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Abstract 

Rationale 

The controlled experiment is a highly regarded form of scientific inquiry because its 

properties permit conclusions with the most scientific rigor. Controlled 

experimentation is important for the scientific foundation of disciplines that claim to 

be scientific. It is also important to conduct them properly: they come at a high cost 

in time, effort and participation; there is an associated esteem that confers credibility; 

there is often an ethical responsibility to human participants. However, the quality of 

controlled experiments performed in health informatics and computer science is 

often poor. One way to address quality issues is to measure quality. This follows the 

example of the creation of instruments (scales or scores) to measure quality of 

controlled medical trials, which have also had problems with experimental quality. 

The rationale for this research was that no satisfactory scales had been developed for 

informatics. There is also no empirical research into the construct of experimental 

quality in informatics, which this research addresses. 

 

Hypotheses/Objectives 

The first hypothesis was that a questionnaire instrument that could measure the 

quality of controlled experiments could be defined for experiments in informatics 

involving human participants. The second and third hypotheses were that the 

instrument could be applied within the domain of computer science and health 

informatics respectively. This research is part of the larger objective of quality 

assurance and improvement in experimental informatics. 

In support of these hypotheses, the usefulness of the instrument was demonstrated by 

reviewing the quality of recent experimental studies in health informatics. 

 



 xi

Research Tradition 

The research in this dissertation is positivistic, empirical and quantitative. It follows 

the research tradition of measurement theory and psychometric scale development 

and the principles of controlled experimentation. It is multidisciplinary. This research 

is also constructivist.  

 

Method 

A questionnaire called the Measurement of Informatics Controlled Experiments 

(MICE) index was developed. Literature on experimentation in computer science, 

health informatics and medicine was basis for the questionnaire items, which were 

created using psychometric principles. The questionnaire was tested for reliability 

using the test-retest method on 58 experimental studies in informatics. Criterion 

validity was tested with a known-groups approach by assessing whether MICE 

correctly categorised poor and high quality studies defined by another standard. 

Construct validity was tested using the convergent hypothesis that MICE scores 

would be higher when statistical experts assisted with studies and using divergent 

hypotheses that various report characteristics (number of study authors and cited 

references, report length, publication year) would not be correlated to scores. To 

improve questionnaire efficiency, it underwent item reduction according to a set of 

criteria. Reliability and validity tests were repeated for the reduced questionnaire. 

 

Results 

The MICE index has 2 forms: 80-item (MICE-80) and 38-item (MICE-38) 

questionnaires. Both forms are reliable (intraclass correlation coefficient 0.935 and 

0.963 respectively). Both forms are criterion valid; MICE scores were 12 - 15% 

higher for prior-defined good studies than for poor ones (p < 0.05). Both forms are 

construct valid; MICE scores were 10 - 13% higher when a statistical expert assisted 

(p < 0.05). Correlations between report characteristics and MICE scores were weak 

(|Pearson r| < 0.2). MICE-80 takes 30 - 60 minutes to apply, and MICE-38 takes 

about 20 minutes. 



 xii

 

Discussion 

The MICE index is a reliable and valid questionnaire for measuring the quality of 

controlled experiments in health informatics and computer science. It is the only 

satisfactory scale for informatics as others have not been created and tested 

sufficiently to psychometric principles. Therefore, this research has made a 

significant contribution by producing new knowledge and addressing a deficiency in 

the fields. 

This research also highlights the difficulties of and provides novel ways in measuring 

experimental quality and emphasises the importance of scientific approaches in 

“scientific” fields. 

 



 1

Chapter 1: Introduction 

1.1. General Introduction 

The fields of computer science and health informatics present many questions. When 

a computer programmer asserts that placing Goto statements in code is bad, or when 

a health informatician states that a clinical information system prevents medical 

error, how are these known? Is a piece of paper with a decision algorithm as good as 

electronic decision support? Does computer-supported cooperative work actually 

improve work output? Do the benefits of computer technology outweigh the costs? 

How much information is needed to make good decisions in health care and other 

domains? As scholarly fields, computer science and health informatics must use 

rigorous research methods to answer such questions. Properly conducted research 

enables the determination of truth or falsity, and there are many paradigms and 

methods. One important paradigm is positivism, and one important method is the 

controlled experiment. Indeed, these 2 pillars represent the so-called “scientific 

method”.  

This doctoral dissertation is an outcome of research into improving the quality of 

controlled experiments performed in computer science and health informatics. The 

quality of experimentation has been of concern to empirical scientists in both fields, 

which has lead to publication of textbooks and journal/conference papers on the 

subject to raise awareness and improve standards. However, if something is to be 

improved, it must undergo initial and ongoing assessment. Areas of deficiency must 

be identified and baseline observations made. Improvement is, by definition, 

comparative in nature. This research produces a measurement instrument, the 

Measurement of Informatics Controlled Experiments index or MICE index, to 

quantify experimental quality in health informatics and computer science. With this 

instrument, assessment and improvement can be achieved. 

The example of the effects of a computer-based system on human performance 

outcomes is one area in which controlled experimentation can be useful. This is a 

form of summative evaluation. Experimentation can be useful in a formative sense 
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also, e.g. to establish the best methods of constructing and maintaining software and 

to improve human-machine interfaces. Indeed, in a broad sense, experimentation 

facilitates the discovery of laws and principles that allow better development and use 

of computer-based technologies. However, there is more than one paradigm and one 

method of scholarly investigation. Qualitative methods can also yield knowledge in 

computer science and health informatics. The subjective impact of a new information 

system on a work group, for instance, may be measured better with qualitative, 

interpretivistic techniques. Similarly, understanding why people choose to use or not 

use computer technology or use only certain aspects may also be answered by non-

experimental methods. The scope of evaluative and research methods that can be 

applied to computer science and health informatics is large. This research only 

focuses on improving controlled experimentation. 

This chapter is divided into the following sections. Philosophical Background 

discusses how this doctoral research fits with the fields of computer science and 

health informatics. To determine what is considered worthwhile research in these 

fields, the fields themselves must be examined. Research Motivation explains why 

this research was performed and how it addresses a significant gap in knowledge. 

Research Aims and Scope outlines the hypotheses and scope of the research.  

Research Method outlines the research paradigm and methods used. Contributions to 

Knowledge summarises how the fields of computer science and health informatics 

have been furthered. Finally, Thesis Overview explains the organisation of the rest of 

this dissertation. 

 

1.2. Philosophical Background 

It is important to consider the philosophical basis for research in computer science 

and health informatics. For doctoral (or any) research in these fields to be considered 

original and contributing, there must be an examination of what exactly is the nature 

of the fields. Research in a field of study should follow the paradigms and practices 

of that field. For example, mathematics, physics and chemistry have well-defined 

ways of considering what is knowledge and how it is obtained. Therefore, research in 

these fields has an established framework to observe. The following section will 
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demonstrate that the research and knowledge paradigms are far from trivial in 

computer science and health informatics. 

The followed questions should be examined: what is computer science, what is 

health informatics and how do the two fields relate? Finally, does this doctoral 

research fit with the paradigms in computer science and/or health informatics? 

1.2.1. What is Computer Science?  

The computer science literature has examined the nature of the field for 50 years 

without a consensus on what constitutes computer science (1). Hence this 

dissertation, which does not focus specifically on this issue, is unlikely to provide a 

great leap forward. However, the question is implicitly visited every time a research 

dissertation, funding proposal or journal/conference submission is assessed for its 

worth, and so, some discussion is required. It will not be argued what computer 

science (or health informatics) should be but what perspectives exist and how they 

are related to research contribution. The term, “computer science”, itself is subject to 

variable interpretation. It is conspicuous that Europeans use the term “informatics” 

while Americans use the term “computer science” (2). This issue of what is 

“informatics” will be revisited below. At the highest level, “computer science” can 

be used as an umbrella term for the various fields of study that involve computers, 

e.g. information technology (IT), information systems (IS), information and 

communications technology (ICT), software engineering, human-computer 

interaction, computer engineering but also includes related fields such as 

mathematics. On the other hand, the term can be interpreted as that specifically 

related to algorithms and modelling, without the necessity for (unnecessary and 

inelegant) implementation in any particular programming language (3). This is 

sometimes referred to as the distinction between computer science and computer 

engineering (4)  (although even whether such a distinction should be made is debated 

(5)). That is, the former deals with theory of computation and the other with building 

engineering objects  (such as software, computer hardware and information systems). 

The splintering of computer science (umbrella meaning) into differing subfields is 

noticeable in the literature, e.g. the process of establishing IT as a separate academic 

discipline under the Association for Computing Machinery (ACM) and the Institute 

of Electrical and Electronics Engineers (IEEE) (6), despite the “parent” field 
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undergoing identity insecurity (this is also noticeable in health informatics as 

discussed later.) It is also mentionable that the subfields have also had difficulties 

with defining their area of research and practice, e.g. IS research (7-9) and human-

computer interaction (10). 

What is the definition of computer science? The ACM describes the computing 

discipline as incorporating computer engineering (design and construction of 

hardware), computer science (studies of ways to design and create software, to use 

computers and to solve computing problems), software engineering (studies of how 

better software can be created), information systems (use of computers to solve 

business information needs) and information technology (a technical focus of the use 

of computers for organisations) (11). Therefore, despite ideological differences, what 

is generally accepted is that computer science involves computers. As Denning et al 

note, the discipline was born in the 1940’s with “the joining together of algorithm 

theory, mathematical logic, and the invention of the stored-program electronic 

computer.” (4) This appears obvious, but some commentators have noted the dangers 

of defining a field based on a tool, as remarked by Dijkstra, “Computer science is not 

about computers, any more than astronomy is about telescopes,” (3) (or surgery is 

about knives (12)). Then again, others have explicitly addressed the field as that 

which concentrates on computing tools (13). The idea of computer science 

necessarily involving computing technology appears ridiculously evident, but it is 

challenged when discussions turn to health informatics, as will be seen below. 

One of the key features in the discussion of what is computer science is the 

distinction between science and engineering. This was described by Brooks as, “The 

scientist builds in order to study; the engineer studies in order to build.” (13) 

Research worthiness can be lost in such a distinction. To the scientist, who looks for 

generalisable, testable theories of computing, the mere construction of software and 

systems lacks research credibility. To the engineer, who looks for solutions to 

problems, the creation of a solution is perhaps sufficient. The latter idea may seem, 

to some, as intellectually barren, but it is present in computer science: the literature 

contains many demonstrations of computing artefacts. It is notable, in management 

IS research, that constructive research is promoted (this form of research from the 
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fields of management and accounting credibly accepts the mere construction of 

solutions as long as they usefully solve a real-world problem (14).) 

It is prudent to discuss what is meant by science in computer science. The issue of 

the scientific and/or engineering basis for computer science has been discussed in the 

literature for many years with many arguing that computer science should be more 

“scientific”, e.g. (15-21). A report by the ACM Task Force on the Core of Computer 

Science described computer science as encompassing paradigms of theory, 

abstraction and design (4). Abstraction was noted to be “rooted in the experimental 

scientific method” and consisting of hypothesis formation and experimental design 

(4). This is the traditional interpretation of science: the formation of theories and 

universal knowledge or truths, and testing by repeatable empirical methods. 

Therefore, at least in some aspect of computer science, research must be more than 

mere creation of tools. However, Brooks and others, e.g. (22),  argue the exact 

opposite, i.e. computer science is not science at all. 

Returning to the question posed earlier, what is computer science, the above 

discussion shows that different views exist: 

• Computer science is (or should be) science, in the traditional sense of science, 

e.g. (15, 20) 

• Computer science is engineering, e.g. (13). 

• Computer science is a blend of science and engineering (and other areas), e.g. 

(3, 5). 

Whether this doctoral research contributes to computer science is discussed below. 

1.2.2. What is Health Informatics? 

The literature in computer science demonstrates a lack of consensus for the field in 

terms of philosophical underpinning. Unfortunately, health informatics fares less 

well and is further complicated by the addition of health science paradigms. Before 

elaborating on health informatics, it is useful to consider what is the difference, if 

any, between “informatics” and “computer science”. As mentioned above, the two 

may be considered synonyms in parts of Europe. Historically, informatics indeed 
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meant computer science. It was first coined by the German father of computer 

science, Karl Steinbuch, in his 1957 paper (Informatik: automatische 

informationsverbeitung) and became the German term for computer science (23). In 

1962, the French computer scientist, Philippe Dreyfus, used the term “informatique” 

(24), and its meaning, to this day, is computer science. It was in 1966/67 that the 

Russian information scientist, Mikhailov, used “informatika” to mean the field 

concerning the properties and structure of information (with respect to scientific 

information) (24). Today, the meaning of informatics can be thought of as the field 

that combines information science with computer science and involves individual, 

societal and computational processing of information. However, some still suggest 

that informatics is closer to computer science than information science (or other 

related fields), e.g. Buerk and Feig state, “People are recognizing informatics as a 

subdiscipline within computer science education…” and, “One area of IT… is the 

field of informatics.” (25) The historical roots of health informatics, or medical 

informatics as it was known then, are similar to general informatics. Also in the 

sixties, German university departments of medical informatics were being created 

and were among the first in the world (26). At that time, health (medical) informatics 

indeed meant the application of computer science to medicine (26). From the 

perspective given thus far, it might be reasonable that, based on taxonomy, 

informatics is a computing field. Therefore, health informatics is a computing field 

(the application of informatics to health care). 

1.2.3. Divisions in Health Informatics 

Unfortunately, the concept of health informatics has not remained simply as 

computer science in medicine. Much has been written over the last 40 years about 

what is health informatics, and, like computer science, there are divisions. Before 

progressing further, it is useful to clarify the meaning of “health” and “medical”. 

Health refers to all aspects of health care, e.g. provision of care by health workers 

including doctors, nurses, dentists, physiotherapists and so on, as well as the 

structures of health care services. “Medical” can be synonymous with “health” in this 

sense. Another interpretation of “medical” is as an adjective referring to doctors 

(therefore “medical informatics” would refer to informatics in the work of doctors).  

In this dissertation, no distinction is made between “health” and “medical”, though 

this is not always the case in the health/medical informatics community. 
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Perspectives of health informatics are complicated by the field’s youth. The true 

pioneers (those with no formal training in health informatics) still contribute to the 

research agenda. Even the second generation scholars likely have one area of primary 

discipline supplemented by another, e.g. computer professional plus extra health 

training or health professional with extra computing training (27). Researchers in the 

field have come from a variety of backgrounds: computer science, engineering, 

information science, health care, librarianship, business and management, sociology 

and others. These people have brought with them the epistemology of their 

background fields. Anecdotally, many of the early scholars in health informatics 

were (and still are) medical practitioners. The health informatics literature reveals the 

desire of this clinical group of health informaticians to make health informatics a part 

of medicine, rather than computer science. Blois proposed that health informatics 

was a science to improve the understanding of medicine, that it could help model the 

knowledge of medicine, and therefore the two are intrinsically related (28). Such an 

inextricable bond was also suggested by Detmer (29). Some have proposed that 

health informaticians should also be practising clinicians (30). Hasman called health 

informatics a distinct, separate discipline but also that it “forms one of the bases of 

medicine and health care.” (31) One of strongest proponents of the idea that health 

informatics is more medicine than computing has been Reinhold Haux, current 

president of the International Medical Informatics Association (32): 

Medical informatics is not just the application of computers in medicine and 

health care. (33) 

Medical informatics is a scientific medical discipline, like surgery or internal 

medicine, like epidemiology or microbiology. It is a medical discipline with strong 

relationships to the health sciences concerning the field of application and with 

strong relationships to informatics concerning its methods and tools. (33) 

We should obviously concentrate our work on the medical problem under 

investigation and not, as in computer science, on the tool ‘computer’ or on 

methods for this tool. (34) 

As an example of this ideology, he suggested that research into electronic medical 

records must also include research into the regular patient record, independent of the 
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computer tool (33). That is, what are the models behind the recording and content of 

patient data (35), irrespective of computerisation? 

Other clinically based informaticians have voiced similar ideas: 

Most people equate medical informatics with computers, which is logical enough, 

but we think the field should be considered in a much broader way, as the science 

of information and communication related to medical care, whether or not 

computers are involved. (36) 

I have now broadened the scope of our discipline from computer disciplines 

applied to medicine to the concept of medical information disciplines… It is 

intellectually improper to build a discipline on the application of a given tool 

(computing machinery), whatever its complexity and its historical importance. 

(37) 

We will need people who are knowledge engineers rather than computer 

scientists. (38) 

These ideas are similarly held by some medical societies, e.g. the European Society 

of Intensive Care Medicine’s position on health informatics is that it is “not tied to 

the application of computers but more generally to the entire management of 

information in healthcare.” (39) 

The idea of medical ownership of health informatics has been taken even further with 

each specialist group in health care calling for their own share, e.g. “The unique 

nature of primary care necessitates the development of its own informatics 

discipline,” argued De Lusignan in favour of establishing primary care informatics 

(40). 

Haynes et al’s statement (36) that computers may or may not be involved is a key 

distinction often made by clinically based informaticians. This is the view that health 

informatics is an information modelling field where computer technology can be of 

assistance. However, there may be other forms of improving the quality of 

information in medicine, e.g. paper-based clinical algorithms. Therefore, computing 

is often required but not necessary in thinking about what health informatics is. Even 

the work that initially started under medical computer science in Germany was 
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directed down a medical information science path as the “synthesis of information 

processes.” (26) This is not to say this perspective of health informatics regards 

computer science as unimportant. Indeed, health informatics has been criticised by 

some of these proponents for failing to use methods successful in computer science 

(41), instead reinventing an inferior wheel. While the tools might be shared, the 

focus between computer science and health informatics is different. The focus is not 

the development of the computer for health care but how better information can 

benefit the patient. As Imhoff reminded, “Without patients there would be no need 

for health informatics.” (39) 

With this clinical perspective of health informatics in mind, it is remarkable to 

contrast it against the computing perspective. In 1977, an ACM subcommittee was 

established by the ACM Education Board to develop a curriculum for the “health 

computing professional” (42, 43). Four tracks were identified: health information 

systems, health research computing, computer-based health education and health 

computing administration. As with the definition of computer science previously 

stated, it makes little sense to discuss any of these tracks without the presence of a 

computer. The focus on the computer in health informatics has continued through to 

today (25, 44-46). This is in direct contrast to the above clinical views of health 

informatics. Karen Duncan, who was part of the ACM subcommittee in 1977, 

implored clinicians to take more leadership in health computing or for the scope of 

medical informatics to be “alternatively defined so that others may lead the way.” 

(45) Ironically, it has been the very involvement of some clinically based health 

informaticians that has contributed to divisions in the field. 

One can observe the different stakeholders that wish to shape health informatics, by 

examining the evolution of professional societies. Health informatics groups have 

developed in parallel to health computing groups. Ironically, some of these health 

informatics associations began as subgroups under computing groups, e.g. the Health 

Informatics Society of Australia (which began under the Australian Computer 

Society) (47) and the International Medical Informatics Association (which began 

under the International Federation for Information Processing) (48). On the 

computing side, some of the ACM Special Interest Groups have interest in biological 

and health-related computing (49). On the (biomedical) engineering side, there is the 
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IEEE Engineering in Medicine and Biology Society, which covers a wide range of 

technical interests, including prosthetics, medical devices, medical imaging and 

information systems (50). One of the reasons for the separation of health informatics 

groups was the influence of clinical medicine. Some early clinical pioneers moved 

health informatics away from computer science and technology, and this shaped the 

political and research landscape. 

In addition to separation of professional groups, background has influenced research 

publication. Computer scientists prefer conference publications (51), whereas the 

tradition in medicine has been prestigious journals (e.g. the Lancet). Medicine also 

influences publishing conventions, with journals such as the International Journal of 

Medical Informatics (official journal of the European Federation for Medical 

Informatics) and the Journal of the American Medical Informatics Association 

endorsing the International Committee of Medical Journal Editors (ICMJE) standards 

(52, 53). Why not ACM standards? When indexing health informatics literature, 

should the U.S. National Library of Medicine’s Medical Subject Heading (MeSH) 

terms be used or the IEEE Computer Society’s keywords? 

Another example of biomedicine’s influence, that is particularly relevant to this 

research, is in evaluation frameworks for information systems. The Declaration of 

Innsbruck provides a framework for health information system evaluation and was 

produced by an EFMI working group. However, it developed from a workshop 

meeting of mostly health (informatics) scientists (54). Should evaluation of 

information systems be focused at the health care level or more generally? If health 

researchers do not work with computing researchers, then evaluation theories and 

methods might be unnecessarily duplicated. It is not inconceivable that IS evaluation 

researchers have not at all heard of the declaration. A search of the ACM Digital 

Library, an often-used bibliographical database in computer science, reveals no 

reference to the declaration outside of one paper (in the Journal of Biomedical 

Informatics), and no results arise for the IEEE Xplore database (also well-used). 

Despite the strong influence of medicine, the issue of where health informatics 

should lie is not resolved. So far the focus of this discussion has been on the two 

main pillars of health informatics: medicine and computer science.  However, there 

are other component disciplines, e.g. Perry et al argued that medical informatics is 
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similar to medical librarianship (55). Whetton recently wrote about the divergent 

nature of health informatics (56). She called for a dialogue to form between factions 

in health informatics to combat the divergence but also called for more social 

research to be part of health informatics. The large number of paradigms and 

methods add to the confusion of a core for health informatics. 

In summary, some, like for computer science, argue that health informatics is 

engineering, e.g. (57). Some argue that health informatics is a (medical) discipline in 

its own right, with its own body of scientific knowledge and methods, e.g. (58-61). 

Some believe that health informatics is a branch of applied computer science, e.g. 

(46, 62). Others believe that health informatics is a basic science for the larger fields 

in health care, e.g. (63). The fable of the blind men and the elephant is poignant at 

this time in health informatics’ evolution. Each blind man is holding a different part 

of the animal: the biomedical engineer touching its side and claiming a wall, the 

physician holding onto the tail and claiming a rope, the business manager holding 

onto the leg and claiming a tree, the medical librarian holding onto the tusk and 

claiming a spear and the computing professional holding onto the ear and claiming a 

fan. With computing and communications technology ever advancing, and increasing 

dependence of health care processes on this technology, perhaps the future of health 

informatics will return to its origin and become more solidified in computer science. 

However, with health informatics programmes that direct the field away from 

computer science, such as the well-established ones at the University of 

Heidelberg/School of Technology Heilbronn (which promotes that the field is “more 

than a discipline just based on methods and tools of informatics applied to medicine 

and health care” (64)) and at the University of Amsterdam (which treats its 

curriculum as “medical study, meaning that computer science is rather positioned as 

one of the auxiliary sciences…” (65)), the future of where health informatics sits is 

likely to remain contested. 

1.2.4. The Effects of Background on Health Informatics 

There are 2 related effects of the influence of medicine on health informatics: the 

scientific tradition and evidence-based evaluation. Medicine is a strongly positivistic, 

scientifically oriented discipline. Its influence has lead to many calls for seeking the 

scientific theories underlying health informatics (31, 37, 59, 61, 66, 67) and criticism 
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towards publication of merely descriptive reports of information systems and other 

computer-based tools that do not provide scientific insight (41, 66). There are 

numerous recommendations for health informatics products, e.g. clinical decision 

support systems, to be evaluated for their effects on patients, health care providers, 

organisations etc, e.g. (31, 39, 68-73). Clinicians are very conscious of evidence-

based medical practice (74), which gives rise to comments such as: 

For a system to be worth while, it should be based on evidence that 

implementation of the reminder system is more likely to do good than harm. 

Unfortunately, most system developers haven’t a clue about what solid health 

care evidence is. (36) 

Evidence-based practice has not been as prominent in computer science (e.g. 

advocacy research) as it has been in medicine (75, 76), which is hardly surprising 

since computer science is not medicine. However, health informatics gets caught in 

the middle. Shortliffe wrote the following, which reflects the influence of medical 

science and university departments on the scientific orientation in health informatics: 

I also remember encountering serious questions (and condescending attitudes) 

from fellow academicians who worked at our medical school in more traditional 

fields of research. Somehow medical informatics did not seem to be ‘real science’ 

to them, and this forced me to consider how best to create and promote a research 

and training program in informatics so that it would gain credibility and peer 

respect. (77) 

Shortliffe’s thoughts are noteworthy because they suggest that health informatics 

research in the setting of a medical faculty should adhere to a standard of medical 

science research. Would health informatics research in a computing faculty be 

expected to conform likewise? 

One of the best examples of how medical science has influenced health informatics is 

the topic of controlled experimentation. Because of the scientific and evidence-based 

approaches from medicine, controlled experimentation (or controlled trials) in health 

informatics has been encouraged by many (60, 63, 67, 68, 78, 79).  



 13

However, it would be incorrect to state that evaluation and controlled experimental 

evaluation in health informatics is universally agreed upon. Rather, the traditions of 

medical research have pushed health informatics further into experimentation than 

has occurred in computer science. By contrast, mathematics historically had a strong 

influence on computer science and brought a tradition of mathematical proof (4, 21). 

This is despite significant experimental work in computer programming that 

occurred in the late 1960’s and 1970’s (80). 

1.2.5. The Importance of Philosophical Background 

Are the underpinnings of computer science and health informatics actually 

important? In the opinion of the author, the answer is yes. The discussion about 

where computer science and health informatics sit in terms of underlying principles 

is not just important for how (doctoral) research should be viewed. It has implication 

in funding, teaching, publication acceptability, organisation of university 

departments, career advancement and professional and discipline identity. 

With respect to funding, should money be given to computer science departments, 

medical departments or health informatics departments (or others)? A good example 

of where competition for limited funds might occur is the lucrative field of biological 

computing (bioinformatics) in the era of the human genome (81). The computer is 

essential in bioinformatics, and it is noteworthy that bioinformatics has been 

recognised formally as an applied area of computer science (11). Yet, others wish to 

incorporate bioinformatics as part of health informatics, hence the emerging term 

“biomedical informatics” (82). By positioning an area of study under a specific 

discipline, the area may gain recognition as being owned by the parent, and funding 

flows accordingly. 

With respect to departmental arrangements, Huang recently examined programmes 

in health informatics around the world and noted that departments outside of health 

science are also placing their stamp on the field, i.e. masters degrees in business 

administration and commerce with specialisation in health informatics have arisen 

(83). Is it acceptable for any department that contributes an area of knowledge to 

health informatics to establish their own flavour of the field? Such notions would 

impact upon what education is offered and by which university departments. 
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With respect to teaching, the issue of what is the core of a field becomes readily 

apparent because decisions must be made on what is incorporated into a programme 

and what is not. It is noteworthy that a health informatics curriculum (46) established 

by a computer science department and focusing on teaching computer science 

students (rather than health students) fails to address experimental evaluation. 

Johnson similarly noted the issue: “Computer science is less interested in empirical 

methods. Experimental design is not a component of most computer science 

curricula…” (67) 

In terms of health informatics research worthiness, Reinhold Haux was direct: 

If research in medical informatics means scientific research we should 

concentrate on methodology not application of a certain tool. We should 

concentrate on medical informatics, not on biomedical computing… It has 

considerable consequences for the orientation of research and education in 

medical informatics. (33) 

Medical informatics is not just a mixture of fields of medicine and informatics… 

research with methods and tools from the field of informatics – even when 

medical examples are taken – without specific orientation to research questions in 

medicine and health care is, as such, no medical informatics research. (33) 

Their interpretation of health informatics research indicates that computer science 

and health informatics research would be separate. For example, a computing 

algorithm useful in both medicine and another domain (such as banking) might be a 

worthy research outcome in computer science but not according to Haux’s 

requirement. A narrow view of research prevents the problem of, as Detmer put it, 

“When anything goes, anything grows,” (29) but stifles potentially significant 

research before it has begun. 

Another view of worthy health informatics (doctoral) research was put forward in 

Shortliffe and Cimino’s text: 

A dissertation worthy of a PhD in the field will usually be identified by a 

generalizable scientific result that also contributes to one of the component 

disciplines and on which other scientists can build in the future. (82) (p. 37) 
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This model identifies computer science as one of several components and opposes 

the ideas of Haux, suggesting that computer science and health informatics research 

are not separate. 

1.2.6. Philosophical Implications for this Doctoral Research 

The discussions so far have been important in understanding whether this research 

fits with the paradigms of computer science and health informatics. Both fields are 

characterised by multiple views of what they are and how research and other 

scholarly activities should be conducted. Other fields influence both and can lay 

claim to knowledge ownership. Quantitative, qualitative, positivistic, interpretivistic, 

empirical and non-empirical research paradigms exist. Evaluation and controlled 

experimentation is viewed as both essential and not so essential. It is no wonder, 

even after 40 to 50 years, that commentators regard both fields as suffering from 

identity crises. Maojo even argued that health informatics does not have an 

established paradigm yet and is, from a Kuhnian perspective, prescience (84). 

Perhaps one solution to this problem is to accept that the fields, at this point in 

history, are pluralistic and multidisciplinary. Such a view is workable in health 

research, e.g. public health. Research can then follow a paradigm (and method) that 

is acceptable to the fields, as long as the tenets are upheld and the paradigm 

continues to provide answers. The scientific paradigm, evaluation perspective and 

the experimental method have all been areas of research in both computer science 

and health informatics. Research may be seen as a journey down one of several paths 

of pluralism and justified on this basis. Furthermore, to research experimental 

methods is to not deny qualitative ones or mathematical ones. 

Another view is a return to basic principles. Assuming that science is accepted as a 

foundation for computer science and health informatics, then research that 

contributes to basic science would be important to the fields. A basic science project 

may contribute to underlying principles and might be considered superior to mere 

development of computing artefacts. This doctoral research asserts that controlled 

experimentation is part of basic scientific research. Therefore, the improvement of 

experimental quality in computer science and health informatics would be 

contributory research. In other words, research that improves the acquisition of 

knowledge is inherently worthwhile. 



 16

From a health informatics versus computer science perspective, whether or not 

research should keep to one or both will probably remain a point of contention. This 

research was based on both domains and can be applied to both, which is consistent 

with Shortliffe and Cimino’s view above but will attract criticism from those who 

view health informatics as its own discipline. Indeed, health informatics evaluation 

appears to be studied with little reference to general computing evaluation. 

Nevertheless, research that spans disciplines may be important for unifying computer 

science and health informatics. 

Returning to the final question, does this research fit with the paradigms of computer 

science and health informatics, it is argued that it does. It addresses a fundamental 

basic science issue shared by both fields and follows the tenets of the scientific 

paradigm, which has a distinct role in both. 

 

1.3. Research Motivation 

This research is motivated by deficiencies of knowledge in both health informatics 

and computer science. From the previous discussion of philosophical background, it 

can be seen that research in one is possible without consideration of the other. Health 

informatics and computer science can and have developed identities and research 

outcomes at different pace, whether they be computing artefacts or controlled 

experimentation. Ignorance of each other’s developments ultimately adds to 

divergence, with each field possibly reinventing each other’s wheels. If good 

experimentation conduct can improve the development of and establish principles for 

computer and information-based artefacts in both general informatics and health 

informatics, then reinvention of quality improvement methods would be wasteful. 

Therefore, this research adopted the approach as suggested by Shortliffe (82), i.e. 

doctoral research should contribute to a component discipline in addition to health 

informatics. This doctoral work provides a unified view of controlled 

experimentation in informatics research. 

1.3.1. Improving Science, Experimentation and Evaluation 

This research is motivated by deficiencies in scientific foundation and scientific 

evaluation. There is a close relationship between evaluation, experimentation and 

science. Technology evaluation can occur for several reasons, including feedback of 
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results to inform scientific development of future tools. The importance of evaluation 

has been recognised in some areas of computer science, e.g. case study research in 

management information systems (85) (as well as other qualitative type research 

(86)) and empirical software engineering (17, 87, 88). An evaluative mindset 

distinguishes craft or trade from science. The craftsman is satisfied if an object meets 

its required specifications. The scientist, however, is further intrigued by how to 

improve the object and must somehow evaluate the object or the ways in which it 

was made. The empirical scientist will use formal methods, such as the controlled 

experiment. It is common to see the triad of concepts arise in computing research, 

whether health or otherwise, where investigators wonder whether the building of 

objects without some rigorous experimental evaluation to learn something more is 

acceptable. Holloway, for example, wrote: 

This ignorance manifests itself in the plethora of people who jump on the latest-

and-greatest ‘methodology’ bandwagon (functional decomposition, rapid 

prototyping, object orientation, CASE tools, reuse techniques, and process 

maturity are just a few such bandwagons) on the basis of ‘success stories’ and 

slick sales pitches. The notion of requesting actual logical or experimental 

evidence of success seems not to enter the picture. (89) 

Tierney et al (78) called for controlled trials of health informatics applications to, 

among other reasons, understand what are the additional information gains from 

better technology and whether they could be achieved with simpler solutions. They, 

like Holloway, also spoke of experimental summative evaluation of technology and 

the importance of a scientific mindset. 

The influence of medical science on the development of a triad of evaluation, 

experimentation and science in health informatics can be seen from the above 

sections. In computer science, experimentation has historically not had a large place 

in computing knowledge. In 1995, Tichy et al found that about half of the 400 

research articles they reviewed lacked adequate experimental validation (90). Similar 

results were found by Zelkowitz el al around the same time (19). More recently, a 

review of software engineering scientific papers from 1993 to 2002 found that only 

103 of 5453 (1.9%) reports were of controlled experiments (91). However, there are 

many researchers who are promoting experimental methods in computer science (17-
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19, 76, 88, 92-95). This is especially in the subdiscipline of software engineering, 

which has a journal (Empirical Software Engineering) and conference (Empirical 

Software Engineering and Measurement) dedicated to experimentation and other 

empirical methods. Change is also occurring at the level of the undergraduate 

computer science curriculum to include experimental design and statistical analysis 

(96, 97), which have historically been ignored in computer science education (16). 

Empirical and experimental research is likely to grow in computer science as 

researchers become more aware of the dangers of advocacy research and the 

limitations of other research methods in answering certain questions, such as subtle 

summative effects of information technologies. This is not to say that other forms of 

knowledge discovery are unimportant. Indeed, experimentation would be 

inappropriate in situations where mathematical proof or qualitative interview can 

better answer a question. Ideally, all research methods in computer science (and 

health informatics) should be used with high quality assurance, and attempts may be 

made to raise standards comprehensively, but that is beyond the scope of doctoral 

research. 

1.3.2. Problems in Experimental Quality 

While experimentation is an important method in health informatics and increasingly 

important in computer science, there have been concerns that quality should be 

improved in both fields. Tierney et al lamented the short supply of researchers who 

understand both health informatics and controlled experimentation and called for 

further funding and training (78). Dimitroff analysed health informatics research 

papers and found several problems, including inadequately defined variables and 

hypotheses and poor integration of findings with previous knowledge. Others have 

also noted experimental mistakes such as unit of analysis error (98), contamination 

effects and other biases (99). The Declaration of Innsbruck, though recommending at 

the level of general evaluation of health information systems, calls for high standards 

of scientific evaluation methods (which would include experimentation) (54). 

Chapter 5 reviews the quality of experiments for clinical decision support systems 

and highlights some of these methodological problems. As for computer science 

experimentation, the inadequacy of experimental education has been noted. One of 

the manifestations of this deficiency has been poor quality of experiments. Moher 

and Schneider at the International Conference on Software Engineering (ICSE) of 
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1981 discussed the issue of experimental rigor, stating, “While there are numerous 

references to the use of experimentation there are significantly fewer references to 

the methodology itself.” (100) Problems with performing reliable and valid 

experiments due to poor methodology still occur despite Moher’s warning. In the 

ICSE of 2006, Zannier et al presented findings of their review of ICSE papers (101), 

stating “The soundness of empirical evaluations has not improved over 29 years of 

ICSE proceedings,” and “Except for one study in our random sample, none of the 

examined studies contained hypotheses clearly stated.” Another manifestation is the 

adequacy of reviewers of computer science experiments: “Papers about empirical 

work in software engineering are still somewhat of a novelty and reviewers, 

especially those inexperienced with empirical work themselves, are often unsure 

whether a paper is good enough for publication.” (102) 

Ultimately, the problem with poor experimentation is that it can lead to 

dissemination of incorrect knowledge. This is particularly problematic for health 

informatics experiments, when safety-critical technologies are evaluated. Poor 

experimental results may misleadingly support or deny the adoption of technologies 

to patients’ detriment. 

1.3.3. Quality Assurance: Guidelines and Scales 

Efforts are being made to improve experimental quality in computer science and 

health informatics. One way has been to publish guidelines and standards in the 

literature. Another way, which is the focus of this research, is to measure quality with 

scales or indexes. Chapter 2 and Chapter 3 further discuss scales and the literature on 

experimental guidelines respectively. Why is it necessary to use measurement 

instruments such as scales and indexes to quantify quality? Could peer review be just 

as adequate? The insufficient number of reviewers educated in informatics and 

experimentation suggests otherwise. Moreover, peer review is itself a form of 

measurement. Unlike peer review, formal measurement of quality explicitly 

addresses reliability and validity. If studies are required to be assessed by referees, 

then it is only logical that the process is accurate. 

Health informatics and computer science face similar challenges in experimentation 

as medical science. Medical controlled experimentation serves as a good example for 

quality assurance (irrespective of health informatics ties to medicine) and 
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demonstrates why formal measurement is necessary for informatics experiments. The 

controlled experiment in medicine is regarded as the most rigorous form of evidence 

and afforded the highest level of credibility. This is internationally recognised in the 

form of “levels of evidence” frameworks, with systematic reviews of controlled trials 

at the top and less rigorous methods below, e.g. observational studies, uncontrolled 

studies and expert opinion. Australia’s National Health and Medical Research 

Council (103), the U.S. Preventive Services Task Force and the U.K. National Health 

Service (104) endorse this model of evidence credibility. Medical controlled trials 

are important, but researchers have been concerned that quality is substandard, even 

to this day (105-107). This occurs despite many controlled trials, great effort, 

manpower, funding and many journals dedicated to trials and biostatistics. Why 

should controlled trials be performed well? Firstly, they hold great weight. There is 

esteem associated with controlled experiments that confers believability of the 

results, which go on to influence patient care. Secondly, they are resource intensive 

involving human participants, time and money. Thirdly, there is an ethical 

responsibility to those who participate. To address quality problems, guidelines and 

scales have been developed. The most well-known guideline is the Consolidated 

Standards Of Reporting Trials (CONSORT) (108), which is endorsed by the ICMJE, 

and is thus the standard for many biomedical journals. It requires investigators to 

complete a checklist of common experimental quality issues before a study may be 

published. Scales have also been developed to measure controlled clinical trial 

quality. Guidelines and scales are quite established for medical trials. In 1995, Moher 

et al published an often-cited review of 25 scales and 9 checklists (109). In 2001, 

Verhagen et al estimated the number of scales to be between 50 and 60 (110). These 

instruments quantify clinical trial quality, and there is empirical evidence that 

applying a structured assessment does lead to improvement in quality (111). 

Computer science and health informatics experimentation would benefit from 

following the example of clinical trial quality assurance. If medicine, with a large 

exposure to experiments, seeks to improve quality, then other experimental sciences 

should pay attention. This is particularly pertinent to health informatics, if it is to be 

viewed as a “medical discipline”. Furthermore, clinical trials of health computing 

tools and their effects on patients and health care providers are increasingly 

commonplace (112). As argued in Chapter 3, adequate scales for measuring the 
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quality of controlled experiments in computer science and health informatics are 

lacking. The primary motivation for this research was to address this gap and 

produce a tested scale. This research may be ahead of its time for computer science 

since experimental evaluation is not yet a mainstay of research and guidelines are 

still in their early stages. Jedlitschka et al (113) commented that the first published 

guideline for the reporting of computing experiments was as recent as 1999 (114). 

However, if the example of medicine is followed further, as has been quoted in the 

computer science literature (76), attention will eventually turn from developing 

guidelines to assessing quality. 

1.3.4. Should Experimentation be a Focus? What about other Methods? 

While experimentation has been argued above to have an important role in computer 

science and health informatics research, it is not without opposition in both fields and 

indeed even in medicine. Moehr argued that controlled trials in health informatics 

cannot accommodate the dynamically changing nature of information systems (115). 

Indeed, the focus on quantitative approaches has been challenged in favour of 

qualitative ones (116, 117). Tichy provided some reasons why computer scientists 

oppose experimentation, such as demonstrations being sufficient as proof (18). In 

health care, McManus offered a similar view that controlled trials should not be the 

gold standard for ensuring quality, giving the example of how products of 

engineering (e.g. aeroplanes) are constructed based on “theories and experience” 

(118). In other words, in engineering at least, if theory is sufficient to construct 

objects, then the construction of such objects is adequate scientific proof. 

