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1. Introduction

Dvis [5] has derived Schwrz inequality for completely positive linear
maps on C*-lgebrs of operators. In this pper, we obtain the sme in-
equality for positive linear mps, thus leading to better effect for 2-positive
linear mps (in prticulr, for completely positive linear mps).

Herein, C*-algebras possess n identity nd re written in German type
I, !. Capital letters A, B stand for operators, Greek letters , , 2 for linear
maps on C*-algebras. (B() denotes the algebra of all bounded operators on
the Hilbert space . For T (B(3C), we write sp(T) for the spectrum of T,
and C*(T) for the C*-algebra generated by T. C($) stands for all continuous
complex-valued functions defined on a compact Hausdorff space $.

We denote by !}. the collection of all n X n complex matrices. .(I)
.I (R) is the C*-algebra of n X n matrices over t. A linear map I -. f
is positive iff (A) is positive for all positive A in I. We define

(R) 1. (I) -* .(!)
by

(R) I((A.),) ((A))..
is n-positive iff (R) 1 !l(I) --, !lR(f) is positive; the set of such ,

is denoted by P[I, !]. (The suffix 1 is deleted if n 1.) is completely
positive iff is n-positive for all positive integers n.
We presume that all linear maps on C*-algebras preserve the identity.
In 2, a Schwarz inequality (Theorem 2.1) is derived: If P[I, !], then

(/(A) ) >_ f((A) for any operator-convex function $ and Hermitian oper-
ator A provided f(A) is defined. An immediate consequence is the well-
known inequality due to Kadison [12]: (A) >_ (A) for all Hermitian A.
Another useful inequality (Corollary 2.3) is (A-) >_ (A)- for all positive
invertible A.

Stinespring [15] and Arveson [1], [2] have established that completely posi-
tive linear maps, rather than positive linear maps, are the natural generaliza-
tions of positive functionals. From [4], we know that P[I, f] P,[/, f] iff iI
or ! is commutative. Hence, it is desirable to investigate 2-positive linear
maps with special attention to completely positive linear maps.
A more delicate inequality is derived in Corollary 2.8: If P.[I, f], then

(A*A) >_ (A*)(A) for all A in I. As a consequence, every 2-positive
linear map is ’locally’ completely positive (Corollary 2.9).
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566 MAN-DUEN CHOI

In 3, we relate any positive linear map with the ’multiplicative domain’,
an important subalgebra contained in the domain algebra.

Let P[I, !]. The multiplicative domain of , in notation, I(R), is defined
as {A .I (XA) (X)(A) for allX I}. The maintheorem (Theorem
3.1) deduced from the Schwarz inequality says that if P[I, !] then
has just the simple form

{A I,(A*A) (A*)(A)}.
The extreml behavior of multiplietive domains really governs the effect of
2-positive mnps. In prtieulr, we see thnt mps in P[C($), C(3)] are de-
composable enonieally in terms of maps with trivial multiplietive domains
Remark 3.5).
The author would like to express his thnnks to Professor Chandler Dnvis

for many stimulating discussions which led to significant improvements in
the paper.

2. A Schwarz inequality
A real-valued measurable function f defined on an interval (-a, ) may be

considered as an operator-valued function defined on Hermitian operators
with spectra contained in (-a, a). Indeed, for a Hermitian operator A
with spectral resolution Ex, f(A) will mean ]-f() dE. f is called an oper-
ator-convex function iff

1/2(f(A) + f(B)) >_ f(1/2(A -+- B))
for all Hermitian operators A, B with spectra contained in (-a, a).
Now we utilize the operator-valued functions to derive a Schwarz inequality.

THOR 2.1. If e P[% f and f is an operator-convex function on
(--a, a); then (f(A)) >_ f((A)) for all Hermitian A I such that
sp(A)

_
(-a, a).

Proof. We notice first that f((A) is well defined since

sp(A)

_
[-a + e, a e]

for some positive e and -a + e ( -a + e)I) <_ (A <_ ( (a e)I)
a e. (f(A)) is defined because (f being continuous) f(A) belongs to
C*(A)

_
Now for Hermitinn A, C*(A) is n commutative C*-lgebr. So restricted

to C*(A) is completely positive. By Dvis’s Theorem [5, p. 44], (f(A)) _>
f((A)) as required. |

Bendat and Sherran [3, 3] (See also Davis [9, 4]) have shown that a real
function is operator-convex iff it has an integral form
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where ra is a regular Borel positive finite measure on [-a, a]. Hence, a lot
of inequalities can be derived for Hermitian operators. Here we mention two
important cases"

COROLLARY 2.2 (Kadison [12, p. 495]).
for all Hermitian A e I.

