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Abstract The effectiveness of sparse matrix techniques for directly solving large-
scale linear least-squares problems is severely limited if the system matrix A has
one or more nearly dense rows. In this paper, we partition the rows of A into sparse
rows and dense rows (As and Ad ) and apply the Schur complement approach. A
potential difficulty is that the reduced normal matrix AT

s As is often rank-deficient,
even if A is of full rank. To overcome this, we propose explicitly removing null
columns of As and then employing a regularization parameter and using the resulting
Cholesky factors as a preconditioner for an iterative solver applied to the symmetric
indefinite reduced augmented system. We consider complete factorizations as well as
incomplete Cholesky factorizations of the shifted reduced normal matrix. Numerical
experiments are performed on a range of large least-squares problems arising from
practical applications. These demonstrate the effectiveness of the proposed approach
when combined with either a sparse parallel direct solver or a robust incomplete
Cholesky factorization algorithm.
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1 Introduction

We are interested in solving the linear least-squares (LS) problem

min
x

‖Ax − b‖2, (1.1)

where A ∈ �m×n (m ≥ n) and b ∈ �m. The solution x satisfies the n × n normal
equations

Cx = AT b, C = AT A, (1.2)

where provided A has full column rank, the normal matrix C is symmetric and posi-
tive definite. Our focus is on the case where the system matrix A is large and sparse
but has a number of “dense” rows (rows that contain significantly more entries than
the other rows, although the number of entries in each such row may be less than
n). Just a single dense row is sufficient to cause catastrophic fill in C and thus for
the factors of a Cholesky or QR factorization to be dense. In practice, for large-
scale problems, this means that it may not be possible to use a direct solver because
the memory demands can be prohibitive. Moreover, if an incomplete factorization is
used as a preconditioner for an iterative solver such as LSQR [37, 38] or LSMR [13]
applied to (1.1), the error in the factorization can be so large as to prohibit its effec-
tiveness as a preconditioner; this was recently observed in the study by Gould and
Scott [20]. The effect of dense rows has long been recognised as a fundamental diffi-
culty in the solution of sparse least-squares problems (see, for example, [2, 5, 8, 14,
17, 48–51]).

Let us assume that the rows of A are partitioned into two parts: rows that are sparse
and those that are considered dense. We also assume conformal partitioning of the
right-hand side vector b as follows:

A =
(

As

Ad

)
, As ∈ Rms×n, Ad ∈ Rmd×n, b =

(
bs

bd

)
, bs ∈ Rms , bd ∈ Rmd ,

(1.3)
with m = ms + md , ms ≥ n and md ≥ 1 (in general, ms � md ). Problem (1.1) then
becomes

min
x

∥∥∥∥
(

As

Ad

)
x −

(
bs

bd

)∥∥∥∥
2
. (1.4)

A number of approaches to tackling such systems have been proposed. For example,
George and Heath [14] temporarily discard Ad to avoid severe fill-in in their Givens
rotation-based orthogonal factorization of As . They then employ an updating scheme
to allow for the effect of these rows. A completely general updating algorithm for the
constrained least-squares problem based on QR decomposition and direct elimination
is given by Björck [7], while Avron et al. [5] propose dropping dense rows before the
QR factorization is performed and using the resulting R factor as a preconditioner
for LSQR. Most recently, Scott and Tůma [48] process rows that are identified as
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dense separately within a conjugate gradient method using an incomplete factoriza-
tion preconditioner combined with the factorization of a dense matrix of size equal
to the number of dense rows.

Solving (1.4) is equivalent to solving the larger (m + n) × (m + n) augmented
system ⎛

⎝Ims As

Imd
Ad

AT
s AT

d 0

⎞
⎠

⎛
⎝rs

rd
x

⎞
⎠ =

⎛
⎝bs

bd

0

⎞
⎠ , (1.5)

where

r =
(

rs
rd

)
=

(
bs

bd

)
−

(
As

Ad

)
x

is the residual vector. Here and elsewhere, Ik denotes the k × k identity matrix.
System (1.5) is symmetric indefinite and so, if there is sufficient memory avail-
able, a sparse direct solver that incorporates numerical pivoting for stability can
be used (well-known examples include MA57 [12] and HSL_MA97 [23] from the
HSL mathematical software library [24], MUMPS [31] and WSMP [53]). Employ-
ing a general-purpose sparse solver ignores the block structure, although its use
of a sparsity-preserving ordering (such as a variant of minimum degree or nested
dissection) will tend to lead to the dense rows being eliminated last [11].

An alternative approach is to eliminate rs to reduce the problem from a 3-block
saddle-point system to a 2-block system of order (n + md) × (n + md) that can be
written in the form

K

(
x

rd

)
=

(−AT
s bs

bd

)
, K =

(−Cs AT
d

Ad Imd

)
, (1.6)

where the n × n matrix Cs = AT
s As is termed the reduced normal matrix. We refer

to (1.6) as the reduced augmented system. The reduced augmented matrix K can
be factorized using a sparse indefinite solver, but this would again ignore the block
structure. Instead, we use the so-called Schur complement method (see, for example,
[15, 30, 42] and Section 2 below) that exploits the structure by performing a sparse
Cholesky factorization of AT

s As , forming an md × md dense Schur complement
matrix and factorizing it using a dense Cholesky factorization; using the sparse and
dense factors to solve a number of triangular systems completes the solution process.
This has the advantage of using Cholesky factorizations that, because they do not
involve numerical pivoting, are more efficient (especially in parallel) than an indefi-
nite factorization. Moreover, it can be easily incorporated into the normal equations
approach.

We observe that the reduced augmented matrix K is symmetric quasi-definite
(SQD). Vanderbei [52] shows that SQD matrices are strongly factorisable and this
allows general permutations to be used [35]. Recent work has shown that some
classes of permutations can be beneficial and underlying theory has been developed
that helps to find such permutations for deriving incomplete factorization precon-
ditioners [21, 34, 47]. An interesting stability analysis of the factorization of SQD
matrices that connects the stability with the effective condition number is given in
[16] (see also [18]). Furthermore, analysis of a symmetric indefinite factorization
based on the related generalized QR factorization in [33] points out that conditioning
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of the principal leading submatrices may be determined by other factors such as the
number of sign changes in the diagonal of the signed factorization. In this paper, we
maintain the block structure and this means that the stability is predetermined by the
splitting into sparse and dense rows. Note that the results in [48] show that iterative
methods are very sensitive to keeping all the dense rows separate and not mixing any
of them with the other rows.