The essence of all research methods is their ability to make accurate and confident 

prediction. In a sense, McManus’ view is correct. If adequate blueprints of a 

phenomenon exist, which can predict with confidence outcomes before they occur, 

then analysis, experimental or otherwise, may not be necessary. For example, it can 

be confidently demonstrated that binary search algorithms of sorted lists are 

logarithmic in time, based on an understanding of mathematics. When human beings 

are involved, predicting phenomena becomes more challenging. How confidently do 

research methods predict how humans and information resources/computers interact? 

Experimentation is merely one method to formulate accurate predictions, but it does 

it well. When done properly, it has rigor, meaning that sources of error (or untruth) 
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affects it less than other methods, all things being equal. Phenomena are often subtle 

when studying humans, and rigor helps to identify real effects from other 

explanations. One should ask: how much confidence is inherent in a method for a 

particular research question, and how much confidence is required to make decisions 

and policies about informatics technologies and processes? Non-experimental 

methods may well suffice. 

It is unfortunate that disagreement over research methods occurs. Experiments have 

their place, and arguments in favour of controlled experiments above other methods 

or for other methods over experimentation should be avoided. Strengths and 

weaknesses can be complementary. What is more important is that methods are 

performed to high standards. This research has focussed on controlled experimental 

quality. Other research might seek to improve qualitative methods. All are worthy 

since improving research quality improves confidence of prediction. 

 

1.4. Research Aims and Scope 

The previous section on Research Motivation raised a pivotal issue; the quality of 

controlled experiments in informatics involving human participants is largely ad-hoc, 

largely incomplete, and mechanisms to support this is an open area for research. This 

issue formed the context for the establishment of the first hypothesis. Two broad 

areas were highlighted as considered within health informatics involving human 

participants, namely computer science and health informatics, and hence lead to the 

creation of the second and third hypotheses. Therefore, the primary hypotheses for 

this research were that: 

• A questionnaire instrument that could measure the quality of controlled 

experiments could be defined for experiments in informatics involving human 

participants. 

• The questionnaire instrument as proposed in hypothesis 1 can be applied 

within the domain of computer science. 

• The questionnaire instrument as proposed in hypothesis 1 can be applied 

within the domain of health informatics. 
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In support of these hypotheses, the practical use of the instrument was demonstrated 

via applying it to a set of controlled experiments of clinical decision support systems, 

which is a common area for experimentation to be applied. 

The scope of this research was limited to experimentation in informatics that 

involves human participants. In principle, controlled experiments can be applied to 

other aspects of computing, e.g. hardware design and performance. However, the 

more interesting experiments involve humans. Informatics is a human-centred 

activity. Without humans, there would be no need for information processing or the 

development of tools to aid information processing. The subtle interaction between 

information resources, computers and humans requires careful empirical methods 

because particular sources of error and confounding arise when studying humans, 

e.g. expectation and learning effects. As Weinberg noted in his aptly named text, 

“The Psychology of Computer Programming” (119), and in (120), human variability 

makes for challenging and important research. 

This research should not be confused with one that might focus on evaluation. There 

has been much written about evaluation in computer science and health informatics, 

and this research does not attempt to cover the body of knowledge. This research 

does not aim to improve all evaluation methods or provide an overarching evaluation 

framework for computer science and health informatics (such as the Declaration of 

Innsbruck (54)). Guidelines of evaluation are important, but evaluation is only as 

useful as the proper conduct of underlying methods. In this research, only the 

experimental method is given attention. Moreover, while evaluation and 

experimentation (or other methods, e.g. qualitative) are closely related, their 

purposes may differ. Experimentation is a useful technique to develop scientific 

theory, but further developing scientific theory may not be a goal of a particular 

evaluation exercise. Stakeholders in evaluation may have concerns other than 

scientific theory. Therefore, improving a research method is not necessarily 

synonymous with improving evaluation. 

 

1.5. Research Method 

The outline of the research is shown in Chapter 3, Figure 2 and is explained in detail 

in Chapter 3. The literature on experimental guidelines and particularly on quality 
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measurement instruments was examined from three fields: computer science, health 

informatics and medicine. After a semi-quantitative analysis of the literature, 

experimental concepts were identified and pooled, and a questionnaire was 

developed using psychometric principles. These principles are explained further in 

Chapter 2. The questionnaire was assessed for its reliability and validity in measuring 

experimental quality and underwent further refinement to improve efficiency. 

This research strongly drew upon positivism and measurement principles. Several 

assumptions are made in this research: 

• Quality can be defined, measured and subjected to statistical analysis. 

• Measurement should be precise, accurate and repeatable. 

• Hypothesis testing around concepts of quality is possible. 

This research is also constructivist in nature; a tool has been constructed that solves a 

practical problem. The questionnaire measures and improves the problem of 

experimental quality in informatics. 

Other fields of study were referred to in the conduct of this research. Measurement of 

the obscure has been the forte of psychometrics for over 100 years (121), and quality 

is indeed an obscure phenomenon. Health informatics and computer science have not 

developed theories of measurement that can be used to quantify experimental quality 

as usefully as those from psychometrics. As for referring to medical trial quality 

scores and guidelines, there is a relatively large body of knowledge that may inform 

experimental practice in health informatics and computer science. Potentially, other 

experimental fields could be used, but there are reasons that medicine is useful. 

Firstly, there is the close relationship between health informatics and medicine. 

Secondly, medicine as an exemplary field is as good as any, given its experience 

with experimentation and quality assurance. Thirdly, the comparison of medicine has 

already been made in the computer science literature (122, 123). By referring to other 

experimental fields (another example is psychology (114)), informatics 

experimentation and quality improvement can avoid pitfalls and reinvention of 

wheels. 
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1.6. Contributions to Knowledge 

This research has demonstrated the hypotheses of producing a tested score for 

measuring experimental quality in informatics. The instrument can be used to 

quantify baseline quality and address areas for improvement. While quality 

improvement and quantification has been studied in other experimental fields, this 

has yet to be achieved in computer science and to an adequate degree in health 

informatics. The contribution is important because basic research quality is critical to 

scientific knowledge. Good experimentation may also be beneficial to deciding 

whether health informatics and computer science have satisfactory scientific 

foundations and is, therefore, important from a discipline point of view. 

Quality is a difficult construct to understand. What is quality and how should we 

measure it? This is no trivial subject, as Robert Pirsig discovered (124). Defining and 

measuring vague constructs when they are poorly understood is as important as the 

actual measurement process. This research makes an important contribution in 

examining experimental quality by producing quantitative evidence of the theoretical 

behaviour of quality in informatics experiments. For example, it was found that other 

indicators of research quality (Journal Impact Factor, The Thompson Corporation, 

Stamford, USA) do not correlate well with experimental quality. Research into 

developing quality measurement instruments for informatics experiments is only at 

the beginning. Lord Kelvin said, “To measure is to know,” but to know how to 

measure is even more important. This means that methods to measure quality still 

need development and thought. This research is not only important for developing an 

instrument but also for contributing to the methodology of measuring quality. 

Applying the MICE index to experimental evaluation of clinical decision support 

systems also contributes to knowledge in health informatics. A current review of the 

quality of controlled trials of clinical decision support systems is the product of this 

effort. This is an important step in monitoring the quality of research that leads to 

decision making about health technologies. 

Indirectly, there have been other contributions to computer science and health 

informatics in the conduct of this research. By examining experimentation in health 
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informatics, one must consider to what extent knowledge is shared by its component 

disciplines. Experimentation in health informatics and computer science can exist in 

isolation, but this situation is dangerous. Would it be acceptable for computerisation 

methods in health informatics and computer science to develop in isolation? This 

research tries to bridge the gap between the fields in the context of experimentation, 

and that is an original and important contribution. This research raises questions for 

further research with regards to how research should be reconciled in health (or any 

field of) informatics and computer science. 

As a result of this thesis, the doctoral candidate has created a tool that can be 

integrated as part of the research process for future research within the domains of 

computer science and health informatics. 

 

1.7. Thesis Overview 

This dissertation is organised into six main chapters. This chapter dealt with the 

background of philosophy and motivation and explained how this research fits in the 

fields of computer science and health informatics. Chapter 2 provides a general 

review of psychometric theory and scale construction in order to explain the 

principles of developing the MICE index. Chapter 3 describes the process of 

developing the MICE index, including initial literature search, questionnaire creation 

and reliability and validity testing. Chapter 4 produces and explains the questionnaire 

items, i.e. why items are important and how they should be interpreted and scored. 

Chapter 5 is a review of recent controlled trials of clinical decision support tools and 

demonstrates a use for the MICE index. It also provides further validation data for 

the testing procedures adopted in Chapter 3. The final chapter, six, concludes by 

summarising the results of this research. It also discusses strengths and limitations 

and what future work is needed. 
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Chapter 2: Introduction to Measurement and Scales 

2.1. Introduction 

Chapter 1 explained the multiple paradigms and research methods available to 

informatics scientists. It also explained the positivistic, measurement-oriented basis 

for this research and the need to be multidisciplinary, borrowing methods from other 

quantitative fields. This chapter deals with realising the quantitative approach, using 

methods that have been developed and applied in other scientific disciplines. Most 

importantly, this chapter demonstrates some of the knowledge required for 

demonstrating the first hypothesis of this research: developing a reliable and valid 

quality instrument for human-based informatics controlled experiments. This chapter 

also shows how scale theory can be applied to support the second and third 

hypotheses: scales developed for computer science and health informatics 

experiments. Much of the science behind quantitative research has been established 

in fields such as psychology, sociology and education. However, the measurement of 

experimental quality in informatics demonstrates deficiencies that this dissertation 

has addressed. In that sense, this dissertation also contributes to psychometric 

evaluation as applied to informatics experimentation. These contributions are 

discussed in Chapter 3. 

This chapter describes the general principles of measurement and scale development, 

since it is acknowledged that psychometric methods are not often part of the 

armamentarium of skills and knowledge possessed by informatics researchers. In 

particular, how these methods are used to measure experimental quality is even less 

known by informaticians. However, this chapter is not intended to be at all 

comprehensive of psychometric methods, as there are textbooks dedicated to them 

but rather to highlight concepts important to this doctoral research. 

At this point, a caution regarding the use of the term “scale” should be made. In 

addition to a synonym for level of measurement, scale can refer to a type of 

measurement instrument and the responses of a questionnaire item. All of these 

concepts are discussed further in this chapter. 
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2.2. Importance of Measurement 

The physicist, Lord Kelvin, said of measurement, “To measure is to know.” 

Regardless of whether measurement is qualitative or quantitative, measurement is 

required to scientifically understand the present state of objects and how they may be 

improved. Indeed, measurement of vague constructs can help to develop new ideas 

about them. The measurement of many entities is straightforward, e.g. the distance 

between 2 points or the mass of a rock. However, it is in the measurement of the 

intangible that formal measurement comes into considerable importance. In such 

cases, knowing how to measure is vital. The measurement of quality is an example of 

such intangible entities. For example, one can speak of quality of life, quality of 

service and quality of construction, but the interpretation of quality will differ from 

person to person because it is a subjective measure. With regards to controlled 

experimental quality, this issue is no different. Despite a general understanding of 

experimental quality (though this is not always consistent as described in Chapter 3), 

the problem remains. How then is it possible to transform a subjective entity into an 

objective measurement? The field of psychometrics deals with this quandary. 

 

2.3. Scales and Measurement Theories 

Psychometrics has provided a wealth of knowledge on how to measure that which is 

not directly observable. The use of psychometric techniques has allowed 

measurement of intelligence (IQ scores), scholastic ability, social phenomena and 

mental health (125). In Chapter 3, it will be seen that psychometric methods have 

been applied to measure quality of medical trials. 

2.3.1. Theoretical Models of Experimental Quality 

If measurement is important, then there should be an understanding of what is 

measurement. It was described by the eminent psychologist, Stanley Smith Stevens, 

as “the assignment of numerals to objects or events according to rules.” (126) 

Stevens highlighted the need for explicit understanding of the rules for numerical 

assignment and the mathematical properties of what is being measured. Therefore, 

measurement is as much understanding the nature of the phenomenon being 
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measured, as it is the actual process. Other than the physical sciences (e.g. 

measurement of length and weight), this is no trivial task especially in the social and 

behavioural sciences. Indeed, Stevens’ work regarding the subjective auditory 

sensation of loudness was criticised because “any law purporting to express a 

quantitative relation between sensation intensity and stimulus intensity is not merely 

false but is in fact meaningless unless a meaning can be given to the concept of 

addition as applied to sensation.” (126) This problem is encountered in the 

measurement of informatics experimental quality. What are the rules and 

mathematical properties that govern the measurement of quality? These are largely 

unknown as a theoretical model is mostly ignored (in Chapter 3 it will be seen that 

definitions of experimental quality are frequently unacknowledged.) 

Stevens’ ideas of measurement level can be helpful in constructing theoretical 

models of experimental quality, i.e. nominal, ordinal, interval and ratio (126). 

Nominal level assigns numerals as labels in the same way that letters could be 

applied. Assignment can be to individuals, e.g. the assignment of unique football 

jersey numbers, or of individuals of the same type to a class, e.g. a survey coding 

males as 0 and females as 1. The meaning of the numerals is therefore arbitrary. It is 

however consistent with the definition of measurement since rules are followed; the 

rule is numerals should be unique for individuals or classes. The only admissible 

transformation of nominal data is one-to-one substitution, e.g. labelling males instead 

as 2 (an admissible transformation is a mathematical manipulation that preserves the 

empirical observation (16).) The ordinal level requires that the rules for nominal 

scale be adhered to and that a rank order exists. Examples of ordinal measurement 

include placement in a competition, i.e. first, second, third, etc and severity of 

software failure, i.e. negligible, marginal, critical, catastrophic (16). Because rank 

order pays no attention to the consistency of differences between ranks, means and 

standard deviations are inappropriate. The admissible transformation is any 

monotonic increasing function (thus preserving rank order). Interval level of 

measurement assumes the requirements of nominal and ordinal measurement, that 

the distance between ranks is consistent and that a zero point is arbitrary. 

Temperature in Celsius and Fahrenheit are often-quoted examples. A difference of 1 

degree is consistent in meaning over the temperature scales, and the zero points are 

by convention. Admissible transformations preserve interval equality. Lastly, ratio 
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measurement assumes the requirements of the previous three, except that the zero 

point is not arbitrary, and ratios are equal. With regards to this last criterion, interval 

measurement does not conform to equality of ratios. Multiplication is inadmissible 

for interval data but not for ratio data. For instance, it is incorrect to state that a 

temperature of 40 degrees Celsius today is twice as hot as 20 degrees yesterday. 

After Fahrenheit conversion, 104 degrees is not twice that of 68 degrees. However, it 

is correct to state that 20cm is twice that of 10cm because ratio is preserved when 

converting to inches (7.8” and 3.9”). Admissible transformations therefore preserve 

ratio. Many attributes in physics are ratio, e.g. absolute temperature, periods of time, 

length and mass, as are counts, e.g. income. 

How can a theoretical model of experimental quality be related to level of 

measurement? One suggestion (126) is that the object of measurement should satisfy 

a level in a top to bottom approach. First, therefore, can quality be considered at a 

ratio level? Is there a natural zero point? The answer is unknown, and thus ratio level 

of measurement does not characterise experimental quality. This would have 

implication for ratio description between studies, e.g. instead of stating study A had 

twice the quality of study B, it could only be said that A was greater than B by so 

much. The next level down is interval. Can it be said that the distance between ranks 

is consistent? Again, this is unknown. Hence experimental quality is not strictly 

interval in nature. The next level down is ordinal. Is there a rank order of 

experimental quality? The answer is yes. Intuitively, it is recognisable that some 

experiments are more credible than others because of their rigour and conduct. 

Formally, this is recognised by research organisations, such as the NHMRC and its 

evidence levels (103). According to the top down approach (126), experimental 

quality is theoretically ordinal. 

2.3.2. Experimental Quality as an Interval Measure 

The problem with ordinal measurement is its limited usefulness. The assignment of 

numerals to ordinal states only represents rank. The numerals do not have further 

mathematical properties, i.e. only greater or less than comparisons. Indeed, numerals 

do not need to be used at all, e.g. Likert scales often contain “strongly disagree” to 

“strongly agree” labels. Furthermore, statistically there are limitations with the use of 

means and standard deviations and possibly statistical tests (though this remains in 
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debate (127, 128). For the purpose of measuring experimental quality, it is more 

useful to assume that the difference between ranks is equal and treat scales as 

interval. This assumption appears controversial, but assumptions of interval (or ratio) 

level are made often in health care and social science research. Despite incomplete 

understanding of intelligence (129), interval measurement instruments, such as the 

Weschler Adult Intelligence Scale, are commonly used. It is assumed that a visual 

analog scale for pain has a constant difference (amount of pain) for a fixed length 

between sets of points. When clinical judges assess the appropriateness of 

therapeutic decision making of human and artificial intelligences, there is the 

assumption that skill is interval. In terms of medical experimentation quality, the 

many scales based on interval measurement (109) suggest that the interval 

assumption has been accepted. However, it cannot be known whether quality is truly 

interval. Instead it is more useful for researchers to apply appropriate meaning and 

therefore appropriate mathematical operations. Numbers do not know from where 

they come, as Lord communicated satirically by statistically treating football jersey 

numbers as other than nominal (130). It is up to those applying a measurement 

system to justifiably assign the meaning of jersey numbers. It is, for instance, this 

reason that intelligence is not ratio in nature. While it might be mathematically 

possible to arrive at a zero value for intelligence, this has no meaning to the 

researcher. The issue of meaningful interpretation is discussed further in Chapter 4.  

For experimental quality, it is likely to remain an unresolved topic for debate. 

Though, as Streiner and Norman state in regards to the problem of interval 

assumption applied generally, “from a pragmatic viewpoint, it appears that under 

most circumstances, unless the distribution of scores is severely skewed, one can 

analyse data from rating scales as if they were interval without introducing severe 

bias.” (131) (p. 42) 

2.3.3. Theoretical and Atheoretical Measures 

As DeVellis points out (125) (p. 8), it is important to acknowledge the difference 

between theoretical and atheoretical measures and what is being achieved in 

measurement. Atheoretical measurement captures descriptive data for which there is 

little or no theoretical foundation (the interest is in the response itself), e.g. a 

questionnaire that inquires about a software engineer’s favourite programming 

language (a vendor might want to conduct a survey to assess how they should 
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promote their latest Integrated Development Environment.) However, a measurement 

instrument may explore relationships and thus establish theoretical foundations, e.g. 

favoured programming language as a proxy for skill in maintaining object-oriented 

code. The construct of experimental quality has a theoretical foundation, but it can 

also be measured atheoretically. This doctoral research is concerned with theoretical 

measurement and the theoretical foundations of experiment quality. A related 

theoretical issue is why develop instruments to measure experimental quality. To 

some, the identification of a good experiment is perhaps as obvious as the 

identification of age or gender (concrete and accessible phenomena (125) that do not 

require complex instruments to measure). The belief of this research is that 

experimental quality in informatics is complex, abstract and inaccessible, like 

ethnicity (125). Indeed, the large number of elicited and not always agreeing 

experimental concepts discussed in Chapter 3 is testimony. 

2.3.4. What is a Scale? 

To measure intangible entities, the tool often used is the scale. Scales are instruments 

that purport to measure constructs not easily observable and usually take the form of 

a written questionnaire, form or test. To be useful, scales must demonstrate reliability 

and validity, which are discussed below, and are therefore said to have good 

psychometric properties. Scales contain items, which are the units that record an 

observation. Often these are questions (the item stem) with a set of responses, which 

may be continuous or categorical.  The set of responses is sometimes itself referred 

to as a scale, e.g. “measured on a scale of 1 to 10”. The end result of a scale 

instrument is usually a number quantifying the construct under study. How might 

scales be of use to measure the quality of controlled experiments in informatics? 

They may help: 

• Investigators designing an experiment to avoid pitfalls or acknowledge trade-

offs (a check list essentially). 

• Readers of experimental reports trying to understand whether the results are 

credible/useful, e.g. practitioners seeking evidence and the research 

community. 
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• Journal and conference reviewers trying to assess whether a report is good 

enough for publication (this addresses Tichy’s concern that computer science 

reviewers themselves may not have adequate experience (102).) 

• Meta-analysts trying to weight the results of an experiment according to its 

quality. 

• Quality improvement by providing a tool for quality monitoring. 

2.3.5. Scales vs. Indexes 

The measurement questionnaire of this doctoral research, the MICE index, is strictly 

not a scale (the term scale is often used loosely in general to mean any 

psychometrically developed measurement instrument.) The difference between 

scales and indexes is the former is related to effect while the latter is related to cause. 

Scales (should) contain homogenous items. Each item “taps different aspects of the 

same attribute.” (131) (p. 68) Therefore, items should be related to each other.  In 

other words, the observations recorded by each item are the effect of the 

attribute/construct (the items share a common cause (125) (p. 11).) An anxiety scale 

might have items inquiring about sweatiness, worry and irritability (131) (p. 74). A 

scale measuring employee laziness might include items such as time to complete 

tasks, absenteeism and work errors (132). The opposite is true for indexes. Indexes 

are not homogeneous. Each item determines the attribute rather than being the effect 

of the attribute (the items share a common consequence (125) (p. 11). The Australian 

Consumer Price Index (CPI) is comprised of 11 major household expenditures that 

are not necessarily related to each other, e.g. food, health, education, transportation 

(133). Each item determines (causes) the CPI (the CPI is built up of the items.) An 

index that measures programmer skill might include items such as duration of work 

experience, grades at university and number of large projects completed. 

The recognition of indexes and scales is not merely academic. Measures of 

consistency such as Cronbach’s alpha can be applied to scales but not to indexes. 

Other psychometric techniques that assume homogeneity also cannot be applied, e.g. 

factor analysis (131) (p. 75). Also the effect of individual items is more important to 

indexes than scales. Because scale items (ideally) correlate with each other, the 

absence of one item may not affect the final score from a scale. However, the 
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absence of an item in an index may dramatically affect the final score because it is 

possible that no other items tap similar aspects. Unfortunately, the difference 

between scales and indexes can be seen as a continuum, and there are examples of 

questionnaires that have properties of both (134). Part of the problem is a lack of 

understanding of the theory behind the constructs being measured (for a more in 

depth discussion, see (134).) 

2.3.6. Scales, Indexes and Experimental Quality 

The concept of scales versus indexes has implication in developing questionnaires 

for experimental quality. The issue of whether experimental quality should be 

measured by scale or index is not explicitly mentioned in the literature described in 

Chapter 3. The preceding discussion shows that application of psychometric 

techniques depends on an understanding of how experimental quality (the construct) 

relates to items. For instance, the article by de Keizer and Ammenwerth (135) 

describes the authors’ instrument to measure the quality of health informatics 

evaluation reports. Their instrument contains items, which are scored and summed as 

a final total indicating the quality of the evaluation. However, it is difficult to see 

how the item on introduction clarity and relevant referencing is correlated with 

appropriate methods of data analysis or the item about discussion and generalisability 

of results. In other words, the instrument is not unidimensional. The instrument 

would constitute an index, yet the authors mention testing internal consistency 

(correlation among the items). MICE, on the other hand, is explicitly an index since 

the items determine the quality score and are not necessarily inter-related, e.g. the 

item inquiring about confidence intervals is not related to the one inquiring about 

clarity of experimental rationale. Generally speaking, the importance of items to 

indexes can be considered in terms of the length of indexes and therefore 

comprehensiveness validity (see below for a description of validity.) A short index is 

likely to be affected by the absence of important items since there may be few related 

items. Some might consider the MICE index a long questionnaire, but its 

psychometric properties are improved as a result. The issue of brevity of scales is 

discussed later. 
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2.3.7. Classical Test Theories 

Much psychometric measurement in the last century has been focussed on classical 

test theories (CTT) (136). One of the useful axioms of CTT is that observed 

measurement (X) consists of a true component (T) and an error component (E) (125, 

131, 136-138), i.e. 

X = T + E 

The MICE index observes the component X, but the true value of experimental 

quality is clouded by noise E. The true component T is the actual quality of an 

experiment and is what instruments attempt to measure. Therefore, measurement 

should seek to understand how much error is present. The equation forms the 

foundation of reliability but is not very useful in this form because E is unknown. 

Instead, estimates of error can be achieved through repeated measurement of the 

same construct and assessing inter-item correlations (for unidimensional constructs) 

or test-retest properties (137, 139). 

CTT is described here since it has importance for the reliability assessment of the 

MICE index. There are other measurement theories, which are potentially useful in 

research such as this. Generalisability theory (140) is an extension of CTT and 

allows for more complex modelling of measurement and, in particular, for multiple 

sources of error and determination of their extents, i.e. generalisation of a scale’s 

properties to a wider set of situations (139) (e.g. not just focussing on the particular 

instance of when a test is taken). CTT assumes that there is only one source of error 

as represented by the E term. CTT for example cannot distinguish between the error 

associated with internal consistency of items and error associated with application of 

the same scale on different occasions (test-retest) (139). However, because of its 

technical simplicity, CTT has been more widely adopted (139). 

 

2.4. General Steps in Scale Development 

This section does not attempt to be a comprehensive guide to scale or index 

development but provides an established framework upon which the MICE index 

was created. While there is no single recipe for developing scales, general steps exist. 
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2.4.1. What is the Construct? 

The first step, according to DeVellis (125), is understanding the attribute being 

measured. This is not trivial. Scales come into use because they tap intangible 

attributes. The discussion above about level of measurement of experimental quality 

illustrates non-triviality. Attributes are often based in theory. What theories exist 

about controlled experimental quality in informatics? Informatics has borrowed ideas 

from medical and psychological experimentation. Health informatics experimental 

theory is strongly derived from clinical trial theory. A definition of the attribute is 

most useful (this includes making explicit its breadth or scope.) A definition of 

experimental quality is provided in Chapter 3. Is the attribute to be measured by an 

index or a scale? Is the attribute meaningfully measurable by (or in) the group who 

will use the instrument or will different groups affect responses? DeVellis (125) (p. 

63) provides the example of an item that inquires about a person’s ability to “get 

going” and how this can be influenced by whether such an item is answered by a 

depressed individual or an arthritic one. What level of capability is assumed for a 

scale user to actually complete the scale meaningfully? Thus, a scale should have a 

defined user group. 

2.4.2. Item Pool 

The second step (125) is to generate an item pool. Because instrument development 

is time consuming, effort should be directed at seeing whether existing scales or 

scale items are adequate, i.e. already proven to be rigorous and useful. A new scale is 

justified when no other instruments exist, if other scales are deficient or if a new 

scale is cheaper or easier to apply (131) (p. 8). Deficiencies can include poorly 

defined constructs, poor reliability and untested validity. Previous scales can still be 

reused even if they are not overall adequately reliable or valid, since individual items 

may be sound. Hence reviewing previous scales can help reduce the amount of work 

for item generation. In Chapter 3, it will be seen that instruments to measure 

experimental quality in informatics demonstrate these deficiencies and give 

justification for the MICE index. Initially, an item pool should be highly inclusive. 

This helps comprehensiveness validity, which is explained below. Having many 

items initially also improves the reliability of a scale. This can be shown by the 

Spearman-Brown prophecy formula (131) (p. 71): 
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Figure 1. Effect of number of items on reliability as predicted by the Spearman-Brown formula. 

k is the factor by which the number of items is multiplied (< 1 is a reduction in items.) 

 

In writing new items, attention should be paid to general comprehension (125). This 

includes clarity without unnecessary wordiness, appropriate reading level and 

avoidance of multiple negatives, double-barrelled items, negative wording and other 

ambiguities of written English. Such problems are especially found in questionnaire 

instruments aimed at lay people but can also affect questionnaires to be completed by 

domain specialists. Reading level refers to the number of words and syllables of 

sentences. Long complex sentences are more difficult to understand, although may 

be necessary to explain what an item is seeking. Multiple negatives refers to the use 

of more than one negative expression, e.g. “I do not believe the rationale is unclear,” 

is harder to understand than,  “I believe the rationale is clear.” Double-barrelled 

items convey more than one idea, e.g. “The introduction, method, results and 

discussion are well-written.” What if only one is well-written? This may be 

acceptable if all elements are required to be good. Negatively worded items attempt 

to capture the absence of something rather than its presence (positive wording), e.g. 

“The statistical methods are inappropriate,” versus, “The statistical methods are 

appropriate.” This issue is not as much of a problem with the MICE index as with 

lay-public questionnaires. The benefit of making some items negative is to prevent 
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responders from answering “yes” to everything because of poor cognition or 

motivation (131). This is less likely to affect the MICE index because users will be 

well-educated and motivated (they would not be using the index otherwise.) 

Generally, however, negative wording should be avoided since it is cognitively more 

demanding. Also, simply inversing the polarity does not always inverse meaning, 

e.g. answering “no” to “I feel unwell” is not semantically the same as answering 

“yes” to “I feel well” (131) (p. 64). 

2.4.3. Item Format 

The next step in scale development is consideration of the general format (125). The 

format of scales can be classified according to items’ levels of measurement: 

categorical (nominal) and continuous (ordinal, interval, ratio) (131). Some scales are 

purely categorical and some are purely continuous, but often scales utilise both types 

of items. When considering the general format, attention should be paid to whether 

items best fall into categorical or continuous measurement. Categorical items only 

allow nominal responses such as “yes/no”, “true/false” or placing a check mark. 

Many attributes lie on a continuum; therefore, a completely categorical format 

should be used with caution. The Jadad scale in Appendix A is an example of a 

completely categorical scale. According to Norman and Streiner, problems from 

categorical questions can arise. Firstly, providing only 2 extremes of response can 

cause confusion to users when they wish to respond along a continuum, e.g. for 

Jadad’s (141) item, “Was there a description of withdrawals and dropouts?”, scale 

users may be confused whether a minor (and inadequate) description still counts as a 

description. In contrast, Chalmer’s (142) item provided alternative responses about 

how withdrawals were handled. The second problem relates to reduction in the 

reliability coefficient of a scale when continuous variables are dichotomised (131) (p. 

32). However, for some questions, categorical responses are appropriate, i.e. when 

scale users would find it difficult to make finer discriminations that binary ones (the 

added cognitive burden can introduce error.) Another issue raised with categorical 

responses is how to score them (more precisely, how to treat categorical responses as 

continuous). This is discussed in Chapter 4. 

Continuous formats include direct estimation and comparative methods (131) (p. 32). 

The direct estimation methods require the user to directly indicate their quantitative 
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response on a continuum. The response may be visually quantifiable, such as using a 

line upon which users indicate their answer (pain is often quantified using these so-

called visual analog scales.) The response may be a series of adjectives along a 

continuum, which may be unipolar or bipolar. Unipolar responses increase from none 

or a small amount, e.g. “never”, “rarely”, “sometimes”, “often”, “always”. Bipolar 

scales (Likert scales are a type) have negative, middle and positive levels of 

adjectives, e.g. “strongly disagree”, “disagree”, “neutral”, “agree”, “strongly agree”. 

The Goodman scale in Appendix A, as an example, is comprised mostly of adjectival 

bipolar continuous responses. With comparative methods, the value of an item is 

determined by how the item ranks in comparison to other items. That is, the value is 

not directly obtained from the user. Various techniques are used to rank items. 

Thurstone’s equal-appearing intervals method uses a group of judges (not the actual 

scale users) to rank (pre-calibrate) items. Scale users then agree or disagree with 

items, and the final scale score is computed based on the rank of each item (as 

determined by the judging step). Guttman scaling ranks each item into successively 

higher levels of the attribute. An endorsed item implicitly means that lower items are 

also endorsed. In pre-testing, item values are determined by how well items are 

ranked against each other. Scale users are asked to agree or disagree with items. Both 

types of formats assume unidimensional attributes. Comparative methods are used in 

social and health scales, but they cannot be easily applied to experimental quality 

assessment, especially if quality is not unidimensional. Neither format is used in the 

scales examined in this research. That is, all the experimental quality scales 

discovered in the literature by this research have used categorical, direct estimation 

or mixed (both) formats. 

Continuous items require further consideration (131). One of the main issues in 

designing continuous items is deciding how many response steps should be made 

available to scale users. Many of the scales discovered in this reserach use 3 steps (in 

the style of complete, partial and none) while the Goodman scale uses mainly 5. In 

general measurement, scales often utilise 5 to 7 steps. Miller’s seminal work 

demonstrated that a person’s ability to discriminate often falls between 5 and 9 

categories (143). Hence using 5 to 9 steps has become a de facto standard in scale 

development. Another common issue is the scale user’s interpretation of adjectival 

responses. Words such as “almost always”, “often”, “seldom” and “rarely” 
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demonstrate a wide variance in meaning (131) (p. 40). There is general human 

variation in the interpretation of language. Additionally descriptors can carry 

different meaning depending on the context of a scale and how the scale user is 

placed in that context. In the context of scale users who are assessing the quality of 

controlled experiments, there is variance associated with educational background of 

users. For example, the degree to which a user is familiar with experimental methods 

will influence the interpretation of adjectives such as “suitable”, “moderately 

suitable” and “unsuitable” when applied to experimental design. Where possible, 

objective numerical responses should be used. Though, if this were the case for an 

entire scale, the scale would probably not be necessary; it is in the measurement of 

the subjective that scales come into power. If adjectival continuous responses are 

used, error will be introduced and should be measured as part of reliability testing. A 

third issue in continuous (and categorical) response creation is whether numbers 

should be placed under each step (or category). Schwarz et al (144) found that scale 

users are likely to be influenced by numbers placed with response steps or categories. 

Participants were randomly allocated to complete an 11-point scale for measuring 

personal success in life, with the only difference being the numerals applied (0 to 10 

or -5 to 5) to response adjectives (“not successful at all” to “extremely successful”). 

34% of users answered in the first half of the scale compared to 13% (second group), 

suggesting the negative integers dissuaded users. It is theorised that numerals assist 

in disambiguating response labels. The MICE index uses mainly 7 response steps 

with adjectival and numerical labels. 

The order of questions should also be planned. How questions are answered is 

influenced by previous questions because scale users want to appear consistent and 

also subsequent questions may prompt a scale user’s memory leading to modification 

of earlier questions (131) (p . 41). This has implication for experimental quality 

scales since experiments usually follow a set path (planning, conduct, analysis and 

reporting), and reports often follow a set format (introduction, method, results, 

discussion). Questions should follow similar progressions. For example, an item 

relating to adequacy of discussion should not come before one on bias, as the latter 

may prompt a change in the former. 
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2.4.4. Item Review 

The next step in scale development is review of the initial item pool by experts (125). 

The goals of this activity are to check that each item is relevant to the construct and 

is clear in understanding and to raise further items that have been omitted. Experts 

are those who are knowledgeable in the content that the scale measures. In the case 

of experimental quality, these might be statisticians and academic empirical 

researchers. The decision to accept or reject their advice is ultimately left to the scale 

developer (125), and items are modified accordingly (this is especially important if 

content experts are not be familiar with scale development principles.) 

2.4.5. Score Weights 

The scoring system for the scale should be defined as part of item creation. Each 

item’s response steps or categories are assigned a value, and these values are often 

summed to produce a final score. The scale developer must decide how to use each 

value in the final score. Developers can define each item to have equal contribution 

to a final score (a weighting of 1 for each item). If some items are thought to be more 

important than others in tapping a construct, then higher weights are applied to those 

items. Randomised allocation of treatment in controlled experiments is often 

considered to be an important determinant of quality and is often weighted heavily in 

scales, e.g. the Balas (145) and Chalmers (142) scales in Appendix A. While it 

makes intuitive sense that important items should contribute more heavily to a scale 

score, there are 2 problems. The first is that the weight is (usually) arbitrarily 

assigned rather than based on empirical evidence, e.g. how is it known that 

randomisation is 10 times more important in experimental quality than appropriate 

statistical analysis? The second is that, for long scales, computation of the score 

becomes burdensome. Streiner and Norman suggest that for long enough scales 

(perhaps more than 20 to 40 items) weighting does not significantly affect the rank 

order of scores. They point to empirical evidence showing that long scales remain 

consistent in rank ordering of objects when various weighting schemes are used 

(131) (p. 103-104). They suggest that, “differential weighting contributes relatively 

little, except added complexity for the scorer.” (131) (p. 104) This means the best 

approach to scoring may be to simply sum the item responses, providing the scale 

contains 40 or so items. For this reason and for comprehensiveness validity, the 

MICE index contains sufficient items. 
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2.4.6. Scale Testing and Refinement 

At this point, a draft set of items should be ready for testing. Testing involves 

applying the questionnaire to a sample and assessing the items for reliability and 

validity, which are discussed below. The sample that is chosen should be 

representative of that which the scale will finally measure. In psychometric scales 

that assess human attributes, this involves sampling people to complete 

questionnaires. With experimental quality scales, this involves choosing a sample of 

experiments for assessment. The size of a sample in human psychometric testing was 

recommended by Nunnally to be 300 participants (146) and at least 100 by Friedman 

and Wyatt (138) (p. 126). More accurately, the number of objects on which to test a 

scale is that which will provide high reliability and be representative of a population. 

Larger samples will reduce variability and be more representative. Since reliability is 

also related to the number of items and to the number of observations made on 

objects, sample sizes can be smaller than what might be prescribed. For 

representativeness, it is much more difficult to know and assess whether a sample is 

adequate. In terms of quantitative experimental quality, a representative sample 

might show a wide range of scores (reflecting the range seen in the population), 

which might be normally distributed. If it is known from previous evidence how 

experimental quality scores behave, then a similarly behaving sample could be said 

to be representative. Unfortunately, this is largely unknown for informatics 

experiments. There are also practical limitations on sample sizes, e.g. the population 

from which to choose may be small or limited time and resources that a researcher 

has to draw large samples. The MICE index used a sample size of 58 experimental 

informatics studies, and reliability was high, but representativeness is more difficult 

to gauge. 

When the scale has been applied to a sample of objects, its reliability can be 

statistically analysed. The scale should then be tested formally for its validity. These 

are discussed in the following sections. Once shown to be reliable and valid, the 

length of the scale should be shortened without sacrificing the aforementioned 

properties and gains associated with longer scales. Because CTT assumes that error 

is randomly distributed with a mean of 0 (125, 136), the inclusion of more items 

increases the likelihood of error cancelling each other out for an individual item. On 

the other hand, scales that are too long are mentally taxing and can suffer degraded 
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performance. The Spearman-Brown prophecy formula can give guidance on the 

effect of reducing the number of items on reliability, but the removal of items may 

also change the interpretation of items and the scale. Hence, measures of reliability 

and validity should be recalculated. Various methods can be used to shorten a scale. 

Items that have poor individual reliability over repeated measurement can be 

removed. Items responses that are frequently endorsed (all or most scales users 

answer an item with the same response) do not discriminate well between objects and 

can be removed. The threshold is arbitrary, e.g. 95% of scale users selecting the same 

response. Chapter 3 discusses the methods used to shorten the MICE index from 80 

to 38 items. 

When a reliable and valid instrument is produced and made more efficient, it can be 

used for the purposes for which it was designed. However, development does not 

necessarily end there. Usage by other researchers can stimulate further work to fine-

tune instruments; the ongoing revising of scales in sociology and psychology is 

testament to this. 

 

2.5. Reliability 

Consistency of measurement is fundamental to scale development. If a scale cannot 

produce a similar (or ideally the same) result when measuring the same object under 

the same conditions, the difference must be due to error under the assumptions of 

CTT and positivistic philosophy. Like a ruler suffering from parallax error, if a scale 

is highly erroneous, it is of little use. 

Reliability theory is based on CTT as discussed earlier in this chapter. A useful form 

of reliability is the variance (variability) of an object in relation to total variance, 

since the error component E cannot be directly known. By repeating measurements 

of the same objects, variance can be known, and reliability can be expressed in the 

form of an intraclass correlation coefficient (ICC): 
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where ρ is reliability, σ2
 is variance, and the denominator is the total variance. In the 

case of experimental quality, the studies are objects (in psychometric research of 

people, the objects would be people.) Raters are judges who perform the 

measurement. 

Measurement of studies by judges produces a matrix of observations against objects 

(138) (p. 122) as shown in Table 1 and Table 6 (Chapter 3). Observations can be 

made by different judges (inter-rater reliability) or by single judge at different 

periods in time (test-retest reliability).  

 Observations 

Objects Rater 1 Rater 2 Rater 3 Rater 4 Mean 

A Score A1 Score A2 Score A3 Score A4 A 

B Score B1 Score B2 Score B3 Score B4 B 

C Score C1 Score C2 Score C3 Score C4 C 

D Score D1 Score D2 Score D3 Score D4 D 

Mean R1 R2 R3 R4  

Table 1. Sample objects-by-observations matrix. 

