11.

Circles kiss if they just touch. Again, kissing circles pose a po-
tential source of numerical problems, because whether two circles
kiss may vary depending on numerics, as illustrated in Fig. 12.

MANGLE is equipped to deal with both multiply intersecting and
kissing circles, and should cope in almost all cases, although it is
possible to fool MANGLE with a sufficiently complicated polygon,
for example a polygon whose vertices have a fractal distribution of
separations.

The strategy is as follows. Circles are considered to be multiply
intersecting, crossing at a single vertex, if the intersections are closer
than a certain tolerance angle. Similarly, circles are considered to
kiss, touching at a single vertex, if their kissing distance is closer
than the tolerance angle. The algorithm is friends-of-friends: two
vertices closer than the tolerance are friends, and a friend of a friend
is a friend. The position of each vertex ij of a polygon, where edge i
intersects (or kisses) edge j, is computed two different ways, first as
the intersection of edge i with edge j, then as the intersection of edge

Figure 12. Example of how the topology near kissing circles can vary as
a result of a tiny change in the location of the circles, and can therefore be
sensitive to numerical roundoff. The strategy for dealing with near kissing
circles is similar to that for near multiply intersecting circles.

j with edge i. For each of the two ways of computing it, the inter-
section is tested against all other circles, to determine whether the
intersection is or is not a vertex of the polygon, that is, whether the
intersection lies on the edge of the polygon or outside the polygon.
For consistency, the test should give the same result in both compu-
tations: the intersection should be a vertex in both cases, or it should
not be a vertex in both cases. If an inconsistency is detected, then the
tolerance angle is doubled (or set to a tiny number if the tolerance is
zero), and the computation is repeated for the inconsistent polygon
until consistency is achieved. By default, the initial tolerance angle
for multiple intersections and kissings is 10−5 arcsec.

In Fig. 11, the intersection of the two diagonals is a vertex of
the polygon in the left panel, but is not a vertex in the right panel,
because it lies outside the polygon. In the case of an exact multiple
intersection, as in the middle panel of Fig. 11, the intersection ij
is considered to be a vertex of the polygon only if i and j are both
edges of the polygon. Thus the intersection of the two diagonals in
the middle panel of Fig. 11 is a vertex, because both diagonals are
edges, but the intersection of the horizontal with either diagonal is
not a vertex, because the horizontal is not an edge of the polygon. If
i is an edge, and it intersects multiply with a bunch of other circles,
then the adjacent edge j is formed by the circle which ‘bends most
tightly’ around the polygon, that is, the circle whose interior angle at
the vertex is the smallest, or, if two circles subtend the same interior
angle (within the tolerance angle), then the circle whose polar angle
θ is the smallest.

In Fig. 12, the two circles i and j intersect at no vertices in the
left panel, and at two vertices in the right panel. In the case of an
exact kiss, as in the middle panel of Fig. 12, the kissing point ij
is considered to be a vertex only if i and j are both edges of the
polygon. Thus the kissing point ij is not a vertex of the the upper
and lower polygons, the two discs, but it is a vertex of the middle
polygons, the pointed ones.

Two polygons that just touch or kiss at a single isolated point (or
at a set of isolated points) are considered to be disconnected from
each other. Thus, for example, the top and bottom polygons in the
middle panel of Fig. 12 are considered to be disconnected from each
other; and similarly the left and right polygons in the middle panel
of Fig. 12 are considered to be disconnected from each other.

In practice, consistency of the topology of the distribution of ver-
tices around a polygon is checked by means of a 64-bit check num-
ber. If the intersection ij of edge i with edge j (two edges can intersect
at two separate points, so ij is an ordered pair, going from edge i to
edge j right-handedly around the boundary of the polygon) is deter-
mined to be a vertex of the polygon, then a 64-bit pseudo-random
integer is added to the check number, and if the same intersection
ij of edge j with edge i is determined to be a vertex of the polygon,
then the same 64-bit pseudo-random integer is subtracted from the
check number. For consistency, the check number should be zero
for the entire polygon. It is conceivable, with probability 1 in 264, or
less than 1 in 10 billion billion, that the check number could eval-
uate to zero accidentally, but this seems small enough not to worry
about, especially since inconsistency should be a rare occurrence in
the first place.