Another possibility is to use an iterative solver such as LSQR [37, 38] that has the
advantage of avoiding the construction of the dense matrices that are involved in the
Schur complement approach (see (2.2) and (2.3) below). However, in many cases, the
LS problems are hard to solve and a preconditioner is required to achieve acceptable
convergence.

In practice, even if A is of full rank, As is often rank-deficient (indeed, it may have
null columns). In this case, a Cholesky factorization of AT

s As will break down. To
overcome this, we propose removing null columns and employing a regularization
parameter and using the resulting Cholesky factors as a preconditioner for an iterative
solver applied to the reduced augmented system. For large problems, even if As is
sparse, memory limitations can mean that it is not possible to use a sparse direct
solver. Thus, we consider using incomplete Cholesky factorizations combined with
an iterative solver.

The outline of the rest of the paper is as follows. In Section 2, we recall the Schur
complement approach and, in particular, we look at regularization and propose using
the factors of the reduced regularized matrix AT

s As + αI to obtain a block precondi-
tioner. Use of a limited memory incomplete Cholesky factorization is also discussed.
Section 3 introduces our numerical experiments. Computational results for complete
and incomplete Cholesky factorizations are given in Sections 4 and 5, respectively.
Concluding remarks are made in Section 6.

2 Schur complement method

2.1 Schur complement method with direct solvers

As already observed, an alternative to applying a direct solver to either the (dense)
normal equations or the augmented system (1.5) is to solve the reduced augmented
system (1.6). Provided As has full column rank, Cs is symmetric positive definite
and, if the partitioning (1.3) is such that all the rows of As are sparse, Cs is gener-
ally significantly sparser than the original normal matrix C. Let Cs = LsL

T
s be the

Cholesky factorization of Cs . Using this yields a block factorization

K =
(

Ls

Bd Imd

) (−In

Sd

)(
LT

s BT
d

Imd

)
, (2.1)

where Bd and the Schur complement matrix Sd are given by

LsB
T
d = −AT

d (2.2)

Sd = Imd
+ BdBT

d . (2.3)
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Since Ls is lower triangular, solving (2.2) for BT
d is straightforward. Bd will normally

be dense and hence Sd will be dense and symmetric positive definite. Once we have
Ls , Bd and Sd , we can solve (1.6) by solving

(−Ls

−Bd Sd

) (
ys

yd

)
=

(−AT
s bs

bd

)
, (2.4)

followed by (
LT

s BT
d

Imd

) (
x

rd

)
=

(
ys

yd

)
. (2.5)

With rd = yd , this requires us to solve

Lsys = AT
s bs, (2.6)

Sdrd = bd + Bdys, (2.7)

LT
s x = ys − BT

d rd . (2.8)

Again, (2.6) and (2.8) are triangular systems and hence straightforward to solve.
Solving (2.7) requires Cholesky factorization of the md × md dense matrix Sd .
Observe that in the case of a single dense row (md = 1) this is trivial. In general,
the LAPACK routine _potrf can be used to factorize Sd and then routine _potrs
employed to solve (2.7). Note also that Bd need not be computed explicitly. Rather,
Sd may be computed implicitly as Imd

+ AdL−T
s L−1

s AT
d , while z = Bdys may be

computed by solving Lsw = ys and then z = −Adw and z = −BT
d rd may be

obtained by solving Lsz = AT
d rd .

2.2 Scaling and stability

Poorly scaled entries in As may result in block elimination of the first ms rows and
columns of (1.5) being unstable. To overcome this, we prescale A so that the entries
of the scaled A are small relative to 1. Thus, we scale A by normalising each column
by its 2-norm. That is, we replace A by AD, where D is the diagonal matrix with
entries Djj = 1/‖Aej‖2 (ej denotes the j -th unit vector). The entries of AD are all
less than one in absolute value. Elimination of the first ms rows and columns is thus
stable (the pivots can be chosen in order from the main diagonal and they satisfy the
criteria for complete pivoting). However, this does not guarantee stability of the next
step. The diagonal entries of the factor Ls of the positive definite Cs can be small,
leading to large entries in Bd and hence large entries in Sd .

If instability is detected, then a general-purpose symmetric indefinite sparse solver
that incorporates numerical pivoting can be applied to solve the reduced augmented
system (1.6). Whilst this offers a robust approach, it has the disadvantage that the
block structure within (1.6) is not exploited. Furthermore, if As is fixed and the inter-
est lies in adding new rows Ad , the factorization must be redone in its entirety for each
Ad . Thus, in Section 2.4, we propose an alternative approach to maintain stability.

We assume throughout the remainder of our discussion and in all our numerical
experiments that A has been prescaled, but we omit D to simplify the notation.
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2.3 Removal of null columns

In practice, when A is partitioned, the sparse part As often contains a (small) number
of null columns. It is possible to remove these columns explicitly, as we now show.
Let A have full column rank and assume As has n2 null columns with n2 � n.
Assuming these columns are permuted to the end, we can split A into the form

A = (
A1 A2

) ≡
(

As1 0
Ad1 Ad2

)
(2.9)

with A1 ∈ Rm×n1 and A2 ∈ Rm×n2 (n = n1 + n2). The following result from
[48] shows that the solution of the least-squares problem can be expressed as a
combination of partial solutions.

Lemma 2.1 Let the columns of A be split as in (2.9) and let z ∈ Rn1 and W ∈
Rn1×n2 be the solutions to the problems

min
z

‖A1z − b‖2 and min
W

‖A1W − A2‖F , (2.10)

respectively. Assuming A1 is of rank n1, the solution x =
(

x1
x2

)
of the least-squares

problem (1.1) with its splitting consistent with (2.9) (that is, x1 ∈ Rn1 , x2 ∈ Rn2 ) is
given by (

x1
x2

)
=

(
z − Wx2

x2

)
(2.11)

with

x2 = (AT
2 (A2 − A1W))−1AT

2 (b − A1z). (2.12)