 

From such table data, mean squares can be calculated and used in an analysis of 

variance (ANOVA) table. The output of ANOVA will be variances of studies and 

error. These can be entered into the reliability formula above (alternatively, a mean 

squares formula can be used instead of variance.) For further details on mean squares 

and ANOVA, the reader is advised to consult textbooks on statistical analysis. The 

ICC formula presented above is only one form of the ICC. Further details can be 

found in Shrout and Fleiss’ seminal paper on the subject (147). However, there are 2 

aspects of the ICC that require discussion. Firstly experimental quality scores should 

be consistent with respect to their absolute agreement (whether numerical value is 

consistent over repeated measurement rather than just consistent rank order). This is 

important if the scores will be used against an external criterion, e.g. a cut-off for 

deciding what is acceptable experimental quality. Secondly, the ICC used in this 

research is a two-way model since the rater (the doctoral candidate) evaluated all 

studies. 

The above description of intraclass correlation coefficients is one method of 

calculating reliability coefficients. Another method is the kappa coefficient for 

agreement between judges for dichotomous objects. Another major form of 

reliability is internal consistency, usually measured with Cronbach’s alpha (148). 
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Internal consistency reliability refers to whether items are correlated with each other 

and only applies to homogeneous scales. It cannot be applied to the MICE index. The 

appropriate choice of reliability measure is often a matter of debate (131) (p. 138). It 

depends on the properties of the construct and the resources (time, judges) available 

to generate reliability data. Inter-rater reliability can be usefully applied to the 

assessment of experimental studies but requires considerable effort on the part of a 

few judges to review many experimental reports (or alternatively many judges to 

review fewer reports) in order to achieve stable estimates of reliability. For doctoral 

research, this may not be feasible. On the other hand, test-retest reliability can be less 

resource intense but raises the issue of different interpretation of items by different 

judges. Also, memory effects can be a concern (where judges remember previous 

assessment and simply reiterate rather than performing de novo evaluation). 

Providing a construct is stable over time, test-retest can be a rigorous form of 

reliability (125) (p. 44), (131) (p. 144). The advantages and disadvantages of using 

test-retest reliability for this doctoral research are explored in Chapter 6. 

 

2.6. Validity 

The validity of an instrument refers to whether it measures that which it purports to 

measure. In the physical sciences, validity is often straightforward, e.g. height, 

weight, temperature, velocity are readily observable, and the instruments that 

measure them do not need to undergo formal validity testing. To be more accurate, 

the theories of the constructs are well-understood. For example, the construct of 

height is well-understood. For this reason, a tape measure does not need validation. It 

is not the instrument that is important but rather the construct. In contrast, many 

psychological, social and medical constructs are not readily observable and are not 

fully understood in theory. Instruments that measure intelligence, skill, attitudes and 

many clinical syndromes thus require validation. Similarly, quality of controlled 

experiments is a construct whose theoretical foundation is more complicated than, 

say, temperature. Therefore, quality scales should be formally tested with respect to 

validity. 
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2.6.1. Validity as Hypothesis Testing 

Traditionally, validity has been categorised into face, content, criterion and construct 

types. Streiner and Norman provide a different view of validity that highlights the 

importance of formal assessment (131) (p. 174). Validity is said to be a process of 

hypothesis testing that allows inferences to be made about the objects scored by a 

scale. With a valid scale, one can make more confident inferences about the object, 

e.g. if the scale assesses a study to be of poor quality then in all other aspects of 

quality the study is indeed poor, or if a scale assesses a person to have low 

intelligence then in other tests of intelligence the person would likely do badly. 

Therefore, validity becomes a matter of testing whether hypotheses about scales and 

constructs are supported. The implications for validity testing are that one test is 

insufficient and that, “scale constructors are limited only by their imagination in 

devising experiments to test their hypotheses.” (131) (p. 174) Several hypotheses are 

required to produce enough evidence of validity and to triangulate aspects of 

intangible constructs. Furthermore, when a construct is not understood well, any 

hypothesis test may provide useful information. These points become particularly 

clear when thinking about what construct validity tests to apply to experimental 

quality. This research uses several methods of validation and hypothesis testing. As 

discussed in Chapter 6, not all hypotheses were ideal, and there is room for further 

research. 

2.6.2. Face Validity 

Face validity refers to whether, on face value, the instrument measures what it is 

trying to measure. This is the least stringent of the validity types and is usually all 

that is required for well-understood constructs, e.g. rulers, on face value, measure 

length and not weight. Face value has some potential limitations. While a high 

consensus would be achieved for saying a ruler measures length, a scale measuring 

experimental quality might be interpreted by some as a measure of report quality 

(e.g. conciseness, grammar, use of tables etc) or the experiment itself (e.g. 

appropriate design, control for bias, use of statistical methods etc). Therefore, face 

value requires some consensus on the theory of a construct. For experimental quality 

in informatics (and even in medicine), there remains variability between researchers 

as will be seen in Chapter 3. Related to this is the problem of the scale developers’ 

perspective. If a research group assesses their scale on face value, they are likely to 
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be satisfied because their view of experimental quality will be incorporated into the 

instrument. Also, face value is often assumed rather than empirically shown unlike 

the stringent criterion and construct validities discussed below. Face validity is a 

necessary step, but it is not sufficient to determine validity. Unfortunately for 

experimental quality scales in health informatics, researchers have not taken their 

instruments past presumably face validity (112, 135, 145, 149). The disadvantage of 

more stringent forms is that they require further research effort.  

2.6.3. Content/Comprehensiveness Validity 

Content validity reflects the extent to which a scale captures the breadth of the 

construct and is therefore also called comprehensiveness validity. However, it has 

been described as synonymous with face validity (138) (p. 131). In this dissertation, 

the former definition is used. If a scale is content valid, it will allow greater inferring 

about the objects it measures (131) (p. 175). For example, someone who does well on 

an exam that tests a large number of concepts can be inferred with greater confidence 

to have superior knowledge over a poorer examinee, than if the exam consists of only 

1 question. A risk, therefore, with short scales, is that the inferences that can be made 

may be severely limited. This point is even more important for heterogeneous 

constructs. The breadth of a construct may be well-defined, e.g. the range of physical 

examination skills required of a medical student to perform at an Objective 

Structured Clinical Examination (150), but more often constructs are broad. 

Experimental quality is a broad construct that, as will be seen in Chapter 3, can be 

conceptualised in hundreds of ideas and “practice tips”. As such, scales measuring 

experimental quality should probably also be appropriately lengthy in order to be 

comprehensive. 

2.6.4. Criterion Validity 

Criterion and construct validity are stronger forms of validity because they are 

amenable to formal comparison and hypothesis testing. Criterion validity refers to 

whether a scale correlates well with an external “gold” standard. If an object scores 

highly on the scale, will it also score highly on the gold standard? For continuous 

data, a series of objects can be assessed by both instruments and plotted on a graph 

with each axis representing a scale. Simple correlation can be measured, e.g. Pearson 

product moment correlation. When both instruments are applied to objects at the 
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same time, concurrent (criterion) validity testing is being employed. When the result 

by which the prototype scale will be compared can only be known in the future, 

predictive (criterion) validity is being used. An example of the latter is the use of 

university aptitude tests to predict whether a person will successfully graduate in 

years to come (graduation is the gold standard, which occurs in the future.) 

Depending on the future criterion standard, concurrent validity may be more useful 

in doctoral research where there is a constraint of time. Another important aspect is 

the determination of the gold standard. Criterion validity is useful if a reliable and 

valid gold standard exists. Apart from the issue of why another scale is needed if a 

gold standard already exists, the main problem with criterion validity is when a gold 

standard does not exist. In Chapter 3, it will be seen that no gold standards for 

measuring controlled experimental quality in informatics exist and that more 

research needs to be done, e.g. the use of other standards such as Journal Impact 

Factor (The Thompson Corporation, Stamford, USA). 

2.6.5. Construct Validity 

Construct validity has been traditionally viewed as whether the scale behaves in the 

same fashion as that expected of the construct. In this sense, construct validity is 

classically related to hypothesis testing. Indeed, constructs are also referred to as 

hypothetical constructs when speaking of construct validity. A scale can be tested 

against the hypothetical nature of the construct. If people of higher intelligence are 

more likely to earn a higher income, then a hypothetical test of an intelligence scale 

is that people of high income should have greater scores than those of low income. 

Despite being a strong form of validity testing (138) (p. 132), construct validity can 

suffer from the perplexing problem of testing construct theory and scale property at 

the same time (131) (p. 181). If construct validity is poor, is it because the theory of 

the construct is wrong, the instrument is bad or both? Because constructs are usually 

intangible to begin with (this is precisely why they are measured using scale theory), 

then separating poor construct theory from poor instrument may not be easy. It is for 

this reason that researchers should consider many hypotheses about their constructs, 

especially when theoretical foundations are not fully elucidated. As Streiner and 

Norman state, “There is no one single experiment which can unequivocally prove a 

construct. Construct validation is an on-going process, of learning more about the 

construct, making new predictions, and then testing them.” (131) (p. 180) Because it 
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is not well-understood how experimental quality should behave, several hypotheses 

are needed. 

Construct validity has also been divided into subtypes: convergent and divergent. 

When a construct is hypothesised to highly correlate with related variables, it is said 

to demonstrate convergent validity. When the hypothesis is that of low or no 

correlation with unrelated variables, this is known as divergent validity. Both are 

useful forms as they approach the understanding of constructs from opposite ends 

and provide further triangulation. 

2.6.6. Criterion vs. Construct Validity 

The distinction between criterion and construct validity can be blurred, and this 

supports Streiner and Norman’s interpretation of validity as simply hypothesis 

testing. Indeed, criterion validity can be thought of as testing the following 

hypothesis: people or objects that do well on one scale should also do well on 

another that taps the same attribute. DeVellis goes on about the confusion, stating 

that the same correlation test can be used for both construct and criterion validity 

(125) (p. 53). If a difference between criterion and construct validity must be made, 

then it is perhaps one of intent, according to DeVellis. Construct validity correlations 

intend to provide evidence for explaining theoretical foundation. Criterion validity 

correlations do not. For instance, it might be observed that a scale measuring the 

complexity of a graphical user interface correlates with a learner’s time to complete a 

task. Theory informs that humans perform less well when confronted by complexity. 

Thus, one would hypothesise, based on our knowledge of human cognition, that the 

scale should correlate with different levels of complexity. This would be a test for 

construct validity. On the other hand, the scale could be tested for its ability to 

predict a person’s task completion time without the understanding of why (i.e. 

cognitive limits). All that needs to be shown is that interfaces that are deemed simple 

by the scale are associated with short times, and complex interfaces with long times, 

and that this was the same finding using a gold standard. This would be a test for 

criterion validity. Yet, the battery of tests could be the same; in both cases, the scale 

is applied to a set of simple and complex interfaces (complexity determined by 

something or someone else), and the performance times are measured. The method 

and results could be the same, but one approach is based on theoretical ideas of how 
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complexity and cognition behave and how the scale should subsequently behave; the 

other does not. It is a subtle distinction. This issue is raised here because the known-

groups method used in Chapter 3 can be thought of as a form of either criterion or 

construct validity. However, the distinction does not need to be overemphasised. 

Despite the overlap between criterion and construct validity and the overarching 

view that all validity is basically hypothesis testing, the different types of validity 

still largely feature in the literature and are likely to do so for some time. Therefore, 

this thesis adheres to the terminology but recognises the differences of interpretation. 

 

2.7. Discussion 

From this chapter it can be seen that there is considerable theory behind the 

development and testing of scales and indexes. This chapter is not meant to be a 

comprehensive review of psychometric scale theory but to highlight areas of 

background knowledge required for interpretation of the methods used and results 

produced for this doctoral research. The reader is encouraged to view seminal works 

for further instruction, e.g. Nunnally’s “Psychometric Theory” (146). Instruments 

that attempt to measure empirical research quality must consider psychometric 

theory. In support of the research hypotheses, this research had to apply 

measurement and scale theories established in other domains. Unfortunately, Chapter 

3 will show that this has not sufficiently been the case for health informatics scores. 

In computer science experimentation, instruments have yet to be developed; 

eventually they too must consider the theories presented here. 

This chapter also raises a related and broader issue in informatics. Formal scale 

development is important for researchers measuring intangible constructs in 

informatics. This issue occurs commonly in health informatics and computer science 

research but is probably under-recognised. When measuring vague attributes, such as 

user satisfaction with a computer programme, researchers should be aware that this is 

a measurement problem. A formal approach to measurement is required and this is 

why psychometric theory exists. How often do informatics researchers realise the 

need for formal measurement and how often are proven scales re-used? 
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There are many paths for the informatics scale developer to take, and few in 

informatics are suitably educated. Moreover, there is debate among psychometricians 

and mathematicians on correct use of methods within the field of measurement itself. 

Therefore, there is likely to be disagreement on the methods used in informatics and 

in this doctoral research. This should not discourage adoption of formal theory, lest 

the alternative is unscientific measurement. 
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Chapter 3: Development of the MICE Index 

3.1. Overview of Development 

The first hypothesis of this research was to develop a useful instrument for 

measuring the quality of human-based experiments in informatics. The second and 

third hypotheses were to develop such a tool for use within computer science and 

health informatics. This chapter describes the development and testing processes 

adopted to demonstrate the 3 hypotheses and represents the main work of the 

doctoral research. 

The MICE index was developed following psychometric theories and the general 

steps of scale creation described in the previous chapter. The development stages 

were literature search, item generation, reliability testing, validity testing and item 

reduction. After questionnaire items were reduced, the reliability and validity tests 

were repeated, and the MICE index was deemed suitable and ready for application. 

The overall process is represented in Figure 2. 

The literature search, from the fields of computer science, health informatics and 

medicine, informed what previous scales existed, what experimental concepts are 

considered important to quality and the definition of purpose and scope of the index. 

This body of knowledge of experimental quality and quality improvement was the 

basis for understanding the construct and generating an item pool. The items were 

written following principles described in Chapter 2 and underwent expert review. 

This produced an 80-item questionnaire (MICE-80). The MICE-80 version was 

tested for reliability using the test-retest method and formally tested for validity 

using criterion and construct validity methods. Parametric and nonparametric 

inference tests and correlational tests were applied to validity tests. When reliability 

and validity were demonstrated, the items were reduced to 38 according to a set of 

criteria, and the reliability and validity tests were repeated. This is the preferred 

MICE index (MICE-38). 
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Figure 2. Overview of the development and testing of the MICE index. 

Heavily outlined boxes are described in further detail in this chapter.
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3.2. Literature Review 

The first purpose of the literature review was examine what scales existed for 

measuring the quality of controlled experiments in informatics. As discussed in 

Chapter 2, one should seek whether adequate instruments exist and whether they 

should be improved. 

The second purpose of the review was to determine what issues and concepts in 

controlled experimentation are considered important or that are frequently performed 

inadequately. The term concept is used broadly in this dissertation to mean 

principles, practice tips and pitfalls in the conduct and reporting of controlled 

experiments. 

The third purpose was to assist in defining the purpose and scope of the new scale. 

Related to this was the need to define as much as possible what is meant by 

experimental quality. 

3.2.1. Search Strategy 

There were 2 arms to the literature search strategy. The left arm, as indicated in 

Figure 2, looked for scales from the health informatics, computer science and 

medical literature. The right arm looked for guidelines on experimental conduct in 

the health informatics and computer science literature. Both arms contributed to the 

generation of important experimental concepts. The search for scales was focussed 

on the computer science and health informatics literature since a scale’s scope must 

be appropriate to the setting. While there are many medical scales for measuring 

clinical trial quality, they cannot be applied to health informatics and, indeed, 

informatics in general because a scale’s scope and setting must be predefined. The 

rationale for examining some scales from clinical trial literature was to provide 

examples of scale development on which to base an informatics scale. Similarly, 

while there is wealth of literature on experimental conduct from a variety of 

disciplines, e.g. sociology, medicine and mathematics, the purpose of examining 

experimental guidelines from informatics was to understand how the setting of 

informatics affects the conduct of experiments. Hence it was appropriate to examine 

the experimental literature from informatics. However, there was, of course, some 

overlap of issues common to all experimental disciplines. 
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With regards to the computer science literature, the ACM Digital Library (ACM, 

New York, USA) and IEEE Xplore (IEEE, New York, USA) bibliographic databases 

were searched with the following search term strategies: “controlled experiment” 

AND “guideline”, “controlled experiment” AND “score”, “controlled experiment” 

AND “scale”, “controlled experiment” AND “quality”, “controlled experiment” 

AND “framework”, “experiment” AND “guideline”, “experiment” AND “score”, 

“experiment” AND “scale”, “experiment” AND “quality”, “experiment” AND 

“framework”. Where more than 200 matches were returned, the first 200 most 

relevant articles (according to the search engines) were selected for examination. In 

addition, the online search function of the journal Empirical Software Engineering 

was searched with the terms “controlled experiment”, “experiment”, “guideline”, 

“scale” and “score” (individual terms). 

It is noteworthy that the term “controlled experiment” is not used consistently as a 

keyword in the ACM Digital Library and IEEE Xplore databases. Far fewer matches 

were returned when using “controlled experiment” versus “experiment”. Since 

“experiment” can be used to define a variety of experimental studies, it was expected 

that many of matches would not be relevant to controlled experimentation. However, 

reading through returned articles revealed that some were indeed reports of 

controlled experiments but not retrieved using “controlled experiment”. This issue of 

inconsistent terminology when reporting controlled experiments has been noted in 

the computer science literature (113). 

With regards to the health informatics literature, publication sources were selected by 

2 methods: health informatics journals listed in ISI Web of Knowledge Journal 

Citation Reports (The Thompson Corporation, Stamford, USA); journals/conferences 

listed in PubMed (The US National Library of Medicine, Bethesda, USA) retrieved 

by using the Search Journals function and entering the keywords of “health 

informatics” and “medical informatics”. Publication sources were then searched 

using the journal’s online search interfaces and/or with PubMed’s search function. 

The following terms were used: “trial”, “experiment”, “scale”, “score”, “guideline”. 

Table 2 shows the list of health informatics publication sources. 
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AMIA Annual Fall Symposium Proceedings 

AMIA Annual Symposium Proceedings 

Artificial Intelligence in Medicine 

BMC Medical Informatics and Decision Making 

Computer Methods and Programs in Biomedicine (including the former Computer Programs in 

Biomedicine) 

Computers in Biology and Medicine 

Computers Informatics Nursing (including the former Computers in Nursing) 

Critical Reviews in Medical Informatics 

Health Communication and Informatics 

Health Informatics Journal 

Health Information Systems and Telemedicine 

International Journal of Biomedical Computing 

International Journal of Clinical Monitoring and Computing 

International Journal of Medical Informatics 

Journal of Biomedical Informatics (including the former Computers and Biomedical Research) 

Journal of Clinical Monitoring and Computing 

Journal of Medical Systems 

Journal of Telemedicine and Telecare 

Journal of the American Medical Informatics Association 

MD Computing 

Medical and Biological Engineering and Computing 

Medical Decision Making 

Medical Informatics 

Medical Informatics and the Internet in Medicine 

Medinfo 

Methods of Information in Medicine (including supplements) 

Proceedings of the Annual Symposium on Computer Applications in Medical Care 

Studies in Health Technology and Informatics 

Telemedicine Journal and E-health 

Table 2. Health informatics journal and conference proceedings searched in the literature 

review. 

 

The PubMed database was also used to retrieve clinical trial quality scales but in a 

less rigorous manner than the computing and health informatics searches. This was 

intended to provide examples of controlled experiment quality scales, rather than to 

have been an exhaustive search. The main source of clinical trial scales was the 

frequently cited review by Moher et al, which examined 25 such scales (109). These 

scales were classified as “generic” and “specific”. The generic scales were applicable 

to all settings of clinical trials and were thus used as examples for the MICE index. 

11 of the 13 published, generic scales were retrieved as full-text manuscripts. One 

was not in English; one was unobtainable. The well-known CONSORT guidelines 

and another paper from the PubMed search were also chosen. 

The reference sections of articles returned by the search processes were also 

examined manually for further sources. In addition to journals and conference 

proceedings, frequently cited textbooks in computing and health informatics 



 57

experimentation were consulted (138, 151, 152). All literature sources were in 

English and searches performed in English. 

The literature search yielded 40 publications that were used as the basis of the MICE 

index. 24 computing, 3 health informatics and 13 medical sources were analysed for 

information relating to experimental concepts, quality and/or scale items. Table 3 

shows the list of sources. 

A second literature review was performed just prior to the commencement of this 

dissertation in order to assess whether the state of informatics scales had changed. 

This yielded another health informatics scale (135, 153). By a manual examination of 

the reference section of (135), another health informatics scale was discovered (149). 

Both scales were published prior to the first literature review and were missed using 

the bibliographic search strategy. Both scales were still examined and are discussed 

below with the results of the first literature review. 

3.2.2. Analysis of Literature 

When health informatics literature is examined, the overlap between it and medicine, 

in terms of experimental methodology, becomes clear and reaffirms the observations 

stated in Chapter 1 about the influence of biomedicine. Anecdotally, many evaluation 

researchers in health informatics have backgrounds in clinical trials and other clinical 

evaluation methodologies, such as case control and cohort studies. Therefore, much 

of health informatics methodology is based on clinical methodology. The literature 

on health informatics scales is testament to this, as discussed later. This may be a 

reason why few health informatics sources were found using the literature search 

strategy. Perhaps it is assumed or expected that health informatics experimenters 

have received adequate training through biomedical education. For instance, no step-

by-step guides on experimentation were found in journals or conference proceedings, 

while several were discovered in computer science (15, 20-24). Despite the large 

overlap, it is still important to remember that there are issues in that appear 

particularly often in health informatics experimentation, such as contamination and 

difficulty of blinding. Health informatics experimentation is not an exact clone of 

clinical experimentation. 
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Primary author Year Publication type Information type 

Computer science 

Basili V (154) 1986 Journal paper Guideline 

Basili V (155) 1999 Journal paper Guideline 

Boudreau M (156) 2001 Journal paper Guideline 

Brooks R (157) 1980 Journal paper Guideline 

Fenton N (16) 1994 Journal paper Guideline 

Host M (158) 2005 Conference paper Guideline 

Jarvenpaa S (159) 1985 Journal paper Guideline 

Jedlitschka A (113) 2004 Conference paper Guideline 

Juristo N (151) 2001 Textbook Guideline 

Juristo N (160) 2004 Journal paper Guideline 

Kitchenham B (122) 2002 Journal paper Guideline 

Kitchenham B (161) 2006 Conference paper Guideline 

Lott C (162) 1996 Journal paper Guideline 

Moher T (100) 1981 Conference paper Guideline 

Moher T (80) 1982 Journal paper Guideline 

Pfleeger S (163) 1995 Journal paper Guideline 

Pfleeger S (164) 1995 Journal paper Guideline 

Pfleeger S (165) 1995 Journal paper Guideline 

Pfleeger S (166) 1995 Journal paper Guideline 

Sadler C (123) 1996 Journal paper Guideline 

Singer J (114) 1999 Conference paper Guideline 

Sjoberg D (94) 2002 Conference paper Guideline 

Weinberg (119) 1998 Textbook Guideline 

Wohlin C (152) 2000 Textbook Guideline 

Health informatics 

Balas E (145) 1995 Journal paper Scale 

Johnston M (167) 1994 Journal paper Scale 

Friedman C (138) 2006 Textbook Guideline 

Medicine 

Altman D (108) 2001 Journal paper Guideline 

Chalmers I (168) 1990 Journal paper Scale 

Chalmers T (142) 1981 Journal paper Scale 

Cho M (169) 1994 Journal paper Scale 

Colditz G (170) 1989 Journal paper Scale 

Detsky A (171) 1992 Journal paper Scale 

Evans M (172) 1985 Journal paper Scale 

Goodman S (173) 1994 Journal paper Scale 

Imperiale T (174) 1990 Journal paper Scale 

Jadad A (141) 1996 Journal paper Scale 

Kleijnen J (175) 1991 Journal paper Scale 

Reisch J (176) 1989 Journal paper Scale 

Verhagen A (177) 1998 Journal paper Scale 

Table 3. List of sources critically analysed as the basis of the MICE index. 

 

The literature search in computer science shows that experimentation is mostly 

focussed on software engineering methodology, i.e. using experimentation to assess 

the methods used to create software. There are fewer experiments on the benefits of 

information and computing technologies on human activities compared to health 

informatics, where most experimentation is focussed on summative assessment of 
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health worker performance or patient outcomes. Most guidelines in computing 

experimentation are found in software engineering. 

When reviewing health informatics experimentation, it is observed that health 

informatics is much more closely related to medicine than computer science. The 

historical and cultural reasons were discussed in Chapter 1. A good example of 

where health informatics is closer to medicine is in the principle of analysis by 

intention to treat. The concept does not exist in computing experimentation, since it 

is originally a medical idea. It has been adopted in health informatics as “analysis by 

intention to provide information.” (138) (p.217) The points of intention to treat 

analysis are that bias is not introduced, and interventions are seen in their “average 

light”. People may take their new medication/use the new information resource as 

directed or not, and this is the real effect investigators should be measuring. Indeed, 

as Henneckens et al argue, investigators actually are assessing the benefit of the 

offering of an intervention because it is on this basis that randomisation occurs (178) 

(p. 207) rather than on the basis of full treatment compliance. They go as far to state, 

“Once randomized, always analyzed.” (p. 207). However, the issue of how to address 

the effect of treatment compliance on data analysis is the opposite in computer 

science, i.e. consider data from non-compliant subjects as invalid and remove them 

from analysis. Not surprisingly, effect sizes can be inflated or become statistically 

significant, e.g. (179, 180). Another example is the strong desirability for random 

allocation that has been transferred from medicine to health informatics. The 

computer science experimental guidelines are less strenuous in their endorsement of 

random assignment. 

3.2.3. Problems with Informatics Scales 

Scales for measuring controlled experimental quality in informatics are few. There 

are no published scales in the computer science literature, and the handful from 

health informatics has methodological problems. Balas et al (145) published a 20-

item scale in 1995 to score “heath services research trials” between 0-100 points (see 

Appendix A.) It is unclear what was considered a health service but information 

systems were included under a criterion of “information management intervention”. 

Being based on clinical trial method literature, it was undifferentiated from pure 

clinical trial scales. Experimental quality was undefined. 
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The scale’s reliability was reported as Cohen’s kappa (0.94) between two raters’ final 

scores on a sample of studies. The authors cited Cohen’s original paper (181). 

However, kappa, as originally described, assumes nominal data (46-48). 

Alternatively, weighted kappa can be used for discrete interval data and ordinal data. 

How Balas et al applied kappa to the final scores of the two raters was unclear and 

casts doubt on their scale’s reliability. Validity was untested. 

Balas et al’s scoring scheme is hard to justify and completely arbitrary. For example, 

the item inquiring about randomisation can award a maximum of 10 points (if central 

or computerised randomisation was used) while most other items award a maximum 

of 2-5 points. This reflects the importance of randomisation, but on what empirical 

basis was this weight chosen? The rationale for the point spread between adjacent 

responses is also difficult to understand. For example, the item inquiring about 

“Definition of Sampling” requires 5 points to be given if “Entry/rejection criteria and 

population represented”, 2 points given if “One of the above”, and 0 points if “None 

of the above”. There is distance of 3 points between two criteria stated and one 

stated, but there is a distance of 2 points between one and none. Different items have 

different spreads. Referring to Appendix A, one can see a range of different spreads: 

0-1-2, 0-1-3, 0-2-3, 0-2-5, 0-3-10. In general, scales assume that the point difference 

between each adjacent response is equal (182) (p. 68). It is already a significant 

assumption that distance between responses is interval. There should be a good 

(empirical) rationale for deviating from assuming equal point spreads. 

An instrument was created by McMaster University for reviewing the quality of 

summative trials of clinical decision support systems and was used in 3 reviews 

published in 1994, 1998 and 2005 (112, 167, 183). It was a 5-item scale with a 

possible score of 0 to 10. The authors did not describe how the scale was created i.e. 

from what sources, their definition of experimental quality, reliability and validity 

testing etc. Its soundness as a measurement tool is unclear. The review series again 

indicates the strong influence medicine has on health informatics evaluation and 

experimentation, as the authors were based in university medical departments. 

The scale by Van der Loo (149) was not detected as part of the initial literature 

search and therefore not incorporated into the development of the MICE index. Van 

der Loo used a 19-item instrument to assess a variety of health informatics evaluation 
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study designs (such as before-after, time series and fully randomised controlled 

experiments). It was based on principles of clinical trial conduct and, like the 

McMaster scale, was not developed or tested according to psychometric theory or 

techniques. Therefore, the discovery of this scale at the second literature review did 

not invalidate the need for a reliable and valid scale for informatics controlled 

experiments. 

The second scale not detected by the initial search was created by De Keizer and 

Ammenwerth (135, 153). They developed a scale to rate the quality of all types of 

evaluation studies, such as qualitative case studies and longitudinal descriptive 

studies (153), not just controlled experiments. The scale contains 10 items, each 

scored from 0 to 2. It was based on mostly clinical literature, e.g. CONSORT. The 

items inquire about high-level properties of evaluation studies. Their instrument did 

not influence the need for the MICE index, since their focus is not on 

experimentation per se. Furthermore, four main problems exist with this scale. 

The first problem was that the definition of quality was confused and not highly 

useful because of the broad scope of the scale. Quality was defined as report quality 

rather than of the study itself (184), yet some items addressed methodological 

appropriateness, e.g. “Methods seem adequate to answer study questions”. Final 

scores may be difficult to interpret and hard to use. Evaluative studies performed 

appropriately within the confines of their possible rigor could have the same score 

but are of different strengths in terms of establishing cause and effect. There is, by 

design, less confidence in the results of an uncontrolled before-after study than a 

randomised controlled trial, yet both could have the same score. If keeping to a 

definition of report quality, a high score tells the reader the paper has been written 

well. However, a more informative use is the assessment of confidence of prediction 

and strength of results. This is particularly important if quality is to be used in meta-

analysis. 

This problem relates to defining quality as merely the clarity of the study report. This 

is indeed important since an unclear report makes interpreting the results of a study 

difficult. However, alone, it is insufficient in determining the usefulness (quality) of 

a study. A method may be explained well but completely wrong insofar as testing a 

hypothesis. Therefore, a scale that measures report quality, especially one that 
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encompasses all types of evaluative studies, is difficult to apply with meaningful 

results. 

The second problem relates to the item, “Any comparison that is done between 

groups is fair.” As the authors indicate (184), not every evaluative study may 

compare groups, therefore the item could become impossible to answer. It is unclear 

how to deal with this situation with regards to scoring. 

The third problem is possibly reliability. Kappa was measured between 2 raters for 

each item using 9 studies (range = 0.53 - 1, averaged kappa over 10 items = 0.87). It 

is unclear whether unweighted or weighted kappa was used. Only the latter can be 

used for ordinal or discrete interval data. Finally, testing 9 studies was probably too 

few for a confident estimate of reliability (138) (p. 126). 

The fourth problem is validity, which not tested; this was acknowledged by the 

authors (184). 

In summary, no scales for measuring the quality of controlled experiments exist in 

the computer science literature, and those in the health informatics literature are 

inadequate due to psychometric problems. Formal validity testing is a glaring 

omission. 

3.2.4. Definition of Experimental Quality and Scope 

The definition of experimental quality was derived from the literature sources. There 

was little consensus on what aspects of an experiment determine good quality. Even 

among the medical scales, less than 25% defined what quality meant (109). Moher et 

al put forward their definition as “the confidence that the trial design, conduct, and 

analysis has minimized or avoided biases in its treatment comparisons.” (109) 

Furthermore, they distinguished between the quality of the method and the quality of 

the study report. The definition used for the development of the MICE index was that 

an experiment should have high internal and high external validity (a good 

experiment affords confident prediction), and its report should be comprehensible. 

Put simply, an experiment’s results should be correct, useful to the reader’s own 

situation and understandable. This definition is similar to Moher et al’s but considers 

the importance of good reporting. An experiment may be performed well, but if it is 

poorly communicated then the results become questionable or useless, and 
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replication of the study becomes difficult or impossible. This definition was used to 

pool experimental concepts and develop questionnaire items. 

The scope of the scale was defined a priori. The MICE index is defined for 

controlled experiments in computer science and health informatics and that involve 

human subjects. It can be used for summative and formative experiments. It cannot 

be used for other empirical study designs, e.g. case studies. Control groups can be 

concurrent or historical, within subject (crossover) or between subjects. Treatments 

can be compared to no treatment or other standards and may consist of informatics 

objects (such as information systems or paper-based tools) or human-based methods 

(such as software and interface development). Potentially, any human-based 

informatics experiments can be assessed with the MICE index, e.g. whether a clinical 

information system improves diagnostic ability, protocol adherence or patient or 

resource outcomes; whether groups or individuals are better at detecting software 

faults; whether computer-supported collaborative work improves the performance of 

workers; whether the format of presented information affects decision making. The 

index requires users to have knowledge of experimental design, statistical methods 

and informatics methods and tools. Users will most likely be empirical researchers in 

informatics. 

 

3.3. Item Generation 

3.3.1. Pooling of Items and Concepts 

The 40 publication sources from the first literature search were read and summarised 

to pool pre-existing items and experimental concepts. Some of the sources are 

reproduced in Appendix A to demonstrate their content and format. As each source 

was summarised, experimental concepts were listed in a spreadsheet (Microsoft 

Excel 2000, Microsoft, Seattle, USA) against the source. Some concepts were similar 

in nature or expressed in synonymous ways by different sources. Some concepts 

were related by different levels of abstraction, i.e. a concept could be hierarchical to 

another, e.g. appropriate use of statistical methods subsumes use of confidence 

levels. When developing the spreadsheet table, sources were deemed to support a 

concept if the source directly reiterated it or the wording had the same semantic 

meaning. Hierarchical concepts were kept as individual concepts or else the problem 



 64

of all concepts being subsumed by a few with loss of detail would have occurred. 

The issue of the level of abstraction of guidelines has been noted by Kitchenham et al 

(122). As each source was summarised, concepts were added to the table or sources 

were entered against already existing concepts. The process of adding concepts was 

permissive, rather than to force concepts together or force sources to support an 

individual concept. The rationale was that this stage was not meant to be strict and 

quantitative but rather to brainstorm the area of experimental quality and gather an 

informal consensus. This would help to establish content validity. After the 40
th

 

source was analysed, the summaries were analysed again to ensure that concepts 

added after earlier sources were checked against them. Each source was checked 

against each concept and each concept checked against each source. The data is 

shown in Appendix B. Concepts are listed under broad experimental sections 

(Introduction, Method, Study Design etc). Some organisation and re-wording of 

concepts were required to clarify meaning. Therefore, concepts are not necessarily 

taken verbatim. However, some concepts are almost identical to the original source. 

Over 200 experimental concepts were produced. Some are not highly distinct from 

others, and the decision that a concept should exist separately from others or that a 

concept was endorsed by a source was subjective. This stage also permitted inclusion 

of concepts that were clearly not related to quality as defined, since the decision to 

include a concept as a questionnaire item came later. For instance, some researchers 

feel it is necessary to give feedback to participants about how they performed at the 

end of an experiment. This concept is unlikely to affect quality as defined for the 

MICE index. 

3.3.2. Selection of Experimental Concepts 

The permissive nature of the item and concept pooling provided a wide view of 

experimentation in computer science, health informatics and medicine. Not all 

concepts were included in the MICE questionnaire. 

The choice of concepts to be used for item questions was based on several subjective 

criteria. The frequency of endorsement of concepts by sources was done by visual 

approximation of the spreadsheet (“eyeballing”), rather than using a frequency 

distribution, because it was acknowledged that there is ambiguity in wording and 

hierarchy of concepts. Precise counts therefore were unjustified. Important selection 
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criteria were the doctoral candidate’s knowledge of experimental theory and 

evidence of experimental conduct on quality, e.g. while allocation concealment is not 

recognised specifically in computer science guidelines, there is evidence that it can 

affect the credibility of results (see Chapter 4.) The choice of concepts was also 

based on the definitions of quality and scope for the MICE index. For instance, 

ethical issues, while important for other reasons, do not impact on experimental 

quality as defined. Many of the medical concepts were not within the scope of the 

index, e.g. use of identical placebo and measuring the bioavailability of treatments 

(concepts related to drug therapies). For some concepts, it was also impossible to 

establish compliance or the outcomes. For example, Wohlin recommends accounting 

for random irrelevancies that disturb the experimental environment (152) (p. 68). 

This could affect internal validity but how could the index user judge this concept? If 

there were unexpected events that affected validity, then the study could be marked 

down. If there were not any such events, was it because none really occurred or 

because the authors neglected to report them? This is similar to the concept of 

attempting to record side effects of a treatment. If no information about side effects is 

reported, the case of absent side effects cannot be distinguished from side effects not 

being monitored. Thus, from a quality point of view, it might be good that no side 

effects occurred but bad that the investigators did not try to monitor them. Another 

example is trying to avoid participants who are biased for or against a treatment. This 

cannot be known as it involves asking participants, who would presumably indicate 

neutrality. Hence these examples show that while certain ideas in experimental 

conduct and quality are important, not all are amenable to translation into scale 

items. Since judgements are required from the index user, concepts translated into 

questionnaire items must be “answerable”. 

3.3.3. Item Writing and Format 

The translation of experimental concepts to item questions and format followed the 

general principles in Chapter 2. 

Some items were necessarily dichotomous, such as whether a statistician was 

consulted and presence of unit of analysis error. Most items were recognised to be 

continuous. Most of the responses were treated on a 7-point scale. While there is no 

direct evidence that experimental quality can be distinguished at any number of 
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levels, Miller’s work provides some basis for using 7 response steps of 

discrimination (143). 

Items were written at an appropriate reading level for the intended users. Care was 

taken to minimise ambiguity of items, including providing information where needed 

to answer items. 

Either a unipolar or bipolar format could have been used. A unipolar format was 

chosen to reflect “amounts” of quality (low to high). However, Likert-type formats, 

where users agree or disagree with declarative statements on quality, might be 

equivalent; this is yet unknown. 

3.3.4. Item Scoring 

The scoring system was devised in the fashion of Cho (169). Each item’s value is 

determined by the response alternative. The lowest alternative (indicating poor 

quality) has a value of 0, and each successive alternative (indicating better quality) is 

incremented by 1. The maximum value for an item is between 1 and 6. Inapplicable 

items are not scored. The scale’s final score is calculated as the total of all the item 

values divided by the total possible score (i.e. excluding the NA items). This gives a 

final score of between 0 and 1 regardless of item applicability and allows comparison 

between different experiments. All items are equally weighted. The rationale for 

equal weighting is two-fold. Firstly, there is not enough empirical basis for the 

degree to which certain experimental mistakes affect the quality (credibility) of 

results. As mentioned above, on what basis did Balas decide that randomisation 

should have an influence on the final score several times that of other items? It 

appears that weighting for the Balas scale and quality scales in general is mostly 

arbitrary. Secondly, as described in Chapter 2, sufficiently large scales are less 

affected by weighting. 

It was defined for some items that if a study report provided insufficient information 

to be able to answer the item, quality would be considered as poor. For instance, 

outcome assessors should be blinded to whether an outcome comes from a treatment 

or control group. If the study authors do not describe assessor blinding, it is 

equivalent to not having been done, even if it was actually performed in the 

experiment but simply neglected in the report. This is consistent with the definition 
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of experimental quality, since the lack of certain important information makes 

findings questionable. 

Another related issue was how to consider study reports that cite further information 

about an experiment in other publications. This often happens when measurement 

methods are described in another paper and the main experimental report cites that 

paper instead of repeating those results. It was defined a priori that a paper should be 

a complete enough account of an experiment to allow readers to judge whether the 

findings are credible and applicable. Hence the MICE index would still penalise a 

report even if methodological issues were better described in other reports. 

3.3.5. Item Review 

An early draft of scale items was reviewed by a statistician experienced in 

experimentation. The outcomes of this process were subjective recommendations by 

the expert. Some items were modified (data not shown.) 

3.3.6. MICE-80 Questionnaire 

At the end of item creation, an initial prototype questionnaire containing 80 items 

was ready for reliability and validity tests. This is the MICE-80 index. The MICE-38 

index is the more efficient version and is the subject of Chapter 4. However, the 

MICE-80 items that were removed to produce the 38-item version can be found in 

Appendix C. 

