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ABSTRACT

A new Schottky diode is investigated for use as a multiplier element in the millimeter and

submillimeter wavelength regions. The new diode is based on the Schottky contact at the edge

of a 2-dimensional electron gas (2-DEG). As a negative voltage is applied to the Schottky

contact, the depletion layer between the Schottky contact and the 2-DEG expands and the
junction capacitance decreases, resulting in a non-linear capacitance-voltage characteristic. In

this paper, we outline the theory, design, fabrication and evaluation of the new device. Recent
results include devices having cutoff frequencies of 1 THz and above. Preliminary multiplier

results are also presented.

I. BACKGROUND

Schottky bather varactor diodes are used as frequency multiplier elements for local
oscillator (LO) sources for the millimeter and submillimeter wavelength region. These sources
are used in heterodyne receivers for a variety of applications including radio astronomy,
atmospheric studies and plasma diagnostics. For space-based receiver systems, the LO source

must be compact, lightweight and reliable; and power and cooling requirements must be
minimized. While molecular gas lasers have been used as LO sources for airborne
radioastronomy measurements at frequencies as high as 2.5 THz [1,2], the stringent
requirements for space applications will require the use of a solid-state LO source. Although
standard varactor diodes have been used to generate 0.7 mW at 474 GHz [3] and 0.2 mW at
640 GHz [4], these devices will not provide usable amounts of LO power above about 1 Tiliz
[5]. Schottky barrier varistor diodes and quantum well oscillators have been proposed as
sources of LO power but these technologies will not provide sufficient power to drive the GaAs
Schottky barrier mixer diodes used in these receivers {6,7,8]. We report here on a new planar
varactor diode in which the Schottky contact is formed at the edge of the 2-dimensional
electron gas (2-DEG). This new device, which is essentially the 2-d analog of the standard (3-

d) Schottky diode, has unique properties and is a promising candidate for use in millimeter and

submillimeter wave multiplier applications [9,10]. In addition, it may be possible to use this
device to investigate conduction in a 2-d electron gas at frequencies significantly above 100
GHz.
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Fig. 1. Schematic of the planar Schottky/2-DEG varactor diode.

In Section II, the theory of the device and the design for multiplier applications is
reviewed. In Section III, the fabrication of the devices is briefly described. The low frequency
evaluation is presented in Sections IV and V for the interdigital-type and the "refined

prototype" devices, respectively. The preliminary multiplier performance of the "refined

prototype" devices are presented in Section VI. Finally, a summary of the work and outlook for

future research is presented in Section VII.

II. THE SCHOTIXY/2-DEG DIODE

A. Overview

A sketch of the Schottky/2-DEG diode is shown in Fig. 1. Also shown is an expanded

view of the Schottky contact region. The chip dimensions are typically 100 by 200 gm by

about 50 gm thick. Two device configurations are discussed in this paper. These are the

interdigitated contact device (also described in [9,10]) and the "refined prototype" device

which is similar to that shown in Fig. 1. The interdigitated devices have been realized in both

single and dual anode configurations, the latter being intended for symmetric C(V)
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Fig. 2. Conduction band diagram of the Schottky/2-DEG diode. The 2-DEG is bounded on

the left by a Schottky contact and on the right by an ohmic contact. The depletion

depths for two applied voltages are shown (left). A  qualitative sketch of the potential

well in the undepleted channel is shown (right) with the Fermi and lowest sub-band

energies indicated.

applications. These devices had Schottky contact widths in the range 150-350 gm. The
"refined prototype" devices are single anode devices (whose cathode is an ohmic contact) with

widths of about 100 gm. The isolation between pads is achieved by etching through to the

semi-insulating GaAs substrate everywhere except in the channel region and beneath the pads.
Further details of the fabrication process are outlined in Section III.