The least-squares problems (2.10) again have md dense rows and thus can be
solved using the Schur complement method as described in (2.1) – (2.8). In this case,
we use the subscripts s1 and d1 for Cs1 , Ls1 , Sd1 and Bd1 to emphasize we are working
with A1, which has fewer columns than A. The factorizations of the reduced normal
matrix Cs1 = AT

s1
As1 and the Schur complement matrix Sd1 needed to compute z can

be used to solve for W . For the latter, if A2j denotes a column j of Ad2 (1 ≤ j ≤ n2),

the right-hand side in (2.4) based on A1 becomes

(
0

A2j

)
and thus (2.6) – (2.8) reduce

to solving systems of the form Sd1Rdj = A2j and LT
s1

Wj = −BT
d1

Rdj . If we are
using direct solvers that allow for solves with multiple right-hand sides, we can per-
form these solves for all the Rdj and Wj simultaneously with solving (2.7) and (2.8).
Thus, as solving for multiple right-hand sides is generally significantly less expen-
sive than repeatedly solving for a single right-hand side (since multiple right-hand
sides allow the use of level 3 BLAS), the extra solves add only a small overhead.
Furthermore, using (2.9), (2.12) reduces to

x2 = (AT
d2

(Ad2 − Ad1W))−1AT
d2

(bd − Ad1z). (2.13)

Forming and then solving with AT
d2

(Ad2 − Ad1W) is inexpensive provided n2 � n.
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2.4 Regularization and preconditioning

While Lemma 2.1 provides a way of removing null columns, it is possible that even if
A has full column rank, As (or As1 after the removal of null columns) is rank-deficient
(or is close to rank-deficient). To simplify notation, in our discussion, we use As

but this may be replaced by As1 if As contains null columns. If As is rank-deficient,
the reduced normal matrix Cs is positive semidefinite and a Cholesky factorization
breaks down (that is, a very small or a non-positive pivot is encountered). If break-
down occurs, we employ a shift α > 0 and compute a Cholesky factorization of the
shifted matrix

Cs(α) = AT
s As + αIn. (2.14)

The shift α is also referred to as a Tikhonov regularization parameter. The choice of
α should be related to the smallest eigenvalue of AT

s As , but this information is not
readily available. Clearly, it is always possible to find an α > 0 so that the factor-
ization does not breakdown; if the initial choice α is too small, it may be necessary
to restart the factorization more than once, increasing α on each restart until break-
down is avoided. Use of a shift was discussed by Lustig et al. [28] (see also [1, 2]). It
was observed that careful and often substantial use of iterative refinement to compute
each column of BT

d was required. However, we adopt a different approach in which
we use the factorization of (2.14) to obtain a preconditioner for the system (1.6).
Note that this regularization that shifts all the diagonal entries could be considered
as an over-regularization of the system since we could regularize only those entries
that cause the factorization to break down. Our strategy is based on experimental evi-
dence that shows that for incomplete Cholesky (IC) factorizations, it is better to use a
global shift as introduced by Manteuffel [29] rather than a local shifting strategy [6,
45]. Contemporary incomplete factorizations such as that described in [45] increase
and decrease the shift automatically (see also [27]).

With α > 0 in (2.14), we approximate the solution of (1.6) by changing K to

K(α) =
(−Cs(α) AT

d

Ad Imd

)
.

Thus, the computed value of the least-squares objective may differ from the optimum
for the original problem. Having solved the regularized problem, we want to recover
the solution of the original problem. Following Scott [44], we propose doing this by
using the factors of K(α) as a preconditioner for an iterative method applied to (1.6).

Let the Cholesky factorization of Cs(α) be Ls(α)Ls(α)T . For α > 0, this is an
approximate factorization of Cs , that is, Cs ≈ Ls(α)Ls(α)T . More generally, let

Cs ≈ L̃sL̃
T
s , (2.15)

where L̃s is lower triangular. We are interested in the case L̃s = Ls(α) but our main
focus is where L̃s is an incomplete Cholesky (IC) factor, that is, one that contains
fewer entries than occur in a complete factorization. For very large systems, com-
puting and factorizing Cs (or Cs(α)) is prohibitively expensive in terms of memory
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and/or computational time. Over the last 50 or more years, IC factorizations have
been an important tool in the armoury of preconditioners for the numerical solution
of large sparse symmetric positive-definite linear systems of equations; for an intro-
duction and overview see, for example, [6, 40, 46] and the long lists of references
therein. Here, we consider preconditioning the symmetric indefinite system (1.6)
using a factorization of the form (2.15) and exploiting the block structure of (1.6).

The right-preconditioned reduced augmented system is

KM−1
(

ws

wd

)
=

(−AT
s bs

bd

)
, M

(
x

rd

)
=

(
ws

wd

)
, (2.16)

where M is the chosen preconditioner. Using (2.15), we obtain an indefinite
preconditioner M given by

M =
(

L̃s

B̃d Imd

) (−In

S̃d

) (
L̃T

s B̃T
d

Imd

)
, (2.17)

where B̃d and S̃d are given by (2.2) and (2.3) with the complete factor Ls replaced
by the incomplete one L̃s , that is,

L̃sB̃
T
d = −AT

d (2.18)

S̃d = Imd
+ B̃d B̃T

d . (2.19)

Applying this preconditioner requires a number of steps that are analogous to (2.6)–
(2.8). In particular, a dense md × md symmetric positive-definite system of the form
S̃dyd = ud must be solved. We again assume that LAPACK may be used. If md is
so large that this is too expensive, an incomplete factorization of S̃d could be used.
Algorithm 1 outlines the steps required for each application of the preconditioner. We
see that it involves a triangular solve with L̃s and with L̃T

s , calls to the BLAS routine
_gemv for steps 2 and 4, and triangular solves using the factors of S̃d . As before, B̃d

need not be held explicitly but can be applied implicitly using B̃T
d = −L̃−1

s AT
d .

Algorithm 1 Application of the block factorization preconditioner, that is, compute
y = M−1z.

Input: L̃s , B̃d , the Cholesky factors of S̃d , and the vector z =
(

zs

zd

)
.

Output: y =
(

ys

yd

)
= M−1z.

1: Solve L̃sus = −zs .
2: Compute ud = zd + B̃dus .
3: Use the Cholesky factors of S̃d to solve S̃dyd = ud .
4: Form us = us − B̃T

d yd .
5: Solve L̃T

s ys = us .
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As the preconditioner (2.17) is indefinite, it needs to be used with a general non-
symmetric iterative method such as GMRES [41]. We can obtain a positive-definite
preconditioner for use with MINRES [36] by replacing M by

|M| =
(

L̃s

B̃d Imd

) (
In

S̃d

)(
L̃T

s B̃T
d

Imd

)
, (2.20)

In Algorithm 1, steps 1 and 2 are then replaced by 1. Solve L̃sus = zs and 2. Compute
ud = zd −B̃dus . MINRES has the advantage over GMRES of using short recurrences
that limit the storage requirements.