Fig. 13 illustrates a mask designed to be as ‘difficult’ as pos-
sible: it contains many multiply intersecting and nearly multiply
intersecting circles, and many kissing and nearly kissing circles, in-
cluding several simultaneously multiply intersecting and multiply
kissing circles. The MANGLE software copes with this, a non-trivial
accomplishment.

The sum of the areas of the 332 polygons of the balkanized
mask of Fig. 13 differ from the area, 0.00761302 str, of the overall
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Complex angular masks for galaxy surveys 123

Figure 13. A ‘difficult’ mask whose polygons have many multiple and
near multiple intersections, and many kisses and near kisses. Polygons are
coloured according to their areas.

bounding rectangle by 7 × 10−14 str, which is definitely satisfactory.
Given the algorithms, one could expect the numerical uncertainty in
the area of a single polygon to be no better than machine precision
times 2π str, which on the machine used for this computation was
about 10−15 str.

3.2.5 Order of polygons to be balkanized

When balkanizing, does the order of the polygons in the input poly-
gon files matter? The answer is yes, if the input polygons over-
lap, and if the overlapping polygons carry different weights. As
described in the following subsection (Section 3.3), if two polygons
overlap, then the weight of the polygon that appears later in the input
file(s) overrides the weight of the earlier polygon.

If all polygons have the same weight (say 1), then the order of
the input polygon files does not really matter. However, it may lead
to a slightly smaller eventual polygon file (after unifying, see Sec-
tion 3.4) if large, coarse polygons are put first, and small, finely
detailed polygons are put last.

3.3 Weight

Each connected polygon of a mask may have a different weight. In
galaxy surveys, the ‘weight’ attached to a polygon is the complete-
ness of the survey in that polygon. These weights must be supplied
by the user. If no weights are supplied, then the weight defaults
to 1.

If the input polygons of a mask overlap, then the policy adopted
by the MANGLE software is to allow the weights of later polygons in
polygon files to override the weights of earlier polygons. Thus, for
example, to drill empty holes in a region one would put the polygons
of the parent region first (with weight 1, perhaps), and follow them
with polygons specifying the holes (with weight 0).

There are three ways to apply weights to polygons. The first way is
simply to edit the polygon file or files specifying the mask. Attached
to each polygon in a polygon file is a line that includes a number
for the weight; one simply edits that number.

The second way is to specify weights in a file. The MANGLE soft-
ware contains a facility to read in these weights, and to apply them
successively to the polygons of a polygon file. Suppose that you
have your own software that returns a weight given an angular posi-
tion in a mask. The MANGLE software includes a utility (Section 6.3)
to create a file giving the angular position of a point inside each

(a) (b)

Figure 14. An example of the unification procedure. (a) The initial balka-
nized, weighted mask consists of five polygons as shown, perhaps those
from Fig. 2. The upper middle polygon happens to have zero weight, while
the three lower polygons each happen to have the same non-zero weight. (b)
Unification first removes the upper middle polygon, which has zero weight.
Then, in a first pass, unification merges the two lower of the middle polygons,
by removing the abutting edge between them. In a second pass, unification
merges the lower right polygon with the previously merged lower middle
pair, again by removing the abutting edge between them. In a third pass,
unification finds no more adjacent pairs of polygons with the same weight
that can be merged by removing an abutting boundary, and the procedure
terminates, leaving two polygons as shown.

Figure 15. A system of four polygons that unification fails to merge into a
single polygon, because no pair of polygons can be merged.

polygon of a mask. This file of angular positions becomes input to
your own software, which should create a file of weights, which in
turn can be fed back to MANGLE.