B. Physics and Equivalent Circuit

The conduction band diagram of the Schottky/2-DEG diode is shown in Fig. 2. The

theory of the metal/2-DEG junction was first considered in [11] and more recently extended in
[12]. In [12], the junction capacitance was derived using a conformal mapping technique and
by making suitable assumptions about the boundary conditions. The capacitance-voltage
characteristic was given by the expression

WE (R2 + diep)
1

 +R
C(V) = ln[  

(R2 + dsep)1/2 _ R
(1)

where W is the width of the contact (see Fig. 1), e is the permittivity of GaAs and R is the
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Fig. 3. A  simple equivalent circuit model of the Schottky/2-DEG diode.

half-height of the Schottky metalization. The depletion depth ddep of the 2-DEG is given as

ddeP qsn
(2)

2e(Vbi Va) 

where Vbi is the built-in voltage (0.7-1.0 V), Va is the applied voltage (which is negative for

reverse-bias), and n, is the 2-DEG sheet charge density. For a 2-DEG sheet charge density of
ion cm-2 (10

13 
cm-2) and assuming e of GaAs, the 2-DEG depletion depth is 3 pm (0.3 gm)

at 20V reverse bias. The total capacitance is equal to the junction capacitance in parallel with
the shunt capacitance associated with the pad-to-pad fields and anode-to-ohmic fields.

The equivalent circuit is shown in Fig. 3. For simplicity, the junction conductance is
neglected. [The skin effect is probably not important for this device since the length and depth
of the 2-DEG are small]. Also, the inductive effect of charge carrier inertia is neglected

although this effect may be important at cryogenic temperatures due to the long momentum

relaxation time of the 2-DEG. The junction capacitance q can be estimated using Eq. 1. The

series resistance, Rs, is composed of the resistance of the undepleted channel and the ohmic

contact resistance. The former is given by

R5 = (Lcilro
dd

s
e

(3)

where L is the channel length and gn is the electron mobility in the undepleted channel. The

ohmic contact resistance is simply Roc = r se/W where rsc is the specific contact resistivity

(normally specified in units flmm) of a HEMT-like ohmic contact, and W is the device width

(in mm). The shunt capacitance term Csh includes pad-to-pad capacitance and Schottky-to-

ohmic capacitance. For high frequency design, Csh and the Rs must be minimized.

The theory of the junction breakdown has not been fully developed. However, Vbr in long

channel devices is assumed to be caused either by impact ionization or by tunneling.

Experimental observations of very large breakdown voltages in prototype devices [9] lead to

the conclusion that for short channel length devices, the breakdown voltage was limited by

punch-through. In this paper, those devices with channel lengths of 1 gm are probably punch-

through limited whereas the 2-3 gm length devices may be limited by impact ionization or
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tunneling, or both. The breakdown voltage may also be limited by the geometry of the anode
metalization (for example, the half-height R) or by processing and material defects. A more

detailed discussion of the breakdown in these devices will be presented in a later paper.

C. Frequency and Power Limitations

Several factors limit the frequency response and power performance of the multiplier. The

frequency response may be limited by the dynamic cutoff frequency which is usually defined
[13] as

vco - 27ER,

where Smax (Smin) is 1/Cmin (1/Cinax), and Rs is the series resistance of the varactor diode. It is

desirable for the device to have a v c0 value much higher than the operating frequency to ensure

that the multiplier efficiency is not degraded. To achieve high v e0 , the series resistance should

be as small as possible, the minimum capacitance (near breakdown) should be small and the

capacitance modulation ratio Cmax/Cmin should be large.

Another important quantity which may limit both the frequency response and maximum
output power is the finite velocity of the electrons traversing the modulation region (the
epilayer in GaAs diodes or the 2-DEG channel in the Schottky/2-DEG diode). Recently,
Kollberg et al [14] showed how the finite electron velocity limited the current in the 6P4 diode

used by Erickson [3]. Kollberg argued that the ac displacement current could not exceed the
saturation current which in turn is limited by the electron drift velocity. Using Monte Carlo
analysis, the effective velocity and the saturation current in the 6P4 diode were estimated (in
[ IA

])
 to be 2.4 x 107

 cm/s and 44 mA, respectively. At input powers beyond that which causes

the current to saturate, the diode's rf impedance increases (since the current cannot). Kollberg
used this analysis to simulate the roll-off in efficiency with input power, which was observed
by Erickson.