Many different IC factorizations have been proposed. Although they may be con-
sidered to be general-purpose, most are best-suited to solving particular classes of
problems. For example, level-based methods are often appropriate for systems with
underlying structure, such as from finite element or finite difference applications.
Here, we use the limited memory approach of Scott and Tůma [45, 46] that has been
shown in [20] to result in effective preconditioners for a wide range of least-squares
problems. The basic scheme employs a matrix factorization of the form

Cs ≈ (L̃s + R̃s)(L̃s + R̃s)
T , (2.21)

where L̃s is the lower triangular matrix with positive diagonal entries that is used for
preconditioning and R̃s is a strictly lower triangular matrix with small entries that is
used to stabilize the factorization process but is then discarded (it is not used as part
of the preconditioner). The user specifies the maximum number of entries in each
column of L̃s and R̃s . At each step j of the incomplete factorization process, the
largest entries are kept in column j of L̃s , the next largest are kept in column j of R̃s ,
and the remainder (the smallest entries) are dropped. In practice, Cs is optionally pre-
ordered and scaled and, if necessary, shifted to avoid breakdown of the factorization
(which occurs if a non-positive pivot is encountered) [29].

3 Numerical experiments

In this section, we present numerical results to illustrate potential of the Schur com-
plement approach and, in particular, demonstrate that it allows us to solve some
problems that are intractable if dense rows are ignored. Results are included for direct
solvers and for iterative solvers that can be used to solve very large problems.

3.1 Test environment

The characteristics of the machine used to perform our tests are given in Table 1.
All software is written in Fortran and all reported timings are elapsed times in sec-

onds. In our experiments, we employ the Cholesky sparse direct solver HSL_MA87
[22] for positive-definite systems and HSL_MA97 [23] for general sparse symmetric
indefinite systems; both employ OpenMP and are run in parallel, using four proces-
sors. Both solvers are run with a nested dissection ordering [26]. Sparse matrix-vector
products required by the iterative solvers are performed in parallel using the Intel
Mathematics Kernel Library (MKL) routines; no attempt is made to parallelize the
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Table 1 Test machine characteristics

CPU Two Intel Xeon E5620 quadcore processors

Memory 24 GB

Compiler gfortran version 4.8.4 with options -O3 -fopenmp

BLAS Intel MKL

iterative methods themselves. In each test, we impose a time limit of 600 s per
problem and for the iterative methods, the number of iterations is limited to 100,000.

Following Gould and Scott [20], we want the computed residual r to satisfy either
‖rk‖2 < δ1 or

ratio(r) < δ2 with ratio(r) = ‖AT r‖2/‖r‖2

‖AT b‖2/‖b‖2
. (3.1)

We set the tolerances δ1 and δ2 to 10−8 and 10−6, respectively, and in our
experiments, the right-hand side b is taken to be the vector of 1’s. We use right-
preconditioned restarted GMRES with the restart parameter set to 500, and in some
experiments, we also report on using preconditioned MINRES. Since the iterative
solver is applied to the reduced augmented system matrix K , the stopping criterion is
applied to K . With the available implementations of GMRES and MINRES, it is not
possible during the computation to check whether (3.1) is satisfied; this can only be
checked once the solver has terminated. Instead, we use the scaled backward error∥∥∥∥K

(
x(k)

r
(k)
d

)
−

(−AT
s bs

bd

)∥∥∥∥
2∥∥∥∥

(−AT
s bs

bd

)∥∥∥∥
2

< δ̃, (3.2)

where

(
x(k)

r
(k)
d

)
is the computed solution of (1.6) on the kth step. In our experiments,

we set δ̃ = 10−7. With this choice, in most of our experiments, (3.1) is satisfied with
δ2 = 10−6.

3.2 Test set 1

Our test problems are taken from the CUTEst linear programme set [19] and the Uni-
versity of Florida Sparse Matrix Collection [9]. In each case, the matrix is “cleaned”
(duplicates are summed, out-of-range entries and explicit zeros are removed along
with any null rows or columns). In our experiments, we use the following definition
for a dense row of A: given ρ (0 < ρ ≤ 1), row i of A is defined to be dense if the
percentage of entries in row i is at least ρ.

Our first test set is given in Table 2. The problems were chosen because they have
at least one row that is more than 10% dense. They are also difficult problems to solve
(see [20]); at least three of the problems are rank-deficient. An estimate of the rank
was computed by running the sparse symmetric indefinite solver HSL_MA97 on the
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Table 2 Statistics for test set 1

Problem m n nnz(A) nullity rdensity(A) m10 m20 m30 m40 m50 density(C)

Trec14 15,904 3159 2,872,265 14 0.791 2664 1232 649 346 150 9.32×10−1

Maragal_6 21,251 10,144 537,694 516 0.586 68 68 30 21 0 7.49×10−1

Maragal_7 46,845 26,525 1,200,537 2046 0.360 85 43 21 0 0 3.10×10−1

scsd8-2r 60,550 8650 190,210 0 0.100 40 0 0 0 0 5.22×10−2

PDE1 271,792 270,595 990,587 – 0.670 1 1 1 1 1 –

12month1 872,622 12,471 22,624,727 – 0.274 284 4 0 0 0 6.87×10−1

m, n and nnz(A) are the number of rows and columns and nonzeros in A. nullity is the estimated defi-
ciency in the rank of A, rdensity(A) is the largest ratio of number of nonzeros in a row of A to n over all
rows, mj (j = 10, 20, 30, 40, 50) is the number of rows of A with at least j% entries, and density(C) is
the ratio of the number of entries in C to n2. − denotes insufficient memory to compute the statistic

augmented system (1.5) (with the pivot threshold parameter set to 0.5); for problems
12month1 and PDE1, there was insufficient memory to do this.