The third way to apply weights to polygons is to write a subrou-
tine (in either FORTRAN or c) that returns a weight given an angular
position, and compile it into MANGLE. The MANGLE software includes
some template examples of how to do this.

In our experience, method two is the method of choice, except in
cases that are simple enough that method one suffices.

3.4 Unify

The set of non-overlapping polygons that emerges from balkaniz-
ing and weighting may be more complicated than necessary. The
MANGLE software includes a facility for simplifying the polygons of
a mask, which we call unification. Unification is not strictly neces-
sary, but it tidies things up and can save subsequent operations, such
as harmonization (see Section 4), much computer time.

Unification eliminates polygons with zero weight, and does its
best to merge polygons with the same weight. The algorithm passes
repeatedly through a set of polygons, merging a pair of polygons
wherever the pair can be merged into a single polygon by elimi-
nating a single abutting edge. Fig. 14 illustrates an example of the
unification procedure.

Unification does not necessarily accomplish the most efficient
unification, nor, as illustrated in Fig. 15, is unification necessarily
exhaustive.

4 H A R M O N I Z E

The MANGLE software contains several utilities that do various things
with a mask. One of the most important of these is a utility to take
the spherical harmonic transform of a mask, a process we call har-
monization. In particular, the area of a mask is proportional to the
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124 A. J. S. Hamilton and M. Tegmark

zeroth harmonic. Computation of the area of a polygon is basic to
several of the MANGLE algorithms. For example, whether two poly-
gons intersect is determined by whether the area of their intersection
is non-zero.

The method for computing the spherical harmonics of a mask
consisting of a union of polygons is described in the appendix of
Hamilton (1993b). The algorithm is recursive and stable, able to
compute harmonics with machine precision to arbitrarily high or-
der, limited only by computer power and patience. The recursion,
as implemented in the MANGLE software, recovers correctly from
underflow, which can occur at large harmonic number �.

While the recursive algorithm by itself is fast, there is a numerical
penalty to be paid for allowing the polygons of a mask to have
arbitrary shape: the computation time for harmonics up to � increases
as �3, a pretty steep penalty when � is large. The computation time
is proportional to the number of edges of the polygons of the mask,
and on a 750-MHz Pentium III it takes 3 CPU minutes per edge to
compute harmonics up to � = 1000.

Thus the method is slow compared with fast algorithms specially
designed for regular pixellations, such as HEALPix (Gorski et al.
1999).

The most time-consuming part of the computation is rotating the
harmonics of an edge from its natural frame of reference into the
final frame of reference: it is this rotation that takes �3 time. The
rotation is unnecessary if the edge is a line of constant latitude in
the final reference frame, and the computation goes faster, as �2, in
this case.

Another acceleration is possible if two edges are related by a
rotation about the polar axis of the final frame. Although computing
the harmonics a(e)

�m of a single edge e still takes �3 time, the harmonics

a(e′)
�m of a second edge e′ rotated right-handedly by azimuthal angle

φ from edge e are a(e′)
�m = e−imφ a(e)

�m, which is fast to compute.
In practice, the MANGLE software currently implements the latter

acceleration only in the special case where (some of) the polygons
of a mask are rectangles, polygons bounded by lines of constant
azimuth and elevation. The acceleration applies only if at least two
rectangles of the mask have the same minimum and maximum el-
evation. Two such rectangles need not be adjacent in the polygon
file: MANGLE reorders the computation of polygons so as to take
advantage of acceleration where possible.

4.1 Harmonization algorithm

For completeness, we give here an overview of the method detailed
by Hamilton (1993b).

The spherical harmonic coefficients ω�m of a mask ω(n), a func-
tion of angular direction n, are defined by

ω(n) =
∞∑

�=0

�∑
m=−�

ω�mY�m(n) (1)

ω�m =
∫

ω(n)Y ∗
�m(n) do, (2)

where Y �m are the usual orthonormal spherical harmonics, and do
denotes an interval of solid angle about n.