The velocity saturation current is written here for the 2-d case as

Ivs = qn
sveffW	(5)

where ns is the 2-dimensional sheet charge density, W is the contact width and v eff is the
effective velocity of the electrons in the channel. As will be shown, a Schottky/2-DEG diode

with W = 100 pm and n s = 1.85 x 1012 cm-2
 has roughly the same characteristics as the 6P4

diode. Assuming the same effective velocity as was used for the 6P4, namely v eff = 2.4 x 107

cm/s, Ivs is about 70 niA.

The finite electron velocity may also limit the frequency response if the transit-time for

electrons traversing the modulation region is comparable to the period of the LO frequency.

The transit-time corner frequency has been proposed [10] as a useful design parameter for the
diode's frequency response, and is defined as

Veff
Vtt 

27t1.,

Sma,x — Smin
(4)

(6)

where L is the channel length (or the epilayer thickness in the standard diode). Note that the
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frequency given by Eq. 6 is a corner frequency since, as the frequency increases beyond this
value, the maximum if modulation length shortens, resulting in a smaller capacitance ratio and
thus to a roll-off in the multiplier efficiency. For example, assuming an effective electron

velocity of 2.4 x 10
7 cm/s (as was used in [14]), a varactor diode with input frequency of 80

GHz will have a maximum modulation length of about 0.48 gm. In comparison, the 6P4 diode,
which is often used at this frequency, has an epilayer thickness (and maximum dc modulation
length) of about 1.0 gm. Thus, both standard and 2-DEG diodes should be designed to achieve

a large capacitance modulation ratio within the length given by Eq. 6.

Having outlined the equations for the capacitance, resistance, punch-through voltage (Eq.

2 with ddep = L), the dynamic cutoff and the transit-time frequencies and the saturation current,

the Schottky/2-DEG diode may be designed for particular applications. This procedure is
simplistic but is similar to the design of the state-of-the-art varactors currently in use. This

design procedure was used for the "refined prototype" devices whose results are given in
Section V. Before presenting the device results, the fabrication will be briefly reviewed.

HI. FABRICATION

The prototype Schottky/2-DEG devices discussed here were fabricated on a

pseudomorphic A1 .25Ga .75Asiind5Gas5As/ GaAs structure shown in Fig. 4. This structure was

grown by MBE and analyzed using the Van der Pauw method to determine the mobility and

sheet charge density. The electron sheet charge density at both 77 K and 300 K was

1.85x10
12 cm-2 and the electron mobilities were 31,400 cm

2/V-s and 6640 cm2/V-s at 77 K

Layer

1 GaAs

A10.25Ga0.75As

x 10
18 cm-

3	40 A

x 1017 cm-
3	300 A

3 Si Atomic Plane 5 x 10
12 cm-2

Fig. 4. A lGaAslinGaAsIGaAs heterostructure used for the devices discussed here.
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Fig. 5. Scanning electron micrographs of Schottky/2-DEG devices. The interdigitated
device (top) has anode width of 250 gm and channel length of 2 gm. The "refined
prototype" device (bottom) shown here is similar to the devices discussed in Section

V. Here, the anode width is 100 pm and the channel length is 5 1..tm.
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and 300 K, respectively. The supply and cap layers are substantially depleted to the 2-DEG
and/or the surface, to minimize parallel conduction. The ohmic contact consists of an
electroplated SnNiirsTi/Au trilayer which is alloyed at about 380°C. To form the Schottky

contact, a trench is etched through the 2-DEG layer and a Pt/Au contact is electroplated into
the trench. Next, the contact pads are plated and finally a 2-3 micron deep NaOH:H202 etch to

the SI-GaAs substrate is performed to isolate the two pads. All lithography levels are
performed using a Karl Suss M111-3 (405 nm). An SEM photo of the interdigitated device is

shown in Fig. 5 (top). A sketch of a "refined prototype" is also shown (bottom). The rough
surface of this device was due to the isolation etch, performed using chlorine reactive ion

etching. A subsequent wet chemical etch reduced the surface roughness considerably.