In Table 3, we report the effects of varying the parameter ρ that controls which
rows are classified as dense. Increasing ρ reduces the number md of dense rows
and the number n2 of null columns in As but increases the density of the reduced
normal matrix Cs . Problem PDE1 has only one row that is classified as dense for

Table 3 The effects of varying the row density parameter ρ on the number md of rows that are classed
as dense, the number n2 of null columns in As , and the density of Cs (the ratio of the number of entries in
Cs to n2)

Identifier m n ρ md n2 density(Cs)

Trec14 15,904 3159 0.005 12,643 0 2.38×10−2

0.010 9676 0 8.52×10−2

0.050 4467 0 6.17×10−1

0.100 2664 0 8.31×10−1

Maragal_6 21,251 10,144 0.005 2923 759 6.22×10−4

0.010 823 3 1.93×10−2

0.100 68 2 5.49×10−2

Maragal_7 46,845 26,525 0.001 4668 2352 2.15×10−4

0.005 687 6 9.02×10−3

0.010 108 6 1.70×10−2

0.100 85 6 1.78×10−2

scsd8-2r 60,550 8650 0.050 50 5 1.44×10−3

0.100 40 0 1.39×10−2

PDE1 271,792 270,595 0.660 1 0 4.52×10−5

12month1 872,622 12,471 0.010 43,951 387 1.10×10−1

0.050 3641 17 5.66×10−1

0.100 284 3 6.56×10−1
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ρ ∈ [0.001, 0.66]. We see that for 12month1 and Trec14, ρ has to be very small
for Cs to be sparse but, in this case, md is large compared to m. For the Maragal
problems, Cs is highly sparse if approximately 10% of the rows are classified as
dense.

3.3 Test set 2

For our second test set, we take some of the CUTEst and UFL examples that do not
initially contain dense rows and append some rows. This allows us to explore the
effect of varying the number of dense rows as well as the density of these rows. The
problems are listed in Table 4; these problems are all of full rank. The pattern of each
appended row is generated randomly with the requested density and the values of the
entries are random numbers in [−1, 1].

For our solvers, the number of entries nnz(C) in the normal matrix C can be at
most huge(1) (≈ 2×109), where huge is the Fortran intrinsic function. If we add a
single row with density ρ ≥ 0.1 to each of the matrices As in the lower part of Table 4
then nnz(C) exceeds this limit. Thus for these examples and our current software,
we cannot use any approach that requires the normal matrix to be computed.

4 Direct solver results

Our first experiments look at the effectiveness of the Schur complement approach
using the Cholesky direct solver HSL_MA87 to factorize the reduced normal matrix
Cs . We compare this with using HSL_MA87 to solve the original normal matrix C

(1.2) without partitioning A into sparse and dense parts. If the Cholesky factorization
of C breaks down because of a non-positive pivot, we factorize the shifted normal

Table 4 Statistics for test set 2

Problem ms n nnz(As) rdensity(As ) density(Cs )

IG5-15 11,369 6146 323,509 1.95×10−2 1.52×10−1

psse0 26,722 11,028 102,432 3.63×10−4 5.88×10−4

graphics 29,493 11,822 117,954 3.38×10−4 5.91×10−4

WORLD 67,147 34,506 198,883 4.64×10−4 4.89×10−4

STAT96V3 1,113,780 33,841 3,317,736 3.55×10−4 3.58×10−4

STORMG21K 1,377,306 526,185 3,459,881 1.93×10−3 3.00×10−4

GL7d20 1,911,124 1,437,546 29,893,084 2.99×10−5 2.23×10−4

CONT11_L 1,961,394 1,468,599 5,382,999 4.77×10−6 8.38×10−6

LargeRegFile 2,111,154 801,374 4,944,201 4.99×10−6 9.93×10−6

relat9 9,746,232 274,667 38,955,420 1.46×10−5 5.09×10−4

ms , n and nnz(As) are the number of row and column and nonzeros in As . rdensity(As ) is the largest ratio
of number of nonzeros in a row of As to n over all rows, and density(Cs ) is the ratio of the number of
entries in Cs to n2
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Table 5 Results for test set 1 of running the Cholesky direct solver HSL_MA87 on the normal equations
(without exploiting dense rows), using LSMR for refinement

Identifier m n nnz(L) Its Tf Ts Ttotal

Trec14 15,904 3159 4.85×106 1 4.79 0.03 4.82
Maragal_6 21,251 10,144 4.96×107 3 13.1 0.12 13.2
Maragal_7 46,845 26,525 1.43×108 4 37.8 0.40 38.2
scsd8-2r 60,550 8650 1.20×107 0 0.88 0.00 0.88
PDE1 271,792 270,595 – – – – –
12month1 872,622 12,471 7.27×107 1 42.5 0.35 42.9

nnz(L) denotes the number of entries in the Cholesky factor L of C and ItsIts is the number of LSMR
iterations. Tf , Ts and Ttotal denote the times (in seconds) to compute the normal matrix and factorize it, to
run LSMR and the total time. − denotes unable to form normal matrix C

matrix C+αIn = L(α)L(α)T and use the factors as a preconditioner for the iterative
method LSMR [13] (see [44]). In our tests, we set α = 10−12.

Results are given in Tables 5 and 6 for the normal equations and Schur com-
plement approaches, respectively. For problem PDE1, the number of entries in the
normal matrix C exceeds huge(1) so we cannot form C and use the direct solver
HSL_MA87. The reported times Tf and Tp for computing the Cholesky factoriza-
tion of C (Table 5) and the block factorization preconditioner (Table 6) include the
time to form C and Cs , respectively. For problem 12month1, forming C (or Cs)

Table 6 Results for test set 1 of solving the reduced augmented system (1.6) using the Schur comple-
ment approach and the Cholesky direct solver HSL_MA87. Results are also given for the indefinite solver
HSL_MA97

Identifier ρ md density(Cs) nnz(L) Its Tp Ts Ttotal nnz(LK) TK

Trec14 0.050 4467 6.17×10−1 1.48×107 1 4.09 0.06 4.14 7.97×106 7.18
0.100 2664 8.31×10−1 8.50×106 1 2.48 0.04 2.52 7.13×106 6.59
0.200 1234 9.09×10−1 5.73×106 1 2.41 0.02 2.43 6.76×106 5.63

Maragal_6 0.001 2923 6.22×10−4 4.39×106 3 1.78 0.16 1.94 1.78×107 2.54
0.010 823 1.93×10−2 2.46×107 3 2.77 0.12 2.88 2.95×107 5.58
0.100 68 5.49×10−2 4.30×107 3 4.61 0.15 4.76 4.15×107 18.3

Maragal_7 0.001 4668 2.15×10−4 1.12×107 4 9.51 0.69 10.2 6.15×107 12.9
0.005 687 9.02×10−3 9.04×107 3 11.7 0.36 12.1 1.10×108 26.5

scsd8-2r 0.050 50 1.44×10−3 9.20×104 3 0.03 0.00 0.03 5.77×105 0.03
0.100 40 1.39×10−2 5.40×106 3 0.30 0.04 0.34 5.25×106 0.29