 

3.4. Statistical Methods for Reliability and Validity Tests 

All reliability and validity statistical tests were performed with SPSS version 15 

(SPSS, Chicago, USA). As elaborated later, MICE scores were tested for normality 

using the Shapiro-Wilks test, measures of skewness and kurtosis, as well as plotted 

on histograms and Q-Q plots. 

T-tests were accompanied by Wilcoxon rank sum tests, and Pearson correlations by 

Spearman rho correlation. For t-tests, variances were not assumed to be equal, and 

thus Levene’s test was applied. All statistical significance tests were considered 

significant at a p value less than 0.05. 
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3.5. MICE-80 Reliability Tests 

The MICE-80 questionnaire was tested for reliability with the test-retest method 

using the author of this dissertation as the rater. Reports of controlled experiments in 

computer science and health informatics were chosen as test studies. For computer 

science studies, the ACM Digital Library database was searched for “controlled 

experiment”. Returned references were selected based on whether they were reports 

of an actual experiment and then on coin toss. 25 such studies were selected. For 

health informatics studies, the review of Garg et al (McMaster University) (112) was 

used.  This often-cited review examined 100 controlled trials of clinical decision 

support systems. Trials were marked on paper slips, which were then drawn from a 

hat. 33 such trials from Garg et al were selected. When any study was not obtainable 

in full text through the UWS library, another was selected using the above processes. 

In total, 58 controlled experimental studies were used to test the MICE index’s 

reliability. At least 30 to 50 studies were considered needed, to permit further 

statistical analysis based on central limit theorem (182) (p. 222), (185) (p. 90), (186) 

(p. 229). Table 4 and Table 5 show the list of test studies. Most experiments in 

computer science were assessments of software engineering methods. The selection 

of health informatics experiments was biased towards summative evaluation of 

informatics tools because of the nature of the review, but this is probably 

representative of many experiments conducted in health informatics. 
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Primary author Year Experiment assessed effect of: 

Computer science 

Ali Babar (187) 2006 Providing software change categories on the quality of scenario 

profiles. 

Ali Babar (188) 2006 Distributed meetings on the quality of scenario profiles. 

Anda (189) 2003 Use case vs. responsibility-driven methods on object oriented 

design 

Arisholm (190) 2001 Responsibility-driven vs. mainframe designs on software 

changeability. 

Briand (180) 2001 Object-oriented principles effects on software comprehension and 

changeability. 

Bunse (191) 2006 A method for translating UML models to source code on software 

comprehension and verification. 

Canfora (192) 2006 Test-driven development on software testing quality. 

Golden (193) 2005 Usability-supporting architectural patterns for software 

architecture design on modification tasks. 

Hu (194) 2006 Metamorphic testing on fault detection. 

Johnson (195) 1997 Review meetings on software testing.  

Lopes (196) 1993 A software tool for debugging Ada programmes on fault detection 

programme comprehension. 

Lott (197) 1997 Online process guidance on software development. 

Muller (198) 2005 Pair programming vs. peer review on software quality and cost. 

Myers (199) 1978 Several of types of fault detection methods. 

Myrtveit (179) 1999 A software tool and a regression model for estimating software 

project costs. 

Ng (200) 2006 Refactoring on the maintenance of software. 

Prechelt (201) 1998 Type checking on fault detection. 

Prechelt (202) 2001 Design patterns on software maintenance. 

Prechelt (203) 2002 Design pattern documentation on software maintenance. 

Prechelt (204) 2003 Inheritance depth on software maintenance. 

Sears (205) 1994 Split menus on usability. 

Sonnenwald (206) 2003 A scientific collaboratory system on research work quality. 

Vokac (207) 2004 Design patterns on software maintenance. 

Wojcicki (208) 2006 A software tool and code inspection on fault detection. 

Zettel (209) 2005 Different information support on a CASE tool’s usability. 

Table 4. List of controlled experimental studies in computer science used to test index reliability. 

 

Test-retest was applied in 3 rounds. Each of the 58 studies was assessed with the 80-

item questionnaire. Each round took approximately 3-4 weeks. Studies were assessed 

in the same order hence the interval between assessing the same study was 

approximately 3-4 weeks. This is considered sufficient time to prevent serious 

memory effects (131) (p. 137), (210). A spreadsheet (Excel 2000, Microsoft, Seattle, 

USA) was created to store the individual item values and to automate calculation of 

final scores. Final scores were not calculated until the last study of round 3 was 

completed. In addition, as soon as each study was assessed, all item results were 

hidden using the column hiding function of Excel 2000. These measures aided 

prevention of memory effects. The only memory effects to have occurred were those 

of being familiar with the content of a paper and not the individual item responses. 3 

rounds were chosen instead of the usual 2 rounds (test and a single retest) to improve 

the estimate of reliability (138) (p. 125). Reliability was calculated as an intraclass 

correlation coefficient (ICC) using a two way random effects model, absolute 

agreement and single measures. This was based on analysis of variance (ANOVA) of 

the final MICE scores between rounds and between studies. A two-way random 
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effects model was appropriate because the rater (the author of this dissertation) 

assessed all studies and was considered to be a random sample of all possible raters 

(131) (p. 134). Because the value of a study’s final score should be similar with each 

round rather than simple ranking, absolute agreement rather than consistency was 

applied (211). Finally, single measure reliability was used since individual scores 

were the unit of analysis (211). 

Primary author Year Experiment assessed effect of: 

Health informatics 

Bonevski (212) 1999 A reminder information system on preventative health measures. 

Brownbridge (213) 1986 A computerised protocol on management of hypertension. 

Cannon (214) 2000 A reminder information system on mental health screening rates. 

Christakis (215) 2001 An information system on correct antibiotic prescribing. 

Demakis (216) 2000 A reminder information system on management tasks for common 

health problems. 

Dexter (217) 1998 A reminder information system on completion of advance 

directives. 

Fitzmaurice (218) 1996 A decision support system on management of anticoagulation. 

Fitzmaurice (219) 2000 A decision support system on management of anticoagulation. 

Gonzalez (220) 1989 A decision support system for dosing of aminophylline. 

Hickling (221) 1989 A decision support system for dosing of aminoglycosides. 

Horn (222) 2002 A decision support system for prescribing parenteral nutrition for 

neonates. 

Kuperman (223) 1999 An alerting laboratory information system on clinician response 

time. 

Lewis (224) 1996 A mental health assessment tool on mental health outcomes.  

Lowensteyn (225) 1998 Computerised risk profiles on coronary risk outcomes. 

Mazzuca (226) 1990 A reminder information system on diabetic management. 

McAlister (227) 1986 Computerised protocol and feedback on hypertension 

management. 

McDonald (228) 1984 A reminder information system on management tasks for common 

health problems. 

Poller (229) 1998 A decision support system on management of anticoagulation. 

Rosser (230) 1991 A reminder information system on preventative health measures. 

Rossi (231) 1997 A reminder information system on incorrect antihypertensive 

prescribing. 

Rotman (232) 1996 A prescribing system on costs and drug interactions. 

Ryff-de Leche (233) 1992 Diabetes monitoring systems on diabetic control. 

Schriger (234) 2001 A mental health diagnostic system on mental health management. 

Selker (235) 1998 A cardiac ischaemia diagnostic system on appropriate triage. 

Tamblyn (236) 2003 A decision support system on inappropriate prescribing. 

Tang (237) 1999 A reminder information system on influenza vaccination. 

Thomas (238) 1983 An audit system on health care costs. 

Tierney (239) 1993 An ordering information system on health care costs. 

Vadher (240) 1997 A decision support system on management of anticoagulation. 

Vadher (241) 1997 A decision support system on management of anticoagulation. 

Verner (242) 1992 A decision support system for dosing of theophylline. 

Wexler (243) 1975 Accuracy of a paediatric diagnostic system. 

Young (244) 1981 A reminder information system on management tasks for common 

health problems. 

Table 5. List of controlled experimental studies in health informatics used to test index 

reliability. 

 

The final scores for each study, per round, are shown in Table 6, which is in the form 

of an objects-by-observations matrix (see Chapter 1), and summary statistics are 

shown in Table 7. The raw data of individual item responses for each study per round 

is not produced in this dissertation due to space (the worksheet contains nearly 14000 
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cells: 80 items x 3 rounds x 58 studies) but may be obtained from the author for 

examination. 

Primary author Round 1 Round 2 Round 3 

Computer science 

Ali Babar (187) .599 .647 .631 

Ali Babar (188) .636 .669 .648 

Anda (189) .524 .524 .515 

Arisholm (190) .504 .496 .501 

Briand (180) .598 .642 .619 

Bunse (191) .596 .645 .642 

Canfora (192) .603 .638 .626 

Golden (193) .514 .547 .535 

Hu (194) .389 .435 .407 

Johnson (195) .582 .573 .585 

Lopes (196) .416 .454 .448 

Lott (197) .611 .599 .597 

Muller (198) .546 .598 .565 

Myers (199) .509 .552 .528 

Myrtveit (179) .451 .545 .519 

Ng (200) .521 .521 .512 

Prechelt (201) .481 .510 .484 

Prechelt (202) .463 .521 .506 

Prechelt (203) .540 .534 .537 

Prechelt (204) .519 .554 .543 

Sears (205) .493 .548 .534 

Sonnenwald (206) .696 .729 .717 

Vokac (207) .564 .553 .544 

Wojcicki (208) .517 .551 .539 

Zettel (209) .602 .596 .599 

Health informatics 

Bonevski (212) .635 .629 .643 

Brownbridge (213) .438 .396 .436 

Cannon (214) .590 .498 .508 

Christakis (215) .663 .692 .683 

Demakis (216) .644 .646 .638 

Dexter (217) .599 .601 .589 

Fitzmaurice (218) .426 .398 .404 

Fitzmaurice (219) .559 .538 .553 

Gonzalez (220) .570 .593 .575 

Hickling (221) .580 .571 .565 

Horn (222) .388 .385 .406 

Kuperman (223) .578 .535 .541 

Lewis (224) .537 .581 .593 

Lowensteyn (225) .548 .604 .608 

Mazzuca (226) .585 .694 .668 

McAlister (227) .679 .724 .691 

McDonald (228) .506 .650 .612 

Poller (229) .599 .620 .633 

Rosser (230) .516 .612 .599 

Rossi (231) .755 .745 .705 

Rotman (232) .701 .738 .729 

Ryff-de Leche (233) .540 .518 .550 

Schriger (234) .783 .803 .809 

Selker (235) .772 .762 .777 

Tamblyn (236) .770 .765 .743 

Tang (237) .476 .549 .525 

Thomas (238) .498 .505 .508 

Tierney (239) .605 .608 .602 

Vadher (240) .716 .699 .706 

Vadher (241) .534 .575 .558 

Verner (242) .539 .545 .558 

Wexler (243) .346 .420 .404 

Young (244) .336 .410 .407 

Table 6. Test studies’ MICE-80 scores produced during assessment of test-retest reliability. 
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  Round 1 Round 2 Round 3 

N 58 58 58 

Mean .560 .583 .576 

Median .554 .574 .565 

Standard deviation .100 .098 .094 

Skewness .146 .082 .189 

Standard error of skewness .314 .314 .314 

Kurtosis .174 -.197 -.048 

Standard error of kurtosis .618 .618 .618 

Table 7. Summary statistics from test-retest reliability assessment of MICE-80. 

 

Table 8 shows the results of the analysis of variance calculations. The ICC was based 

on the formulae modified from (131) (p. 134): 
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where σ2
 is the variance, MS is the mean square, k is the number of raters (i.e. 1) and 

n is the number of studies. The reliability of the MICE-80 questionnaire was 0.935 

(95% CI 0.884 - 0.962). 

 Sum of 

squares 

df Mean 

square 

F p 

Between Studies 1.562 57 .027     

Within Studies Between Rounds .016 2 .008 15.462 .000 

Residual .057 114 .001       

  Total .073 116 .001     

Total 1.635 173 .009     

ICC .935 (95% CI .884 - .962) 

Table 8. ANOVA and ICC results for MICE-80 scores in Table 6. 

 

3.6. MICE-80 Normality Tests 

There were 2 purposes for analysing the normality of MICE scores. There is no 

empirical evidence of the distributional nature of experimental quality in informatics. 

Secondly, for statistical test constraints, it is useful to know whether data is normal. 
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Prior to performing parametric validity tests, the MICE-80 scores in Table 6 were 

assessed for normality by examining data skewness and kurtosis, histograms, Q-Q 

plots and carrying out the Shapiro-Wilks test. Skewness and kurtosis for each round 

were almost zero, supporting normality (see Table 7.) In particular, the ratio of 

skewness and kurtosis to their standard errors was between -2 and 2 (SPSS version 

15, SPSS, Chicago, USA). Histograms in Figure 3 showed approximately bell-

shaped curves. 
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Figure 3. Histogram of MICE-80 scores produced during round 1 (top left), 2 (top right) and 3 

of reliability assessment. 

 

When scores from all rounds were pooled, the distribution remained near normal. 

Skewness was 0.123 (standard error = 0.184), and kurtosis was -0.080 (standard error 

= 0.366). Figure 4 shows the histogram and normal Q-Q plot of all scores. Again, a 

bell-shaped curved is evident, and the Q-Q plot has little deviance. The Shapiro-

Wilks test on all rounds was not significant and therefore further supported normality 

(Shapiro-Wilks statistic = 0.985, df = 174, p = 0.063). 
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Figure 4. Histogram (left) and normal Q-Q plot of MICE-80 scores produced during reliability 

assessment (all rounds). 

 

Distributions of samples involved in t-testing (convergent validity tests [statistician 

assistance, see p. 81] and known-groups tests [dichotomisation by McMaster 

University score, see p. 78]) were also examined to ensure that samples were similar 

and normal (245) (p. 493) . Distributions of the statistician-assisted and unassisted 

samples were examined including and excluding adjustment for items inquiring 

about statistical assistance (see p. 81.) The statistician-assisted sample was 

approximately normal as shown in Table 9, Figure 5 and Figure 6. The unassisted 

sample was not normally distributed (Table 9, Figure 7 and Figure 8) but did not 

strongly deviate from normal. 

 Statistician-assisted sample Statistician-unassisted sample 

Including item   

Skewness (SE) -.838 (.536) .276 (.374) 

Kurtosis (SE) .592 (1.038) 2.058 (.733)* 

Shapiro-Wilks statistic .947 .934 

Shapiro-Wilks df 18 40 

Shapiro-Wilks p .381 .023* 

Excluding item   

Skewness (SE) -.839 (.536) .279 (.374) 

Kurtosis (SE) .595 (1.038) 2.063 (.733)* 

Shapiro-Wilks statistic .947 .935 

Shapiro-Wilks df 18 40 

Shapiro-Wilks p .380 .023* 

Table 9. Normality statistics for samples used in MICE-80 convergent construct validity tests 

(samples with and without statistical assistance). 

*: non-normality; SE: standard error. 
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Figure 5. Histogram of MICE-80 scores for the statistician-assisted sample including (left) and 

excluding the item inquiring about assistance (see p. 81.) 
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Figure 6. Normal Q-Q plots of MICE-80 scores for the statistician-assisted sample including 

(left) and excluding the item inquiring about assistance (see p. 81.) 
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Figure 7. Histograms of MICE-80 scores for the statistician-unassisted sample including (left) 

and excluding the item inquiring about assistance (see p.  81.) 
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Figure 8. Normal Q-Q plots of MICE-80 scores for the statistician-unassisted sample including 

(left) and excluding the item inquiring about assistance (see p. 81.) 

 

Distributions of samples dichotomised according to McMaster University score (see 

p. 78) were approximately normal as shown in Table 10, Figure 9 and Figure 10. 

With regards to statistical testing, a conservative approach of using both 

nonparametric and parametric tests was adopted (151). While the analysis of all 

scores suggests experimental quality is normal, there is not yet an accumulated body 

of evidence to support normality of controlled experiment quality in informatics. 

Furthermore, some sample sizes were small (N < 15) and unequal, which favour the 

use of nonparametric tests (245) (p. 493). 

 McMaster score <6 McMaster score >=6 

Skewness (SE) 1.132 (.687) -.042 (.481) 

Kurtosis (SE) 1.704 (1.334) .400 (.935) 

Shapiro-Wilks statistic .875 .968 

Shapiro-Wilks df 10 23 

Shapiro-Wilks p .114 .636 

Table 10. Normality statistics for samples used in MICE-80 known-groups criterion validity 

tests (dichotomised into samples of high and low quality studies). 

SE: standard error. 
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Figure 9. Histogram (left) and normal Q-Q plot of MICE-80 scores dichotomised according the 

McMaster scale as high quality studies (score >=6) (see p. 78.) 
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Figure 10. Histogram (left) and normal Q-Q plot of MICE-80 scores dichotomised according the 

McMaster scale as low quality studies (score <6) (see p. 78.) 

 

3.7. MICE-80 Validity Tests 

Face and content validity were not formally tested. Because the MICE index was 

developed from experimental literature of 3 fields (computer science, health 

informatics and medicine), with expert help and contained a large number of items, 

face and content validity was assumed. Furthermore, these forms of validity are less 

useful than criterion and construct validity (138) (p. 132), therefore only criterion 

and construct validity were formally measured. 

3.7.1. Criterion Validity by Known-Groups and Journal Impact Factor 

It is difficult to apply criterion validity when gold standards do not exist. Since there 

are no other reliable and valid instruments to measure the MICE index against, a 
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known-groups approach and a related standard were used. The known-groups 

method required that the MICE index could differentiate members of one group from 

another (125) (p. 54). That is, could it classify poor quality studies from high quality 

studies? The first step required obtaining experimental studies of good and poor 

quality, as judged by another standard. One option was to provide a sample of studies 

to a panel of experts for prospectively categorising into good and poor. Another 

option was to use a (systematic) review that assessed study quality (a retrospective 

approach). Because such reviews are often performed by panels, the two are 

approximately equivalent. The former option was not chosen because of limited 

resources; an expert panel would have needed to assess 58 publications and have 

been familiar with both health informatics and computer science experimentation. 

Time and access to such judges were problematic (this can be a focus for future 

research.) Instead, the Garg et al review (112) (McMaster University) was chosen as 

the arbiter of study quality. Each of the studies reviewed by Garg et al had been 

assessed with their McMaster scale. The McMaster scale was not considered 

satisfactory enough to have been directly used as a gold standard (i.e. applying the 

MICE and McMaster scales to studies and correlating the results). Instead, the 

McMaster scale and review were viewed as sufficient to classify at an approximate 

level (i.e. good versus poor) and assumed to be equivalent to an expert panel review 

where experts use their own critical appraisement skills. Indeed, the McMaster 

review may be superior than a prospective panel review where there is no attempt to 

measure reliability. 

For the MICE index to be able to classify good and poor quality study groups, good 

studies should have higher MICE scores than poor studies. 

The 33 health informatics studies (see Table 5) were selected again as test studies for 

criterion validity. They were dichotomised into good and poor quality using a 

threshold McMaster score of 6 points (since they had been selected from the Garg et 

al review, each had already been scored using the McMaster scale.) The McMaster 

score has a maximum value of 10 points. Studies scoring greater than or equal to 6 

were defined, a priori, as good. Less than 6 were defined as poor. Next, the scores in 

Table 6 were averaged across rounds to produce a single MICE score for each study. 

Thus, a set of MICE scores for the high quality group and a set of MICE scores for 
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the poor quality group were produced. The mean MICE scores for the good and poor 

groups were analysed for difference using a 2-tailed independent samples t-test and 

Wilcoxon rank sum test (the null hypothesis being that the 2 means were from the 

same population of quality). 

At no point did the McMaster scores influence the MICE scores produced during 

reliability testing as the rater was blinded to the McMaster score. This was achieved 

by avoidance of looking at the McMaster score when test studies were selected and 

assessed. Without such blinding, assessment using the MICE index could have been 

consciously or unconsciously correlated with the McMaster score, which would 

artificially strengthen the relationship between MICE scores and dichotomised 

studies. 

Only health informatics studies were used for criterion validity testing because there 

were no reviews in the computer science literature that quantitatively assessed or 

categorised controlled experiments as the Garg et al paper did. 

Table 11 and Table 12 show that the MICE-80 questionnaire differentiated between 

high and low quality studies. The high quality group of studies scored 0.117 points 

higher than poor quality group (p = 0.004). Levene’s test was not significant 

indicating that equal variances could be assumed (though significance remained even 

with unequal variances). Table 13 shows the results of Wilcoxon rank sum test, 

which is also statistically significant. Results support that the MICE-80 questionnaire 

is criterion valid using a known-groups approach. 

McMaster score N Mean MICE score Standard deviation 

>=6 (good quality) 23 .623 .088 

<6 (poor quality) 10 .506 .119 

Table 11. Descriptive statistics of MICE-80 scores dichotomised into good and poor quality 

group studies. 

 

Levene’s test t-test (2-tailed)  

F p t df p Mean difference (95% 

CI) 

Equal variances 

assumed 

.604 .443 3.140 31 .004 .117 (.041 - .192) 

Equal variances 

not assumed 

  

  

2.786 13.497 .015 .117 (.027 - .207) 

Table 12. 2-tailed independent samples t-test comparing the means of MICE-80 scores from 

good and poor quality groups. 
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McMaster score N Mean rank Sum of ranks 

>=6 (good quality) 23 20.30 467.00 

<6 (poor quality) 10 9.40 94.00 

Wilcoxon W 94.00 

p (2-tailed) .003 

Table 13. Wilcoxon rank sum test comparing MICE-80 scores from good and poor quality 

groups. 

 

The second approach of testing criterion validity was to use a related standard. 

Journal Impact Factor (JIF) (246) has been used controversially as an indicator of 

medical research and trial quality (247, 248). Thus, would the MICE score for a 

study be correlated with the paper’s JIF? This question was exploratory, to see how 

useful JIF might be for criterion validation, rather than to obtain evidence of MICE’s 

criterion validity. The accuracy of JIF to indicate clinical trial quality has been 

variable and still subject to research (249, 250). To examine the relationship, the 

MICE scores produced during test-retest reliability assessment were used (Table 6). 

They were averaged across rounds and correlated with JIF of the report’s journal (see 

Appendix D for raw data.) JIF’s from 2006 were used (ISI Web of Knowledge 

Journal Citation Report 2006 Edition, The Thompson Corporation, Stamford, USA). 

15 of the 58 studies did not have a corresponding JIF since these studies appeared in 

conference proceedings or the Journal Citation Report did not cover that particular 

journal. Pearson and Spearman rho correlation were used to assess the relationship 

between MICE score and JIF. 

Figure 11 shows a scatterplot of JIF versus MICE score. The correlation was weak to 

modest (Pearson r = 0.329, 2-tailed p = 0.031, Spearman rho = 0.482, 2-tailed p = 

0.001). Results do not convincingly support that JIF is a useful related standard 

against which to judge the MICE-80 questionnaire’s validity. 
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Figure 11. Scatterplot of MICE-80 scores produced during reliability assessment vs. studies’ 

Journal Impact Factors. 

 

The relationship of MICE score to JIF should be interpreted with caution. JIF’s from 

both computer science (N = 13) and health informatics (N = 30) were used in 

analysis. While there are several semantic relationships between computer science 

and health informatics, this may not extend to mixing JIF from both areas. Indeed, 

JIF’s between different disciplines may not be highly comparable, particularly slowly 

changing fields (251). Also, JIF’s are not consistent (by definition they are the ratio 

of a current year to the previous 2 years.) The 2006 JCR edition was used, but results 

may have been different with previous editions. 

3.7.2. Construct Validity 

Construct validity was tested using convergent and divergent methods. The 

convergent hypothesis was that the help of a statistician (or equivalent expert in 

experimental methods, e.g. epidemiologist) would improve experimental quality. The 

MICE scores produced during reliability assessment (see Table 6) were again 

analysed. Studies were dichotomised into those where it was clear a statistician 

assisted and those where it was not (assumed unassisted), producing 2 sets of MICE 

scores. Scores for each study were averaged over the 3 rounds and compared using a 

2-tailed independent samples t-test and Wilcoxon rank sum test. In addition, because 

one of the MICE index’s items rewards points to studies when a statistician is used, 

scores were recalculated with this item removed before averaging over rounds and 

performing the inference tests again (the item was deleted from the spreadsheet used 

for recording responses during the test-retest assessment, and final scores 

automatically adjusted.) Appendix D contains the raw data of MICE scores with and 
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without the item. Table 14 shows the mean MICE scores for statistician-assisted and 

unassisted studies when the item inquiring about statistical assistance is included and 

excluded. Whether the item is included or excluded in analysis, the effect is small 

(the difference between groups fell approximately 0.003 points when excluded) and 

did not affect statistical significance. Table 15 shows that statistical assistance 

improves quality by approximately 0.1 of a point (p = 0.000). Results of the 

Wilcoxon rank sum test are shown in Table 16 and are also statistically significant. 

Results support that the MICE-80 questionnaire is convergent construct valid. 

 Statistician N Mean MICE score Standard deviation 

Yes 18 .642 .095 Item included 

No 40 .542 .079 

Yes 18 .640 .095 Item excluded 

No 40 .544 .079 

Table 14. Descriptive statistics of MICE-80 scores for studies where statistical assistance was 

provided and not provided. 

Results shown for when the item inquiring about statistical assistance is included and excluded. 

 

Levene’s test t-test (2-tailed)  

F p t df p Mean difference 

(95% CI) 

Equal 

variances 

assumed 

1.241 .270 4.162 56 .000 .100 (.052 - .147) Item included 

Equal 

variances not 

assumed 

 3.881 28.084 .001 .100 (.047 - .152) 

Equal 

variances 

assumed 

1.240 .270 4.040 56 .000 .097 (.049 - .145) Item excluded 

Equal 

variances not 

assumed 

  

  

3.767 28.073 .001 .097 (.044 - .150) 

Table 15. 2-tailed independent samples t-test comparing the means of MICE-80 scores from 

studies that had and did not have statistician assistance. 

Results shown for when the item inquiring about statistical assistance is included and excluded. 
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 Statistician N Mean rank Sum of ranks 

Yes 18 41.78 752.00 

No 40 23.98 959.00 

Item included 

Wilcoxon W 959.00 

p (2-tailed) .000 

Yes 18 41.78 752.00 

No 40 23.98 959.00 

Item excluded 

Wilcoxon W 959.00 

p (2-tailed) .000 

Table 16. Wilcoxon rank sum test comparing MICE-80 scores of studies that had and did not 

have statistician assistance. 

Results for when the item inquiring about statistical assistance is included and excluded. 

 

The divergent construct validity hypotheses were that experimental quality should 

not be related to the number of authors, pages or cited references or year of 

publication of a report. The hypothesis is that these variables are not likely to affect 

or reflect whether experiments are conducted well. Again, the MICE scores produced 

during reliability assessment (Table 6) were used for analysis. The MICE scores 

were averaged over rounds and correlated against study author, page and reference 

counts and year. Pearson and Spearman rho correlation were used for each 

relationship. Appendix D contains the raw data. Figure 12 shows the scatterplots, and 

Table 17 shows Pearson r and Spearman rho correlation coefficients. Correlations 

were weak, supporting the divergent construct hypotheses. The MICE-80 

questionnaire is therefore divergent construct valid. 

In summary, the 80-item questionnaire (MICE-80) was demonstrated to be valid 

according to several forms of validity. It is subjectively face and content valid 

because it looks as if it captures controlled experimental quality; it was distilled from 

a large number of experimental concepts from computer science, health informatics 

and medicine and with expert input.  More importantly, it is criterion valid against a 

standard of predefined poor and good quality. Also important is that it is construct 

valid since it behaves in a way that might be expected hypothetically. That is, scores 

improve when statistical experts help with an experiment. Scores do not correlate 

with variables unlikely to affect or reflect quality (number of author investigators, 

page length of the report, number of cited references in the report, year of report 

publication). 
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 N Author p Page p Reference p Year p 

r 58 .171 .200 -.196 .140 .127 .343 -.170 .203 

rho 58 .175 .188 -.217 .102 .119 .374 -.140 .293 

Table 17. Pearson r and Spearman rho correlation between MICE-80 scores and counts of 

authors, pages and references and year of publication. 
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Figure 12. Scatterplots of MICE-80 scores produced during reliability assessment vs. studies’ 

number of authors, pages, references and publication year. 

 

3.8. Item Reduction 

The 80-item questionnaire (MICE-80) was demonstrated to be reliable and valid. The 

ICC was 0.935 (95% CI 0.884 - 0.962), and criterion and construct validity were 

empirically established. However, the questionnaire took 30 to 60 minutes to apply 

(i.e. not including report reading time) and occasionally up to 90 minutes, depending 

on the length and complexity of a study’s report. According to the Spearman-Brown 

prophecy formula, halving the questionnaire length would have reduced reliability to 

0.88. Since shorter scales are less burdensome on users, and there was “reliability to 

spare” (125) (p. 97), the 80-item questionnaire underwent item reduction. 
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To shorten the index, items were removed according to 3 criteria: non-response to an 

item greater than 5%, or item ICC less than 0.8, or variance of the item less than 1. 

With regards to the first criterion, some items allowed for a Not Applicable response. 

Items that were often not applicable were uninformative, as they did not contribute to 

the final score. For each item, there were 174 opportunities for a response (58 studies 

x 3 rounds). A 5% non-response for an item approximately equated to 9 times “NA” 

was answered. The 5% cut-off was chosen a priori. The item ICC is a measure of the 

consistency (reliability) of how an item is answered. Items that are unreliable may be 

thought of as being erroneous and targets for removal. Instead of using ANOVA to 

examine variances of MICE scores between studies and between rounds as in Table 6 

and Table 8, variances of item responses were analysed for each item between 

rounds and between studies, i.e. items should be answered consistently from round to 

round (see Table 18.) The ICC applied was a 2-way random effects ICC using 

absolute agreement and single measures. The threshold of 0.8 was chosen a priori. 

Item Primary author Round 1 Round 2 Round 3 

… … … … … 

1  Bunse  6.00 4.00 5.00 

1  Canfora  5.00 6.00 5.00 

1  Golden  3.00 2.00 3.00 

1  Hu  3.00 6.00 4.00 

… … … … … 

2  Bunse  5.00 3.00 4.00 

2  Canfora  4.00 4.00 4.00 

2  Golden  3.00 6.00 4.00 

2  Hu  5.00 5.00 5.00 

… … … … … 

80 Bunse  2.00 3.00 2.00 

80 Canfora  3.00 4.00 3.00 

80 Golden  3.00 4.00 3.00 

80 Hu  1.00 3.00 2.00 

… … … … … 

Table 18. Example of item responses organised to allow calculation of item ICC (ANOVA 

compares rounds against studies per item.) 

 

With regards to the third criterion, the variance of the item is the variance of its 

response. If an item is answered identically for every round and every study (has a 

variance of 0), it cannot discriminate between studies of different quality (125) (p. 

93). A cut-off variance of 1 was chosen a priori. Table 19 shows results of item non-

response, ICC and variances. 
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MICE-80 Item MICE-38 Item Non-response Standard deviation Variance ICC 95% CI 

01 01 0.0% 1.820 3.311 .834 .757 - .892 

02  0.0% 1.453 2.111 .706 .579 - .806 

03  0.0% 1.315 1.730 .701 .566 - .804 

04  0.0% 1.246 1.553 .631 .497 - .746 

05 02 0.0% 2.436 5.932 .975 .962 - .984 

06 03 0.0% 1.855 3.441 .917 .876 - .947 

07 04 0.0% 2.032 4.128 .979 .968 - .987 

08  0.0% 1.006 1.012 .379 .197 - .550 

09  0.0% 1.150 1.323 .597 .421 - .733 

10 05 0.0% 1.899 3.606 .856 .789 - .907 

11  0.0% 1.744 3.042 .704 .587 - .800 

12  0.0% 0.915 0.838 .973 .959 - .983 

13 06 0.0% 2.016 4.066 .918 .874 - .948 

14  0.0% 1.309 1.712 .684 .468 - .814 

15 07 0.0% 2.099 4.405 .882 .821 - .925 

16 08 0.0% 2.500 6.250 .931 .895 - .956 

17 09 0.0% 2.321 5.386 .916 .873 - .946 

18 10 0.0% 2.024 4.095 .931 .895 - .956 

19 11 0.0% 1.825 3.330 .906 .852 - .942 

20  0.0% 1.913 3.660 .789 .669 - .870 

21* 12 0.0% 0.469 0.220* .974 .960 - .984 

22* 13 0.0% 0.340 0.115* .852 .783 - .904 

23 14 0.0% 1.738 3.021 .851 .782 - .903 

24  8.0% 1.230 1.514 .648 .512 - .764 

25  33.9% 1.014 1.028 .355 .160 - .555 

26  33.9% 1.038 1.077 .737 .598 - .842 

27  0.0% 1.367 1.869 .644 .505 - .758 

28  0.0% 1.532 2.348 .796 .707 - .866 

29  0.0% 1.441 2.075 .708 .592 - .804 

30 15 0.0% 1.679 2.818 .954 .930 - .971 

31 16 0.0% 1.500 2.249 .950 .920 - .969 

32 17 0.0% 1.227 1.506 .894 .843 - .932 

33  0.0% 0.715 0.512 .900 .851 - .936 

34 18 0.0% 2.379 5.659 .896 .846 - .934 

35  16.7% 0.490 0.240 1.000 1.000 - 1.000

36  87.9% 0.218 0.048 ^  

37 19 4.6% 1.164 1.355 .885 .827 - .927 

38* 20 25.9%* 1.046 1.094 .865 .783 - .922 

39  47.1% 1.104 1.218 .802 .666 - .896 

40  90.2% 0.795 0.632 ^  

41  94.3% 1.101 1.211 ^  

42  87.9% 0.658 0.433 ^  

43  24.1% 1.162 1.350 .966 .941 - .982 

44  42.0% 0.449 0.201 .528 .323 - .710 

45  0.0% 0.199 0.040 .856 .789 - .907 

46* 21 0.0% 0.610 0.372* .954 .930 - .971 

47* 22 1.7% 0.746 0.556* .979 .968 - .987 

48 23 0.0% 2.425 5.879 .923 .884 - .951 

49 24 0.0% 2.009 4.035 .924 .886 - .952 

50 25 0.0% 2.181 4.756 .988 .982 - .993 

51 26 0.0% 1.627 2.646 .860 .794 - .909 

52  78.2% 1.684 2.834 .919 .799 - .975 

53  37.4% 1.495 2.234 .809 .695 - .890 

54  33.9% 0.968 0.936 .559 .378 - .719 

55 27 0.0% 1.236 1.527 .959 .938 - .974 

56  0.0% 0.379 0.144 .921 .881 - .949 

57* 28 0.0% 0.772 0.596* 1.000 1.000 - 1.000

58  0.0% 1.583 2.505 .645 .513 - .757 

59 29 0.0% 1.175 1.382 .856 .788 - .907 

60 30 0.0% 1.430 2.046 .816 .734 - .880 

61* 31 0.0% 0.491 0.241* .811 .724 - .877 

62  0.0% 0.131 0.017 1.000 1.000 - 1.000

63* 32 0.0% 0.462 0.213* .920 .880 - .949 

64* 33 0.0% 0.483 0.233* .878 .819 - .921 

65  0.0% 0.183 0.033 1.000 1.000 - 1.000
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66  0.0% 0.810 0.656 .991 .987 - .995 

67 34 0.0% 1.668 2.782 .853 .784 - .904 

68 35 0.0% 1.698 2.884 .923 .884 - .951 

69 36 0.0% 1.773 3.143 .810 .725 - .875 

70 37 0.0% 2.223 4.941 .884 .827 - .925 

71  0.0% 1.373 1.884 .613 .476 - .732 

72  24.7% 1.841 3.388 .833 .735 - .903 

73 38 0.0% 1.893 3.585 .864 .793 - .914 

74  0.0% 0.540 0.292 .922 .883 - .950 

75  0.0% 1.259 1.586 .741 .634 - .827 

76  0.0% 0.910 0.828 .973 .958 - .983 

77  0.0% 1.452 2.107 .610 .471 - .731 

78  0.0% 1.253 1.569 .691 .570 - .791 

79  0.0% 0.487 0.237 .952 .927 - .970 

80  0.0% 1.284 1.648 .719 .595 - .815 

Table 19. Item non-response, ICC and variance. 

Bold face indicates items removed and the criteria for removal.  An * indicates items retained 

despite meeting criteria. A ^ indicates inability of SPSS to calculate an ICC because one or more 

rounds had zero variance. Refer to Appendix C for dropped item questions. 

 

The purpose of item reduction is to improve the efficiency of a scale but not at the 

expense of its soundness. Loss of items necessarily reduces content validity but can 

also affect face, criterion and construct validity. Thus, some items that met the above 

criteria were kept because of their importance to validity. Such decisions were based 

on subjective opinion. 

The questionnaire was reduced to 38 items (MICE-38), which are explained and 

elaborated on in detail in Chapter 4. It can be applied in 20 minutes. Because 

removing items affects reliability and validity measures, all tests as described for the 

MICE-80 questionnaire were repeated for MICE-38. Due to limitation of time, the 

MICE-38 version was not tested on a new set of studies. Instead, the original 

spreadsheet for recording item responses during the MICE-80 test-retest reliability 

assessment was adjusted. Items were removed, as indicated in Table 19, from the 

spreadsheet to produce a 38-item set of data with which to perform the tests applied 

to the original 80-item data. Normality tests were also repeated. 

 

3.9. MICE-38 Reliability Tests 

The 38-item data set underwent the same reliability analysis as the 80-item data, i.e. 

use of ANOVA and ICC (2-way random effects, absolute agreement, single 

measures). The results are shown in Table 20 and Table 21. 
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Primary author Round 1 Δ Round 2 Δ Round 3 Δ Mean Δ 

Computer science        

Ali Babar (187) .563 -.037 .625 -.022 .608 -.023 -.027 

Ali Babar (188) .603 -.032 .609 -.060 .592 -.056 -.049 

Anda (189) .466 -.058 .443 -.080 .443 -.072 -.070 

Arisholm (190) .545 .041 .528 .033 .528 .027 .034 

Briand (180) .520 -.079 .603 -.039 .581 -.038 -.052 

Bunse (191) .564 -.032 .609 -.036 .589 -.053 -.041 

Canfora (192) .631 .028 .620 -.018 .626 -.000 .003 

Golden (193) .432 -.082 .426 -.120 .426 -.109 -.104 

Hu (194) .352 -.037 .369 -.066 .341 -.066 -.056 

Johnson (195) .508 -.074 .492 -.082 .486 -.099 -.085 

Lopes (196) .295 -.121 .330 -.125 .318 -.130 -.125 

Lott (197) .598 -.013 .581 -.018 .581 -.016 -.016 

Muller (198) .531 -.015 .587 -.012 .559 -.006 -.011 

Myers (199) .441 -.069 .452 -.100 .424 -.104 -.091 

Myrtveit (179) .472 .021 .514 -.031 .492 -.027 -.012 

Ng (200) .500 -.021 .478 -.043 .483 -.028 -.031 

Prechelt (201) .461 -.020 .489 -.021 .467 -.017 -.019 

Prechelt (202) .486 .023 .511 -.009 .506 -.000 .004 

Prechelt (203) .536 -.004 .508 -.026 .520 -.017 -.015 

Prechelt (204) .511 -.008 .533 -.021 .528 -.015 -.015 

Sears (205) .506 .013 .533 -.015 .528 -.006 -.003 

Sonnenwald (206) .661 -.035 .706 -.024 .700 -.017 -.025 

Vokac (207) .616 .052 .594 .041 .599 .055 .049 

Wojcicki (208) .463 -.054 .469 -.082 .475 -.064 -.067 

Zettel (209) .600 -.002 .589 -.008 .600 .001 -.003 

Health informatics        

Bonevski (212) .619 -.015 .597 -.032 .614 -.029 -.025 

Brownbridge (213) .313 -.125 .262 -.135 .330 -.107 -.122 

Cannon (214) .453 -.138 .346 -.152 .358 -.150 -.147 

Christakis (215) .609 -.054 .659 -.033 .637 -.046 -.044 

Demakis (216) .654 .010 .620 -.026 .626 -.012 -.010 

Dexter (217) .575 -.023 .542 -.059 .536 -.053 -.045 

Fitzmaurice (218) .346 -.023 .318 -.044 .341 -.042 -.036 

Fitzmaurice (219) .536 -.080 .494 -.080 .511 -.063 -.074 

Gonzalez (220) .514 -.056 .486 -.107 .497 -.078 -.081 

Hickling (221) .469 -.111 .408 -.163 .425 -.140 -.138 

Horn (222) .268 -.120 .257 -.128 .240 -.166 -.138 

Kuperman (223) .380 -.198 .324 -.211 .335 -.206 -.205 

Lewis (224) .542 .005 .514 -.067 .506 -.088 -.050 

Lowensteyn (225) .580 .032 .602 -.002 .602 -.006 .008 

Mazzuca (226) .564 -.021 .631 -.063 .615 -.053 -.046 

McAlister (227) .648 -.031 .693 -.030 .653 -.038 -.033 

McDonald (228) .436 -.070 .570 -.080 .536 -.075 -.075 

Poller (229) .559 -.040 .564 -.056 .581 -.052 -.049 

Rosser (230) .443 -.072 .528 -.083 .523 -.077 -.077 

Rossi (231) .727 -.027 .699 -.046 .653 -.051 -.042 

Rotman (232) .615 -.086 .665 -.074 .654 -.075 -.078 

Ryff-de Leche (233) .458 -.082 .419 -.099 .464 -.086 -.089 

Schriger (234) .778 -.005 .784 -.019 .790 -.019 -.014 

Selker (235) .799 .027 .810 .048 .810 .033 .036 

Tamblyn (236) .749 -.022 .778 .013 .754 .011 .001 

Tang (237) .380 -.096 .425 -.125 .402 -.123 -.115 

Thomas (238) .413 -.085 .374 -.130 .391 -.117 -.111 

Tierney (239) .514 -.091 .531 -.078 .508 -.094 -.088 

Vadher (240) .709 -.006 .687 -.012 .704 -.002 -.007 

Vadher (241) .436 -.098 .531 -.044 .503 -.056 -.066 

Verner (242) .402 -.137 .402 -.143 .419 -.139 -.140 

Wexler (243) .274 -.072 .318 -.101 .313 -.091 -.088 

Young (244) .244 -.092 .290 -.120 .278 -.129 -.114 

Table 20. Final scores for studies recalculated with the 38-item data set. 