IV. LOW FREQUENCY EVALUATION OF INTERDIGITATED DEVICES

The dc evaluation of the Schottky/2-DEG diodes include 1(V), C(V) and reverse
breakdown voltage measurements. First, the interdigitated device results are presented (these
results were also presented in [10]). The forward and reverse 1(V) of a single Schottky/2-DEG
device is shown in Fig. 6 (top), measured at room temperature. The exponential diode

characteristic is seen as the linear portion of this semi-log 1(V) plot, in the range 0.35 - 0.7 V.
The "knee" voltage (at I p,A) was 0.512V. The AV values for the current intervals 0.1 — 1.0 A,

1.0 — 10.0M and 10.0 — 100AA are 74mV, 74mV and 81mV, corresponding to inverse slope

parameters, Vo, of 32.1mV, 32.1mV and 35.2mV, respectively. This corresponds to a diode

ideality factor of 1.26. The series resistance of this device was determined to be 56Q. The
expected 2-DEG channel resistance at room temperature is 6 O. Allowing for a pessimistic
value of the ohmic contact resistivity, rsc of 2.5 Omm, the total series resistance expected for

this device was about 16 O. The remaining 40 fl series resistance is most likely due to
insufficient plating of the ohmic contacts, as was substantiated by inspection using scanning
electron microscopy. The dual anode devices have no ohmic contact resistance. In these

devices, the I(V) is dominated by the characteristic of the reverse-biased junction and a series

resistance measurement cannot be made. However, using Eq. 3, the L = 2gm, W = 25011m
device resistance is about 4 at 295K and about 1.0 2 at 100 K.due to the increase in mobility
upon cooling.

The C(V) curves of the single and dual anode interdigitated devices are shown in Fig. 6
(bottom). The channel length (gap between fingers) is 2 gm (3 pm) for the dual (single)

Schottky device. The anode widths were 250 ;Am for both devices. As expected, the dual

Schottky device has a nearly symmetric C(V) characteristic and it's zero-bias capacitance is

about half that of the single anode device. Subtracting the pad-to-pad capacitance which was

measured to be 4 fF, this symmetric C(V) device had a dynamic cutoff frequency of about 1
THz at 295K and about 4 THz at 100 K. The velocity saturation current (Eq. 5 using
veff = 2.4 x 107

 cm/s) is 178 mA. Also, the transit-time corner frequency of the 2 pm channel

length device is about 19 GHz, calculated using Eq. 6. The capacitance levels of the dug.'

anode device is probably too high for most multiplier applications. Nevertheless, multiplier

testing of these devices will be performed in the near future.
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Fig. 6. Forward and reverse 1(V) of single anode interdigitated device (top) with

W = 250 gm and L = 3.0 gm. C(V) characteristics (bottom) of L = 3.0 gm single and

L = 2.0 gm dual anode interdigitated devices of width 250
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Fig. 7. C(1
7) of refined prototype device A . Also shown is a fit (Eq. 1) using R = 0.75 j.tm,

Ch = 8.0fF, Vbi = 0.7 V and W 90 gm.

V. LOW FREQUENCY EVALUATION OF REFINED PROTOTYPE DEVICES

The refined prototype devices had two anode width/channel length combinations. The

"A" devices had anode widths of 90 gm (on average) and channel lengths of 2.5 gm while the
"B" devices had anode widths of 80 p.m and channel lengths of 3.0 gm. The C(V) characteristic

of device A is shown in Fig. 7. The theoretical capacitance, shown fitted to the data, agrees

well with the data except near zero-bias where the fit is lower than the data. The fit assumed a

reasonable value of the anode metal half-height (R = 0.75 gm) and a shunt capacitance of 8.0

fF. This value of Ch is higher than expected since the pad-to-pad capacitance was measured to

be about 2 fF. The additional shunt capacitance may be due in part to fields between the anode

and ohmic metals. This contribution to the capacitance is not easily determined and is also not

substracted for the vc. calculations. The difference between the theory and the data near zero-

bias is either due to inaccuracy of Eq. 1 for the geometry of this device or to effects related to
the leakage current at low bias. We are currently investigating a more general theory of the

junction capacitance for devices of various geometries.