PDE1 0.100 1 4.52×10−5 2.04×107 0 1.24 0.03 1.27 2.07×107 5.02
12month1 0.050 3641 5.66×10−1 7.74×107 3 49.3 0.70 50.0 8.91×107 61.4

0.100 284 6.56×10−1 7.23×107 3 42.1 0.54 42.7 7.53×107 70.0

ρ is the row density parameter. density(Cs ) is the ratio of the number of entries in the reduced normal
matrix Cs to n2, nnz(L) is total number of entries in the factors (that is, nnz(Ls) + md(md + 1)/2),
Its is the number of GMRES iterations. Tp , Ts and Ttotal denote the times (in seconds) to compute the
preconditioner, to run GMRES and the total time. TK is the time to form the reduced augmented matrix
and solve using the sparse symmetric indefinite direct solver HSL_MA97 and nnz(LK) is the number of
entries in HSL_MA97 factors
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accounts for approximately half the total time. Note we could try to employ a solver
that avoids storing C in main memory. The out-of-core solver HSL_MA77 [39] only
requires one column of C at a time and both matrix and factor data are written to files
on disk, thus minimizing memory requirements. However, HSL_MA77 is for sparse
matrices and when n is large and C is dense the amount of in-core memory available
is still exceeded.

The results reported in Table 6 illustrate that the Schur complement approach is
successful but to achieve savings compared to using the normal equations in terms
of the size of the factors and/or the computation time, md must be small compared
to n and the reduced normal matrix Cs must be sparse. For the Maragal problems,
we are able to choose the density ρ to achieve this. In Table 6, we include the time
TK to form the reduced normal matrix K and then factorize and solve (1.6) using
the symmetric indefinite solver HSL_MA97; we also report the number nnz(LK) of
entries in the HSL_MA97 factors of K . A comparison of the times in the Ttotal and TK

columns illustrates the savings offered by the Schur complement approach that result
from being able to exploit a Cholesky solver. Observe that although the symmet-
ric indefinite solver HSL_MA97 ignores the block structure of K , as already noted,
the sparsity-preserving nested dissection ordering it computes prior to the numeri-
cal factorization orders the dense rows last and thus the difference between nnz(L)

and nnz(LK) is generally relatively small. Furthermore, HSL_MA97 is able to take
advantage of any zeros in the “dense” rows. If the number md of dense rows is not
small, nnz(L) is dominated by the storage needed for the dense factors of Sd (2.3)
and nnz(L) can then exceed nnz(LK); this is illustrated by problem Trec14.

5 Iterative method results

A software package HSL_MI35 that implements the limited memory IC algorithm
outlined in Section 2.4 for computing a preconditioner for the normal equations has
been developed for the HSL library. We employ this package in our experiments.
Note that it handles ordering for sparsity and scaling and also automatically selects
the shift α. We use the default settings and set the parameters lsize and rsize that
control the maximum number of entries in each column of the factors to 20 (see [45]
for more details of the parameters).

Before we present results for our two test sets, we illustrate that, for an itera-
tive solver, handling null columns using the approach from Lemma 2.1 can be less
efficient than using a global shift when constructing the preconditioner. Results are
given in Table 7 for problem scagr7-2b from the University of Florida Collection
(m = 13, 247, n = 9, 743). This example has a single row with a density greater
than 10% (this row has a density of 18.4%). It was chosen because it illustrates how
the number n2 of null columns can increase as the number md of rows that are clas-
sified as dense increases. With ρ > 0, no shift is needed when computing the IC
factorization but for ρ = 0, the shift that is automatically selected by HSL_MI35
is α = 4.1 and preconditioned GMRES requires 370 iterations. With ρ = 0.001,
md = 263 rows are classified as dense and there are n2 = 257 null columns in As .
For each solve, only 2 GMRES iterations are required but as there are 257 solves to
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Table 7 Results for problem scagr7-2b of solving the reduced augmented system (1.6) using the Schur
complement approach and restarted GMRES with the block IC factorization preconditioner

ρ 0 0.1 0.01 0.001

md 0 1 7 263

n2 0 1 1 257

density(Cs) 4.15 × 10−2 1.45 × 10−2 7.13 × 10−4 5.74 × 10−4

Tp 0.48 0.50 0.03 0.10

Ts (Its) for z 0.33 (370) 0.09 (99) 0.004 (3) 0.007 (2)

Ts (Its) for W 0.06 (73) 0.002 (2) 1.65 (514)

Ttotal 0.81 0.65 0.04 1.75

ρ is the row density parameter. For ρ > 0, null columns are handled using (2.10) and (2.13); z and W

refer to (2.10). md and n2 are, respectively, the number of dense rows and the number of null columns in
As . Tp , Ts and Ttotal denote the times (in seconds) to compute the preconditioner, to run GMRES and the
total time. Its denotes the number of iterations

compute the solution W of (2.10), there is a total of 514 iterations, which dominate
the total cost. If we ignore the null columns, then for ρ = 0.001, HSL_MI35 selects
a global shift of 9.67 × 10−7, GMRES then requires two iterations and the total time
reduces from 1.75 to 0.12 s. Based on this and experiments with other matrices, in
the remainder of this section, we handle null columns in As using a global shift.

5.1 Results for test set 1

Table 8 presents results for running LSMR on (1.1) using the IC preconditioner. Here,
the density of the rows is ignored. In Table 9, results are given for running GMRES
on the reduced augmented system using the block IC factorization preconditioner.
The time Tp includes the time for forming the reduced normal matrix Cs and comput-
ing its IC factorization, for solving (2.18), and for forming and factorizing the Schur
complement matrix (2.19). For problems Trec14, scsd8-2r and 12month1,
results are given for more than one value of the parameter ρ that controls which rows

Table 8 Results for test set 1 of running LMSR on (1.1) with the HSL_MI35 IC preconditioner

Identifier m n α Its Tp Ts Ttotal

Trec14 15,904 3159 1.638×101 1050 4.52 3.19 7.71

Maragal_6 21,251 10,144 5.120×10−1 1130 6.41 1.59 8.00

Maragal_7 46,845 26,525 2.048 410 19.9 1.47 21.4

scsd8-2r 60,550 8650 3.277×101 140 0.46 0.19 0.64

PDE1 271,792 270,595 – – – – –

12month1 872,622 12,471 1.024 200 32.6 10.0 42.7

α denotes the global shift, Its is the number of LSMR iterations. Tp , Ts and Ttotal denote the times (in
seconds) to compute the IC preconditioner, to run LSMR and the total time
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Table 9 Results for test set 1 of solving the reduced augmented system (1.6) using the Schur complement
approach and restarted GMRES with the block IC factorization preconditioner