The key mathematical trick is to convert the integral (2) for ω�m

from an integral over the solid angle of the mask to an integral over
its edges. This is done by introducing the square L2 of the angular
momentum operator L ≡ −in × ∂/∂n into the integrand

ω�m =
∫

ω(n)
L2

�(� + 1)
Y ∗

�m(n) do (� �= 0), (3)

which is valid except for the monopole harmonic � = 0, dealt with
below. The Hermitian character of the angular momentum operator
L allows equation (3) to be rewritten

ω�m = 1

�(� + 1)

∫
Lω(n) · L∗Y ∗

�m(n) do. (4)

By assumption, the mask is a sum over polygons p, and ω(n) is a
constant ω(p) within each polygon. It follows that Lω in equation (4)
is a sum over polygons, with the contribution from each polygon
being a vector whose magnitude is ω(p) times i times a Dirac delta-
function, and whose direction is along the boundary of the polygon,
winding right-handedly about the polygon. Thus the integral (4)
reduces to a sum of integrals over the boundaries ∂ω(p) of the
polygons

ω�m = i

�(� + 1)

∑
polygons p

ω(p)

∮
∂ω(p)

dn · L∗Y ∗
�m(n). (5)

The boundary ∂ω(p) of a polygon is a set of edges, so the integral
in equation (5) becomes a sum of integrals over each edge of each
polygon. Thus a harmonic ω�m is a sum of contributions ω(p)a(e)

�m

from each edge e of each polygon p

ω�m =
∑

polygons p

ω(p)
∑

edges e

a(e)
�m . (6)

Hence the analytic problem reduces to that of determining the har-
monics a(e)

�m of the edge e of a polygon. The problem is well suited to
computation, and could easily be parallelized if required (currently,
MANGLE is not parallelized).

Stable recursive formulae for computing the harmonics a(e)
�m of a

polygon edge are given by Hamilton (1993b). First, the harmonics of
an edge are computed in a special frame of reference where the axis
of the edge cap is along the polar direction (the z direction) of the
spherical harmonics. The harmonics of the edge are then rotated into
the actual frame of reference. The most time-consuming part of the
computation is the second part, the rotation, with the computational
time going as �3.

The above derivation of the harmonics ω�m of the mask fails for
the monopole harmonic � = 0, for which equation (3) is invalid. The
monopole harmonic ω00 is

ω00 = A

(4π)1/2
, (7)

where A is the weighted area of the mask, a weighted sum of the
areas A(p) of the polygons p

A =
∑

polygons p

ω(p) A(p). (8)

The general formula for the area A(p) of a polygon p is

A(p) = 2πχ (p) −
∑

edges e

�φ(e) cos θ (e) −
∑

vertices v

ψ (v), (9)

where χ (p), an integer, is the Euler characteristic (=faces minus
edges plus vertices of any triangulation) of the polygon, �φ(e) and
θ (e) are the lengths and polar angles of the edges e of the polygon,
and ψ (v) are the exterior angles (≡π minus the interior angles) at
the vertices v of the polygon.

The Euler characteristic χ (p) of a polygon, a topological quantity,
is calculable topologically – it equals two plus the number of con-
nected boundaries minus twice the number of groups to which the
boundaries belong – but in practice it is quicker to compute the Euler
characteristic as follows. First, in the trivial case that the polygon
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is the whole sky, its area is 4π. Secondly, in the special case that
the polygon is a single cap with edge e, its area is 2π(1 − cos θ (e)).
Otherwise, the polygon is an intersection of two or more caps. If
the area of any one of the caps is less than or equal to 2π, then the
area of the polygon must be less than 2π, so the Euler characteristic
χ (p) must take that integral value which makes the area lie in the
interval [0, 2π). This leaves the case where every one of the caps of
the polygon has area greater than 2π. The policy in this case is to
introduce an extra cap that splits the polygon into two parts, each of
whose areas is less than 2π; the area of the polygon is then the sum
of the areas of the two parts. In practice, polygons that are intersec-
tions of caps all of whose areas exceed 2π are fairly uncommon,
so the slow-down involved in splitting these particular polygons is
not great. Moreover the splitting is necessary only for the monopole
harmonic: the higher-order harmonics can be computed from the
original polygon without splitting it.