The forward I(V) as a function of temperature of device A is shown in Fig. 8. As the
temperature decreased, several changes occured. First, the entire I(V) curve shifted to higher

voltages, as expected due to the temperature dependence of the saturation current (the theory of
the thermionic saturation current of the Schottky/2-DEG junction is being investigated [15]).

At lower currents, the "leakage" current which has been routinely observed at room

temperature is seen to decrease substantially so that, at 220 K, it is much less than one

nanoamp. Finally, the strong temperature dependence of the series resistance is evident at high

currents.
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Fig. 8. Forward I(V) (top) and series resistance (bottom) versus temperature o device A .
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Reverse Voltage (V)

Fig. 9. Reverse 1(V) versus temperature of device A .

The measured series resistance of device A is plotted as a function of temperature in Fig.
8 (bottom). The resistance decreased nearly linearly from 19.9 at 300 K to 10.5 at 130 K,
and the resistance at 77 K was 8.9 O. The 2-DEG resistances calculated using Eq. 3 with the
low field mobility values at 300 K and 77 K are 14.1 f2 and 3.0  respectively. Thus, the
ohmic contact resistivity (for the width 90 p,m) is estimated to be about 0.6 2mm. This value
of rsc is much lower than was achieved on the earliest Schottky/2-DEG devices. The

improvement is probably a consequence of the higher doping at the heterostructure surface and
an improved ohmic plating and alloying procedure. Further reduction of rsc (perhaps to 0.1
^

-
2mm) should be possible using evaporated Ni/Ge/Au ohmic contacts.

The reverse 1(V) of device A was measured as a function of temperature and is shown in

Fig. 9. As in the forward 1(V), the leakage current is seen to decrease upon cooling. At the

highest reverse current (100 .4A), the reverse voltages decreased with temperature from 17 V at
300 K to about 9 V at 40 K. This temperature dependence of the breakdown voltage is

qualitatively consistent with impact ionization theory. Since the mean free path for electron
phonon interactions increases with decreasing temperature, the electrons can achieve higher

kinetic energies before phonon scattering occurs. Consequently, as the temperature decreases,

electrons reach the impact ionization energy at lower field strengths (lower reverse voltages)

and the breakdown voltage decreases.
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Fig. 10. Forward 1(V) (top) and reverse I(V) (bottom) vs. temperature of planar GaAs

Schottky diode SC6T1.
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The temperature dependence of the breakdown voltage of the Schottky/2-DEG diode
raised the question of whether the breakdown voltage in standard GaAs varactors had a similar
temperature dependence. To investigate further, the I(V) of several planar GaAs varactor

diodes (UVA-SC6T1) were measured as a function of temperature. The doping concentration
and anode diameter for this diode were 2 x 10 16 cm-

3 and 6 gm, respectively, compared to the

respective values 3 x 10
16

 cm-3
 and 6 gm for the whisker-contacted UVA-6P4 diode. The

forward and reverse I(V) of one device is shown in Fig. 10. The forward I(V) is typical for a

low doped diode. Here, the knee voltage increased from 0.678 V at 299K to 1.015 V at 24K.
The inverse slope parameter decreased from 28.7 mV at 299 K to 12.7 mV at 24 K. The series

resistance was constant and equal to 30 CI (± 1 f2) over the range 24-299 K. The reverse I(V)
was measured from 10 nA to 1011A. The breakdown voltage characteristics are all very sharp.

Of the three SC6T1 diodes tested, all had breakdown voltages of 18-19 V at 24K, although the
room temperature breakdown voltages were 26 V, 29 V and about 30 V. Thus, the average
reduction in Vbr was about 35 percent upon cooling, compared to a reduction of about 50

percent for the Schottky/2-DEG diode. A decreasing breakdown voltage in these devices upon
cooling may impact the low temperature multiplier performance. On the other hand, the large
decrease in the series resistance of the 2-DEG upon cooling should result in higher multiplier

efficiency.