Identifier m n ρ md density(Cs) α Its Tp Ts Ttotal

Trec14 15,904 3159 0.050 4467 6.17×10−1 6.400×10−2 163 2.72 4.17 6.89

0.100 2664 8.31×10−1 2.560×10−1 245 1.41 3.49 4.90

0.200 1234 9.09×10−1 1.024 352 1.71 2.74 4.45

Maragal_6 21,251 10,144 0.001 2923 6.22×10−4 1.562×10−5 62 1.46 1.86 3.33

Maragal_7 46,845 26,525 0.001 4668 2.15×10−4 2.500×10−4 15 8.95 1.74 10.7

scsd8-2r 60,550 8650 0.050 50 1.44×10−3 9.766×10−7 2 0.03 0.00 0.03

0.100 40 1.39×10−2 3.227×101 68 0.32 0.13 0.44

PDE1 27,1792 270,595 0.100 1 4.52×10−5 8.000×10−3 174 1.25 4.19 5.44

12month1 872,622 12,471 0.050 3641 5.66×10−1 1.024 127 32.8 13.0 45.8

0.100 284 6.56×10−1 1.024 151 36.1 10.3 46.4

density(Cs ) is the ratio of the number of entries in the reduced normal matrix Cs to n2, α denotes the
global shift, Its is the number of GMRES iterations. Tp , Ts and Ttotal denote the times (in seconds) to
compute the preconditioner, to run GMRES and the total time

are classified as dense. As the density of Cs increases, a larger shift α is needed to
prevent breakdown of the IC factorization and this has the effect of decreasing the
quality of the preconditioner. However, for small ρ, for examples 12month1 and
Trec14, md is large and each application of the preconditioner is relatively expen-
sive. Consequently, although the GMRES iteration count is much less than the LSMR
count, for these two problems, the Schur complement approach offers no significant
benefit in terms of total time. For the other problems, exploiting the dense rows is
advantageous. In particular, PDE1 could not be solved using preconditioned LSMR
on (1.1) but the reduced augmented system approach performs well. We observe that
for the rank-deficient Maragal problems, we found it was necessary to use a very
small ρ to obtain a preconditioner that gave rapid convergence of GMRES (larger
values of ρ led to unacceptably slow convergence). Finally, we remark that the size of
the incomplete factors for the normal equations approach is approximately lsize ∗ n

while for the Schur complement approach, it is lsize ∗ n + md(md + 1)/2 (recall in
our experiments the HSL_MI35 memory parameter lsize is set to 20).

5.2 Results for test set 2

We now look at adding rows to the examples in test set 2. We first append a sin-
gle row (md = 1) of increasing density and solve using LMSR on (1.1) with the
HSL_MI35 IC preconditioner. In Table 10, we report results for ρ = 0.01, 0.1, 0.5.
Problem CONT11_L is omitted because the time to compute the IC factorization
exceeds 600 s. In Table 11, results are given for ρ = 1; results are also given for
running GMRES on the reduced augmented system using the block IC factoriza-
tion preconditioner. We see that, if the normal equations are used, as ρ and hence
the density of C increases, so too do the shift α needed to prevent breakdown, the
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Table 10 Results for test set 2 with a single dense row of density ρ appended

Problem density(C) α Its Tp Ts Ttotal

ρ = 0.01

IG5-15 1.52×10−1 5.120×10−1 280 0.18 0.29 0.47

psse0 5.33×10−4 2.500×10−4 1030 0.09 0.92 1.00

graphics 6.56×10−4 2.500×10−4 6350 0.03 6.30 6.33

WORLD 5.88×10−4 1.638×101 1340 0.28 3.57 3.85

STAT96V3 4.57×10−4 1.024 560 0.27 12.1 12.4

STORMG21K 4.00×10−4 1.311×102 1620 51.9 101 153

GL7d20 3.23×10−4 5.243×102 40 166 19.1 185

LargeRegFile 1.10×10−4 1.311×102 70 127 7.68 134

relat9 6.09×10−4 1.311×102 90 19.8 29.1 48.9

ρ = 0.1

IG5-15 1.61×10−1 3.277×101 810 0.23 0.83 1.07

psse0 1.06×10−2 3.277×101 38,200 0.22 40.2 40.4

graphics 1.06×10−2 3.277×101 > 100,000 0.23 – –

WORLD 1.05×10−2 1.311×102 1840 0.88 4.91 5.79

STAT96V3 1.04×10−2 1.311×102 880 1.19 19.86 21.0

STORMG21K 1.03×10−2 1.049×103 1470 192 97.8 290

GL7d20 – – – > 600 – > 600

LargeRegFile – – – > 600 – > 600

relat9 1.05×10−2 5.243×102 90 63.7 28.6 92.3

ρ = 0.5

IG5-15 3.64×10−1 6.554×101 880 0.50 0.91 1.41

psse0 2.50×10−1 2.621×102 34,570 1.31 40.64 41.96

graphics 2.50×10−1 2.621×102 > 100,000 1.38 – –

WORLD 2.50×10−1 5.243×102 2020 13.10 6.42 19.52

STAT96V3 2.50×10−1 5.243×102 760 10.91 17.03 27.94

STORMG21K – – – > 600 – > 600

GL7d20 – – – > 600 – > 600

LargeRegFile – – – > 600 – > 600

relat9 – – – > 600 – > 600

Results are for LMSR on (1.1) using the IC factorization preconditioner. α denotes the global shift, Its is
the number of iterations. Tp , Ts and Ttotal denote the times (in seconds) to compute the IC preconditioner,
to run the iterative solver and the total time. – indicates statistic unavailable

time to compute the IC factorization, and the iterations for convergence. Indeed,
for the large examples, the time exceeds our limit of 600 s. By contrast, for pre-
conditioned GMRES on the reduced augmented system, the shift and the times to
compute the incomplete factorization and achieve convergence are essentially inde-
pendent of ρ (and for this reason only results for ρ = 1.0 are included in Table 11).
Furthermore, this approach uses a smaller shift than for the normal equations and
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Table 11 Results for test set 2 with a single dense row (ρ = 1.0) appended