4.2 Map

The MANGLE software contains a ‘map’ utility to reconstruct the
mask at arbitrary points n from spherical harmonics up to a given
maximum �max

ω(n) =
�max∑
�=0

�∑
m=−�

ω�mY�m(n). (10)

For example, the bottom right panel of Fig. 1 was generated using
this utility.

5 C RO S S - A N D AU TO - C O R R E L AT I O N S

5.1 Cross-correlation 〈DR〉
Another important feature provided in the suite of MANGLE software
is a utility for computing precisely the angular cross-correlation
〈DR〉 at given angular separation θ between given ‘Data’ points and
‘Random’ points in the mask. The angular integral is calculated
analytically and evaluated with machine precision, rather than by
Monte Carlo integration with Random points.

If the ‘Data’ points are chosen randomly within the mask, as
in Section 5.4, then the cross-correlation becomes equivalent to
the angular auto-correlation 〈RR〉, for Random–Random, at given
angular separation between pairs of points in the mask.

The advantage of computing the 〈DR〉 angular integral analyti-
cally over the traditional Monte Carlo method is that it eliminates
unnecessary shot noise. As discussed for example by Kerscher,
Szapudi & Szalay (2000), this unnecessary shot noise can adversely
affect the performance of estimators of the correlation function at
small scales.

In the case of the PSCz high-latitude mask, which balkanizes
into 744 polygons, it takes 5 CPU minutes per 1000 ‘Data’ points
to compute 〈DR〉 at 1000 angular separations with a 1.2-GHz
Pentium III.

5.2 〈DR〉 Algorithm

The contribution of a Data point at position n to the angular cor-
relation 〈DR〉 at angular separation θ is a weighted sum over the
polygons of the mask of the azimuthal angle �φ subtended within
the polygon by a circle of radius θ centred at n. The correlation
〈DR〉 at angular separation θ is an average over the contributions
from each Data point.

The computation of 〈DR〉 is done at a specified angular separation
or set of separations θ , not, as is common with Monte Carlo integra-
tion, over a bin of angular separations. For a finite number of Data
points, and a mask consisting, as in the present paper, of a union of
weighted polygons, the correlation 〈DR〉 is a continuous function
of angular separation θ , except that, if a data point n happens to
coincide with the axis of an edge of a polygon, then the function
will be discontinuous at a separation θ equal to the polar angle of
the said edge. Furthermore, the correlation 〈DR〉 is a differentiable
function of separation θ except at a finite, possibly large, number of
discontinuities where θ equals the separation between a Data point
n and either a vertex of a polygon or a point on the edge of a polygon
where the separation from n is extremal.

Although 〈DR〉, as a function of separation θ , is thus typically
discontinuous in the derivative, and occasionally discontinuous in
itself, in practical galaxy surveys 〈DR〉 tends to be relatively smooth,
especially when the number of Data points is large. Thus in the
practical case it is usually fine to sample 〈DR〉 at a suitably large
number of angular separations, and to interpolate (linearly) on such
a table.

The DR utility loops in turn through each Data point n, so that
two points take twice as much CPU time as one point. For each Data
point, the DR utility attempts to accelerate the computation with re-
spect to the angular separations θ by first computing the minimum
and maximum angles between the point n and each polygon in the
mask. The information about the minimum and maximum angles
is used to decide whether the circle about n lies entirely outside
or entirely inside a polygon, in which case the (unweighted) angle
�φ subtended within the polygon is zero or 2π. In practical cases
the angle subtended is often zero for the great majority of polygons
of a mask, especially when the mask is composed of many polygons.
Since calculation of the subtended angle can be skipped if the angle
is zero, computation can be greatly speeded up. Further accelera-
tion comes from ordering the polygons in increasing order of the
minimum angle from the given point n to each polygon. This allows
the computation to loop to the next value of θ as soon as it hits a
polygon for which the subtended angle is zero, rather than check-
ing through large numbers of polygons that all have zero subtended
angle.