Δ: change from 80-item data set. 
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 Round 1 Round 2 Round 3 

N 58 58 58 

Mean .515 .523 .519 

Median .514 .530 .521 

Standard deviation .125 .131 .126 

Variance .016 .017 .016 

Skewness -.002 -.071 -.024 

Standard error of skewness .314 .314 .314 

Kurtosis -.039 -.351 -.175 

Standard error of kurtosis .618 .618 .618 

Table 21. Summary statistics for final scores recalculated using the 38-item data set. 

 

The effect of removing more than half the items from the MICE-80 questionnaire 

reduced study scores by only an average of 0.054 points (standard deviation = 0.051, 

p = 0.000) as shown by paired samples t-test in Table 22 and Wilcoxon signed rank 

test in Table 23. The small change in score in relation to the large removal of items 

was encouraging because item reduction should not interfere with a scale’s ability to 

measure its construct. In other words, if removing many items had greatly changed 

scores of the same studies, then the question arises whether the construct under 

measure is still the same or if another construct is being tapped. Mathematically the 

small difference observed can be explained, since the non-response and item 

variance criteria removed items that did not tend to differentiate studies. 

Data set N^ Mean MICE score Standard deviation 

80-item 58 .573 .096 

38-item 58 .519 .126 

Mean difference .054 (95% CI .040 - .067) 

Standard deviation .051 

t 8.031 

df 57 

p (2-tailed) .000 

Table 22. Paired samples t-test between mean scores of 80 and 38-item data sets. 

^: scores averaged over 3 rounds therefore N = 58. 

 

 N^ Mean rank Sum of ranks 

Negative ranks (38-item < 80-item) 51 31.78 1621.00 

Positive ranks (38-item > 80-item) 7 12.86 90.00 

Ties (38-item = 80-item) 0   

Z -5.927 

p (2-tailed) .000 

Table 23. Wilcoxon signed rank test between mean scores of 80 and 38-item data sets. 

^: scores averaged over 3 rounds therefore N = 58. 

 

Most notably, as shown in Table 24, the ICC remained high after item reduction 

(0.963, 95% CI  0.944 - 0.977). The MICE-38 ICC improved slightly and was 
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narrower in its confidence interval compared to the MICE-80 ICC (0.935, 95% CI 

0.884 - 0.962). This is the effect of the second reduction criterion, which removed 

less consistent items. 

 Sum of 

squares 

df Mean 

square 

F p 

Between Studies 2.704 57 .047     

Within Studies Between Rounds .002 2 .001 1.549 .217 

Residual .067 114 .001       

  Total .069 116 .001     

Total 2.772 173 .016     

ICC .963 (95% CI  .944 - .977) 

Table 24. ANOVA and ICC results for 38-item data set (MICE-38). 

 

3.10. MICE-38 Normality Tests 

Normality tests were performed as for the 80-item data set on the 38-item data set. 

Examining all scores, skewness and kurtosis were again near zero (see Table 21), and 

the ratios to their standard errors were between -2 and 2. Histograms of individual 

rounds/all scores and the Q-Q plot of all scores also supported near normality (Figure 

13, Figure 14). The Shapiro-Wilks test on scores from all rounds was not significant 

(Shapiro-Wilks statistic = 0.988, df = 174, p = 0.139), again indicating normality. 
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Figure 13. Histogram of MICE scores for the 38-item data set for round 1 (top left), 2 (top right) 

and 3 of test-retest reliability assessment. 
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Figure 14. Histogram (left) and Q-Q plot of MICE scores for the 38-item data set (from all 

rounds of test-retest reliability assessment). 

 

For the samples involved in convergent construct validity testing (statistician 

assistance), statistics and plots again showed near normal distributions (see Table 25, 

Figure 15, Figure 16, Figure 17 and Figure 18.) 
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 Statistician-assisted sample Statistician-unassisted sample 

Including item   

Skewness (SE) -.658 (.536) .047 (.374) 

Kurtosis (SE) 1.333 (1.038) .442 (.733) 

Shapiro-Wilks statistic .969 .970 

Shapiro-Wilks df 18 40 

Shapiro-Wilks p .788 .369 

Excluding item   

Skewness (SE) -.658 (.536) .049 (.374) 

Kurtosis (SE) 1.333 (1.038) .443 (.733) 

Shapiro-Wilks statistic .969 .970 

Shapiro-Wilks df 18 40 

Shapiro-Wilks p .788 .368 

Table 25. Normality statistics for samples used in MICE-38 convergent construct validity tests 

(samples with and without statistical assistance). 

SE: standard error. 
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Figure 15. Histogram of MICE-38 scores for the statistician-assisted sample including (left) and 

excluding the item inquiring about assistance (see p. 81.) 
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Figure 16. Normal Q-Q plots of MICE-38 scores for the statistician-assisted sample including 

(left) and excluding the item inquiring about assistance (see p. 81.) 
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Figure 17. Histograms of MICE-38 scores for the statistician-unassisted sample including (left) 

and excluding the item inquiring about assistance (see p. 81.) 
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Figure 18. Normal Q-Q plots of MICE-38 scores for the statistician-unassisted sample including 

(left) and excluding the item inquiring about assistance (see p. 81.) 

 

For known-groups testing (dichotomisation by McMaster score), the high quality 

sample was approximately normal (Table 26, Figure 19). However, the low quality 

sample was skewed to the right due to an outlier (Table 26, Figure 20). It was not 

strongly skewed, but this sample was small (N = 10). A t-test was performed but 

should be interpreted with care. In this case, there is a stronger argument for use of 

nonparametric tests (245) (p. 465). 
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 McMaster score <6 McMaster score >=6 

Skewness (SE) 1.689 (.687)* -.184 (.481) 

Kurtosis (SE) 3.555 (1.334)* .466 (.935) 

Shapiro-Wilks statistic .835 .973 

Shapiro-Wilks df 10 23 

Shapiro-Wilks p .039* .762 

Table 26. Normality statistics for samples used in MICE-38 known-groups criterion validity 

tests (dichotomised into samples of high and low quality studies). 

*: non-normality; SE: standard error. 
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Figure 19. Histogram (left) and normal Q-Q plot of MICE-38 scores dichotomised according the 

McMaster scale as high quality studies (score >=6) (see p. 78.) 
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Figure 20. Histogram (left) and normal Q-Q plot of MICE-38 scores dichotomised according the 

McMaster scale as low quality studies (score <6) (see p. 78.) 

 

3.11. MICE-38 Validity Tests 

The same tests that were applied to the 80-item data set were applied to the 38-item 

data set (known-groups approach using the Garg et al review paper, JIF as a criterion 

standard, statistician assistance for convergent construct validity and report variables 
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for divergent construct validity). The same parametric and nonparametric tests were 

applied. Appendix D contains the raw data. Face and content validity were assumed 

since a large number of items remained. 

The MICE-38 questionnaire maintained known-groups validity. Table 27 and Table 

28 show statistically significant difference between poor and good studies. As with 

the 80-item results, good studies produced a higher MICE score than poor ones, 

though the difference between groups was slightly broader with the 38-item 

questionnaire. Levene’s test was not significant (p = 0.703), but this did not affect t-

test significance. Wilcoxon rank sum test also supported that the 38-item 

questionnaire could differentiate groups (p = 0.008). 

McMaster score N Mean MICE score Standard deviation

>=6 (good quality) 23 .563 .123 

<6 (poor quality) 10 .413 .163 

Table 27. Descriptive statistics of MICE scores from the 38-item data set dichotomised into good 

and poor quality group studies. 

 

 Levene’s test t-test (2-tailed) 

 F p t df p Mean difference (95% 

CI) 

Equal variances 

assumed 

.148 .703 2.920 31 .006 .150 (.045 - .254) 

Equal variances 

not assumed 

  

  

2.608 13.649 .021 .150 (.026 - .273) 

Table 28. 2-tailed independent samples t-test comparing the means of MICE scores from good 

and poor quality groups, using the 38-item data set. 

 

McMaster score N Mean rank Sum of ranks 

>=6 (good quality) 23 19.96 459.00 

<6 (poor quality) 10 10.20 102.00 

Wilcoxon W 102.00 

p (2-tailed) .008 

Table 29. Wilcoxon rank sum test comparing MICE scores from good and poor quality groups, 

using the 38-item data set. 

 

Regarding the usefulness of the JIF as a criterion standard, the correlation between 

JIF and MICE scores for the 38-item data set was again weak (Pearson r = 0.271, 2-

tailed p = 0.079; Spearman rho = 0.297, 2-tailed p = 0.053). Figure 21 shows the 

scatterplot. 
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Figure 21. Scatterplot of MICE scores from the 38-item data set vs. studies' Journal Impact 

Factor. 

 

The convergent construct validity hypothesis was reaffirmed with the 38-item data 

set (Table 30, Table 31, Table 32). The improvement in MICE score with statistical 

assistance was greater than seen with the 80-item questionnaire (0.129 points vs. 

0.097). As before, the results are shown for the inclusion and exclusion of the 

statistical assistance item, which did not make a large difference. 

 Statistician N Mean MICE score Standard deviation 

Yes 18 .611 .109 Item included 

No 40 .477 .110 

Yes 18 .609 .110 Item excluded 

No 40 .480 .111 

Table 30. Descriptive statistics of MICE scores from the 38-item data set for studies where 

statistical assistance was and was not provided. 

See p. 81 for explanation of item exclusion. 
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Levene’s test t-test (2-tailed)  

F p t df p Mean difference 

(95% CI) 

Equal 

variances 

assumed 

.071 .791 4.291 56 .000 .134 (.071 - .197) Item included 

Equal 

variances not 

assumed 

 4.304 33.076 .000 .134 (.071 - .197) 

Equal 

variances 

assumed 

.073 .788 4.116 56 .000 .129 (.066 - .192) Item excluded 

Equal 

variances not 

assumed 

  

  

4.128 33.071 .000 .129 (.066 - .193) 

Table 31. 2-tailed independent samples t-test comparing the means of MICE scores from studies 

that had and did not have statistician assistance, using the 38-item data set. 

See p. 81 for explanation of item exclusion. 

 

 Statistician N Mean rank Sum of ranks 

Yes 18 42.75 769.50 

No 40 23.54 941.50 

Item included 

Wilcoxon W 941.50 

p (2-tailed) .000 

Yes 18 42.61 767.00 

No 40 23.60 944.00 

Item excluded 

Wilcoxon W 944.00 

p (2-tailed) .000 

Table 32. Wilcoxon rank sum test comparing MICE scores of studies that had and did not have 

statistician assistance, using the 38-item data set. 

See p. 81 for explanation of item exclusion. 

 

Divergent construct validity tests for the 38-item questionnaire again showed that 

variables hypothetically unrelated to experimental quality exhibited low correlations 

(see Table 33 and Figure 22.) 

 N Author p Page p Reference p Year p 

r 58 .118 .377 -.054 .689 .165 .217 -.019 .888 

rho 58 .108 .420 -.038 .774 .149 .265 .044 .742 

Table 33. Pearson and Spearman correlation between 38-item data set MICE scores and counts 

of authors, pages and references and year of publication. 
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Figure 22. Scatterplots of MICE scores from the 38-item data set vs. studies' number of authors, 

pages, references and publication year. 

 

In summary, the reduction of the 80-item questionnaire (MICE-80) to 38 items 

(MICE-38) did not adversely affect criterion and construct validity. Indeed, known-

groups and convergent construct validity tests demonstrated more marked results 

with MICE-38 and thus supported validity greater than with MICE-80. 

 

3.12. Discussion 

This chapter described the development processes used to create the MICE index, the 

tests used to establish reliability and validity and the results of those tests. A large 

literature survey was performed in the disciplines of computer science, health 

informatics and medicine. No completely adequate scales could be found in the 

informatics space. Existing informatics scales had questionable reliability, and none 

were validity tested. MICE questionnaire items were derived from a large pool of 

experimental concepts from a large number of publications. In addition, expert 
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opinion contributed. Both the 80-item and the 38-item questionnaires were shown to 

be highly reliable using the test-retest method and intraclass correlation coefficients. 

Face validity and content validity were not formally tested, but it was assumed that 

these had been satisfied. Both questionnaires demonstrated convergent construct 

validity; it was hypothesised in advance that the assistance of a statistical expert in 

the conduct of experiments should lead to higher MICE scores. This was shown to be 

the case. Both questionnaires also exhibited divergent construct validity; report 

variables (number of authors, pages, references and publication year) that should not 

be related to experimental quality were shown to have low correlations with MICE 

scores. 

Hence, the 3 hypotheses of this research were demonstrated. With regards to the first 

hypothesis (p. 22), the MICE index is a questionnaire instrument that usefully 

measures informatics experimental quality involving human participants. With 

regards to the second and third hypotheses, it is applicable to computer science and 

health informatics domains. 

The testing stages were not only beneficial in establishing the MICE index’s 

psychometric properties but also created new information useful to research 

methodology. Because psychometric evaluation of controlled experimental quality in 

informatics is young, there are no gold criterion standards against which to assess 

new scales. MICE’s validity tests examined whether Journal Impact Factor could be 

useful as a criterion standard. Unfortunately, JIF was weakly correlated with the 

MICE scores for both questionnaires. Nevertheless, such information creates and 

adds to a body of empirical evidence. No other researchers have attempted to 

correlate JIF to informatics experimental quality. 

One of the important contributions of the MICE index is as a criterion standard. A 

major problem of other informatics experimental quality scales is that none had 

tested validity. Reasons could include lack of criterion standards, the effort involved 

(138) (p. 132), the uncertainty of how to proceed and being satisfied with face 

validity. The MICE index could be used to test other informatics experimental 

quality scales developed in the future. 
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Further new and useful information was discovered during the testing stages. MICE 

scores were empirically found to be near-normally distributed. No such evidence has 

been reported in the informatics literature before. Therefore, this research will help to 

establish whether normality constraints can be assumed for statistical analyses of 

experimental quality. 



 101

Chapter 4: The MICE Index and its Explanation 

4.1. Introduction 

This chapter is the realisation of the doctoral research: a useful questionnaire 

instrument for measuring the quality of controlled experiments with human 

participants in computer science and health informatics. 

The previous chapter dealt with the creation and testing process of the MICE index 

according to psychometric theory. Both the MICE-80 and MICE-38 questionnaires 

were demonstrated to be reliable and valid. Because MICE-38 is as useful as MICE-

80 and is shorter, MICE-38 is the preferred version of the index. Items that were 

removed can be found in Appendix C. This chapter presents the 38-item 

questionnaire. Each item’s meaning and importance to experimental quality is 

described; the MICE index looks for internal and external validity and whether an 

experimental report accurately and clearly conveys experimental conduct and results. 

Explanations are presented in the manner of previous experimental guidelines (see 

(122) and (108).) 

In the questionnaire, some item questions are followed by italicised text, which 

provides further elaboration and/or instructions on how to answer. Items are 

organised to similarly follow the section organisations commonly found in 

experimental reports: introduction, method, results and discussion. 

 

4.2. MICE-38 Questionnaire 

INSTRUCTIONS TO USERS 

The Measurement of Informatics Controlled Experiments (MICE) index is a 

measurement tool to assess the quality of controlled experiments performed in 

informatics. It is used for experiments where humans receive informational support 

from informatics artefacts, e.g. information technologies and paper-based algorithms. 

It can also be used in experiments assessing the methods by which humans develop 

information technologies (e.g. software and interface development). It can be applied 
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to summative or formative experiments. Users of this index should be knowledgeable 

in experimental design, statistical analysis and informatics. To calculate the index’s 

score, sum the responses of each item and divide by the total possible score (the sum 

of maximum responses of applicable items). For items 19 and 20, “If applicable” 

means, “If the study design is at risk of the effect.” If applicable, determine the 

degree of control. If the study design is not at risk, then answer as “NA”. The MICE 

index should be applied to a single report, i.e. not to an experiment published over 

several reports; the score is for a single report. 

 

INTRODUCTION 
1. How clear is the rationale for the experiment? Why was conducting the experiment important? What 

is the deficiency in knowledge that the experiment tried to address? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

METHOD - GENERAL 
2. How adequately stated are the null and/or alternative hypotheses? 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| 

 
3. How adequate is the general description of the experimental design e.g. blocked, nested, crossed, 

crossover, parallel group, balanced? 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| 

 

4. Is the experimental design suitable for the experimental questions posed? 

|0 unsuitable| |1| |2| |3 moderately suitable| |4| |5| |6 suitable| 

 

METHOD - TREATMENT (INDEPENDENT VARIABLE) 
5. Are the treatments suitable for the experimental questions posed? 

|0 unsuitable| |1| |2| |3 moderately suitable| |4| |5| |6 suitable| 

 

METHOD - SETTING 
6. Is the site representative of a real-world setting in which the technology/method would be used? If 

the site is not described then answer “NA”. 

|0 not representative| |1| |2| |3 moderately representative| |4| |5| 

 |6 representative|  |-- NA| 

 

METHOD - EXPERIMENTAL UNIT (PARTICIPANTS) 
7. Is it clear how the experimental units were sampled e.g. random, pseudorandom, convenience? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

8. Are inclusion criteria for the experimental unit clear? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

9. Are exclusion criteria for the experimental unit clear? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

10. Is the experimental unit level, e.g. individual, group, organisation, suitable for the experimental 

questions posed? 

|0 unsuitable| |1| |2| |3 moderately suitable| |4| |5| |6 suitable| 
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11. How representative are the experimental units of the real world? If the experimental unit is unclear 

then answer “NA”. 

|0 not representative| |1| |2| |3 moderately representative| |4| |5| 

 |6 representative|  |-- NA| 

 

METHOD - ALLOCATION/RANDOMISATION 
12. Was the allocation completely random? Merely stating random is insufficient – the technique is 

required e.g. computer-generated. 

|0 no or unknown| |1 yes| 

 

13. Did investigators use allocation concealment techniques e.g. central randomising agent, 

sequentially numbered opaque envelopes, randomising at time of allocation? Allocation concealment 

requires that the investigators could not have subverted (random) allocation by knowing ahead of the 

time of allocation to which group a participant would go. 

|0 no or unknown| |1 yes| 

 

METHOD - MATERIALS 
14. Is it clear what the supporting experimental materials are i.e. hardware, tools, software, 

documentation, or other supporting items? This does not refer to measurement instrumentation for the 

experiment. 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

METHOD - OUTCOMES (DEPENDENT VARIABLES) 
15. Are the measurement methods, instruments or outcomes reliable? Reliability is the consistency of 

a measure. Are reliability coefficients stated? Have instruments been previously shown to be reliable? 

|0 unknown| |1 overall poorly reliable| |2| |3 overall moderately reliable| |4| |5|

 |6 overall highly reliable| 

 

16. Are the measurement methods, instruments or outcomes valid? Validity is whether observations 

actually do measure what they intended to measure. Are measures face valid, criterion valid, 

construct valid etc? 

|0 unknown| |1 overall poorly valid| |2| |3 overall moderately valid| |4| |5|

 |6 overall highly valid| 

 

17. What percentage of main/primary outcomes are objective e.g. not subject to interpretation, recall 

error etc? 

|0 0%-25%| |1 26%-50%| |2 51%-75%| |3 76%-100%| 

 

METHOD - BIAS/CONFOUNDING 
18. Are the control and treatment groups comparable in important ways (apart from the independent 

variables)? If insufficient information then answer “Not comparable”. 

|0 not comparable, confounding highly likely| |1| |2| |3 moderately comparable, 

confounding moderately likely| |4| |5| |6 comparable, confounding unlikely| 

 

19. If applicable, do the investigators control for the learning effect e.g. training sessions, analysis of 

treatment sequence? Treatment can be confounded with subject familiarity (becoming more familiar) 

with the technology/method or task. Within-subject designs are at risk. 

|0 not controlled or acknowledged| |1inadequate control| |2 controlled but effect not quantified|

 |3 effect quantified| |-- NA| 

 

20. If applicable, do the investigators control for carryover or contamination effects? The effect of a 

treatment can persist (carry over) into the control state e.g. a crossover design, or affect the control 

group as well as the treatment group (contamination). 

|0 not controlled or acknowledged| |1inadequate control| |2 controlled but effect not quantified|

 |3 effect quantified| |-- NA| 
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21. Are relevant subjects blind to expectation effects e.g. blind to treatment group, blind to 

experimental hypothesis? Proponents and critics of technologies and methods may be biased due to 

expectation effects, which can affect self-reported and/or performance outcomes. Relevant subjects 

are those whose observations may be influenced by expectation effect. 

|0 no or unknown| |1 partially| |2 yes| 

 

22. Are assessors of outcomes blind to expectation effects e.g. blind to treatment group, hypothesis? If 

all outcomes are self-reported then answer “NA”. 

|0 no or unknown| |1 partially| |2 yes| |-- NA| 

 

RESULTS - GENERAL 
23. How adequate is the baseline comparison of the characteristics of experimental groups? Is there 

enough information to tell whether groups were comparable or not? 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| 

 

24. How adequately are effect sizes presented? 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| 

 

25. To what extent are confidence intervals used? 

|0 not used| |1| |2| |3 moderately used| |4| |5| |6 widely used| 

 

RESULTS - INELIGIBLE/LOST DATA 
26. Is it clear how many participants were eligible, were enrolled, and were lost, excluded or had 

withdrawn? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

27. What is the percentage of lost/withdrawn/excluded participants to the enrolled? 

|0 unclear| |1 >20%|  |2 10%-20%| |3 <10%| 

 

RESULTS - STATISTICAL METHODS 
28. Are sample sizes calculated for all main outcomes? 

|0 no| |1 partially| |2 yes| 

 

29. How appropriate is the use of scale type (level of measurement) e.g. nominal, ordinal, interval, 

ratio? 

|0 inappropriate| |1| |2| |3 moderately appropriate| |4| |5| |6 appropriate| 

 
30. How adequate is the description of the statistical tests used e.g. name, significance level and 

corrections? 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| 

 

31. Are statistical test assumptions unacceptably violated? If violations are minor or absent then 

answer “No”. 

|0 yes| |1 no| 

 

32. Is unit of analysis error present (and not corrected for)? This occurs when observations are 

analysed without consideration of their independence e.g. analysing individual data rather than as a 

group (cluster) when measurements on individuals within a group would likely be similar than 

between groups. If corrected then answer “No”. 

|0 yes| |1 no| 

 

33. Was a statistician consulted? 

|0 no or unknown| |1 yes| 

 

34. How appropriate overall is the statistical analysis? 

|0 inappropriate| |1| |2| |3 moderately appropriate| |4| |5| |6 appropriate| 
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DISCUSSION 
35. To what extent are the investigators’ conclusions justified? 

|0 not justified| |1| |2| |3 moderately justified| |4| |5| |6 justified| 

 

36. How adequate is the discussion on how the findings relate to current evidence and/or theory? 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| 

 

37. How adequate is the discussion on external validity i.e. how the findings can be generalised? 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| 

 

38. How adequately do the investigators discuss the limitations of the experiment? 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| 

 

4.3. Explanation and Elaboration 

4.3.1. How clear is the rationale for the experiment? 

The rationale for an experiment is its raison d’être. Because controlled experiments 

with human participants are usually costly in time, effort and manpower, there 

should be good reasons to conduct them. The purpose of any empirical investigation 

is to determine new knowledge or provide further evidence for or against what is 

already suspected. Therefore, there is little point in conducting expensive 

experiments if they do not contribute to the knowledge base. Indeed, for medical 

experiments involving human participants, there is an ethical requirement from the 

Helsinki Declaration that such research “must be based on a thorough knowledge of 

the scientific literature.” (252) This could potentially apply to health informatics 

experiments. 

From a quality perspective, as defined for the MICE index, explanation of how the 

experiment contributes to knowledge improves understanding of the experiment. It 

puts into perspective the results of an experiment. It also helps external validity by 

assisting readers to compare the results against other studies and decide whether they 

can be generalised to those. Describing the rationale also alerts readers to shallow 

hypotheses. These are simplistic research questions that do not “reflect an 

underlying, explanatory theory” (122) for important phenomena in informatics. 

When answering item 1, users should look for information, usually in the report’s 

introduction, that compares the presented research against current knowledge. This 

item is not inquiring about the worthiness of the research problem. For example, a 

good research hypothesis is: medical errors are costly and could be reduced using a 

clinical decision support system; item 1 would be answered according to whether the 
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experiment contributes to the evidence base that clinical decision support systems 

reduce medical errors and not according to the description of how much of a problem 

medical errors are. 

4.3.2. How adequately stated are the null and/or alternative hypotheses? 

Study reports usually describe the objectives, aims or goals of the experiment. This 

establishes whether the actual conduct of the experiment was suited to achieving the 

stated goals. If the design of a study is not suited to its objectives, it will have poor 

internal validity. Stating objectives also helps understanding by concisely describing 

the purpose of the experiment and by allowing readers to gauge whether the 

experiment is similar to others and their objectives. 

In addition, by stating hypotheses formally, it forces investigators to explicitly 

indicate the primary outcome measures and, if any, the secondary. This alerts readers 

to the potential of fishing expeditions, where investigators produce spuriously 

statistically significant data from excessive hypotheses tests (108, 122). 

The rationale for requiring null or alternative hypotheses over general statements of 

objectives is that the former are concise and exact ways of expressing the goals of 

experiments. They are also easier to find in a report, which is particularly useful 

when comparing findings in the results section to the original goals. 

When answering item 2, users should look for null or alternative hypotheses 

statements, ideally indicated by H0 or H1/HA. Statements should be clear and concise. 

4.3.3. How adequate is the general description of the experimental design e.g. 

blocked, nested, crossed, crossover, parallel group, balanced? 

The description of the basic design of an experiment helps to convey to the reader an 

overall picture of its conduct. Keywords, as mentioned in the item stem, provide 

concise and clear meaning. This contributes to the overall understanding of the 

report, in particular when the fine details of the experimental method are then 

explained. A general description is also helpful in quickly determining whether a 

chosen design is suitable for the research hypotheses. In particular it can affect the 

choice of statistical tests (164). 
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When answering item 3, users should look for a statement, ideally at the beginning of 

the methods section, which describes clearly and accurately the general type of 

experimental design used. Study design keywords are most helpful. 

4.3.4. Is the experimental design suitable for the experimental questions 

posed? 

This item is aimed at a high level of abstraction and requires a broad consideration 

by MICE index users. There may be many reasons why a particular experimental 

design is poorly suited to the research hypothesis. It is an important consideration 

since a poorly chosen design will adversely affect internal validity; results will often 

have systematic error (bias) or confounding effects. An example of poor design 

choice is the use of historical controls when it would be clear that secular trends 

could account for results. Another example is the use of a crossover study when 

carryover or learning effects would corrupt the second stage. 

When answering item 4, users should judge whether the chosen experimental design 

would have caused problems for answering the research hypothesis. If the study 

design is poorly described, it cannot be suitable. 

4.3.5. Are the treatments suitable for the experimental questions posed? 

This is another item that requires broad consideration. Treatments are the conditions 

placed on the experimental groups to see the effect on outcomes of interest. In 

controlled experimentation, by definition, the research question is answered by 

comparing treatment groups to control groups. Therefore, treatments that do not 

adequately separate groups cannot answer the research question at hand. This also 

implies that treatments are well-defined. There may be more than one treatment that 

is recognised by the investigators. An example is the study by Fitzmaurice et al 

(218). The aim of the controlled trial was to determine whether International 

Normalized Ratio (INR) control for general practice patients improved using a 

decision support system for dosing warfarin. The treatment was the use of the system 

by general practitioners, and the control was management by hospital haematologists 

without the system. Hence, the additional treatment not considered by Fitzmaurice et 

al was management by specialist doctors, which could have accounted for 

differences in INR stability. 
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When answering item 5, users should judge whether the defined treatments would 

have caused problems for answering the research question. Users should consider 

whether treatment and control statuses adequately differentiated participants and 

whether all relevant treatments were addressed. Poor definitions of treatments should 

be considered unsuitable. 

4.3.6. Is the site representative of a real-world setting in which the 

technology/method would be used? 

A real-world setting is distinct from an artificially created environment such as a 

laboratory. Credible results are most useful when they are generated in a real 

working environment, e.g. a hospital, a clinic or industry. Such results are more 

likely to be externally valid and useful to readers of a report since they can compare 

their situation with the study. 

This item is particularly important for computer science experiments where students 

are often used as experimental participants (91, 94), and therefore the site is usually a 

university. However, if the computing technology or method is intended for a student 

setting, then the choice of an academic site is acceptable. An example is computer-

assisted education, where an experiment might test the hypothesis that learning is 

benefited. 

When answering item 6, users should judge whether the site for the experiment is 

similar to the final working environment where the technology or method would be 

used. 

4.3.7. Is it clear how the experimental units were sampled e.g. random, 

pseudorandom, convenience? 

The selection of experimental units, e.g. human participants, departmental units, 

hospitals, companies, is always decided as part of an experimental plan. Rarely can a 

census be achieved, and investigators should communicate how the sampling was 

performed. How a sample is selected from a population can greatly affect the internal 

validity of an experiment. For instance, a voluntary response sample is more likely to 

be affected by bias than a simple random sample (245) (p. 219) because the former is 

more likely to attract supporters of technology, while the latter gives all people an 

equal chance to be selected. Computer science experiments are particularly at risk 
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since convenience has been the main method of sampling (80) (usually from a 

captive audience: students taking the university course that the investigator teaches 

(94)). 

When answering item 7, users should look for a description of the sampling method 

that would allow the user to make a judgement on sampling biases. 

4.3.8. Are inclusion criteria for the experimental unit clear? 

The experimental unit is the experimental object to which a treatment is assigned. It 

is often an individual human participant but can be clusters of individuals, e.g. a pair, 

a department, a medical ward team, a hospital or company. Knowing the 

characteristics of the experimental unit helps readers of a study to determine whether 

the results are applicable to their environment, i.e. external validity. Also, by 

defining entry criteria, participants are made more comparable on independent 

variables that are thought to affect outcomes (122). 

In health informatics reports, occasionally there appears a description of patient 

characteristics when patients were not actually the experimental unit. Rather the 

health care provider was the experimental unit. This is a carryover from clinical trial 

reporting where patients (individuals or groups) are usually the unit of 

experimentation. In experiments where health care providers are assigned treatments, 

such as the use of a clinical information system, the description of inclusion criteria 

applies to the provider and not the providers’ patients. However, patient 

demographics may be important if treatment and control provider groups see 

different patients and these differences would have an effect on outcomes. 

When answering item 8, users should look for a clear description of the criteria that 

allowed entry of experimental units into the study. 

4.3.9. Are exclusion criteria for the experimental unit clear? 

This item is similar to item 8 but looks for characteristics of the experimental unit 

that denied entry into the study. Often investigators do not indicate exclusion criteria 

and assume that readers will guess that none existed. Ideally, if there was indeed 

nothing to exclude a participant from the study, it should be stated. This makes for 

certain to the reader that no exclusion criteria existed. 
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When answering item 9, users should look for a clear description of the criteria that 

denied entry of experimental units into the study. 

4.3.10. Is the experimental unit level, e.g. individual, group, organisation, 

suitable for the experimental questions posed? 

This item relates to whether the experimental unit has been chosen correctly for the 

research hypothesis. It is an issue of internal validity. In all experiments, 

investigators must decide what the level of the experimental unit should be. It is 

often an individual person but may be clusters of individuals. If an experimental unit 

is defined at the individual level when groups are more appropriate, the sample size 

will be inflated, and unit of analysis error can occur. The experimental unit should be 

chosen according to the research hypothesis (253). If the hypothesis concerns 

organisations, the experimental unit should not be individuals within the 

organisations and treatment assignment performed accordingly (122). 

Health informatics studies are at particular risk of inappropriate choice of 

experimental unit. A common research hypothesis is whether the use of a clinical 

information system by health care providers improves practice and therefore 

improves patient illness outcomes. Investigators often then enrol patients into their 

study as the experimental unit while the treatment (the information system) is applied 

to the providers. If the unit of observation is the patient, the sample size will usually 

be greatly inflated since patients significantly outnumber providers. Consequently 

unit of analysis error occurs. Depending on the research hypothesis, it may be 

necessary to consider the experimental unit at a higher level, e.g. clinic, ward team or 

hospital. 

When answering item 10, users should consider how severely the level of the 

experimental unit would cause unit of analysis error given the research hypothesis. 

This item differs from item 32, which inquires about the presence of unit of analysis 

error and whether statistical correction has been made. For item 10, ideally, units 

should have been defined appropriately at the planning stage of an experiment. 

4.3.11. How representative are the experimental units of the real world? 

This item relates to the external validity of the participants. Ideally participants 

would come from a real-world setting where the treatment would be used as this has 
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high external validity. As mentioned above, computer science controlled experiments 

commonly utilise undergraduate university students as subjects. Depending on the 

research hypothesis, this can limit the generalisability of results to computing 

professionals, particularly when the outcomes relate to work performance. In 

contrast, health informatics experiments tend to use working professionals as 

opposed to health care students. However, again depending the research hypothesis, 

such experiments may not be widely externally valid since some studies focus on 

junior health care providers but try to extrapolate to professionals of higher 

experience. One example is the effect of a diagnostic system on the accuracy of a 

doctor’s diagnosis. If an experiment is conducted on junior doctors, the effect may 

not be similar on senior ones (presuming the research hypothesis is the effect of a 

system on doctors in general). Focussing on junior doctors or health care students 

may be appropriate if the system is aimed at assisting a particular group, e.g. a 

hospital decision support system that junior doctors must consult and tends to be only 

used by them. 

When answering item 11, users should judge how similar the experimental 

participants are to those in the real environment where the technology/method would 

be used.  

4.3.12. Was the allocation completely random? 

Randomisation is an important technique in controlled experimentation. By 

allocating treatment to participants in a random manner, bias and confounding are 

minimized. In particular, selection bias is eliminated (108), and unknown 

confounders are equally distributed among participants (178) (p. 188). Indeed, in 

medical experimentation and health informatics, it is considered a critical aspect. 

Sackett (254) wrote that readers of clinical journals who want to distinguish useful 

from useless or harmful therapies should ignore nonrandomised studies and “go onto 

the next article.” As Sackett describes, there have been many examples of where lack 

of randomisation has lead to incorrect therapy. In Chapter 3, all of the medical scales 

and health informatics sources used to develop the MICE index refer to the 

importance of randomisation, as does Van der Loo’s scale (149). Only De Keizer’s 

health informatics scale does not because it is aimed at all types of evaluation 

designs, such as nonrandomised studies (135). 
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Because of the importance of randomisation to internal validity, this item marks 

down studies where a description of randomisation is absent, even if randomisation 

did occur. It is considered mandatory to report. Furthermore, it is defined as 

mandatory that the technique of randomisation be described. “Completely random” 

means that all participants have the same chance of being allocated a treatment. 

Some methods are referred to as random but are actually not sufficiently random. For 

instance, enrolling participants by day of the week is sometimes mistakenly 

considered to be random. It is pseudorandom because there may be systematic 

reasons why certain participants present themselves at certain times. True 

randomness, or as close as possible, is commonly achieved by computer generation 

or random numbers table. 

When answering item 12, users should look for a description of how treatments were 

randomly allocated and assess whether the technique produced completely random 

(or as close as possible) assignment. 

4.3.13. Did investigators use allocation concealment techniques e.g. central 

randomising agent, sequentially numbered opaque envelopes, 

randomising at time of allocation? 

Randomisation of groups to treatment reduces bias and confounding, but its 

effectiveness can be reduced. If investigators are aware of whether a participant will 

subsequently receive a certain treatment, randomisation can be undermined, and the 

allocation process is longer completely random. Allocation concealment hides the 

knowledge of upcoming randomisation until the randomisation actually occurs. Just 

as randomisation is important for internal validity, so too is allocation concealment. 

Indeed, in clinical trials, studies without allocation concealment have been shown to 

overestimate the effect of thearpies by 30 - 41% (255).  There are several techniques 

to implement allocation concealment. All aim to allocate treatment at the time a 

participant enters the study: a central randomising agent is an external service that 

performs the allocation; sequentially numbered opaque envelopes contain the 

allocation and must be followed in sequential order. 

When answering item 13, users should look for a treatment allocation that does not 

allow investigators to have foreknowledge of which treatment is to be assigned to 

which participant. 
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4.3.14. Is it clear what the supporting experimental materials are i.e. 

hardware, tools, software, documentation, or other supporting items? 

A description of the experimental materials assists readers in determining whether 

results can be generalised to their circumstances. The failure or success of computing 

technology and methods may also be related to the supporting materials employed. 

For example, a version of the VIE-PNN decision support system for improving 

prescribing of parenteral nutrition was unsuccessfully used by physicians due to its 

installation on a stand-alone PC, which was located away from where the physicians 

worked (222). When it was installed on the hospital intranet and served to 

workstations as HTML pages, usage was dramatically improved. Another example is 

the study of software programming where specialised training and reference manuals 

can affect programming performance (80). If readers of a study are to decide whether 

the results of an experiment apply to their situation, they need to know whether they 

own or have access to the same supporting items. 

When answering item 14, users should look for a description of supporting artefacts 

needed to conduct the experiment and that might be needed in a real environment 

when applying the technology or method. This item does not inquire about materials 

for measuring outcomes, which are referred to in items 15 and 16. 

4.3.15. Are the measurement methods, instruments or outcomes reliable? 

Reliability of measurement is one of the pillars of measurement theory, as discussed 

in Chapter 2. If measurements are unreliable then, by definition, there is an 

unsatisfactory degree of associated error. High degree of error means that results 

cannot be trusted and are internally invalid. Because of this concept’s importance to 

empirical studies, this item marks down unreported reliability. Ideally, there should 

be a quantification of reliability of measures, such as a correlation coefficient or a 

kappa statistic (122). Sometimes these measurement issues are addressed in separate 

papers and therefore “published elsewhere”. Nevertheless, investigators should 

report enough information in the main paper to indicate the reliability of measures. 

Reliability is a particularly important concept for informatics. Often human judges 

are required in determining outcomes, e.g. assessing the correctness of programmes 

when using a software development method or the appropriateness of drug 

prescribing when assisted by a clinical information system. Judges should be shown 
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to be reliable before they are used in experiments, for example by demonstrating 

inter-rater agreement. 

When answering item 15, users should look for a description and, ideally, a 

quantification of the reliability of measures. 

4.3.16. Are the measurement methods, instruments or outcomes valid? 

Validity is another pillar of measurement theory. Experimental measures should be 

valid. If measures are not valid, they do not refect the construct being assessed and 

are instead tapping something else. Thus, results cannot be internally valid. It is a 

critical aspect of measurement, and unrecognised validity issues are therefore 

penalised by this item. 