Problem Preconditioned LSMR Reduced augmented system with

GMRES

α Its Tp Ts Ttotal α Its Tp Ts Ttotal

IG5-15 6.5536×101 810 0.92 0.82 1.73 1.024 337 0.47 1.08 1.55

psse0 2.6214×102 33,690 2.06 39.8 41.9 0.0 81 0.01 0.05 0.06

graphics 2.6214×102 >100,000 3.56 > 134 > 138 9.766×10−7 900 0.02 1.49 1.51

WORLD 5.2429×102 2040 39.9 7.16 47.1 1.280×10−1 294 1.32 1.31 2.63

STAT96V3 5.2429×102 750 23.9 16.8 40.7 0.0 20 0.20 0.04 0.23

STORMG21K – – > 600 – > 600 2.621×102 1320 19.5 211 230

GL7d20 – – > 600 – > 600 5.120×10−1 32 187 39.0 226

CONT11_L – – > 600 – > 600 8.000×10−3 142 9.23 22.8 32.0

LargeRegFile – – > 600 – > 600 0.0 11 1.61 0.53 2.14

relat9 – – > 600 – > 600 9.766×10−7 41 32.3 3.18 35.5

Results are for LMSR on (1.1) using the IC factorization preconditioner and for solving the reduced
augmented system (1.6) using the Schur complement approach and restarted GMRES with the block IC
factorization preconditioner. α denotes the global shift, Its is the number of iterations. Tp , Ts and Ttotal
denote the times (in seconds) to compute the IC preconditioner, to run the iterative solver and the total
time. – indicates statistic unavailable

produces a much higher quality preconditioner, leading to significantly faster times.
With more than one added row, the density of C often increases further, making the
normal equation approach even less feasible. For the augmented approach, adding

Table 12 Results for test set 2 when md =1, 50 and 100 rows are appended

Problem GMRES MINRES

md = 1 md = 50 md = 100 md = 1 md = 50 md = 100

Its Ttotal Its Ttotal Its Ttotal Its Ttotal Its Ttotal Its Ttotal

IG5-15 337 1.55 151 0.95 129 0.91 427 1.06 554 1.48 480 1.21

psse0 81 0.06 40 0.05 30 0.07 117 0.16 202 0.25 210 0.31

graphics 900 1.51 107 0.12 68 0.11 841 0.66 517 0.45 389 0.46

WORLD 294 2.63 158 2.13 116 2.21 348 2.35 563 3.77 463 4.48

STAT96V3 20 0.23 7 0.25 7 0.32 31 0.52 50 0.81 55 1.04

STORMG21K 1320 230 906 194 959 228 6197 335 – > 600 – > 600

GL7d20 32 226 22 222 22 231 36 207 60 232 60 241

CONT11_L 142 32.0 12 13.0 13 15.9 173 26.6 1556 290 1455 395

LargeRegFile 11 2.14 9 3.28 9 4.83 16 2.71 23 4.86 22 6.58

relat9 41 35.5 160 33.3 279 65.1 54 56.7 726 379 – > 600

The reduced augmented system (1.6) is solved using the Schur complement approach and restarted
GMRES and MINRES with the block IC factorization preconditioner. Its is the number of iterations and
Ttotal is the total time
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more than one row does not affect Cs or the time to compute the incomplete fac-
torization but does result in the dense factorization of the Schur complement matrix
becoming more expensive. For most of our test problems, the number of GMRES
iterations decreases as the number of added rows increases (for example, psse0 and
graphics) but for others (including relat9), the converse is true (see Table 12).
In these tests, MINRES was uncompetitive compared to GMRES in terms of itera-
tion counts and times but has the advantage of requiring less storage. We remark that
for problem STORMG21K, the iteration counts are high. For this example, the shift α

that is needed by the IC factorization is large, which negatively effects the quality of
the resulting preconditioner.

6 Concluding remarks

In this paper, we have focused on using the Schur complement approach to solve
large-scale linear least-squares problems in which the system matrix A contains a
number of nearly dense rows. Our proposed approach involves using a regulariza-
tion parameter and then applying a Cholesky solver to the shifted reduced normal
equations. A small number of steps of the iterative solver GMRES applied to the
reduced augmented system are then employed to recover the solution of the original
(unshifted) problem. We have considered some hard-to-solve problems (includ-
ing some rank-deficient examples) from practical applications and shown that this
approach offers savings (in terms of time and the size of the factors) compared to
using a general sparse symmetric indefinite solver. The approach can be used with
an incomplete Cholesky factorization preconditioner. In this case, a larger shift is
required to prevent breakdown of the factorization, and this increases with the den-
sity of the reduced normal matrix and leads to a greater number of iterations being
needed for convergence.

In addition to problems in which A contains some dense rows, we have consid-
ered examples where we added a number of dense rows to A. We found that, if the
appended dense rows were not explicitly exploited, in some cases we were unable to
achieve acceptable convergence using IC preconditioned LMSR. However, the use of
the reduced normal matrix reduces the size of the shift that is needed, resulting in a
higher quality preconditioner that successfully solved these examples.

We note that this paper complements the recent work in [48] in which precondi-
tioned conjugate gradients (CGLS) is the main iterative method. It is shown there
that once the dense rows are clearly defined and detected, the preconditioned itera-
tive method is able to solve the problem extremely efficiently. In this study, we have
gone beyond preconditioned conjugate gradients and use the power of direct meth-
ods to extend the solution of mixed sparse-dense problems to tough problems such
as WORLD and the Maragal matrices that have so many null columns that further
research is needed to be able to treat them as in [48].

Finally, we remark that although our main motivation for partitioning A is the
presence of one or more dense rows, there are other possible reasons for employing
a partitioning of the form (1.3). For example, a set of additional rows, that are not
necessarily dense, is obtained by repeatedly adding new data into the least-squares
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estimation of parameters in a linear model (see, for example, [3, 4]). Nowadays,
there exist important applications based on this motivation related to Kalman filter-
ing or solving recursive least-squares problems, see the seminal paper [25] or for
a comprehensive introduction [10, 43]. Furthermore, additional constraints for the
least-squares problem represented by Ad and bd naturally arise with rank-deficient
least-squares problems (for instance, [5, 7, 32]). If extra rows are added, the sparse
(incomplete) Cholesky factorization within the Schur complement approach can be
reused and so the only work needed to solve the updated system (or, in the incomplete
case, to apply a preconditioner for the enlarged system) is the solution of triangular
systems.
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