If P[?I, !l, thenO(A) >_ (A)

Proof. In Bendat and Sherman’s formula, put b c 0, m one point
measure at the origin; then f(t) is an operator-convex function. (In
fact, it is straightforward to check by definition that f(t) is operator-
convex.) |

COROLLAaY 2.3.
invertible A e . If P[9/, !], then (A-1) >_ (A)-1 for all positive

Proof. In Bendat and Sherman’s formula, put a b c 1, m one
point measure such that m({ 1} ) 1; so f(t) (1 t)-1 is operator-convex
on (-1, 1). By Theorem 2.1,
((I X))-I for Hermitian X with spectrum contained in (- 1, 1). Re-
placing I X by A, we get (A-1) >_ (A)-1 for positive A such that
sp(A) c_. (0, -1), hence for all positive invertible A. |

The inequality in Corollary 2.3 gives some non-vacuous information about
positive linear maps. Indeed if A _> e > 0, the naive definition says that
(A >_ while the derived inequality says that

(A)->_ (A-1)- >_

We remark that Corollary 2.3 is not true for an arbitrary invertible Hermi-
tian operator. For example; let ?I the commutative C*-algebra of ordered
pairs

{(a, t) a, are complex numbers};

the linear functional such that (a, ) 1/2(a -t- t) A (1, 1). Then
A A-1, and (A) O(A-1) 0, so the inequality (A-1) >_ (A)-I does
not hold.

Referring to Theorem 2.1, the inequality may become equality for all
Hermitian A. We will see that such will happen only in the extraordinary
cases" $ is ane (i.e., f is of the form f(t) al -5 a) or is extreme. We
recall that for P[9/, !], is a C*-homomorphism iff(As) (A) for every
Hermitian A in 9/, and StOrmer [16, p. 242] has proved that every C*-homo-
morphism is extreme. The following lemma gives an alternative charac-
terization of a C*-homomorphism.

LEMMX 2.4. Let P[9/, !]. Then is a C*-homomorphism iff (A-1)
(A)-1 for all positive invertible A in

Proof. Assume preserves the inverse for every positive invertible oper-
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ator. Then for any positive invertible A, we apply Kadison’s inequality
(Corollary 2.2) and get

((A)-1 (A-s) > q(A-1) q(A (As) _< (A)s.
Applying Kadison’s inequality again, q(A
To extend this to an arbitrary Hermitian operator A, replace A by A -4- nI

for a sufficiently large n. Hence is a C*-homomorphism.
The converse follows from the fact a C*-homomorphism restricted to C*(A),

for any Hermitian A, is a *homomorphism. |

THEOREM 2.5. Let q P[[, !3]. Iff is a non-ane operator-convex function
on (--a, a), and (f(A)) f((A)) for all Hermitian A in I such that
sp(A)

_
(-a, a), then q is a C*-homomorphism.

By Bendat and Sherman’s formula,

](t) ,aS-- txdm(x) -4- bt A- c.

Since f is non-affine, the carrier of m (the smallest closed subset $ of I-a, a]
such that re(S) m([-a, a])) is nonvoid.
Now suppose (](A)) f((A)) for all Hermitian A such that sp(A)

(-a, a). For each s in the carrier of m, g(t) tS/(a st) is operator-con-
vex, hence (g(A)) g((A)) by virtue of Theorem 2.1. In case s 0,
we get immediately that(As) (A)S. In case s 0,

g(t) tS/(as- st)

by a transformation as in the proof of Corollary 2.3, we deduce that
(A)- for all positive invertible A. Therefore, is a C*-homomorphism in
both cases. |

Remark 2.6. An operator-convex function plays an essential role in the
above results. The following example shows that Theorem 2.1 would be
false if we replace an operator-convex function by a general convex function:
The function f(t) is convex but not operator-convex. Let 8 --* !/J,.

be the compression map

and

Then

(b((a)l_<.,k) (aCk)l_<,,

1 0 1
A= 0 1

1 1

Theorem 2.5 is of interest when referring to Theorem 2.1. However, cer-
tain facts reveal that a more general case may be true. We conjecture that
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Theorem 2.5 remains tree if we require $ to be a general non-affine real con-
tinuous function instead of an operator-convex function.