5.3 Auto-correlation 〈RR〉
The angular auto-correlation 〈RR〉 between pairs of points in a mask
can be computed in various ways. The traditional method, as sug-
gested by the Random–Random designation, is to count pairs of
random points. However, the traditional method is certainly not the
most precise method, and it may not be the most efficient, especially
at small scales, if large numbers of Random points are needed to
reduce the shot noise to a subdominant level.

An alternative method, mentioned above, is to compute 〈RR〉 us-
ing the 〈DR〉 algorithm with the ‘Data’ points chosen randomly
within the mask. Although this method is subject to some shot
noise, the shot noise is liable to be substantially less than that of
the traditional method at small scales.

At the largest angular separations θ , a choice method is to com-
pute 〈RR〉 from its spherical harmonic expansion, truncated at some
suitably large harmonic �max:

〈R R〉 = 2π

�max∑
�=0

P�(cos θ )
�∑

m=−�

∣∣ω�m

∣∣2
, (11)
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where P�(x) is a Legendre polynomial, which is accurate at angular
scales � π/�max.

The exact expression for the auto-correlation 〈RR〉 at angular
separation θ is

〈R R〉 =
∫∫

ω(n1)ω(n2)δD(n1 . n2 − cos θ ) do1 do2. (12)

For a mask of polygons as considered in this paper, this double
integral over solid angles can be transformed into a double integral
over the edges of the polygons (Hamilton 1993b)

〈R R〉 =

2πA −
∑
p1,p2

ω(p1)ω(p2)

∮
∂ω(p1)

∮
∂ω(p2)

G(cos θ, n1 · n2) dn1 · dn2,

(13)

where A is the weighted area, equation (8) , of the mask, and G is the
Green’s function of the scalar product L1 · L2 of angular momentum
operators:

G(x, x12) =




1

2
ln

[
(1 + x12)(1 − x)

(1 − x12)(1 + x)

]
(x12 � x)

0 (x12 � x).

(14)

Unfortunately, the integral (13) cannot be solved analytically, and
we have not attempted to implement its numerical solution in the
MANGLE software. Hamilton (1993b) gives a series expansion of the
expression (13) valid at small scales, but the series expansion is al-
ready liable to break down at the tiny scales of the typically complex
masks of modern surveys (the coefficients of the series expansion
change discontinuously wherever the angular separation equals the
distance between distinct vertices, or more generally any extremal
distance between pairs of edges), making the series expansion of
limited applicability.

5.4 Generate random points inside a mask

The MANGLE software contains a utility for generating random points
inside a mask. As indicated above, this can be useful for example
in computing the angular auto-correlation 〈RR〉 of pairs of points in
the mask.

The algorithm, which is quite fast, is as follows.

(i) Select randomly a polygon in the mask, with probability pro-
portional to the product of the polygon’s weight and area. Lasso
that polygon with a circle that is intended to be a tight fit, but is not
necessarily minimal. Generate a point randomly within the circle,
test whether the point lies inside the polygon, and keep the point if
it does.

(ii) Iterate.

A lasso is computed for a polygon as needed, but is then recorded,
so that a lasso is computed only once for any polygon. If the desired
number of random points exceeds the number of polygons in the
mask, then the computation starts by lassoing every polygon in the
mask.

6 OT H E R U T I L I T I E S

The MANGLE software contains several other utilities, described be-
low.

6.1 Copying polygons into different formats

One simple but often-used utility is one that copies a polygon file or
files into another polygon file in a different format – see Section 2.1
for an abbreviated description of the possible formats. For example,
most of the figures in this paper were produced from points generated
by copying polygon files into graphics format.