Finally, the saturation drift current of device A was calculated, using Eq. 5 with
veff = 2.4 x 10

7
 cm/s, to be 64 mA. This may be a conservative estimate since higher velocities

may be possible in the 2-DEG than in bulk GaAs. In any case, the Schottky/2-DEG diode of

roughly equivalent properties as those of the 6P4 diode has a significantly higher saturation

current (at least 64 mA) than does the 6P4 diode (44 mA according to [14]).

VI. PRELIMINARY MULTIPLIER RESULTS

The first rf measurements of a Schottky/2-DEG diode were performed at the National
Radio Astronomy Observatory using a modified NRAO tripler which was designed [16] for

whisker contacted diodes (such as the UVA-6P4). The Schottky/2-DEG diode chip was

soldered across the output waveguide. A klystron was used as a source and two power meters

were used to measure the power at the input and output ports of the multiplier. Further details

of the measurement setup may be found in [17].

The preliminary measurements were of device A having chip width and length

dimensions of 100 gm and 180 p.m. The chip thickness was about 60 pm. After soldering, the

clearance between the back of the chip and the waveguide wall was estimated to be only 2-3
m, due in part to the thick solder "bump". The 1(V) of the device was checked after soldering

and found to be the same as before soldering. The room temperature Rs and Vbr of this device

were 20 1.2 and 12 V, respectively.

The first multiplier test was to determine the optimum frequency. Using 50 mW input
power, the multiplier tuners and dc bias were optimized for maximum output power at several

frequencies over the range 70-79 GHz. The result is shown in Fig. 11 where the input power

was 50 mW. The best performance was obtained at 75 GHz where P out was 160 I_LW at 225

GHz. The input return loss was measured at 75 GHz to be about -20 dB so the input tuning was

relatively well optimized. Next, the output power at 225 GHz was measured as a function of
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the input power, as shown in Fig. 11 (bottom). P in was varied over the range 20 -100 mW. As

the input power increased, the output power increased, reaching a maximum value of 500 p.\\T
at 100 rnW at the input. This corresponds to an efficiency of 0.5 percent. In comparison,
Bradley [17] used this multiplier with a planar GaAs varactor of doping 1.1 x 10 17 cm-3

 and
diameter 7 pin and obtained 3.7 mW output power and 4.1 percent efficiency at 219 GHz. This

first multiplier measurement of the Schottky/2-DEG diode is encouraging but much higher
performance should be possible. Even the current devices should yield higher multiplier

efficiencies if they are thinned to 25 p,m or less and if a thinner solder layer is used to reduce
the shunt capacitance between the chip and the waveguide wall.

VII. SUMMARY AND FUTURE RESEARCH

In summary, we have reported on the recent progress in the research of a novel
Schottky/2-DEG varactor diode. Observations of reduced breakdown voltages upon cooling in
both the standard GaAs and the novel Schottky/2-DEG diodes were in agreement with the

theory of impact ionization. The problem of current saturation was discussed and the

Schottky/2-DEG diode of width 90 gm was found to have a significantly higher saturation
current than the comparable GaAs 6P4 varactor. Recent improvements to the design and

fabrication procedures have resulted in devices having lower series resistance and lower

capacitance. Both single anode and dual anode (with symmetric C(V)) devices have been

investigated. The cutoff frequency of the dual anode device was estimated to be 1 THz (4 THz)

at 300 K (100 K), whereas the single anode device had cutoff frequency of about 0.6-1.0 THz,
depending on the temperature. Preliminary multiplier measurements of a single anode device
were encouraging, resulting in 500 1.1.W output power at 225 GHz with 0.5 percent efficiency.

Ongoing research will include more extensive multiplier testing of both the single anode and

the symmetric C(V) devices. Also, shorter channel length devices with Ni/Ge/Au ohmic
contacts will be fabricated to achieve much higher cutoff and transit-time frequencies. In
addition, AlinAs/InGaAsfinP heterostructures will be investigated. Finally, the theories

relating to the junction capacitance and breakdown are being developed and the current

transport in these devices will be investigated using Monte Carlo simulations.
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