The Schwarz inequality derived in Theorem 2.1 is in some respects unsatis-
factory. For example, it does not govern non-Hermitian operators. We
will achieve this effect for 2-positive linear maps. A function f on (-a, a)
is even iff f(t) f(-t) for all t. Indeed, every operator-convex function f
induces an even operator-convex function f(t) + f(-t). Following is a
modified Schwarz inequality.

THEOREM 2.7. Let P.[9I, f]. Iff is an even operator-convex function on
(--a, a), then for every A e 9I with the norm less than a,

(f( AI )) >_ f(i(A) ).

(Here X stands for (X’X).)

Proof. Applying Theorem 2.1 to (R) 1. e P[,.(9), (!)], we get

(R) l(f(T)) >_ f(O (R) I(T))

for all Hermitian T 992(9.I) with sp(T)

_
(-a, a).

then

Now, let

As f is even, f(t) f( ), so

f( T) f( Ti F$(IAi)0
Similarly,

f( (R) I(T)) VI([(A)[
0

o ]f(I(A*)
By (.), we obtain the required inequality. |

Putting f(t) in the above theorem, we get the important result:

COROLLARY 2.8. If P[91, !], then (A*A) >_ (A*)(A) for all A in

COROLLARY 2.9. Every 2-positive linear map is locally completely positive.
This means that, if P.[9.I, !], then for any x in C the underlying space of f,
there exists a completely positive linear map Y2.,. I -- 5(5C) (which need not
preserve identity) with II Cx 11 <- 1, such that (. )x (. )x.

Proof. With the Schwarz inequality of Corollary 2.8 in hand, we are ready
to refer to StCrmer [16, p. 268] and obtain the required result.

For completeness, we sketch the short proof.
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We may assume II x 11 1. Starting from the positive functional @(. )x,
on 9, we construct the ’associated representation’ II of on a Hilbert space
i.e., II is a cyclic representation with a cyclic vector v e such that

(II(A)v, v) @(A)z, x) for all A e 9.I.

Define V --. by H(A)v I-- (A)x; the Schwarz inequality of Corollary
2.8 guarantees that V is well defined. Then I, VII(. )V* is the required
completely positive map for at x. |

3. Multiplicative domains
In Corollary 2.8, we showed that if e P.[9, :] then

(A*A) >_ (A*)(A) for all A e 92;

now, we examine the subset of for which equality holds"

THEOREM 3.1. If e Ps[9, ], thenthe set {A e I (A*A) (A*)(A)}
is a closed subalgebra of I. In fact, it is just the multiplicative domain,

I(R) =- A e I (XA) (X)4(A) for all

Proof. It is straightforward to see that 9(R) is a closed algebra. It remains
to show that if (A*A) (A*)(A), then (XA) (X)(A) for all
X in 9.
Let H be a Hermitian operator in .

i.e.,

(A*A)
(HA)

By Kadison’s inequality,

A*

(A*H) 1 (A*)(A)
(AA* -q- H2) >- L(H)(A)

(A*)(H)
(A)(A*) q- (H)

That (A*A) (A*)(A) forces (HA) (H)(A). Now for arbi-
trary X in 9.I, X reX -t- i imX. Thus the desired result is immediate. |
The preceding theorem does not hold for a general positive linear map.

For example, let be the transpose map 92 --. 9 (n > 1). Then

{A e / (A*A) (A*)q(A)} {normal matrices},

which is not an algebra; while ()(R) consists of scalars only.

Coaor,xav 3.2. Every -positive C*-homomorphism is a *homomorphism.

Proof. Let e P.[I, 3] be a C*-homomorphism, i.e., for all Hermitian A
in 9,(A) (A). By Theorem 3.1, 9 is an algebra containing all Hermi-
tian operators in 92; so 9(R) 9. Hence we conclude that is a *homomor-
phism. |
An alternative proof of Corollary 3.2 without using Theorem 3.1 is to com-
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bine Corollary 2.8 with StOrmer [16, Corollary 3.6, p. 446]. This, however,
involves a much deeper structure theorem of C*-homomorphisms.

If I, ! are commutative, and e P[I, !], then I is a C*-algebra and it
represents the amount of ’extremeness’ that possesses, in fact,
is extreme.

In the general case, may be extreme while
has a great deal to do with the ’extremal behaviour’ of

THEOREM 3.3. If (, 9, t e P2[, !] and 1/2(9 + ft), then

Io I. n Ia n {A e I(A) (A) fl(A)}.