The utility for copying polygon files has some switches for copy-
ing polygons with weights or areas only in some interval. This makes
it easy, for example, to discard polygons with small weights or small
areas.

6.2 The vertices and edges of a mask

The MANGLE software contains routines that return the vertices of
the polygons of a mask, and return the positions of points along the
edges of a mask. For example, when a polygon file is copied into
graphics format, the copy utility invokes these routines.

A single polygon can have more than one connected boundary, as
illustrated in Figs 3–6 and 8–10. Here the routines return the vertices
and edge points on distinct boundaries as distinct sets.

The routines for determining the distinct connected boundaries
of a polygon are used in stage 2 of the balkanization process (see
Section 3.2).

6.3 Find points inside the polygons of a mask

The MANGLE software contains a routine to find a point inside each
polygon of a mask. The aim is to find a point that is squarely inside
the polygon, well away from its edges. For example, the weights
attached to the balkanized set of polygons shown in the lower left
panel of Fig. 1 were obtained by picking a point inside each polygon,
and evaluating the weight at that point from the 1 arcmin × 1 arcmin
pixellated map provided by the 2QZ team. The pixellation means
that the map is reliable only away from the edges of a polygon, so
it is important to pick the point squarely inside the polygon.

The algorithm finds one point for each distinct connected bound-
ary of a polygon. If the polygon contains non-simply connected
parts, as in Figs 4–6, that means that the algorithm will return more
points than there are distinct connected parts of the polygon; how-
ever, having more points than necessary is not a problem.

The algorithm to find a point inside a polygon is mildly paranoid.
For each connected boundary of a polygon, the algorithm first deter-
mines the barycentre of the midpoints of the edges of the connected
boundary. This barycentre cannot be guaranteed to lie inside the
polygon, so it is not enough to stop here. Instead, great circles are
drawn from the barycentre to each of the midpoints of the edges of
the connected boundary. On each of these great circles, the midpoint
of the segment of the great circle lying within the polygon, with one
end of the segment being the midpoint of an edge of the connected
boundary, is determined. Each of these segment midpoints inside
the polygon is tested to see how far away it is from the nearest ver-
tex or edge of the polygon, including edges and vertices other than
on the connected boundary. The desired point inside the polygon is
chosen to be that segment midpoint furthest away from any vertex
or edge.

6.4 Find polygon(s) inside which a point lies

The MANGLE software contains a utility to find inside which polygon
or polygons of a polygon file a given point lies. A point may lie inside
zero polygons, or one polygon, or more than one polygon. The utility
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takes no short cuts: it tests all points against all polygons. This can
take time if there are large numbers of points and large numbers of
polygons.

If the polygon file has been produced by balkanization, then a
point would normally lie inside at most one polygon. However,
a point at the edge (within numerical accuracy) of two abutting
polygons is considered to lie inside both polygons.

7 S U M M A RY

The observing strategies of modern galaxy surveys typically pro-
duce angular masks with complex boundaries and variable com-
pleteness. The purpose of this paper has been to set forward a
scheme that is able to deal accurately and efficiently with such an-
gular masks, and thereby to reduce both the labour and the chance
for inadvertent error. The fundamental idea is to resolve a mask into
a union of non-overlapping polygons each of whose edges is part of
a circle (not necessarily a great circle) on the sphere.

The scheme has been implemented in a suite of soft-
ware called MANGLE, which is downloadable from http://casa.
colorado.edu/∼ajsh/mangle/.