Validity is another common measurement problem in informatics. For example, 

concepts such as software complexity, user satisfaction, system benchmarking and IT 

security require careful consideration to what instruments dedicated to their 

measurement might actually be measuring. Is software complexity accurately 

measured by counting lines of code, or is it more related to logical statements or to 

programming comments?  Is a survey on user satisfaction actually measuring that a 

system is free of faults, or that it meets user requirements, or that it is fast, or that the 

interface is intuitive, or other aspects (256)? System benchmarks can measure a wide 

range of constructs, from floating point operation of a CPU to volume testing of a 

database. Finally, the measurement of IT security is largely qualitative and subjective 

(257) where, “The scientific validation of measuring tools… raises many questions 

that have not been discussed not to mention answered.” (258) 

When answering item 16, users should look for a description of whether measures 

are valid. Many measures will often only have face validity, if described at all, which 

should be regarded as less convincing than objective criterion and construct validity 

testing. 

4.3.17. What percentage of main/primary outcomes are objective e.g. not 

subject to interpretation, recall error etc? 

Human memory and interpretation are fallible. Objective outcome measures are 

those that do not require a judgement by the producer of the outcome, e.g. time taken 

to accomplish a task, a numerical biochemical result, counting lines of code. When a 
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human assessor is required to make an interpretation for a dependent variable, the 

outcome is no longer objective (167), e.g. judgement of source code correctness or 

appropriateness of clinical management. Subjective judgment is less preferred than 

objective because of the potential for less consistent measurement (152) (p. 67). In 

addition, subjective measurement can lead to expectation and observer biases (see 

items 21 and 22.) 

When answering item 17, users should count the number of main or primary 

outcomes the investigators are examining and consider how many of those are 

objective. 

4.3.18. Are the control and treatment groups comparable in important ways 

(apart from the independent variables)? 

The power of controlled experiments comes from manipulation of variables of 

interest while maintaining other variables as constant, so that causal relationships can 

be assessed with confidence. When experimental groups only differ in the 

independent variable, this provides the strongest connection between cause and 

effect. 

Comparability can be achieved by simple randomisation or stratifying groups on 

variables that are likely to affect outcomes, followed by randomisation. Use of 

within-subject designs is also helpful. Randomisation of small experimental samples, 

which often occur in computer science experiments, does not always produce 

unbiased allocation (122). In this case it becomes even more important that 

investigators demonstrate that confounding is not present. Randomisation, though, 

remains a powerful technique to make groups comparable, not least because it also 

evenly distributes unknown confounders (178) (p. 188). In addition to the description 

of how investigators made groups comparable, ideally they should include a table in 

their report that shows the similarity or otherwise of experimental groups with 

regards to potentially important variables (item 23). 

Because of the importance of this experimental principle, inadequate reporting that 

fails to demonstrate how experimental groups compare is penalised by the MICE 

index. 
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When answering item 18, users should look for a description that compares 

experimental groups and judge whether the groups were similar in important ways 

other than in the variables being manipulated. Otherwise confounding factors could 

account for the results. If the study design is within-subject, then control and 

treatment groups are usually comparable. However, this may not always be true, e.g. 

fatigue effects on participant performance. 

4.3.19. If applicable, do the investigators control for the learning effect e.g. 

training sessions, analysis of treatment sequence? 

The learning effect is a form of bias where participants become more effective or 

perform better due to learning of the experimental tasks required or the computing 

technology/method. For instance, if a group of programmers are taught a new form 

of fault inspection, fault detection rates might improve with time as they become 

accustomed to the technique. The same applies to the use of information systems 

when there is a learning curve to overcome before the system can be used to its 

potential. Learning effect means that early experiments might produce poorer results 

than later experiments, which is the same as stating that later experiments may show 

better results than earlier ones. The importance of the direction of error depends on 

the perspective of the research (effect size is under or overestimated.) For example, 

with regards to an underestimation perspective, one of the largest randomised 

controlled trials to assess the effect of a paediatric decision support system on patient 

outcomes failed to produce significant benefits. The MARY system was a neonatal 

intensive care monitoring system and the object of a trial that lasted 33 months, 

enrolled 600 neonates, examined 10 outcomes and followed babies into early 

childhood (259). Because none of the outcomes were significantly improved, the 

investigators performed a human factors study (260), which observed that one of the 

important issues was the lack or shortage of system training. The benefit of MARY 

may have been underestimated because unit staff were not instructed on the more 

advanced functionalities (260).  Training sessions or letting participants become used 

to a new treatment are ways to control for learning effect. 

Within-subject studies are particularly at risk of learning effect because participants 

can learn the experimental tasks required of them and transfer the knowledge to 

subsequent stages of the experiment. Outcomes are then influenced by learning effect 
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beyond the effect of treatment. This is an example of potential overestimation of 

effect size. It is a particular risk in computer science experiments because within-

subject studies are common (16/25 [64% of] computer science experiments used to 

test the MICE index in Chapter 3 were within-subject designs compared to 2/33 [6% 

of] health informatics experiments.) Learning effect can be quantified in within-

subject studies by statistical analysis of treatment sequence. Another technique to 

control for learning is to vary the order in which participants encounter treatments 

(155), such as a counterbalanced design (191). In parallel-group studies, learning 

effect of required tasks is potentially present but, since it affects all experimental 

groups (i.e. including controls), no bias occurs. 

When answering item 19, users should judge whether learning effects are likely to be 

present to a degree that would affect internal validity. If in doubt, the NA response 

should be chosen. If an important learning effect was present but not recognised, this 

should be considered as not controlled. 

4.3.20. If applicable, do the investigators control for carryover or 

contamination effects? 

A carryover effect occurs in crossover/within-subject studies when the influence of a 

treatment persists into the control state. This is typically seen in pharmacological 

trials, where the effect of the drug given during the treatment stage carries over into 

when a patient enters the control stage because insufficient time is given for the drug 

to wash out from the patient (261, 262). Hence, the outcomes for the control state can 

appear more similar to the treatment state than are actually the case, and the effect 

size is reduced. Carryover effect in this dissertation is considered distinct from 

learning effect (when the experimental tasks have been learnt), although the terms 

have been treated synonymously (122). Carryover effect is the effect of the treatment 

persisting and not experience with tasks. 

Contamination occurs in parallel-group studies when the influence of a treatment 

spills over into the control group. Like carryover effect, the consequence is to 

increase the similarity between treatment and control groups and therefore reduce 

effect size. Sometimes the terms carryover and contamination are used 

synonymously (138) (p. 214) but, in this dissertation, carryover specifically refers to 

crossover designs. 
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Health informatics experiments are particularly at risk of contamination. Patients are 

often assigned to a treatment group where attending health care providers use a 

decision support system, while control group patients are managed by unassisted 

providers. However, if a health care provider cares for patients from both groups, it is 

probable that he or she has learnt from the system and might apply that improved 

knowledge to control patients, hence contaminating the control group with the 

decision support system treatment. To control for the contamination effect, treatment 

allocation should occur at a higher level, such as providers or departments (138) (p. 

214). Providers then retain the same level of knowledge and are consistent when they 

attend to patients. Contamination can still occur at the provider level if providers 

from different groups are, for some reason, required attend to the same patient. 

When answering item 20, users should judge whether carryover or contamination 

effects were likely to be present to a degree that would affect internal validity. If in 

doubt, the NA response should be chosen. If an important carryover or contamination 

was present but not recognised, this should be considered as not controlled. 

4.3.21. Are relevant subjects blind to expectation effects e.g. blind to treatment 

group, blind to experimental hypothesis? 

Expectation about a new informatics technology or method can influence human 

participants. Critics may consciously or subconsciously underperform when assigned 

to the intervention or try harder when assigned as control. Enthusiasts are the 

opposite. In addition to performance, subjective measures can be influenced by 

expectation. In this case, it can be called the placebo effect, where subjects “report a 

favourable response” (178) (p. 192) to interventions due to their belief that the new 

innovations are superior. 

To address expectation effects is to remove the expectation from participants. Since 

expectation is a state of mind, participants must be deceived so that such thoughts are 

not present. In medical experimentation, fake therapies are given that are 

indistinguishable from the real therapies, e.g. inert medicines that taste, smell and 

appear as the real ones; and incomplete therapeutic procedures that feel real without 

having performed the critical step. The process of confusing participants to 

experimental group status is called blinding. In informatics experiments, it is almost 

impossible to blind participants to experimental group because most interventions are 
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plainly apparent, e.g. computer-based systems, man-machine interfaces. Indeed, 

because informatics deals with information, most interventions are educational or 

influence human information processing. Despite the difficulty of blinding in 

informatics experiments, it is important to attempt if possible. In medical 

experimentation, there is clear evidence that placebo effect inflates treatment effects 

(178) ( p. 195). In the study by Lowenstein et al (225), the provision of computerised 

coronary risk profiles improved patient risk factors, but the computer-aided physician 

group was younger, more recently graduated and more likely to enrol their patients 

into the study than the unassisted control group (p < 0.05). It is possible that the 

younger physicians embraced the computer technology, and this accounted for some 

of the patient improvement. 

One method to blind participants is to not inform them or only partially inform them 

of the research hypothesis. Participants will then be less likely to manipulate 

outcomes since they are unsure of what is being studied. While this is a useful 

technique from a scientific point of view, it may be unethical in health informatics 

experiments if the Helsinki declaration is adhered to, i.e. “Each potential subject 

must be adequately informed of the aims, methods… the anticipated benefits and 

potential risks of the study…” (252) 

Another technique is to use electronic interfaces when the intervention is an 

electronic information resource (263). Such interfaces could secretly assign 

participants and deliver altered services accordingly. As Eldredge states, “Control 

groups can continue to receive access to conventional resources or services via the 

same electronic interface, whereas the intervention group can receive access to 

variants of the conventional resources or services as part of an intervention.” (263) 

Objective measures are useful as participants cannot alter their subjective outcomes, 

but they do not affect the motivation and performance of champions and critics. 

When answering item 21, users should look for methods investigators used to 

manage participant expectation effects. 
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4.3.22. Are assessors of outcomes blind to expectation effects e.g. blind to 

treatment group, hypothesis? 

The other important group to blind are the outcome assessors. This prevents observer 

(assessment, ascertainment) bias where enthusiastic or critical assessors alter their 

subjective assessment in favour of or against the new innovation. Indeed, even 

objective measures can be affected if assessors influence participant behaviour; 

Rosenthal and Rubin demonstrated that researchers alter the way they treat subjects 

if the researchers expect a certain outcome (264). If assessors know to which group a 

participant belongs, they may err on the side of “giving the benefit of the doubt” for 

intervention participants when uncertain of an outcome. Also, they may probe more 

deeply in the treatment arm and systematically provide more complete/accurate data 

(178) (p. 191). Observer bias is a particular problem when the developers of a 

technology are also the outcome assessors. They are the greatest champions of the 

intervention. 

There is well-established empirical evidence that observer bias occurs in medical 

experiments, and that the effectiveness of therapies is erroneously inflated as a result 

(265, 266). In clinical trials, it would be regarded as suspicious if the developer of a 

therapy, e.g. a pharmaceutical company, were the sole research group to conduct an 

assessment of therapeutic efficacy. Indeed, such practice would have significant 

conflict of interest (267). Yet, the majority of controlled experiments in health 

informatics are performed (solely) by the developer of the technology. 20/33 (61%) 

health informatics studies used to test MICE’s reliability (see Chapter 3) were 

experiments of the developers’ own systems. In only 5/33 (15%) studies were the 

investigators clearly independent of the technology (the remaining 8 were unclear.) 

Informatics is at great risk of assessment bias for also another reason. Inherently, 

many outcomes are based on judges’ opinion. Objective measures are more resilient 

to observer bias than subjective. For example, in health informatics, mortality rates 

and biochemical markers are less susceptible to manipulation than appropriateness of 

therapy or disease severity. 

When both experimental subjects and outcomes assessors are blinded to group 

assignment, this is called double blinding. While it is difficult to achieve double 

blinding in informatics experiments, it should be remembered that in medical 
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experimentation, the absence of double blinding leads to more favourable outcomes 

for new interventions (170). 

This item does not refer to blinding of the statistician (the MICE-80 questionnaire 

contains such an item but was removed for MICE-38.) 

When answering item 22, users should look for methods investigators used to blind 

outcome assessors. In the case that all outcomes are self-reported by participants, 

then expectation (placebo) effect is potentially present rather than observation bias. 

In this dissertation, observation bias is defined as the effect of external assessors, 

though others have considered personal observation (subjective observation) 

included under this concept (108). 

4.3.23. How adequate is the baseline comparison of the characteristics of 

experimental groups? 

As discussed in item 18, experimental groups should ideally be different in only the 

independent variable. Investigators should show that other variables that may 

influence outcomes have been distributed evenly between experimental groups. This 

is important because randomisation does not guarantee that groups will be similar in 

respects other than the independent variable, particularly if sample sizes are small. 

When answering item 23, users should look for a clear description of the 

comparability of experimental groups. The most easily understood format of 

demonstrating comparability is to use a table. This item differs from item 18; item 18 

calls for a judgement by MICE index users as to the possibility of confounding. Item 

23 is related to reporting and improving the understanding of a study. If groups were 

not comparable, but this was reported clearly, for example in a table, item 23 can still 

be marked highly. 

4.3.24. How adequately are effect sizes presented? 

An effect size is taken by the MICE index to mean the magnitude of the treatment 

effect. This can standardised, e.g. Cohen’s d, or unstandardised, e.g. simple raw 

difference between means, depending on what is most easily understood and 

appropriate for the outcomes measured (268). A statement about effect size is useful 

to readers as it conveys deliberately what the benefit of the treatment is. This is the 
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very point of experimentation: to express how much a new informatics object or 

method is better or worse than its competitor, which is usually the current standard. 

When answering item 24, users should judge whether the description of effect size 

shows how much improvement (or worsening) of outcomes the treatment caused and 

whether it is expressed in a form most appropriate and understood. 

4.3.25. To what extent are confidence intervals used? 

Data from samples represent estimates of population parameters. Therefore, 

confidence intervals are important to demonstrate the error associated with 

measurement. They also help readers of studies in the interpretation of sample size, 

power and statistical significance. Narrower confidence intervals indicate a more 

stable estimate of effect and vice versa, which is especially useful when interpreting 

nonsignificant results (178) (p. 253), (108). Confidence intervals can also provide the 

same information as p values in terms of statistical significance (178) (p. 253), (245) 

(p. 414). 

When answering item 25, users should look for confidence intervals applied to 

outcomes. The confidence level should be reported, e.g. 95%, 90% or 99%.  

4.3.26. Is it clear how many participants were eligible, were enrolled, and were 

lost, excluded or had withdrawn? 

This item relates to the internal and external validity of data. Knowing how many 

participants were enrolled and what the eligible population size was, assists readers 

in determining whether the sample was large enough and representative enough of 

the population under study. It is uncommon, however, to know the size of the eligible 

population. If many participants were lost or withdrew from the experiment, there 

may have been systematic factors at play, and these could render results biased. Lost 

participants (or data) are any that were allocated to an experimental group but not 

analysed, e.g. withdrawn or excluded participants and literally lost data. Withdrawn 

participants (or data) are those who removed themselves from the experiment after 

allocation. Excluded participants (or data) are removed by the investigators for any 

reason, e.g. outliers, non-compliance with the treatment. 

Providing numbers of subjects who entered a study but were not part of statistical 

analysis allows readers to judge whether the final results are likely to be credible. 
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This is particularly important for health informatics experimentation, which has 

adopted an intention to treat principle from medical experimentation (138) (p. 217), 

(145). Intention to treat analysis requires that all available data be analysed according 

to original group assignment (108). Poor or non-compliance with a treatment 

(whether a drug or the use of an information system) is not grounds for exclusion of 

a subject from analysis. It can lead to overestimates of the true benefit of an 

intervention in average use (138) (p. 217) and “bias associated with nonrandom loss 

of participants.” (108) 

When answering item 26, users should look for a description of the numbers of 

participants enrolled, lost, excluded or who had withdrawn and the size of the 

eligible population. A study that reports all applicable numbers should be marked 

highly. 

4.3.27. What is the percentage of lost/withdrawn/excluded participants to the 

enrolled? 

This item relates to internal and external validity. If a large number of enrolled 

participants or their data is not analysed then the remaining sample may not be 

representative of the population (108). There may also have been systematic reasons 

to have caused certain participants to have been lost to analysis, and this may bias the 

results (176). 

When answering item 27, users should look for the number of enrolled participants 

and the number of those who were enrolled but who were not included in analysis. 

Reports often do not document percentage losses, and this must be calculated by 

hand. If adequate information cannot be found in the report, then the percentage 

cannot be calculated, and users should answer “unclear”.  

4.3.28. Are sample sizes calculated for all main outcomes? 

Sample size calculations show the reader that the investigators have considered 

statistical power of their experiment as well as the estimated effect size and 

significance level (108, 162, 208). This is especially important for statistical 

nonsignificance of outcomes, which may be the consequence of insufficient power, 

i.e. type II error. The subtle interactions between informatics technologies/methods 

and humans may be similar to the situation in medical experimentation (108), (178) 
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(p. 178), where small benefits of therapies require large numbers of participants, 

making assessment of power necessary. 

 When answering item 28, users should look for descriptions of sample size 

calculations for all main or primary outcomes. Ideally, all main outcomes have been 

assessed for sample size needed. 

4.3.29. How appropriate is the use of scale type (level of measurement) e.g. 

nominal, ordinal, interval, ratio? 

The level of measurement affects what statistical operations are appropriate, e.g. 

correct use of measures of central tendency and dispersion (152) (p. 82) and 

admissible transformations (269). There is, however, ongoing debate on the degree to 

which scale type affects statistical tests of inference (127, 128, 269) particularly 

when classifying scale type by parametric versus nonparametric tests (131) (p. 30), 

(152) (p. 95), (270) . Nevertheless, perhaps the most common mistake in informatics 

is treating ordinal data as continuous without justification, e.g. calculating the mean 

and standard deviation or applying inadmissible transformations like multiplication. 

Fenton provides the example “failure x is twice as critical as failure y” (16) when 

software failure criticality is probably ordinal rather than ratio. This is a particular 

problem in informatics where many metrics have not been shown to be beyond 

ordinal level (152) (p. 30). In health informatics, scale issues are less problematic 

than in other areas of informatics since many outcomes come from the medical 

domain and have well-understood properties, e.g. physiological measurements, 

population health rates, illness staging. However, mistakes still occur, such as the 

study by Cannon et al where nominal data (presence or absence of major depressive 

mood disorder and complete medical record documentation) were treated as interval 

(given a score of 0 or 1) for the purpose of analysis of variance (214).  

When answering item 29, users should judge whether the data has been treated and 

interpreted in accordance with their scale type. If this was strictly not the case, then 

were such decisions reasonably justified? 
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4.3.30. How adequate is the description of the statistical tests used e.g. name, 

significance level, and corrections? 

The statistical tests used should be documented since inappropriately used 

procedures can produce meaningless results. Basic requirements include the name of 

the test, e.g. t-test, Mann-Whitney test, ANOVA and level of significance (0.05, 0.1 

etc). For rarely used statistical tests, investigators may need to describe them and 

how they apply to their experiment. Additionally any corrections to tests or data 

transformations should be documented. 

When answering item 30, users should look for a statement about what statistical 

tests were employed. It should provide enough information to allow judgement of 

whether such tests were appropriate (items 31 and 34). 

4.3.31. Are statistical test assumptions unacceptably violated? 

If a statistical test’s assumptions are violated, the results produced may be worthless, 

as interpretation may be impossible. Common assumptions include normal 

distribution of data and statistical independence of data. However, not all violations 

of assumptions are severe enough to render results uninterpretable. For instance, t-

tests are robust against non-normality depending on the sample size and the presence 

of data outliers or strong skewness (245) (p. 463). In health informatics, statistical 

independence violations are common and cannot be tolerated by commonly used 

tests. Chuang et al’s review of 24 studies found that 14 (58%) did not account for 

clustering, which can affect the independence of data, since participants within one 

cluster can be more related to each other than those between clusters (271). This can 

lead to unit of analysis error. 

When answering item 31, users should judge whether statistical test violations have 

occurred and, if so, whether they have been severe enough to invalidate results. 

4.3.32. Is unit of analysis error present (and not corrected for)? 

The unit of analysis error occurs when statistical analysis does not consider 

independence of data. As Dallal states, “Measuring a single mouse 100 times is 

different from measuring 100 mice once each,” because the former observations are 

more likely to be similar to each other than the latter observations are to each other 

(272). The units of analysis should be the smallest units that are independent of each 
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other (272), which usually means one observation per participant (108). In other 

words, analysis should consider the level of treatment assignment such that the 

number of observations should match the number of units assigned treatment (273). 

The danger of unit of analysis error is type I error since p values and confidence 

intervals become artificially reduced (253). 

Unit of analysis error is a particular problem for health informatics experiments but 

can potentially affect any naturally clustered data (98). Often patients are deemed the 

experimental unit, but their health care providers are allocated treatments. Unit of 

analysis will occur if, during statistical analysis, each patient is deemed a unit for 

analysis. This will occur because patients who attend a provider are probably more 

similar to others who attend the same provider than to those who attend another. The 

patients cluster around a provider and are therefore not independent of each other. As 

an interesting aside, it should be mentioned that this point is the same for many 

clinical drug trials, yet patients remain the unit of analysis (253). The reason for this 

illustrates the importance of unit of analysis in health informatics studies. In drug 

trials, strictly, patients who attend one hospital (most trials are conducted as single-

centre studies) may be similar to each other than those who attend another hospital. 

Therefore, in a single-centre drug trial, the unit of analysis would be the hospital, yet 

analysis is nearly always performed on individual patient observations. This is 

accepted in drug trials because it is assumed that providers are all the same in their 

treatment of patients (253). That is, there is no provider-patient interaction (variance) 

for which to account. However, when the treatment affects provider care/behaviour, 

such as the assistance of a clinical information system, this can no longer be 

assumed. 

Whiting-O’Keefe et al recommended two general approaches to address this 

problem. The first is to make providers the unit of analysis. The second is to create 

multivariate models that examine the patient-provider interactions (253), such as 

generalised linear models and estimating equations (274). 

When answering item 32, users should judge whether data from samples are 

independent or clustered and whether statistical analyses has recognised this threat. If 

unit of analysis error was a threat, did the investigators use appropriate statistical 

techniques to address it? 
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4.3.33. Was a statistician consulted? 

A statistical expert is likely to improve the quality of a controlled experiment. Such a 

person should be aware of pitfalls in the design and analysis of experiments and 

impart this knowledge to co-researchers. This item is related to internal and external 

validity. It is considered by the MICE index to be important to experimental quality 

because of the many ways in which an experiment can be poorly designed, 

conducted and analysed. Non-trivial experiments, i.e. most performed for publication 

in informatics journals, should have some expert input. This is especially important 

for complex or novel experimental designs. 

In the last chapter, it was demonstrated as part of convergent construct validity 

testing that statistical assistance improves the quality of controlled experiments. 

When answering item 33, users should look for an acknowledgement, or the like, of 

statistical assistance. This is sometimes presented in fine print. Alternatively, if it is 

clear that the investigators have statistical expertise, e.g. those from departments of 

statistics or epidemiology, or sometimes described in biographies, then this is 

acceptable. 

4.3.34. How appropriate overall is the statistical analysis? 

Statistical analysis is the second most important part of any controlled experiment 

(the first is experimental design since even faultless statistical analysis cannot save 

poor design.) Results from an experiment are the product of this process. Hence, if 

the process if flawed, results will be flawed and conclusions incorrect. 

This is a highly abstracted item that calls for an overall judgement of statistical 

analysis. Answers to previous items can impact on this item. Furthermore, problems 

with statistical analysis not covered by previous items can be addressed here. 

When answering item 34, users should judge whether any part of the process of 

statistical analysis could invalidate results. 

4.3.35. To what extent are the investigators’ conclusions justified? 

Ultimately, the purpose of a controlled experiment is to produce conclusions based 

on rigorously examined data. Conclusions are perhaps the part of a report that is most 

remembered by readers, when the fine details of methodology and tables of results 
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are long forgotten. Various poorly conducted aspects of the experiment can adversely 

affect this item. Any of the previous items may be considered again. Other aspects of 

the experiment not previously tapped but that affect the validity of conclusions will 

also determine how this item is answered. 

Answering this item is also determined by the investigators’ conclusions. Even if the 

experiment is performed perfectly, investigators may exaggerate their conclusions 

beyond what their data shows. Worse still is when conclusions are based more on 

rhetoric than data (275). 

When answering item 35, users should judge whether any problems with the design, 

conduct and analysis of the experiment hamper the conclusions presented and 

whether conclusions are in keeping with the results. 

4.3.36. How adequate is the discussion on how the findings relate to current 

evidence and/or theory? 

To improve the relevancy of the results and conclusions of the experiment, 

investigators should relate these to the current state of knowledge. This assists 

readers in understanding the deficiency that the experiment tried to address and what 

the new findings add. If an experiment is novel and no body of evidence exists for 

the research question in mind, then ideally this should be stated. It is acceptable that 

an experiment can be exploratory in order to develop a hypothesis when no evidence 

exists, but this should be made known to readers. 

Discussing the findings in terms of other evidence also builds the body of knowledge 

about a research hypothesis. No single experiment, however credible and applicable, 

is enough to make decisions about cause and effect relationships. Consistency with 

other studies is one of the criteria for deciding causation (245) (p. 178), (178) (p. 41). 

Comparison to other evidence is also important for systematic reviews and meta-

analysis (108). 

Similar to item 1, item 36 also has ethical implications in addition to quality 

concerns. When findings are compared to current knowledge, the Helsinki 

Declaration is supported (252).  
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When answering item 36, users should look for a discussion of how the findings 

confirm or refute the current state of knowledge. Alternatively, findings may be 

novel, but they should be related to some underlying theory. 

4.3.37. How adequate is the discussion on external validity i.e. how the findings 

can be generalised? 

External validity is the extent to which results can be generalised from the 

experiment to other populations, other settings and even other points in time (152) (p. 

73). External validity is one of the common criticisms of controlled experimentation 

when compared to other empirical methods (276, 277). Results from controlled 

experiments may have greater internal validity than those from other forms of 

empirical research, but, because of the strict manipulation of variables, the results 

may only be applicable within the confines of that manipulation. A discussion on 

external validity is helpful to readers since they can determine whether the 

experimental findings apply to their own situation. 

Depending on the research question and the design of the experiment, external 

validity may be restricted. A common issue in health informatics experiments is 

whether the benefit of an information system will be transferable to non-developer 

sites. The developer of a system often performs the evaluative controlled experiment. 

Therefore, there is a concern that developers provide users with extra support (278), 

and performance would be better than for sites without such champions. Similarly, 

tertiary academic hospitals are a common site due to university-based health 

informaticians and clinicians, but would results transfer to, for instance, a rural clinic 

(69)? In computer science, the frequent use of university student participants and 

laboratories, rather than professionals and real work places, may (or may not, 

depending on the research hypothesis) affect conclusions aimed at all computing 

practitioners. 

When answering item 37, users should look for a discussion on external validity and 

judge whether investigators have correctly identified threats. If there is no discussion 

on possible threats to external validity, this item should be answered as “inadequate”. 
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4.3.38. How adequately do the investigators discuss the limitations of the 

experiment? 

Limitations are any problems or weaknesses with design, conduct and analysis of the 

experiment that could affect internal and external validity of results. This item 

requires that investigators acknowledge and report limitations of which they were 

aware. This item also inquires about limitations that went unnoticed or were 

unreported. All experimental reports should contain a description of real or potential 

threats. A description of experimental limitations helps readers to quickly identify 

caveats to the conclusions. Since no experiment is perfect, reporting the real or 

potential limitations of an experiment pays respect to the scientific method. Indeed, 

experimental trade-offs are common in research because resources (manpower, 

participants, funding, time etc) are not infinite. For example, as mentioned 

previously, a frequent potential limitation in computer science experimentation is the 

paucity of experimentation in real work places with computing professionals (91) 

due to the intrusiveness of such studies to industrial sites and the costliness of 

“hiring” participants (94). 

When answering item 38, users may need to consider answers to previous items. 

Users should look for a treatise, preferably in the discussion section, about any 

problems that could limit the conclusions. If the investigators did not acknowledge a 

problem that could have adversely affected the experiment, this item should be 

marked down. If no discussion about limitations is present at all, this item should be 

answered as “inadequate”. If investigators claim their experiment to be free of 

limitations (this would be bold), users should assess the claim. If in agreement, the 

item should be answered as “adequate”. Otherwise, depending on the limitations 

identified, users should mark down the item accordingly. 

 

4.4. Discussion 

This chapter presented the MICE-38 index questionnaire and explained the meanings 

of items and the rationales behind them. The research hypotheses stated that the 

instrument should be definable for informatics experiments. It is in examining the 

rationales that it becomes clear why certain experimental concepts need particular 

attention to in informatics (general and health). Some concepts will always be 
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common to all experimental disciplines, such as the appropriate use of statistical 

methods, comparable experimental groups and justification of conclusions. However, 

because of the nature of informatics and the conduct of informatics experiments, 

some concepts need modification or different interpretation. Expectation effects and 

observer bias are particularly difficult problems because informatics is largely aimed 

at changing human information processing and metrics are largely judgment based. 

Creative methods are required for blinding in informatics; readers of reports need to 

consider their merits. 

External validity in current computer science experimentation is a key quality 

problem and an area where computer science can learn from health informatics. 

Using real workers on real tasks in real environments is logistically challenging and 

expensive, but health informatics experiments are often conducted this way. 

4.4.1. Consideration of Categorical/Nominal Items 

Level of measurement of items requires further discussion. This was raised in 

Chapter 2 with regards to the interval nature of experimental quality. Several items in 

the MICE index could be considered nominal, yet the responses are treated as 

continuous. Any item that contains an “unclear” response where clarity is not the 

construct being measured, e.g. items 15, 16 and 27, become nominal when such a 

response is added. This follows Sirkin’s example (182), as shown in Box 1. 

Strongly agree 

Agree 

Disagree 

Strongly disagree 

Unsure 

Box 1. Sirkin’s example of ordinal scales becoming nominal when the “logical sequence is 

broken.” (182) (p. 42) 

 

The aforementioned MICE-38 items measure reliability, validity and percentage data 

loss on an ordinal (and assumed interval) scale, but the addition of an “unclear” step 

makes them ordinal. Other items that do inquire about clarity, e.g. item 1’s clarity of 

rationale, may include an “unclear” step and remain ordinal (or interval) because 

unclear is the lowest end of the spectrum. Items 19 and 20 may also be considered 

nominal since each response step could be considered to be a category, as well as any 

item that asks for a dichotomous yes/no response. As described in Chapter 2, 

nominal scale numerals are treated as labels; the numbers associated with response 
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steps do not have permissible transformations other than 1-to-1 substitution. At first 

glance, summation of nominal values would appear to be inappropriate, like adding 

together football jersey numbers. In Chapter 2, the example of assigning 0 to males 

and 1 to females showed the labelling nature of nominal scales. However, if being 

female is to be “greater than” male, in some relationship, then it may make sense to 

assign value to gender. The key point is that, “Measurement is a process of assigning 

numbers to objects in such a way that interesting qualitative empirical relations 

among the objects are reflected in the numbers themselves as well as in important 

properties of the number system.” (128) (italics added) It is the meaningful relation 

between objects that transforms the nominal into the ordinal. The nominal-appearing 

MICE items are ordinal because there is meaningful ranked order of quality. The 

presence of uncorrected unit of analysis error (item 32), for example, appears 

nominal in the sense that something is categorically present or not; it becomes 

ordinal because a yes response is deemed to indicate poorer experimental quality 

than a no response. Similarly, unknown reliability and validity (items 15 and 16) are 

assumed to have zero values and are, thus, lower than known poor reliability/validity. 

The issue of nominal items being treated as ordinal/continuous is common to many 

of the medical scales discovered in this research. For instance the well-known Jadad 

scale is comprised of entirely dichotomous items, with affirmative responses given 1 

point and negative responses given 0 points (141). MICE’s item 27 can be compared 

to the similar items of the scales of Chalmers (142) and McMaster University (167). 

Chalmers item 2.3 for withdrawals provides the following responses in descending 

order of desirability: list given, no withdrawals, no list, unknown, >15% withdrawals 

for long-term studies and >10% for studies lasting less than 3 months. McMaster 

contains the following responses: outcome reported for at least 90% of patients 

starting the study, outcome reported for less than 90% but more than 80% of patients 

starting the study, outcome reported for less than 80% of patients starting the study. 

Both items have a point spread of 1 point between each response. At first it is 

apparently obvious that the Chalmers item is nominal (each response can be 

interpreted as an unordered category.) The McMaster item could also be considered 

purely categorical. However, it is in the qualitative empirical relation between each 

response (quality of experimental conduct with regards to managing data loss) that 

transforms these items into continuous measurement. 
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Another important issue is whether an interval or ratio nature of items can be 

justified. For data to be considered interval or ratio, the difference between values of 

an instrument reflect equal differences in what is being measured (185) (p. 10). For 

temperature, this means that the difference between 30 and 31 degrees Celsius is the 

same as the difference between 0 and 1 and that the difference of 1 degree always 

represents that same amount of heat. For quality instruments, is the difference 

between each item step (score) equal to the difference of amount of experimental 

quality? This is a potential weakness of all quality assessment scales because quality 

is difficult to understand in terms conceptual mapping to numbers. Like intelligence, 

quality and its rating scales must be assumed to be interval (185) (p. 10-11). 

4.4.2. The Ratings Paradox 

Lastly, the difference between scales that call for judgement versus ones that merely 

ask whether certain events had occurred should be discussed. The MICE index is 

defined for users with the ability to make appropriate judgement. Only a few items 

call for the simple noting of a quality issue, e.g. statistician assistance (item 33). In 

the early stages of MICE development, a decision was made to make the index more 

heavily weighted towards user judgment. As Friedman and Wyatt describe, this is the 

“art of measurement” in relation to this problem that they call the ratings paradox 

(138) (p. 179). With scales that only require simple observation, not judgement, 

reliability is increased, but the scales become “mechanical and possibly trivial” (have 

lower validity) (138) (p. 178). With greater judgement, rater reliability becomes 

important to establish, but the expertise of the judge is used and validity improves. 

The MICE index is believed to have managed the ratings paradox by having good 

reliability and validity, while being far from mechanical. 

 



 134

Chapter 5: An Application of the MICE Index 

5.1. Introduction 

Chapters 3 and 4 dealt with the creation and content of the MICE index and 

described how the research hypotheses were fulfilled. This chapter supports the 

research hypotheses by applying the index to review the quality of health informatics 

trials of clinical decision support tools and clinical decision support systems (CDSS). 

It provides an example of how the MICE index can be used to conduct quantitative 

systematic reviews of controlled experiments in informatics. This is especially 

important for general informatics where reviews of experiments and their quality 

have yet to be published in the fashion of the McMaster University series (112). 

However, even in health informatics, there is still a need to continually assess the 

quality of trials, to see trends (153) and understand where they could be improved. 

As with all improvement, the first step is quantification. 

The MICE index could be used to establish and monitor experimental quality in 

informatics and thus is a valuable contribution to the field, but a caveat is that the 

same version should be applied consistently. This is important because scores from 

different versions, such as MICE-38 and MICE-80 (and future incarnations of the 

index) may not be directly comparable. The MICE index may remain reliable and 

valid when items are removed or modified, but final scores can be affected 

depending on each study’s responses to the items that are changed. This can be 

demonstrated by the difference between mean scores of studies assessed in Chapter 3 

as part of reliability tests. Mean scores fell after reducing the 80-item index to 38 

items by 0.054 points (95% CI 0.040 - 0.067, df = 57, p = 0.000) from 0.573 to 0.519 

(paired samples t-test). 

The MICE index can be further applied to weight results from studies according to 

experimental quality for the purpose of meta-analysis. However, this is beyond the 

scope of this doctoral dissertation and should be the subject of further research. 
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This review is not intended to be comprehensive but to illustrate how the index could 

be used. Therefore, only the reports published for clinical decision support tools for 

the year 2007 are examined. However, a larger assessment of experimental quality in 

health informatics could be performed, as could an assessment of general computer 

science experiments. Because of the large number of reports published over many 

years, endeavours such as these would require the availability of several reviewers 

using the MICE index. A small review such as this, however, does add to the field of 

health informatics by being current. It is, to the author’s knowledge, the most recent 

evaluation of trials of clinical decision support tools using a quality measurement 

scale. 

Controlled experimentation in health informatics is, of course, not limited to 

summative assessment of decision support tools. Indeed, in informatics in general, 

one can utilise human experimentation in formative, summative and scientific roles 

and for various informatics objects and methods. In Chapter 1, the influence of 

medicine on experimental evaluation in health informatics was noted. It is thus 

common to see summative trials of informatics artefacts in the fashion of trials of 

medical therapies. Hence, this small review focuses on summative experiments. 

Additionally, decision support tools are not the only objects to evaluate in health 

informatics, whether by controlled trial or other evaluation method. This small 

review chooses decision support tools because experimental evaluation of them is the 

typical health informatics experiment, as shown by the McMaster University reviews 

(112). 

However, experimentation in health informatics can also be used to establish 

evidence for scientific theory. Not only is it important for tools to be shown to be 

effective when those effects may be difficult to appreciate, but the correct 

circumstances or properties of tools that lead to successful use can be determined by 

experiment. Kawamoto et al (279), for instance, examined CDSS trials to determine 

such technical and informational features. Such efforts produce a body of scientific 

knowledge that informs the future development and appropriate usage of informatics 

objects. 
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5.2. Method 

The health informatics literature was searched to retrieve reports of controlled 

experiments (trials) of clinical decision support tools. Table 34 lists the journal and 

conference sources and search strategies. Journal and conference proceeding sources 

were obtained from 2 main resources: PubMed (The US National Library of 

Medicine, Bethesda, USA) and health informatics journals listed in Journal Citation 

Reports 2006 edition (The Thompson Corporation, Stamford, USA). In addition to 

using the PubMed online search function, the search functions of online journals 

where available were used. Only reports published in year 2007 and in English were 

eligible. A trial was eligible if there was an intervention and control group, but there 

was no requirement for controls to be parallel, in keeping with the design of the 

MICE index. Trials were required to be completed, i.e. with results and a discussion. 

Therefore, plans for trials or those underway without reportable results were 

excluded. Pilot trials were included if they had produced results. A clinical decision 

support tool was defined as an electronic computer-based aid that processed patient-

specific data to produce recommendations or advice to its user for the purpose of 

improving decision making. This definition follows ones commonly found in the 

health informatics literature, e.g. (79, 183). Therefore, this excluded simple 

reproduction of paper-based content in electronic form (e.g. websites, digital media 

etc). Users were not restricted only to health care providers to allow for consumer 

(patient) informatics tools. Monitoring and telecare devices were excluded, as were 

medical imaging technologies if they did not provide advice or recommendations to 

health care providers. Where it was unclear from the abstract whether a trial was 

eligible, it was retrieved as a full-text document and read. 
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Source Search strategy Search engine 

American Medical Informatics 

Association Annual Symposia 

(no 2007 proceedings) PubMed search 

PubMed decision support system clinical 

+ clinical trial (MeSH terms) 

PubMed search 

 “decision support” + “trial” PubMed search 

JCR health informatics 

sources 

  

Artificial Intelligence in 

Medicine 

“trial” Journal search 

Computer Methods and 

Programs in Biomedicine 

“trial” Journal search 

Computers Informatics Nursing “trial” Journal search 

IEEE Engineering in Medicine 

and Biology 

“trial” Journal search 

IEEE Transactions on 

Information Technology in 

Biomedicine 

“trial” Journal search 

International Journal of Medical 

Informatics 

“trial” Journal search 

International Journal of 

Technology Assessment in 

Healthcare 

“trial” Journal search 

Journal of Biomedical 

Informatics 

“trial” Journal search 

Journal of Medical Internet 

Research 

“trial” Journal search 

Journal of Medical Systems “trial” Journal search 

Journal of the American 

Medical Informatics 

Association 

“trial” Journal search 

Medical Decision Making “trial” Journal search 

Methods of Information in 

Medicine 

“trial” PubMed search 

Table 34. Journal and conference proceedings sources used for the review of controlled trials of 

clinical decision support tools. 

MeSH: Medical Subject Heading; JCR: Journal Citation Reports. 

 

Trials were evaluated with MICE-38 by the author of this dissertation. Intra and 

inter-rater reliability were not assessed. Statistical analysis was performed using 

SPSS 15 (SPSS Inc., Chicago, USA), Microsoft Excel 2000 (Microsoft, Seattle, 

USA) and Researcher’s Toolkit (DSS Research, Fort Worth, USA) (280). Statistical 

significance was defined at an alpha of 0.05. 