Proof. For any A in I,

(A*A) 1/2(#(A*A) + t(A*A))
>_ 1/2((A*)#(A) + t(A*)(A))

1/4(xI,(A*) + [t(A*) )((A) + 2(A)

+ 1/4(,I,(A*) t(A*))(xI,(A) (A))

{(I,(A*) + t(A*))((A) + t(A))

(A*)O(A).
If A e I(R), then (A*A) (A*)(A) and all of the above inequalities

become equalities. Hence

z(A*A) (A*)(A), t(A*A) t(A*)(A) and xI,(A) t(A).

Thus we conclude that I(R)

_
I, n Ia n A, I (A) xI,(A) t(A) }.

The opposite inclusion is trivial. |

The set la[, f] is convex. If e P[t, !] is not extreme, then there is an
open line-segment in la[I, f] passing through. Theorem 3.3 says that every
map lying in the open segment has the same multiplicative domain and agrees
with on the multiplicative domain.

Remark 3.4. Let e P,.[I, !]. The left kernel of is the set

{A e I (A*A) 0}.

From the Schwarz inequality, (A*A) >_ (A*)(A) >_ 0, it follows that
(A*A) 0 iff O(A*A) (A*)(A) and(A) 0; that is, the left kernel
is the intersection of the kernel and the multiplicative domain. Alternatively,
the left kernel is the largest left ideal contained in the kernel. Furthermore,

restricted to I0 is an algebraic homomorphism; the kernel of the restricted
map is the left kernel of .

P.[I, !3] is faithful iff the left kernel of is trivial. Equivalently, is
faithful iff a is an algebraic isomorphism.
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Remark 3.5. Multiplicative domains of P[C($), C(5)]. The significance
of multiplicative domains can be best revealed by the tractable structure of
positive linear maps on continuous functions. A thorough description is
divided into four parts as follows.

(i) Suppose @ P[C($), C(5)]. Then C($)(R) is a C*.algebra. So the left
kernel is an ideal contained in C($)(R). By factoring out the left kernel, we may
assume is faithful (Remark 3.4). (To be precise, we should say that there
exists a faithful

o P[C($0), C(5)l,

where $0 is a closed subset of $, such that (f) 0(f i$,) for all f C($).)

(ii) Suppose P[C($), C(5) is faithful. Let g e C($). We write
Range g, and $ {s e $ g(s) x}, e 5 @(g ( ) x}, for each x e 9.
Then the following are equivalent:

(a) g c()(R).
(b) 5 (Js, and there exist (R) eP[C($), C(5)] such that

(Roughly, we say that $, re broken into the same number of slices, mad
sends eeh slice of $ to the corresponding slice of .)

Proof. (b) (a). As g assumes scalar value x on $,, by the presumed
decomposition formula (f) (f !$,), it is immediate that

(g*g) (g*)(g) (B Ix II
where I is the identity of C(5). Hence g 0($).

(a) (b). As C*(g)
_

C($)(R) and is faithful, so

(0"()) o*()
_

they are related in such a manner that for any x e E and g’ C*(g), both
g’ [$, and @(g’) [. assume a common constant value. Evidently, 5 US is
the disjoint union of a class of non-void closed subsets.
Now for each fixed a e 9, define a C($a) --* C(a) with

(f 15) (f) iz, for all f e C($).

It is well defined since if f l$, O, then there exist g,,eC*(g) such
that a I$o I nd !I fg,, I1 -* 0 (as n -, ); thus

(f) Is,, ’(f)(g,) Is,, (fgn) [:j,,

must be zero. (An example to construct gn: First pick up h. e 0(9C) such that
!! h II 1, hn(a) 1 and h. restricted to
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is zero. Then define g(s) h(x) whenever s $.) Hence

as required. |

(iii) Let P[C($), C(5)] be faithful. Suppose C($) is equivalent o
C ). Then here exis continuous surjeaions

:$ and r:;
a for each x e , there corresponds e P[C({x} ), C(r-{x} )] such tt
s the trivial multiplicative domain and

#r all f e C($).

Proof. As (C($)) C($) C(E), there exist cominuous surjections

a:$E and v:5

such that for each x e E and g e C($), g [,-[ and (g) ]- assume a com-
mon constant value. The rest of the proof is similar to (fi).

(iv) Let ePIC(t), C(5)] be faithful. Then C($) {scalars} i is
’indecposable’ in the sense that $, 5 cannot be further ’sliced’ (see (ii)).
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