The MANGLE software includes several utilities for accomplish-
ing common tasks associated with angular masks of galaxy surveys.
This includes generating random catalogues reflecting the angular
selection function (a tool employed in almost all galaxy survey anal-
ysis), measuring the 〈DR〉 and 〈RR〉 angular integrals (needed for
estimating the correlation function), and expanding the mask in
spherical harmonics (a key step in various techniques for measur-
ing the power spectrum and redshift space distortions). The scheme
was originally motivated by the nature of real angular masks of
real galaxy surveys, and the underlying angular routines have been
battle-tested over many years. The full apparatus of the MANGLE

software has been used on the 2dF survey (Tegmark et al. 2002) and
on the SDSS survey (Tegmark et al. 2003).
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A P P E N D I X A : P RO O F O F S I M P LY
C O N N E C T E D N E S S T H E O R E M

This appendix proves the following theorem, invoked in Sec-
tion 3.2.2 (see Table 1 for a definition of the term group):

A connected part of a polygon is simply connected if and only if
all the boundaries of the connected part belong to a single group.

First, suppose that a polygon contains a region that is connected
but not simply connected. It is required to prove that the bound-
aries of this region belong to at least two distinct groups. By def-
inition of simply connectedness, a continuous line can be drawn
entirely inside the non-simply connected region such that one con-
nected boundary of the region lies entirely on one side of the line,
and another connected boundary of the region lies entirely on the
other side of the line. In the polygon of Fig. 4, for example, such
a line would circulate around the central boundary while remain-
ing inside the outer boundary. The continuous line cannot intersect
any of the circles forming the caps of the polygon, because if the
line did intersect a circle, then the line would be inside the poly-
gon on one side of the intersection, and outside the polygon on
the other side of the intersection, contradicting the assumption that
the line lies entirely inside the polygon. Hence the continuous line
must partition the circles of the polygon into two non-intersecting
groups. The two connected boundaries on either side of the contin-
uous line must therefore belong to two distinct groups, as was to be
demonstrated.

Conversely, suppose that a polygon has boundaries that belong to
at least two distinct groups. It is required to prove that the two groups
delineate a connected but non-simply connected region of the poly-
gon. Consider the polygon, call it A, formed by the intersection of
all the caps of one group. The polygon A so formed must consist of
one or more simply connected parts; for if any connected part of A
were not simply connected, then according the previous paragraph
the boundaries of that part would belong to different groups, con-
tradicting the assumption that the caps of A all belong to a single
group. Similarly, now consider the polygon, call it B, formed by the
intersection of all the caps of a second group. The boundaries of
polygon B must lie entirely inside one and only one of the simply
connected parts of A. For certainly B must lie inside at least one
part of polygon A, since A must enclose the parent polygon, and
the boundary of B lies inside (at the border of) the parent polygon.
But the boundary of polygon B cannot lie in more than one part
of A, because if it did then, because the circles of B are all in the
same group and therefore connected to each other, there would be a
path lying along the circles of B traversing continuously from one
part of A to another, and therefore necessarily intersecting one of
the boundaries of polygon A, contradicting the assumption that the
circles of A and B belong to distinct groups that nowhere intersect.
Similarly, the boundaries of polygon A must lie entirely inside one
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and only one of the simply connected parts of B. This argument
has identified two special boundaries: a boundary of A that entirely
encloses B; and a boundary of B that entirely encloses A. The region
enclosed by these two special boundaries delineates a region of the
polygon that is connected but not simply connected. For consider a
continuous line that is displaced slightly off the special boundary of
A, towards the special boundary of B. By construction, the continu-
ous line lies entirely inside both polygons A and B. The continuous
line cannot intersect any of the circles of A or B, because if it did
then the line would lie inside A (or B) on one side of the intersec-
tion, and outside A (or B) on the other side, contradicting the fact
that the line lies entirely inside A and B. The continuous line could

possibly intersect circles belonging to a third group of circles of
the parent polygon. However, if the continuous line is displaced off
the special boundary of A by an amount sufficiently small that it
does not encounter any third group, then the continuous line will lie
entirely inside the parent polygon. This continuous line forms a line
inside the polygon that cannot be shrunk continuously to a point, so
the polygon must contain a region that is connected but not simply
connected, as was to be demonstrated.

This proves the theorem.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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