Item means were analysed to see where methodological problems in the conduct of 

the trials arose. For each of the 38 items, the values from the 21 eligible studies were 

averaged and then standardised by dividing by the maximum possible value and 

multiplying by 100. Items that had a standardised response of less than 50% were a 

priori defined as indicating areas of trial conduct that need quality improvement. 
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To further assess the usefulness of validity tests described in Chapter 3, the same 

techniques were applied to this sample of studies. The exception was known-groups 

testing using the McMaster University scale to dichotomise studies into high and low 

quality, since the sample of studies in this 2007 review had not been assessed by the 

McMaster panel of experts using their scale. The other exception was the divergent 

construct validity test of publication year, since all papers were from 2007. Hence, 

the convergent hypothetical construct that statistician (or equivalent) assistance 

should lead to higher MICE scores was tested against this 2007 sample. Also, the 

divergent hypothetical constructs that the number of authors, cited references and 

page length should not be related to MICE scores were tested against this 2007 

sample. Finally, for criterion validity, MICE scores for this 2007 sample were 

assessed against the Journal Impact Factor (2006 edition) of their journals. 

 

5.3. Results 

29 reports of controlled trials of clinical decision support tools were found using the 

search strategy. 8 reports were ineligible as shown in Table 35. 

First author Decision support tool Reason for ineligibility 

Bosworth (281, 282) Blood pressure home telecare 

system with generated 

recommendations 

Plan for trial 

Holbrook (283) Computer programme 

explaining risks and benefits of 

anticoagulation therapies 

No patient-specific data 

processing 

Krist (284) Website page explaining 

prostate specific antigen 

screening 

No patient-specific data 

processing 

Saver (285) Website explaining risks and 

benefits of hormone 

replacement therapy 

Unclear whether patient specific 

data used 

Shulman (286) Computerised protocol advising 

on insulin therapy for intensive 

care patients 

Uncontrolled observational 

study 

van Steenkiste (287) Booklet informing patients on 

cardiovascular risk 

Non-computerised aid 

Zwarenstein (288) Electronic prescribing software 

which checks for drug dosing 

and interaction errors 

Plan for trial 

Table 35. References returned by the search process but considered ineligible. 

 

21 trials of clinical decision support tools were eligible for evaluation by MICE-38 

and are summarised in Table 36. 
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First author Decision support tool User MICE-38 score 

Albisser (289) Telemedical centralised 

database predicting diabetic 

patient hypoglycaemia 

Physician 0.614 

Augstein (290) Metabolism/therapy simulator 

advising on patient diabetic 

management 

Physician 0.648 

Col (291) Computerised risk assessment 

for patients facing hormone 

replacement therapy decisions 

Patient 0.803 

Davis (292) Electronic prescription writer 

providing prescribing advice for 

common childhood illnesses 

Physician 0.782 

Davison (293) Computer programme providing 

individualised information for 

men with prostate cancer  

Patient 0.754 

Emery (294) Computer programme assessing 

risk of familial cancers 

Physician 0.776 

Glassman (295) Computerised provider order 

entry system with a drug review 

component to reduce adverse 

drug events 

Physician 0.636 

Kaner (296) § Computer programme providing 

individualised risks and benefits 

of anticoagulation therapies 

Patient 0.585 

Leibovici (297) Hospital computer programme 

advising on antibiotic 

treatments for common 

infections 

Physician 0.369 

Martens (298) Primary care information 

system advising on appropriate 

drug prescribing for asthma, 

chronic obstructive airways 

disease and antibiotics 

Physician 0.737 

Momtahan (299) PDA programme for triage and 

management of chest pain 

Nurse 0.229 

Montgomery (300) Computer programme advising 

on mode of delivery for 

pregnant women with previous 

caesarian section 

Patient 0.740 

Ozanne (301) Computer programme assessing 

risk of breast cancer 

Patient 0.631 

Peterson (302) Computerised provider order 

entry system for reducing 

adverse drug events among the 

elderly 

Physician 0.363 

Protheroe (303) Computer programme advising 

on treatment of menorrhagia 

Patient 0.856 

Raebel (304) Computerised provider order 

entry system for reducing 

pregnancy-drug interactions 

Physician 0.631 

Reeve (305) Pharmacy dispensing software 

advising on aspirin therapy for 

eligible diabetic patients 

Pharmacist 0.704 

Rothschild (306) Computerised provider order 

entry system advising on 

appropriate blood product 

transfusion 

Physician 0.631 

Schapira (307) Computerised risk assessment 

for patients facing hormone 

replacement therapy decisions 

Patient 0.790 

Taylor (308) Emergency department 

information system advising on 

asthma management 

Physician 0.744 

Thompson (309) § Computer programme providing 

individualised risks and benefits 

of anticoagulation therapies 

Patient 0.756 

Table 36. Summary of references returned by the search strategy, the user of the decision 

support tool and MICE-38 scores. 

§: These systems were the same but evaluated in different trials with different objectives and 

outcomes. 
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Systems ranged from standalone applications on personal digital assistants (PDA) 

(299) to hospital-wide information systems (e.g. order entry systems) (306) and 

addressed a range of clinical problems for health care providers (13/21) and patients 

(8/21). 

The mean MICE-38 score was 0.656 (95% CI 0.583 - 0.729) (N = 21), with a median 

of 0.704 and standard deviation of 0.160. Raw item values are presented in Appendix 

E. The distribution of scores was approximately bell-shaped and skewed to the left, 

as shown by Figure 23. This is supported by a significant Sharpiro Wilks test (p = 

0.003) and a skewness to standard error ratio of <-2 (Table 37). The 3 scores 

(Leibovici, Momtahan, Peterson) in the left tail were possible outliers (<1
st
 quartile 

minus 1.5 times the interquartile range). These studies were examined again for data 

input error (MICE questionnaire completion errors), and this was not the reason for 

outlier behaviour. Table 37 shows summary data including and excluding outliers. 

Since the reason for outlier behaviour is unknown, outliers were included in analysis. 

The effect of the outliers on central tendency and dispersion of the sample was not 

great. Nevertheless, statistical tests on the whole sample are conservatively based on 

non-normal distributions. When the outliers are removed, the distribution is 

approximately normal as shown in Figure 24 and supported by other measures of 

normality (Shapiro Wilks test, skewness and kurtosis analysis) (Table 37). 

 Outliers included Outliers excluded 

N 21 18 

Mean .656 .712 

95% CI for mean .583 - .729 .673 - .751 

Median .704 .739 

Standard deviation .160 .079 

Skewness (SE) -1.431 (.501)* -.041 (.536) 

Kurtosis (SE) 1.700 (0.972) -1.195 (1.038) 

Shapiro Wilks statistic .843 .930 

Shapiro Wilks p .003* .191 

Table 37. Summary data for 2007 review sample including and excluding outliers.  

*: non-normality; SE: standard error. 
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Figure 23. Histogram (left) and normal Q-Q plot of the 2007 review sample. 
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Figure 24. Histogram (left) and normal Q-Q plot of the 2007 review sample excluding outliers. 

 

Item response means are presented in Table 38 with the median response and 

standardised value. Standardised means are also plotted in Figure 25. Median 

responses were similar to mean responses. Questionnaire items 2, 13, 17, 20, 21, 22, 

33 and 35 had standardised responses less than 50%. 
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Figure 25. Bar chart of standardised means for each item for the 2007 review. 

 
Item Mean response Median response Standardised mean 

1 3.52 4 58.73 

2* 2.05 1 34.13* 

3 4.67 5 77.78 

4 3.67 4 61.11 

5 5.48 5 91.27 

6 4.43 4 73.81 

7 3.81 4 63.49 

8 4.57 6 76.19 

9 3.05 3 50.79 

10 3.24 4 53.97 

11 5.19 5 86.51 

12 0.52 1 52.38 

13* 0.38 0 38.10* 

14 4.05 4 67.46 

15 3.33 4 55.56 

16 4.38 5 73.02 

17* 0.95 0 31.75* 

18 4.29 5 71.43 

19 1.64 2 54.76 

20* 0.92 0 30.56* 

21* 0.33 0 16.67* 

22* 0.60 0 30.00* 

23 4.52 6 75.40 

24 4.71 5 78.57 

25 3.38 5 56.35 

26 4.57 5 76.19 

27 2.19 3 73.02 

28 1.29 2 64.29 

29 5.76 6 96.03 

30 4.76 6 79.37 

31 0.52 1 52.38 

32 0.52 1 52.38 

33* 0.48 0 47.62* 

34 3.52 3 58.73 

35* 2.62 3 43.65* 

36 4.86 6 80.95 

37 4.10 5 68.25 

38 3.81 4 63.49 

Table 38. Mean, median and standardised mean for each item response of the 2007 review. 

(N=21). *: Items with a standardised response <50%. 
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Studies correlated poorly with their journal’s JIF. 16/21 studies had corresponding 

JIF’s in the Journal Citation Reports 2006 edition. The Spearman rho correlation 

coefficient was -0.167 (Table 39), and the scatterplot showed no obvious relationship 

(Figure 26). 

 N Rho p 

JIF 16 -.167 .536 

Authors 21 .044 .850 

References 21 .163 .481 

Pages 21 .254 .267 

Table 39. Spearman rho correlations between 2007 review MICE-38 scores and Journal Impact 

Factors, number of study authors, cited references and page count. 
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Figure 26. Scatterplot of 2007 review MICE-38 scores vs. study Journal Impact Factor. 

 

When testing the convergent construct validity hypothesis of statistical assistance, 

scores were recomputed without item 33 (statistical assistance item) as inclusion of 

the item increases the difference between the two groups (see Chapter 3.) Groups 

with and without assistance were found to have approximately normal distributions 

of scores as shown in Table 40, Figure 27 and Figure 28. 

 Statistician-assisted group Statistician-unassisted group 

Skewness (SE) -.399 (.687) -.843 (.661) 

Kurtosis (SE) -1.682 (1.334) -.442 (1.279) 

Shapiro-Wilks statistic .875 .896 

Shapiro-Wilks df 10 11 

Shapiro-Wilks p .116 .163 

Table 40.  Measures of normality for the statistician-assisted and unassisted groups in the 2007 

review sample. 

SE: standard error. 
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Figure 27. Histogram (left) and normal Q-Q plot of the statistician-assisted group from 2007 

review sample. 
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Figure 28. Histogram (left) and normal Q-Q plot of the statistician-unassisted group from 2007 

review sample. 

 

A 2-tailed independent samples t-test was used to assess the MICE-38 scores. The 

statistical assistance group had a higher mean MICE-38 score than the unassisted 

group (difference 0.094). However, the result did not reach significance due to 

insufficient sample size as indicated by the wide confidence interval  (95% CI -0.048 

- 0.237). Post-hoc power analysis, as recommended by Chalmers et al (142), showed 

the power to be low at 33% (280). Results are summarised in Table 41 and Table 42. 

Statistician N Mean MICE score Standard deviation 

Yes 10 .707 .079 

No 11 .612 .202 

Table 41. Descriptive statistics for the effect of statistical assistance on 2007 review sample 

MICE-38 scores. 
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Levene’s test t-test (2-tailed)  

F p t df p Mean difference (95% CI) 

Equal 

variances 

assumed 

5.455 .031 1.376 19 .185 .094 (-.049 - .238) 

Equal 

variances not 

assumed 

 1.428 13.232 .177 .094 (-.048 - .237) 

Table 42. 2-tailed independent samples t-test results comparing the MICE-38 scores from 2007 

review studies that had and did not have statistical assistance. 

 

Divergent construct validity tests showed poor Spearman rho correlations between 

study MICE-38 scores and author, reference and page counts (Table 39). No strong 

scatterplot relationships can be seen in Figure 29. 
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Figure 29. Scatterplots of 2007 review MICE-38 scores vs. studies’ number of authors, 

references and pages. 
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5.4. Discussion 

This review of clinical decision support tools published in 2007 demonstrates one 

application of the MICE index: to assess and monitor the methodological quality of 

controlled experiments for summative evaluation of computerised tools. This is a 

common reason for performing controlled experiments in health informatics. In a 

recent Cochrane review regarding the assessment of clinical decision support 

systems, it was written, “It is clear that the bottom line is improvement to either 

patient outcomes, or physician performance. Indeed, improvement in these outcomes 

is precisely the raison d’etre (sic) for CDSS.” (79) The McMaster University series is 

a good example of this view of experimental evaluation in health informatics (112, 

167, 183). This series monitored such outcomes, as well as methodological quality of 

the summative trials. Such work is important to informatics in general. While 

summative evaluation is common in health informatics, in principle, it can be applied 

to other fields of informatics and information tools. An example is one of the 

summative experiments encountered in this research: a collaboratory tool for 

improving scientific research work (206). The importance of high quality computer 

science experimentation has been noted, as shown by the development of published 

guidelines (Table 3); reviews of quality are present in the literature, e.g. (91). The 

MICE index can further quantitative assessments in computer science experiments 

and allow researchers to publish reviews in the manner of McMaster University. 

5.4.1. Areas of High Quality in Clinical Decision Support Tool Experiments 

The quality of 21 papers reporting controlled experiments of clinical decision support 

systems in 2007 was fair to good. Despite the presence of potential outliers skewing 

the sample to the left, the mean MICE-38 score was 0.656 (95% CI 0.583 - 0.729, 

median 0.704). A score of 50% is a reasonable threshold for defining high and low 

quality studies, since the mean of the 58 studies used to test MICE-38 in Chapter 3 

was 0.519 (standard error = 0.047, median 0.519). Some aspects of experimental 

conduct were performed very well. Most treatments were suitable to the 

experimental questions being considered by investigators (item 5, standardised mean 

91.27). Participants were usually taken from the “real world” and usually highly 

representative (item 11, standardised mean 86.51). This is a particular experimental 

issue handled well in health informatics that computer science experiments involving 

human participants can learn from, since external validity with student participants 
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can be problematic (94). It is often argued that performing controlled experiments 

with computing professionals has logistical and motivational difficulties (94, 155). 

However, similar difficulties can apply to health care provider and patient samples. 

Yet, in health informatics, computerised tools are usually designed to assist working 

professionals, and controlled experiments involving students (unless they were 

indistinguishable from professionals in important ways) would be criticised for poor 

external validity. Item 29, inquiring about appropriate use of measurement scale, was 

highly scored (standardised mean 96.03). Scale types are perhaps more established in 

health informatics than other areas of informatics. For example, some of the 

outcomes measured in this review were blood glucose, adverse drug event counts and 

patient decisional conflict, and these are quite well understood in terms of level of 

measurement. Finally, report discussions brought the findings back to current 

evidence and theory quite well (item 36, standardised mean 80.95). This is important 

because health informatics is a young field that needs to build a strong evidence base 

(135). Even the large review of Garg et al (112) could not provide definitive advice 

on the effects of clinical decision support systems on patient outcomes (only about 

half the studies assessed patient outcomes and many of them with low statistical 

power.) When there are few studies on a particular topic in informatics, it is 

important to relate findings in order to build a body of evidence. 

5.4.2. Areas of Poor Quality in Clinical Decision Support Tool Experiments 

Overall papers were of fair to good quality, but some methodological practices were 

done poorly (a priori defined as <50% standardised item mean). Item 2 called for 

clearly stated null and/or alternative hypotheses (standardised mean 34.13). Many 

studies gave broad objectives and not precise hypotheses. One possible reason is that 

controlled experiments in biomedicine are so established that the provision of formal 

hypotheses is considered too elementary. Nevertheless, hypothesis statements are 

clear, concise and easy to locate in a report. Furthermore, there is an expectation in 

computer science experimentation guidelines (113, 114, 122, 155, 162, 163) that they 

be used. Allocation concealment was not performed often enough (standardised 

mean 38.1). As described in Chapter 4, allocation concealment is important to avoid 

subversion of subject allocation, which can lead to systematic bias. Infrequent use of 

allocation concealment was also found in Garg et al’s review (28% of 88 trials) (112) 

and remains an area for improvement in health informatics experiments. This is also 
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likely to be a problem area for general informatics experiments (none of the 

experimental computing guidelines used to create MICE discussed allocation 

concealment as a concept.)  Responses to item 17 showed that most study outcomes 

were subjective (standardised mean 31.75). This is the result of several reports of 

consumer informatics applications, which measured the effect of the tools on patient 

decisional conflict and decisional satisfaction (293, 296, 300, 301, 303, 307, 309). 

Subjective measures can suffer from reliability and validity problems, but, in this 

group of studies, a tested questionnaire for measuring decisional conflict was applied 

(310). Contamination effects (item 20, standardised mean 30.56) were a problem 

among the 2007 sample. None of the studies were of crossover design hence there 

were no crossover effects. Normally contamination occurs when decision support is 

given at the patient level where treating providers can be exposed to both treatment 

and control participants. However, one study in the 2007 sample provides another 

view of contamination. Rothschild et al (306) allocated interventions at the physician 

level but not to all physicians. Only junior doctors (32% of total hospital physicians) 

were allocated to the decision support group (assisted blood product transfusion) or 

control group. The remaining 68% were more senior doctors, who were assigned 

control state. However, transfusion decisions were made as medical teams, consisting 

of junior and senior doctors, and the senior colleagues commonly overrode decisions. 

To avoid such contamination of treatment and control effects, allocation should 

occur at team level. Blinding of participants and outcome assessors was poor (items 

21, 22, standardised means 16.67, 30). Blinding of participants to informatics 

technologies is tremendously difficult, and in this series several studies examined the 

educational effects of a decision support tool on personal decisional conflict. 

Blinding in these cases is not possible because the potential benefit of the tool is 

clearly apparent, as is its use. Expectation effects may well have clouded some of the 

treatment effect. In such cases, care must be taken by investigators not to 

overemphasise the potential benefits of decision support tools to participants if 

blinding is not achievable. Unfortunately, tools were not sophisticated enough to 

provide selective exposure to an informational intervention to counter expectations, 

as described in (263). Blinding of outcome assessors is usually much easier but was 

mostly unreported or not done. As with participant blinding, this is important to 

avoid systematic bias. Statistical expert involvement (or equivalent) was moderate 

(item 33, standardised mean 47.62). This can be a problem as controlled experiments 
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in health informatics can be complex with several methodological pitfalls. The 

methodological issues described above and some that missed the threshold, e.g. item 

10 (appropriate experimental unit level, standardised mean 53.97) and item 12 

(completely randomised allocation, standardised mean 52.38), meant that 

experimental findings were to be interpreted with caution (item 35, standardised 

mean 43.65). This is not incongruent with the overall MICE-38 mean of 0.656 

because the MICE score incorporates reporting as well as methodological concerns. 

Item 35 also depends on how the investigators have interpreted their findings and 

whether they have extrapolated beyond what their data shows. 

Finally, two further issues should be visited as areas of improvement. As mentioned 

above, randomisation procedures were described only modestly well. The MICE 

index penalises reports that do not include a description of randomisation method, 

such as computer or table-generated, since some methods, which are believed to be 

random, may actually suffer from important systematic influence. Garg et al’s review 

(112) found that 52% described a random method, which is the same finding of this 

review (item 12). Because of the known effect of nonrandomised allocation on 

experimental results (see Chapter 4), it should be mandatory that randomisation 

methods be clearly documented (108). The second issue is statistical independence of 

data. In Chuang et al’s sample of CDSS experiments (271), 58% of studies accounted 

for clustered data in the analysis. In Garg et al’s sample 40% used a cluster as the 

unit of analysis or adjusted for clustering in analysis. In this 2007 sample of CDSS 

experiments, unit of analysis error was not appreciably present or was corrected for 

in 52% (item 32). It would appear that Chuang et al’s concern 7 years ago that many 

health informaticians are not aware of clustering issues is still applicable. 

5.4.3. MICE Validation Tests and Review Data 

The methods used to test the MICE index’s validity in Chapter 3 are novel. Previous 

scales in health informatics had not tested the validity of their instruments. No 

adequate external criteria for informatics experimental quality exist. There has not 

been sufficient research in understanding the nature of experimental quality in 

informatics. Chapter 3 discussed how the MICE index’s validity tests contributed to 

psychometric evaluation of experimental quality scales. However, ideas should be 

tested on further examples to build a body of evidence. To this end, validity tests 
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from Chapter 3 were applied again to this set of 2007 health informatics experiments, 

where they could be applied. The use of Journal Impact Factor as a form of criterion 

validity was again not supported by this sample. In Chapter 3, using the MICE-38 

questionnaire version, Spearman rho correlation between scores and JIF was 0.297. 

In this 2007 sample, Spearman rho was -0.167. Scatterplots (Figure 21 and Figure 

26) showed poor relationships. Hence, these samples provide some evidence against 

Journal Impact Factor as a proxy for experimental quality. The other form of 

criterion validity testing used in Chapter 3, i.e. known-groups testing, was not 

performed since the 2007 sample was not delineated by an external standard into 

high and low quality studies (in Chapter 3, the McMaster University review panel 

and scale achieved this through the paper by Garg et al (112).) Known-groups testing 

is, however, established as a method of validity testing (125) (p. 54). Further work to 

test the applicability of known-groups tests would require assembling an expert panel 

to categorise studies prior to application of the MICE-38 questionnaire. Because of 

the limitation of access to such a panel, this work was not performed; it remains to be 

the subject of future validity tests. 

Of the construct validity tests used in Chapter 3, all but the correlation between 

publication year and MICE-38 score were repeated with the 2007 sample. The 

convergent hypothesis that MICE scores should improve with the assistance of a 

statistical expert was not supported due to statistical nonsignificance (p = 0.177). The 

95% CI for the mean difference was wide (-0.048 to 0.237) but suggests that the 

convergent relationship was present and that the 2007 sample size was inadequate. A 

power of only 33% was achieved. A problem with this review was that it was not 

adequately designed to examine the convergent hypothesis. A sample size calculation 

was not performed since the objective of the review was to demonstrate an 

application of the MICE index to 2007 papers. A larger sample would have probably 

demonstrated the effect of statistical expert assistance. The divergent hypothesis tests 

were supported by the 2007 sample. The Spearman correlations between number of 

study authors, cited references and pages were weak (0.044 to 0.254, 2007 sample 

vs. -0.038 to 0.149, validity tests sample) without obvious scatterplot patterns. 

Although some of the criterion and construct validity tests repeated in this review 

support the tests applied in Chapter 3, a body of evidence accumulates from constant 
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research. Hence, future tests with the MICE index using different samples and 

different researchers should occur. 

The finding that the overall 2007 sample had a left-skewed distribution of MICE-38 

scores does not agree with the finding of a roughly normal distribution of study 

scores in Chapter 3 (Figure 14). This was the result of 3 low outliers, which could 

not be explained. Since not enough is known about the distribution of experimental 

quality in informatics, researchers should routinely plot their data and perform 

normality tests. Similarly, outliers should be treated conservatively unless there is an 

obvious reason for exclusion. The use of robust statistical tests and large sample 

sizes does not permit ignorance about distributions of quality when they are largely 

unknown. 

5.4.4. Further Definitional Issues for CDSS 

This review also raises an issue in health informatics that is worthy of mention, 

though it deserves a deeper discussion elsewhere. Some articles were returned under 

the National Library of Medicine’s Medical Subject Heading (MeSH) definition of 

clinical decision support system that did not exactly meet that definition. The 

definition of a CDSS under the MeSH controlled vocabulary is, “Computer-based 

information systems used to integrate clinical and patient information and provide 

support for decision-making in patient care.” (311) This implies computational 

processing of patient-specific data and therefore excludes, for instance, web-based 

publication of paper-based material. Yet, a few of the articles were ineligible in this 

review because of lack of patient data processing. For example, the report by 

Holbrook et al (283) described the evaluation of 3 decision aids to assist patients 

with atrial fibrillation about anti-coagulation therapy decisions: a decision board, a 

booklet with audiotape and an interactive computer programme. However, the 

computer programme did not use the individual patient’s medical data. Rather, 

“Identical information was included in each type of decision aid.” Similarly the web-

based decision aid by Krist et al (284) is simply an online document 

(http://www.acorn.fap.vcu.edu/psa) without patient data computation. 

The definition of decision support systems can become blurred in clinical medicine, 

as opposed to other domains where decision supporting information systems are 

used. Liu et al (312) for instance define “decision tools” as objects that assist in 
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decision making, linked together by a common health technology assessment 

perspective, rather than a technical perspective. Therefore, they argue, patient 

information leaflets and predictive scores, such as the Glasgow Coma Scale, should 

be considered alongside information systems. The rationale for this blurring is 

justified in medicine and, by association, in health informatics for 2 reasons: 

evaluation of various decision aids that support decision making is, as Liu et al 

rightly point out, conceptually the same; if cheaper and more accessible decision aids 

produce the same clinical outcomes then ethical use of resources compels the use of 

simpler alternatives. In this sense, the reports of Holbrook and Krist were 

appropriately published under the keyword of decision support system, even though 

the MeSH definition does not fit. 

The consistency with which people in health informatics interpret “decision support 

system” needs further examination. Since many controlled experiments in health 

informatics involve decision support systems, this is a related issue to this 

dissertation but is beyond its scope. 

5.4.5. Issues in Consumer Informatics Experiments 

Another issue raised by this review is the rise of consumer health informatics. In 

Garg et al’s review (112), none of the systems were aimed at the consumer (patient). 

Systems in their paper were categorised into systems for diagnosis, prevention, 

disease management and drug dosing and prescribing (health care provider 

activities). With growing consumer use of the Internet and informatics technologies 

for health care information (313) and the poor level of evidence concerning the 

advantages and disadvantages (314), high quality empirical (experimental) 

evaluation will be needed. The large proportion of experiments concerning consumer 

informatics applications in this review may be revealing a trend towards creating an 

experimental evidence base. However, methodological issues must still be 

remembered. For example, the interpretation of unit of analysis error in consumer 

health decision support experiments can be difficult. Generally, unit of analysis error 

occurs when health care providers are allocated the informatics intervention, which 

modifies their clinical performance, but their patients are considered the unit for 

analysis. Because patient outcomes are probably clustered around provider 

performance, statistical analysis should occur at the provider level. With consumer 
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informatics interventions, the degree of clustering around a provider can be difficult 

to tell. These technologies aim to improve a patient’s knowledge of health in order to 

facilitate decision making regarding her own circumstances. Consumer informatics 

technologies can therefore be aimed solely at the patient (arming the patient with 

knowledge to then take to her provider in a future consultation) or at the provider to 

use with the patient. In the former, one can probably ignore any unit of analysis 

problems because the provider-patient interaction can be ignored. This is akin to 

ignoring the provider-patient interaction when a physician gives a medication during 

a drug trial (in the words of Whiting O’Keefe et al, providers could be assumed 

“interchangeable.” (253)). In the latter, the performance of the provider probably 

cannot be ignored (providers no longer interchangeable with respect to a certain 

outcome). Hence, the difficulty arises when it is not clearly reported or understood 

how much provider interaction with the patient and technology occurs. 
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Chapter 6: Conclusion 

6.1. Summary 

The controlled experiment is a useful method to acquire knowledge in computer 

science and health informatics. In the first chapter, questions about how humans 

benefit from informational resources, such as information systems, communications 

technologies and even simple pieces of paper, can be answered by performing 

experiments. In what situations can complex information technologies be replaced by 

simpler technologies? What are the factors that predict the best use of information 

resources? Experiments can also be applied to understand how to improve the 

development of information technologies. The benefits of computer-based tools are 

dependent upon them working as intended. In the subdiscpline of software 

engineering, large software failures have prompted a plethora of ideas on how to 

improve software quality. Accompanying the ideas has been a voice of reason asking 

proponents to question how they know the ideas work; this voice of reason is 

empiricism and experimentation. So, in as much as experimentation can help to 

answer what the benefits of informatics objects are, it can also help us to be more 

scientific in how we develop them and how we use them. 

Experimentation and positivism are some of the tools at the disposal of informatics 

researchers. They sit amongst other methods and philosophies, which have their roles 

in computing and informatics research. Even “hard-nosed” computer scientists, 

interested in computability and hardware engineering and who may not see the 

importance of experiments, must realise that humans are always involved in 

computing. The controlled experiment is a rigorous way of understanding the 

relationships between humans and computing. This idea is commonplace in health 

informatics, where clinical evaluation is important, and is growing in computer 

science. 

Whatever research methods are used, they must be done to satisfactory standards. 

This has been recognised in medicine with official guidelines on how to conduct and 

publish controlled trials and endorsement of guidelines by major medical journals. 
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One sees similar efforts in health informatics and computer science to improve the 

quality of controlled experiments and other types of empirical study. 

The high-level goal of this doctoral research is to improve experimental quality. The 

first step is to measure it; one cannot know without measuring. The research 

hypotheses were that: 

• A reliable and valid questionnaire instrument for measuring experimental 

quality could be developed for human-based experiments in informatics. 

• The instrument could be applied to computer science experiments. 

• The instrument could be applied to health informatics experiments. 

Such work had not been done in computer science, and instruments in health 

informatics were unsatisfactory due to questionable reliability and lack of formal 

validity testing (see p. 59-62.) The example of medical trial quality instruments was a 

source of inspiration. 

However, it was predicted and discovered that medical trial quality is not the same as 

informatics experimental quality, even for health informatics. The construct of 

experimental quality has also not been researched in the informatics literature. What 

is experimental quality? What are its properties? Psychometrics provides useful 

theory for understanding and measuring things that are not easily observable. 

Psychometric scale development methods were used to create an initial 80-item 

questionnaire: the MICE-80 index. MICE-80 was based on 40 literature sources from 

computer science, health informatics and medicine (see p. 58.); they were used to 

generate over 200 experimental concepts or practice tips important to quality (see 

Appendix B.) To test score consistency, the MICE-80 questionnaire was applied to 

58 computer science and health informatics experimental studies (see p. 69-70.) This 

was performed 3 times under the method of test-retest; the reliability (intraclass 

correlation) coefficient was 0.935 (95% CI 0.884 - 0.962) (p. 68-72). The face and 

content validity of the MICE-80 index was assumed, but formal methods, some of 

which novel, for testing criterion and construct validity were applied. Because no 

gold standards against which the MICE index could be tested existed, a known-
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groups approach using studies previously judged in a systematic review was used (p. 

78). The MICE-80 index was shown to be able to discriminate between poor and 

good studies, as judged by the review; good studies scored about 12% higher than 

poor ones (95% CI 4 - 19, p = 0.004) (p. 79). Journal Impact Factor is currently 

being assessed as an indicator of clinical trial quality in medical research. This 

research questioned whether JIF’s were related to MICE index scores; the MICE-80 

scores correlated poorly (Pearson r = 0.329) (p. 80-81). Construct validity tests were 

completely new, since no previous work had been done in computer science or health 

informatics. The convergent hypothesis that statistician assistance in the experiment 

should increase MICE-80 scores was supported; scores were higher by 10% (95% CI 

5 - 15, p = 0.000) (p. 81-83). The divergent hypotheses that quality is unrelated to the 

number of authors, cited references and pages and year of publication were also 

supported, as shown by absolute Pearson correlations of <0.2 (p. 84). 

The MICE-80 version was reduced to 38 items using 3 criteria: item non-response 

>5%, item consistency (ICC) <0.8 and item variance <1 on an a priori basis (p. 84-

87). 42 items (see Appendix D) were removed, producing the working version of the 

MICE index (MICE-38). The MICE-38 index was assessed again for reliability and 

validity by performing the previous tests using the MICE-80 data set adjusted for 

item removal. The reliability coefficient was 0.963 (95% CI 0.944 - 0.977) (p. 90). 

The MICE-38 index maintained known-groups validity: 15% higher scores in good 

studies (95% CI 4 - 25, p = 0.006) (p. 95). Correlation with JIF’s was again poor 

(Pearson r = 0.271). The convergent construct hypothesis was supported with 

statistician-assisted studies scoring higher by 13% (95% CI 7 - 20, p = 0.000) (p. 97). 

Divergent construct hypothesis also remained supported: absolute Pearson 

correlations <0.2 (p. 97). Hence, the first hypothesis of producing a reliable and valid 

score for measuring controlled experimental quality in informatics was 

demonstrated. The MICE index is applicable to computer science and health 

informatics, thus demonstrating hypothesis 2 and 3. 

In support of the hypotheses, an application of the MICE index was shown (see 

Chapter 5.) A common area of experimentation in informatics was chosen: 

summative evaluation of clinical decision support tools and systems. A review of 21 

studies from 2007 was conducted and showed that experimental quality was 
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moderately high (mean 0.656, median 0.704, 95% CI 0.583 - 0.729). Reviews, such 

as the one performed, can be used to monitor the quality of empirical research in 

informatics in a quantitative way. Such reviews have yet to occur in computer 

science experimentation. 

The review data set provided limited, further data against which to assess the choice 

of validity tests. No known-groups testing occurred because the review sample was 

not pre-judged. Criterion validity using JIF was again not supported (Spearman rho = 

-0.167). Statistician assistance appeared to improve MICE-38 scores by 9% (95% CI 

-5 - 24%, p = 0.177), but this was not significant; the convergent construct 

hypothesis was unanswered due to insufficient sample size. The divergent construct 

hypotheses were partially supported: study quality was not related to the number 

study authors, references or pages (Spearman rho ≤ 0.254). Year of publication was 

not tested, since all studies were from 2007. 

 

6.2. Contributions of the Research 

6.2.1. The MICE Index 

The primary contribution of this research is the MICE index (p. 101), a questionnaire 

for quantifying the degree of quality of human-based informatics experiments. It has 

demonstrable reliability (p. 90) and validity (p. 94-98) and can be completed in a 

short amount of time. The MICE index will be useful for computer science and 

health informatics experimental researchers to plan and write up their studies; they 

can use the index as a checklist. It will be useful for readers and assessors of 

experiments to identify good studies from poor. As more and more scientifically 

based evidence accumulates in the informatics literature, it will be harder to keep up 

with important empirical studies. This has happened in medicine, with the explosion 

in evidence-based medicine, and was the impetus for Sackett to advise skipping 

nonrandomised studies to save the busy clinician’s time (254). As more experimental 

evidence builds in computer science and health informatics, scores like the MICE 

index might be used to weight results for meta-analysis. For researchers who are 

monitoring the quality of experimental evidence, the MICE index will be a practical 

tool. 



 158

The MICE index may be ahead of its time in computer science. Experimentation is 

becoming more and more used as a research method, especially when humans are 

involved (in developing or using ICT). Advocacy research has had its day (15), just 

as the self-proclaimed experts in medicine of yesteryear had theirs. Evidence-based 

computer science and informatics is the emerging future. However, at this point in 

time, experimentation is too focussed at the level of software engineering, and 

experimental quality is still at the guideline development stage. With time, as 

happened for medicine, computer science will need instruments to measure 

experimental quality. With the influence of medicine, health informatics has already 

started on this path. 

6.2.2. Improving Methods for Creating Informatics Experimental Quality 

Scores 

One of the difficulties in developing the MICE index was that no suitable yardstick 

was available to test criterion validity. A simple method for assessing validity is for 

the new scale and current scale to measure a series of objects and examine the 

correlation. However, the yardstick should have good psychometric properties to 

allow a meaningful correlational study. The MICE index could be used in the future 

as the yardstick for other instruments. In this way, this research has contributed to the 

psychometric development of future scales. 

This research examined the construct of informatics experimental quality in ways 

that other research has not. While health informatics scales exist, none of them 

discuss the psychometric appropriateness of their development. This research asked 

of itself: what is quality (p.28, 62)? Is it homogeneous? What is its level of 

measurement (p. 30)? How can nominal responses be continuous (p. 131)? In 

fairness, such exploration may be too long for a journal article that contains a scale 

and its applied use, but the psychometric principles of informatics scale should be 

examined somewhere. A glaring omission from the all of the health informatics 

scales encountered in this research was the lack of formal validity testing. In 

particular, construct validity testing, the strongest form of validity (138) (p. 132), 

requires multiple hypothesis tests. To the author’s knowledge, this research is the 

first that provides hypotheses about how experimental quality might behave (effect 

of statistical assistance and relationship to author/reference/page counts and 
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publication year). While some of these might be problematic (see Limitations of the 

Research), this research provides some ground upon which to build. To repeat 

Streiner and Norman, “Scale constructors are limited only by their imagination in 

devising experiments to test their hypotheses.” (131) (p. 174), but such work must 

occur. 

As part of understanding experimental quality in informatics, MICE scores were 

assessed for normality. It was found, overall, that scores were near normal (p. 72, 

90). This contributes to the knowledge base about the properties of quality. Future 

work may build upon such a finding. It also has implication for what might be 

considered “good” and “poor” quality. This research did not explicitly define a 

MICE score that is “good” or “poor”. Such thresholds might be arbitrary and 

criterion-referenced or, if quality is normal, norm-referenced, e.g. 2 standard 

deviations away from the mean defines good and poor. 

6.2.3. Measurement: a Wider Issue 

One of the themes of this doctoral research is the importance of measurement. This 

issue is broader than that of measuring experimental quality. Computer science and 

health informatics are replete will measurement issues. There are many vague things: 

software complexity, user friendliness, business process improvement, clinical 

appropriateness etc. What is the nature of the things that we measure? Can we test 

for or assume the properties of these things and, if so, how or why? This research 

emphasised measurement and may stimulate good measurement practice in other 

areas of informatics. 

6.2.4. Experimentation as Science and Foundation for Disciplines 

This research has fostered experimentation as an avenue for scientific foundation in 

computer science and health informatics. In Chapter 1, it was noted that Brooks 

described computer science as not science but engineering. Some might view health 

informatics in the same way, i.e. merely the engineering/application of computer-

based tools to support health care. There is certainly a place for the construction of 

computing artefacts in health care and other domains. Important problems in the 

world have been solved by the creation of tools. However, this does not mean 

computer science and health informatics are not scientific. Engineering theories 

allow construction of objects with confidence in predicting their behaviours. 
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However, those theories must somehow still be established. They may be derived 

mathematically. In informatics, where human involvement adds messiness, theories 

can be experimentally derived. Engineers, being able to confidently predict that 

acceleration is independent of mass, might scoff at the idea of experimentation. They 

would forget Galileo, who rolled different balls down an incline to investigate it 

(315). So, when McManus asserted that reliance on randomised controlled trials in 

medicine shows a failure of confidence in theories, he was not quite correct (118); 

theory can be established by experimentation. While other research methods and 

paradigms are important, good quality experimentation can further computer science 

and health informatics as science. 

This research highlighted the difficulties of where research in health informatics 

should be placed. Experimentation has much to offer computer science and health 

informatics, and this is recognised by researchers in both areas. However, 

experimentation has developed in both in isolation from each other. If a controlled 

experiment is to be used to assess the effectiveness of a computer technology on 

human outcomes, it seems unwise to develop experimental methods for general 

computing and ones for health computing. Yet, computer science has not learned 

from health informatics and vice versa. Indeed, it was noted in the literature review 

of experimentation in Chapter 3 that health informatics is more closely aligned to 

medicine than computer science. This research is unique in that it examined 

experimentation from both fields. Notably, health informatics scales and 

experimental guidelines make no reference to the computer science literature. It is 

unfortunate that health informatics only borrows computational methods from 

computer science but ignores the empirical developments. On the other hand, 

computer science also does not have to reinvent the wheel when empirical methods 

have been used in health informatics. Therefore, this research made a small step in 

the unification of the 2 fields in the context of experimental quality. Without 

collaboration, it is predicted that both fields will continue to develop evaluation and 

experimentation in isolation, and this will contribute to the divisions discussed in the 

first chapter. 
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6.2.5. Review of Recent Clinical Decision Support Tool Experimental Quality 

Chapter 5 presented an application of the MICE index but also produced a small 

review of experiments in clinical decision support systems. It contributes by being a 

recent review of a common type of health informatics experiment. It can be built 

upon by reviewing subsequent years to generate trends in quality and experimental 

problems for addressing. 

 

6.3. Limitations of the Research 

The brainstorming of experimental concepts from literature sources was performed 

by one judge (the author) (p. 63-65). Concepts that were similar in meaning may not 

have been as similar to another judge. There was no attempt to measure rater 

agreement on concept meaning or similarities. Similarly, the selection of pooled 

concepts for inclusion into the questionnaire was based on one judge. This may have 

introduced bias. The Delphi method may have been used but was beyond the scope 

of this research. 

Test-retest reliability can be problematic (p. 68). The choice of test-retest reliability 

was made on pragmatic grounds. Detractors of test-retest reliability criticise it for 

memory effects, single-rater interpretation of scale items and changes in attribute 

level between periods of time. Memory effect refers to the scale user remembering 

how she answered the last time and simply putting it down on the questionnaire 

again rather than treating the item newly and considering again. It is recommended 

that the interval between tests consists of 2 to 14 days (131) (p. 137). In this doctoral 

research, the interval was 3 to 4 weeks and beyond the ability of the doctoral 

candidate to remember the answers to previous items. Each study was read and 

assessed again as if new, but it is possible that content could have been remembered 

or better understood with repetition. There is empirical evidence that memory effects 

are overrated; McKelvie experimentally studied memory effects (using a 3 week test-

retest interval) and found they did not greatly increase reliability coefficients (210). 

Single-rater interpretation of items is a potential problem when assessment scales are 

developed for various raters to use. Can it be guaranteed that several raters will 

interpret the written item in the same way? Also, will they answer based on their 

experience of experimentation in the same way? These sources of error are not 
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detected well by test-retest using a single rater. The last issue of changing attributes 

is less of a problem for studying experimental quality than, for instance, 

psychological attributes. While people can change between points in time and, 

therefore, reflect change in scale scores (completely unrelated to an instrument’s 

reliability), experimental quality is constant. Unless there is a paradigm shift in 

experimental concepts, studies measured weeks apart will be stable. 

The choice of divergent hypothetical constructs was not ideal in retrospect (p. 83). 

Divergent hypotheses are useful, as they approach a construct from another direction. 

However, the hypothesis may not actually be divergent in theory. For example, 

initially it was hypothesised that publication year should not be correlated with 

experimental quality. It is possible, though, that quality of experiments improves 

over time; in which case, it would be a convergent hypothesis, and the absence of a 

correlation would not support the MICE index’s validity. Perhaps month of 

publication would have been a better choice. The same problem could have occurred 

with number of study authors, i.e. more authors thinking about an experiment may 

actually improve quality. These problems are not so much a problem with the MICE 

index but with understanding the behaviour of experimental quality. As noted in 

Chapter 2 (p. 48), problems can arise due the instrument, the hypothesis or both. 

While no weighting scheme was applied, there is inadvertent weighting when items 

tap similar or hierarchical attributes (131) (p. 105). For example, statistical 

appropriateness overlaps specific statistical errors, e.g. unit of analysis error. Thus, 

marking down one also marks down the other and effectively weights the scale 

towards statistical mistakes. This is not so much a limitation of the MICE index but 

an issue to be considered when creating scales, especially if there are few items. 

The reuse of the MICE-80 data set for the MICE-38 reliability (p. 87) and validity 

tests (p. 94) ignored a potential problem with interpretation of some items. It was 

noted in Chapter 2 (p. 40) that the answering of items could sometimes depend on 

the answering of previous items. Hence, removal of items strictly requires de novo 

application (to the same or different set of studies) instead of recalculation of scores. 

While most of the items would not have been affected in this way, a small bias was 

probably introduced. 
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While the literature review of experimental guidelines covered a large breadth of 

readings (p. 54-57), it is probable that not all relevant material was retrieved. There 

are several factors that can limit comprehensiveness: English language bias, 

bibliographical database selection and availability of library resources. Furthermore, 

there is reliance upon the search and relevancy functions of online databases. 

Nevertheless, a large number of sources contributed to the development of the MICE 

index. 

 

6.4. Future Work 

This research furthers the scientific basis for health informatics and computer 

science. Research in these fields should have a good experimental foundation. 

Researchers can build upon the findings herein to improve: 

• The quality of their experimental research. 

• The understanding of experimental quality as it relates to human-based 

informatics experiments. 

• The reliability and validity of other measurement instruments developed in 

the future. 

Research into human interaction with informatics methods and artefacts is not 

limited to controlled experimentation, and there is potential for other forms of 

empirical methods to be assessed for quality. This research demonstrated the 

importance of good research methodology and how quality assurance may be 

delivered. Future work may focus on, for instance, qualitative evaluative methods. 

This work will stimulate further discussions about evidence in computing and 

informatics. With ever-increasing research findings being published, we should be 

assessing the credibility and usefulness of this evidence. Evidence-based practice is a 

new area of research in computer science. Quantitative assessment of evidence 

quality will be the next frontier. Methodological reviews using good instruments 

should be undertaken by empirical researchers. In health informatics, we should be 

continuing the assessment of evidence, but we should do so with validated 
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instruments. Further work needs to be done in quantitative meta-analysis of evidence 

in informatics. Eventually, repositories of high quality informatics evidence could be 

established in a similar fashion to the Cochrane Collaboration (www.cochrane.org). 

This work will also stimulate thinking into how we should avoid unnecessary 

duplication of efforts in informatics experimentation. If educators are to teach 

experimental research methods in informatics and computer science, there should be 

further work to consolidate common ideas applicable to discipline-specific areas of 

informatics. Also, this research can be used to teach informatics students about 

experimental principles and get them critically thinking. Further research can 

examine the best ways to get students to think critically about empirical knowledge. 

Future work should also include improving the MICE index. Scale development is 

iterative. This work began efforts into analysing the properties of experimental 

quality in computer science and health informatics. More convergent and divergent 

hypothetical constructs need to be assessed. The MICE index should be tested 

against other raters and with other experimental studies. If a known-groups approach 

is used, any expert panel that categorises study quality should itself be reliable 

enough to discriminate at the desired level. The panel should also be knowledgeable 

in computer science and health informatics experiments. Similarly, raters applying 

the MICE index for inter-rater reliability should have experience with computer 

science and health informatics experiments. Future work might also show that the 

scale could be shorter without sacrificing its properties. There is also potential for 

experimental scales to be defined and developed for other areas of informatics. 

 

6.5. Final Words 

Despite the limitations in developing and testing the MICE index, this research has 

made contributions to computer science and health informatics at a basic science 

level. When experimentation is done well, it is a powerful tool in the researcher’s kit. 

When good experiments direct the development and use of ICT and information 

resources, the potential of such tools is closer to being achieved. 
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Glossary 

Allocation concealment: the process of hiding the knowledge of upcoming 

experimental group assignment so that investigators cannot subvert the allocation 

method. 

Analysis of variance: a group of statistical methods used to calculate whether 

several means are different. 

Attribute: see construct. 

Balancing: the process of assigning equal or near-equal numbers of participants to 

experimental groups. 

Bias: a systematic error. 

Blinding: the process of making participants, external assessors or data analysts 

unaware of experimental group assignment. 

Blocking: the process of allocating participants to groups such that the groups are 

fairly uniform with respect to a certain variable (163). Blocking is synonymous with 

stratification in this meaning but can also mean the process of balancing (108) (see 

balancing.) 

Boredom effect: a bias of where participants are negatively affected due to 

maturation (e.g. tedium, length) of the experiment (152) (p. 68). 

Carryover effect: a bias where the effect of a treatment in crossover or within-

subject experiments persists into the next stage. 

Case control study: a type of epidemiological investigation that searches for the 

relationship between cause and disease by gathering patients with and without the 

disease and examining whether a cause was present in their pasts. 
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Categorical measurement: measurement that places objects into categories. 

Checklist effect: a bias where participant performance improves due to improved 

data collection and structure rather than the effect of computerisation (138) (p. 212).  

Classical test theory: a group of measurement theories with origins in psychological 

measurement. A key aspect of classical test theory is that observations contain an 

error component and a true component. 

Clinical decision support system: a computer-based tool that processes patient-

specific data in order to aid decision making about a patient. 

Clinical information system: a computer-based system for managing patient-related 

data. 

Clinical trial: a form of controlled experiment in medicine where patients are 

allocated to a new medical treatment or the current standard/placebo to examine the 

benefit of the treatment. 

Cohen’s kappa: a measure of the chance-corrected agreement between 2 raters for 

categorical/nominal data (unweighted kappa) or ordinal or discrete interval data 

(weighted). 

Cohort study: a type of epidemiological investigation that searches for the 

relationship between cause and disease by gathering patients that have and do not 

have a suspected causative agent for the disease and following them through time to 

see if the disease develops. 

Compensatory equalisation of treatment: a bias where control groups are 

compensated for not receiving the intervention, and this affects their performance 

(152) (p. 70). 

Compensatory rivalry: a bias where participants not receiving the new treatment 

are further motivated to demonstrate the current standard is as good (152) (p. 70). 

Compliance: the degree to which participants in an experiment adhere to the 

treatments assigned to them, e.g. taking medicines as instructed in clinical trials or 
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using an information system/software development method as instructed in 

informatics experiments. 

Computer-supported cooperative work: the use of computers for collaboration 

between individual workers. 

Confounding: when the effects of variables on an outcome cannot be distinguished 

from each other (245) (p. 176). 

Construct: the underlying phenomenon or property that a scale/item attempts to 

measure. This is sometimes also called the latent variable or an attribute. 

Contamination: a bias where control and treatment groups become mixed and 

effectively reduce the size of effect. 

Continuous measurement: measurement along a spectrum of an object. 

Control group: the experimental group that is the comparison for the group or 

groups receiving the novel treatment. Control groups usually receive the standard or 

current level of treatment. 

Controlled experiment: a research method to understand cause and effect where 

objects are manipulated to differ in one aspect (the independent variable) and then 

compared to each other for the effect on other aspects (dependent variables).   

Convenience sampling: sampling of participants into an experiment based on ease 

of access, e.g. university students. Bias can occur if participants are systematically 

different to the larger population. 

Cronbach’s alpha: a measure of the consistency of items within a scale for 

measuring the same construct (internal consistency). 

Crossover study: an experimental design where participants receive all levels of 

treatment in different stages and act as their own controls. This is a type of within-

subject study. 
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Data completeness effect: an experimental bias where data automatically collected 

by a computer-based intervention is more complete than that which would have been 

collected manually (138) (p. 213). 

Demonstration study: a study to establish the relationship between variables (138) 

(p. 365). 

Dependent variable: variables in an experiment that are the outcomes measured in 

response to different treatments. The term is also called a response variable. 

Effect size: the size of the relationship between treatments and outcomes. 

Empirical: relating to empiricism (truths must be demonstrated by observable 

evidence.) (316) Experiments are a form of empiricism. 

Evaluation: the application of formal methods to understand the merits of an object, 

usually for the purpose of making decisions about the object. 

Exclusion criteria: the criteria by which a participant is denied entry into an 

experiment. 

Expectation effect: a bias when participants’ preconceived criticism or enthusiasm 

for the informatics object or method affects their outcomes. 

Experience effect: a bias where a participant experienced with an existing software 

development method will perform better with than a novel method due to familiarity 

(151) (p. 117). 

Experimental unit: the unit to which a treatment is assigned. In informatics 

experiments, this is usually an individual person or a small group, e.g. a medical 

ward team but may also be large organisations. This hierarchy is the level of the unit. 

External validity: the extent to which the results of an empirical study are 

generalisable outside of the study’s environment, e.g. across people, place and time. 

Fatigue effect: a bias where participants become tired at the later stages of an 

experiment leading to poorer performance. 
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Feedback effect: a bias where performance feedback given to participants can 

improve task performance rather than the effect of a treatment (138) (p. 213). 

Generalisability theory: an extension of classical test theories to incorporate 

different forms of error in measurement. 

Hawthorne effect: a bias where the performance of participants in an experiment is 

increased due to the presence of the investigation rather than the treatment. 

History effect: a potential bias when an experiment is carried out at over different 

points in time (152) (p. 68). 

Hypothesis (experimental): a formal statement about the relationship between 

variables. The null hypothesis states there is no relationship. The alternative 

hypothesis is the contrary in support of the relationship. 

Inclusion criteria: the criteria by which a participant is permitted entry into an 

experiment. 

Independent variable: variables in an experiment that are manipulated for the effect 

on outcomes. The term is also called a factor or a predictor variable and is often 

synonymous with treatment. 

Index: a measurement instrument for quantifying constructs based on the construct 

determining or “causing” the indicator. Index can also refer to the actual indicator, 

e.g. Consumer Price Index. Sometimes the term is used interchangeably with scale 

(see scale.) 

Informatics: the discipline concerned with human and machine processing of 

information. It includes knowledge from a variety of other fields, e.g. computer 

science, information science and cognitive science. 

Integrated Development Environment: a computer programme that provides 

various useful software development functions, e.g. graphical interface, editor, 

compiler and debugger. 
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Intention to treat analysis: a statistical approach in clinical trials where all patients 

are analysed according to their original group assignments whether or not 

compliance with treatment occurred. 

Internal replication: replication of an experiment by the same researchers. 

Internal validity: the extent to which the results of an empirical study are truthful. 

International Normalized Ratio: a standardised measure of the clotting ability of 

blood (317). 

Interpretivism: the philosophical view that knowledge is interpreted by observers 

and is achieved by social interaction (318). 

Intraclass correlation coefficient: a group of measures that examines the 

relationship among multiple observations of the same variable (131) (p. 133). 

Item: the part of a scale that seeks a response from the scale user. An item is often 

comprised of a question (the stem) and a way for users to respond (the response). For 

continuous responses, each unit of response is called a response step. 

Journal Impact Factor: for a given journal and year, the ratio of the number of 

citations in that year to articles published in the journal during the previous 2 years 

over the number of citable sources published in the same 2 years (251). 

Known-groups validity: a method of validity testing where an instrument is applied 

to previously categorised groups to see whether it can similarly discriminate. 

Lab package: the collection of documentation and experimental materials used in 

software engineering experiments for other researchers to conduct similar studies. 

Learning effect: a bias where participants learn an experimental task, computing 

artefact or method; performance may improve from learning rather than the 

experimental treatment. Alternatively, performance may be hindered by insufficient 

learning of tasks or objects. 

Measurement study: a study undertaken to assess the error associated with a 

measurement instrument (138) (p. 369). 
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Mono-method bias: bias resulting from the use of a single type of observation 

whose measurement may be erroneous (152) (p. 71). 

Mono-operation bias: bias resulting from an overly simplified experiment that is 

not representative of what the experiment is trying to show (152) (p. 71). 

Monotonic function: a mathematical function that transforms a set of values in a 

purely increasing or decreasing manner such that ranking is preserved. 

Negative finding (result): an experimental result where the intervention was inferior 

to the control. Sometimes this term is confusingly used to mean a null result, i.e. 

statistically nonsignificant; therefore, efficacy remains unknown. 

Novelty effect: a bias where participants’ behaviour changes due to the novelty of 

the treatment or experimental environment rather than the treatment itself. 

Number needed to treat: a measure in clinical trials of the effectiveness of 

therapies. It is the number of patients who need to be treated to prevent a single 

adverse health outcome. 

Observer bias: a bias where external assessors of an outcome are influenced in their 

estimation by knowledge of group assignment. 

Parallel-group study: an experimental design where single treatment levels are 

assigned to individual groups that are studied in parallel. 

Participant: a human subject enrolled into an experiment. 

Placebo effect: a bias where participant outcomes are overestimated due to the 

positive expectations surrounding a novel intervention, e.g. a new drug or 

information technology (see expectation effect.) 

Positivism: the philosophical view that knowledge is scientific, measurable, 

objective, reducible and testable (319). 

Pseudorandom (allocation): methods of allocating participants to experimental 

groups based on things that appear random but are partly systematic. 
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Psychometrics: the discipline concerned with measurement of social and 

psychological phenomena. 

Qualitative: relating to subjective assessment. 

Quantitative: relating to quantifiable assessment. 

Randomisation: the process of allocating participants to experiment groups 

according to chance. 

Recall error: a bias where participants are required to remember an outcome that 

may be systematically easier to recall depending on the outcome or its association 

with other factors, e.g. critical clinicians using a CDSS may remember adverse health 

outcomes associated with its use more than control clinicians recalling their 

outcomes. 

Reliability coefficient: a numerical value of the consistency of a measurement. 

Reliability: the property of a measurement to be consistent or free of error. 

Resentful demoralisation: an opposite bias to compensatory rivalry where 

participants not receiving the novel treatment become unmotivated and perform 

poorly (152) (p .70). 

Sampling (experimental): the process by which participants may be selected to 

enter an experiment from a larger population. 

Scale: an instrument consisting of one or more items, which are scored, and is used 

to measure the degree of variables “not readily observable by direct means.” (125) 

(p. 8) Scale is sometimes used to distinctly mean a unidimensional instrument (see 

index.) Scale can also be synonymous with level of measurement or refer to the 

format of item responses, e.g. “measured on a bipolar scale.”  

Scientific method: an approach to knowledge discovery by observation, formulation 

of hypotheses and testing of hypotheses by empirical and, usually, experimental 

methods. 
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Second-look bias: a bias where participants are asked to review a case scenario 

without the use of an informational tool and then with tool. Outcomes may improve 

from the second chance to think about the case rather than the tool’s use (138) (p. 

215). 

Selection effect (bias): a bias where factors relating to the entry of participants affect 

the outcomes of an experiment rather than the treatment, e.g. volunteers are usually 

more motivated, which could affect performance (152) (p. 69). Bias can also reflect 

poor representativeness of the sample. Bias can also occur from nonrandom 

allocation to experimental groups, i.e. biased selection into groups. 

Setting effect: a bias where the experimental setting, e.g. time of day, can adversely 

affect participant performance. 

Statistical regression effect: a bias when participants are allocated treatment based 

on classification by a previous study. A change in outcomes can occur due to the 

classification scheme rather than the treatment (152) (p. 69). 

Stratification: see blocking. 

Task: see test case. 

Test case: the scenarios against which human/machine information processing or 

skill is applied. These can also include tasks. 

Test-retest method: a form of reliability testing where objects are assessed at 

different points in time; measurements on the same object are compared for 

consistency. 

Treatment level: the possible values of a treatment (or independent variable), e.g. if 

the independent variable is provision of informational support, one treatment may be 

a computer programme, another may be a paper guideline and another treatment 

level may be nothing (control). 

Treatment: the aspect of experimental groups that is manipulated to see its 

relationship to outcomes of interest. This is often synonymous with independent 

variable. However, treatments can also be the possible values that an independent 
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variable can take in an experiment (151) (p. 60). A “treatment group” is often 

distinguished from a “control group” by the level of the treatment (see treatment 

level and independent variable). 

Triangulation: the use of different investigations or methods to check for 

consistency of an object of study (138) (p. 262). 

Type I error: the mistaken rejection of the null hypothesis when it is, in fact, true. 

Type II error: the mistaken acceptance of the null hypothesis when it is, in fact, 

false. 

Unconscious formalisation: a bias in within-subject studies where formalised 

software development methods are learned from one part of an experiment and 

structure the control situation (use of less formal techniques) (151) (p. 118). 

Unit of analysis error: a statistical error when analysis does not take into account 

clustering of data and loss of independence and, therefore, inflates sample sizes. As a 

result, confidence intervals become artificially narrowed and tests of inference may 

become erroneously significant. 

Unit of analysis: the unit in an experiment that is the object of statistical methods. 

To prevent unit of analysis error, it should be the same as the experimental unit. 

Unit of observation: the unit in an experiment that an observation is made upon. To 

prevent unit of analysis error, it should be the same as the experimental unit. 

Validity: the property of a measurement to truly capture that which it is supposed to 

measure. 

Withdrawal: a participant who is assigned to an experimental group but does not 

complete the experiment. This is also called a dropout. 

Within-subject study: an experimental design where participants act as their own 

controls (see crossover study.) 

 

 



 197

Appendices 

Appendix A contains examples of the guidelines and scales retrieved during the 

literature search development stage of the MICE index. Items from the Jadad scale 

(141) and extracted items from the Chalmers (142) and Goodman scales (173) are 

reproduced. These are clinical trial quality scales. Also shown are items from the 

Balas scale (health informatics) (145) and extracted practice points from the 

Kitchenham guideline (computer science) (122). 

Appendix B contains the spreadsheet data of pooled experimental concepts and 

endorsing sources. # indicates stated endorsement of a concept or semantic 

equivalent. ~ indicates indirect endorsement (not directly stated but implied in other 

statements). The textbook by Juristo and Moreno describes important experimental 

concepts in a chapter on recommendations/guidelines (p. 349-58) and in the rest of 

the text. * indicates endorsement in other chapters of the book (151). 

Appendix C lists the MICE-80 questionnaire items that were dropped to produce the 

MICE-38 version. 

Appendix D contains the raw data produced from testing validity of the MICE-80 

and MICE-38 questionnaire versions. 

Appendix E displays the raw item responses for the review of clinical decision 

support tool experiments in Chapter 5. 
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Appendix A 

 

JADAD SCALE (141) 
 

Was the study described as randomized (this includes the use of words such as randomly, random, and 

randomization)? 

Was the study described as double blind? 

Was there a description of withdrawals and dropouts? 

 

Either give a score of 1 point for each “yes” or 0 points for each “no”. There are no in-between marks. 

 

Give 1 additional point if: For question 1, the method to generate the sequence of 

randomization was described and it was appropriate (table of 

random numbers, computer generated, etc.)  

and/or If for question 2, the method of double blinding was described 

and it was appropriate (identical placebo, active placebo, 

dummy, etc.) 

Deduct 1 point if: For question 1, the method to generate the sequence of 

randomization was described and it was inappropriate 

(patients were allocated alternately, or according to date of 

birth, hospital number, etc.) 

and/or For question 2, the study was described as double blind but 

the method of blinding was inappropriate (e.g., comparison of 

tablet vs. injection with no double dummy) 

 

Guidelines for Assessment 

1. Randomization 

A method to generate the sequence of randomization will be regarded as appropriate if it allowed each 

study participant to have the same chance of receiving each intervention and the investigators could 

not predict which treatment was next. Methods of allocation using the date of birth, date of admission, 

hospital numbers, or alternation should not be regarded as appropriate. 

 

2. Double blinding 

A study must be regarded as double blind if the word “double blind” is used. The method will be 

regarded as appropriate if it is stated that neither the person doing the assessments nor the study 

participant could identify the intervention being assessed, or if in the absence of such a statement the 

use of active placebos, identical placebos, or dummies is mentioned. 

 

3. Withdrawals and dropouts 

Participants who were included in the study but did not complete the observation period or who were 

not included in the analysis must be described. The number and the reasons for withdrawal in each 

group must be stated. If there were no withdrawals, it should be stated in the article. If there is no 

statement on withdrawals, this item must be given no points. 

 

 

CHALMERS SCALE (EXCERPT) (142) 
 

2.1 Selection description 

 1. Adequate 

 2. Fair 

 3. Inadequate 

 

2.2 Number of patients seen and reject log 

 1. Yes 

 2. Partial 

 3. No 

 4. Unknown 
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2.3 Withdrawals 

 1. List given 

 2. No withdrawals 

 3. No list 

 4. Unknown 

 5. >15% withdrawals for long-term studies and >10% for studies lasting less than 3 months 

 

2.4 Therapeutic regimens definition 

 1. Adequate 

 2. Fair 

 3. Inadequate 

  

2.5  Description of placebo 

 A. Control regimen (placebo) appearance 

  1. Same 

  2. Different 

  3. Unstated 

  4. NA 

 B. Control regimen (placebo) taste 

  1. Same 

  2. Different 

  3. Unstated 

  4. NA 

 

2.6 Randomization blinding 

 1. Yes 

 2. Partial 

 3. No 

 4. Unknown 

 

 Method of random blinding 

  1. Envelope 

  2. Pharmacy 

  3. Other 

  4. Unknown 

  5. NA 

 

2.7 Blinding of patients 

 1. Yes 

 2. No 

 3. Unknown 

 4. NA 

 

 

GOODMAN SCALE (EXCERPT) (173) 
 

1. How clear are the background and rationale for this study? 

 The frequency and severity of the clinical problem, what remains unknown about the 

research question, and how patients could benefit from the answer. 

1 (not clear) 2 3 (somewhat clear) 4 5 (clear) 

 

2. How clear are the specific aims of this study? 

 The research questions (distinguishing main from secondary) and, if appropriate, hypotheses 

about what will be found. 

1 (not clear) 2 3 (somewhat clear) 4 5 (clear) 
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3. How adequate is the description of the setting of the study and source of subjects? 

 To help readers understand whether the patients in the study are like theirs, the manuscript 

should provide information on when and where the research took place, a description of the level of 

care (community, primary care, referred), and if patients were referred, the pattern (source, distance, 

route) of referral. 

 1 (inadequate) 2 3 (fair)  4 5 (adequate) 

 

4. How clear are the eligibility (inclusion and exclusion) criteria? 

1 (not clear) 2 3 (somewhat clear) 4 5 (clear) 

 

5. For studies in which two groups are compared, is there enough information to judge the suitability 

of the comparison groups? 

 How well was it reported how patients were chosen (for observational studies) or allocated 

(for experiments) so that readers can judge whether the researchers have compared like with like? 

 1 (no information) 2 3 (some information) 4 5 (all necessary 

information) 

 

6. How clear is the study design? 

 Do you understand what the authors set out to do and how they did it (the study design)? 

1 (not clear) 2 3 (somewhat clear) 4 5 (clear) N/A 

 

7. How adequate is the description of the masking (i.e. blinding) procedure? 

 Is it clear who was blinded, what blinding procedure was used, and the degree to which 

blinding was achieved? 

 1 (inadequate) 2 3 (fair)  4 5 (adequate) N/A 

 

 

BALAS SCALE (145) 

 
Description of the site(s) includes (i) medical speciality, (ii) inpatient or outpatient care, (iii) academic 

or non-academic center, (iv) reimbursement method, (v) for-profit of not-for-profit organization: [5] 

All of the above aspects; [3] Two or more aspects; [0] Inadequate 

 

Description of sampling: [5] Entry/rejection criteria and population represented; [2] One of the above; 

[0] None of the above 

 

Definition of sample size: [5] Exact power and anticipated difference specified; [2] Pretrial sample 

size calculation indicated; [0] Multiple looks not excluded 

 

Description of selection: [3] Not accepted eligible subjects and availability of reject log included; [2] 

One of the above specified; [0] None of the above 

 

Randomization: [10] Centralized or Computerized or Other reliable; [3] Unknown or Less reliable; [0] 

No 

 

Description of intervention includes (i) persons targeted, (ii) timing and periodicity, (iii) rules shaping 

the intervention, and (iv) replicable description of the content: [5] All aspects, [2] 2-3 aspect; [0] 

Inadequate 

 

Blinding of patients regarding intervention: [2] Yes stated or Incompatible with the intervention; [1] 

Probably; [0] No or Unknown 

 

Description of the main effect variables: [5] One sentence definition for each variable and description 

of methods and results can be matched; [3] Vague definition or lack of matching; [0] No definition 

 

Description of secondary variables (testing randomization, interactions, and side effects): [3] Clear 

definition for each variable and description of methods and results can be matched; [1] Vague 

definitions or lack of matching; [0] No definition 
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Measurement of effect is blinded to intervention: [5] Specifically stated; [3] Probably; [0] No or 

Unknown 

 

Blinding of physicians (providers) regarding cumulative trial results: [2] Yes; [1] Partial; [0] No or 

Unknown 

 

Testing randomisation (baseline comparison of control and intervention groups): [10] Available and 

groups are comparable; [3] Partial; [0] No or unknown 

 

Numeric table of effect variables (mean-standard deviation or numerator-denominator): [10] Presented 

for each effect variable; [3] Partially available; [0] No or Graphics only 

 

Ratio of withdrawals after enrolment: [10] <10% for long-term studies or <5% for studies lasting less 

than 3 months or Not applicable; [3] <15% withdrawals for long-term studies and <10% for studies 

lasting less than 3 months; [0] More withdrawals or Unknown 

 

Handling of withdrawals: [2] Analyzed several ways or Included in original randomization or No 

withdrawals or Not applicable; [1] Counted as end result at time or withdrawal or Discarded or 

Changed groups; [0] Unknown 

 

Timing of events including dates starting/stopping: [2] Published; [1] Available to reader; [0] Neither 

 

Data on possible adverse effects: [5] Specifically mentioned “no adverse effects” or List and statistical 

analysis of adverse effects; [2] Listing adverse effects without analysis; [0] Adverse effects not 

mentioned 

 

Analysis of main effect variables: [5] Statistical estimation with confidence limits and hypothesis 

testing; [2] One of these; [0] Neither 

 

Analysis of secondary variables (interactions, side effects): [3] Statistical estimation with confidence 

limits and hypothesis testing; [1] One of these; [0] Neither 

 

Proper retrospective analysis of longitudinal difference (baseline versus intervention period): [3] 

Statistical estimation with confidence limits and hypothesis testing; [1] One of these; [0] Neither 

 

 

KITCHENHAM GUIDELINES (EXCERPT) (122) 

 
C1. Be sure to specify as much of the industrial context as possible. In particular, clearly define the 

entities, attributes, and measures that are capturing the contextual information. 

 

C2. If a specific hypothesis is being tested, state it clearly prior to performing the study and discuss 

the theory from which it is derived, so that its implications are apparent. 

 

C3. If the research is exploratory, state clearly and, prior to data analysis, what questions the 

investigation is intended to address and how it will address them. 

 

C4. Describe research that is similar to, or has a bearing on, the current research and how current work 

relates to it. 

 

D1. Identify the population from which the subjects and objects are drawn. 

 

D2. Define the process by which the subjects and objects were selected. 

 

D3. Define the process by which subjects and objects are assigned to treatments. 

 

D10. Fully define all the treatments (interventions). 

 

DC1. Define all software measures fully, including the entity, attribute, unit and counting rules. 
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Appendix B 

 

 Computer science HI Medicine 
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INTRODUCTION 

What is the problem 

the study addresses, 

its motivation 

# #      # #    #     #   #   # #   #    #    #  

What is the object of 

study, e.g. product, 

process, model 

# #      # #*    #   #     #                 

What is the level of 

industrial use of the 

object of study 

           #                          

Aim for replicated 

studies 

# #     ~  # #   #   #     #                 

Is the study 

compared to current 

knowledge, 

underlying theory 

# #     # # # ~ # # #     #  # #   # #       #      

Is the underlying 

theory insufficiently 

defined 

                   ~ #                 

Is it a non-trivial 

study 

      #  #  #             #        ~      

Was there a 

description of the 

tasks the technology 

or process addresses 

           #                          
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Is experiment or 

study design most 

appropriate 

         ~   #   #     #   #    #          

Is the study 

appropriate for 

system maturity 

                       #              

METHOD 

Is there a definition 

of aims, objectives 

or goals 

# #      # #  #  #   #  #   #   # #   #    #    #  

Is there a formal 

hypotheses 

 #      # #  #  #   #  #   #    #       #      

Are the methods 

reproducible 

 ~      ~  ~        ~   #   #       #       

What is the 

perspective of the 

study 

# #      #     #        #   #              

Has a pilot study 

been done 

#  #    #       #  #        #              

Aim for within-

subject designs 

   #                                  

Was there a 

prospective study of 

hazards 

                                   #  

STUDY DESIGN 

Is the design correct 

for the hypothesis 

    # #   #* ~ #     #     #   ~        ~      

Aim for simple study 

design 

       #   #     #     #                 

Avoid simple 

designs, e.g. one 

factor 

      #  #*            #                 

Use more than 1 

independent variable 

      #  #*            #                 

Was there a 

description of who 

did the monitoring 

        #    ~            #  #         ~  

Was there a 

description of study 

design 

# ~      # #*  #  #   #  #   #   # ~  # #    #      

Has balancing been 

described 

       #        #  #   #    ~             
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Were carryover or 

refractory effects 

considered 

 #         #             #            #  

Was there a 

description of 

internal replication 

        #                             

Was scheduling 

reported 

       # #    #         #  # #  #     #      

Was the study long 

enough 

    # #             #                   

Evaluate against 

current practice 

 #         #                           

BLOCKING 

Were the control and 

treatment groups 

comparable 

      ~  #  #  ~        ~ # #  # # # ~   # # #   # # 

Were comparable 

materials or co-

interventions used 

except where 

experimentally 

manipulated 

   #   #                  #  ~    # ~ #   #  

Was there control or 

analysis for multiple 

measured variables, 

e.g. stratify, 

regression 

      ~  ~*                      # #      

Were known 

confounders handled 

in design or analysis 

      #  ~*    ~   #       #     #    ~    # ~ 

Were known risk 

factors recorded 

      ~                        # ~     ~ 

Was there a 

description of 

unchanging 

characteristics 

(parameters) 

        #                             

Was there a 

description of 

blocking variables 

(stratification) 

   #    # #    #   #     #    #           ~  

Was the sample 

uniform 

   #     ~*     #       #          #     #  
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BIASES 

Was there control of 

checklist effect 

                       #              

Was there control of 

data completeness 

effect 

                       #              

Was there control of 

feedback effect  

                       #              

Was there control of 

placebo effect 

        #*        #       # # # # # #   #  # # # # 

Describe the placebo 

characteristics. Was 

it identical to 

treatment 

                        # # #       # # #  

Was there control of 

second-look bias 

                       #              

Was there control of 

testing-treatment 

interactions 

                    #                 

Was there control of 

interaction of 

different treatments 

                    # ~                

Was there control of 

experience effect 

        #*                             

Was conformance or 

compliance assessed 

 #      # #*  ~  #        #      #     ~    #  

Was there control of 

unconscious 

formalisation effect 

        #                             

Was there control of 

setting effect 

        #                             

Was there control of 

novelty effect 

        #        #                     

Were random 

irrelevancies 

accounted for 

                    #                 

Was there control of 

selection effect, e.g. 

volunteers 

                    #   #              

Was there control of 

Hawthorne effect 

                #   # #   #              

Was there control of 

learning effect 

 #     #  #  #  #  #  #   # #                 
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Was there control of 

boredom effect 

 #       #            #                 

Was there control of 

statistical regression 

effect 

                    #                 

Prevent intergroup 

communication 

(including 

contamination) 

        #*          #  #   #              

Was there control of 

compensatory 

equalization of 

treatments 

                    #      #           

Was there control of 

compensatory rivalry 

                    #                 

Was there control of 

resentful 

demoralization 

                    #                 

Was there control of 

history effects 

                    #                 

Were subjects biased 

for or against the 

treatment 

     ~   ~  #  #  ~  #    #   ~              

Was measurement 

bias accounted for 

by methods other 

than blinding 

                      ~     #     ~     

Are the investigators 

studying their own 

work 

          #      ~    #   #              

Avoid mono-

operation bias 

                    #                 

Avoid use of a single 

type of measure 

(mono-method bias) 

                    #                 

Does the investigator 

teach technology of 

study to student 

subjects 

                ~  #                   

TREATMENT 

Was there a 

description of 

treatment 

 #      # #  # # #  # #  #   # #  # #  #   # #    # #  
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Were the treatment 

levels defined 

       # #   #   #      #   ~   #   ~ ~    ~ #  

Is the treatment 

appropriate for 

questions posed 

   #     #            #          #  #   #  

Was there an attempt 

to measure the 

available therapeutic 

agent 

                          #           

SETTING 

Was there a 

description of the 

site 

 #      #   #  #  #      # #  # #  #     #      

Was the setting 

representative 

 #   ~     #     #    #  #                 

PARTICIPANTS 

Was there a 

description of the 

sampling method 

(including eligibility 

criteria) 

       # #  #  #  # #  #    #  # #  # # # # # # #   # # 

Were the subjects 

suitable for questions 

posed 

 ~  ~  ~  ~ ~  ~  ~ ~ ~  ~ ~ ~ ~ ~               #  

Was the student vs. 

professional issue 

addressed 

 #  #  #     #  # # #    # # ~                 

Were motivation 

issues addressed 

 #    #  # #    #  #  # # #  #                 

Are sample 

characteristics 

adequately described 

 #    # ~ # #  #  # # # #  # #  #   # #      # #   # #  

Avoid disturbing or 

interrupting subjects 

        #*                             

Was group over 

individual effects 

studied 

                   #                  

Are the controls 

appropriate 

      ~                     #   ~       

Were controls 

adequately defined 

      ~  ~       #     ~   # #     # # #    ~  
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Avoid using controls 

if control situation is 

ambiguous 

          #                           

Was the 

experimental unit 

defined 

        #  # #   # #       # #        #      

Select subjects prior 

to treatment and 

evaluate 

prospectively 

                                   #  

Was the sample 

representative 

# #  # ~     ~ #        #  #   #    #        #  

Reassure subjects 

that their 

performance is not 

the main outcome 

        #*                             

RANDOMISATION 

Was there a 

description of 

randomisation or 

allocation of 

treatment 

       # #  #  #  # #  #   # # # # # # # # # # ~ #  # # # # 

Has allocation 

concealment been 

done 

                     ~  # # # #  # # #   #  # # 

Separate person for 

allocation generation 

and implementation 

                     ~   #             

Did the investigators 

randomise as late as 

possible 

                       #              

Was randomisation 

checked 

                     #     #           

BLINDING 

Was analysis blinded        #   #              #  #           

Was blinding 

checked 

                        #  #     #   # #  

Were participants 

blinded to treatment 

group 

       ~         #     #  # # # # # #   #  # # # # 
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Were the subjects 

blinded to 

hypotheses 

        #*            #                 

Were outcome 

assessors blinded to 

treatment group 

       ~   #      #     # # # # #  # # # # # ~ # ~ # # 

Were health 

providers blinded to 

treatment group 

                     #  # # # #     #   ~ # # 

Explain why 

blinding was not 

used 

                        #             

Use of blind 

allocation of 

materials 

          #                           

MATERIALS 

Was there a 

description of 

examination 

materials (including 

training, aids) 

 #     # # #    #  # #  #  ~ #                 

Were materials 

representative 

 ~  # ~     # #   # #    #  ~                 

Use measures of 

computer 

programme 

complexity 

   #                                  

TASKS/TEST CASES 

Appropriate level of 

task difficulty to 

achieve statistical 

normality 

   #                                  

Appropriate level of 

task difficulty to 

distinguish ability 

             #                        

Tasks familiar or 

easy enough for 

subjects to 

understand 

      #                               

Was there variety 

and sufficient 

number of test cases 

                       #              
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Were test cases 

comprehensive 

                       #              

Were test cases 

recent and 

geographically 

distinct 

                       #              

Were task 

constraints defined 

              #                       

Were tasks clearly 

defined 

      #        #                       

Were tasks 

representative 

 ~   ~     #    # #    #  ~   #              

OUTCOMES 

Was there a 

description of 

outcomes 

# #      # #  # # #  # #  #   # # # # #  ~    # #   # #  

Was there a 

description of 

instrumentation 

(guidelines, 

measurement) 

  ~     # #    ~        #   #              

Was data collection 

planned prior to 

treatment and 

collected 

prospectively 

                                   #  

Was there a 

description of data 

collection 

procedures or 

evaluation methods 

#  #     # #  #  #   #     #  # #      # ~    ~ #  

Were the measures 

tested for content, 

criterion, construct 

validity 

 # #    #  ~*               # ~           ~  

Was a measurement 

study done prior to 

demonstration study 

  #    #                 #              

Avoid 

oversimplification of 

outcomes 

          #         #                  

Were outcome 

measures justified 

    # #  # #  #    #     ~                  
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Were correct clinical 

investigations used 

                              # #      

Were outcome 

measures validated 

# # #    # # #*  #  #  #      #   # #  #         #  

Are validated 

measurement tools 

re-used 

  #    # #                # #             

Was there a prior 

estimate of 

improvement 

        #*    # # #       #   #  #    #     #  

Was there use of 

both qualitative and 

quantitative data 

                       #              

Objective measures 

preferable to 

subjective 

    # #   #      #      #  #       #   ~     

Were outcomes 

defined prior to 

study 

          ~              #           #  

Use of outcomes of 

interest to 

practitioners 

         #                  #       #   

RESULTS 

Were magnitude of 

effects reported 

        ~  #           #   #    #   #     # 

Describe how the 

experiment actually 

executed 

#       #          ~   #                 

Describe how 

exceptions to study 

design were handled 

       # #  #     #         ~             

Are the results 

presented 

#       # #  ~  #     #   # #  # ~  #  #  # #     # 

Is baseline clinical or 

demographic data 

provided 

                      ~  #  #    # #      

Is there a participant 

flow description 

                        #             

Repot number 

needed to treat 

                       # #             
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Were relevant 

subgroup effects 

explored in 

appropriate detail 

                               #      

Subgroup analyses 

should be 

prespecified and 

justified 

                        #  ~           

Were raw data 

included 

       #   #  #                  #    ~   

Were descriptive 

statistics included 

       # #*  #       #   # #   #          # #  

Report summary 

statistics for 

diagnostic tests 

(sensitivity etc) 

                               #      

Was the data set 

validity assessed 

(e.g. outliers) 

       #   # # #   #     #                 

Is there a description 

of timing of 

outcomes 

                        #  #           

Avoid unjustified 

precision 

          #         #                  

Was there a 

description of 

adverse effects 

          #           #  # #  # #   # #    #  

Was there a life-

table or time-series 

analysis 

                          #           

Is there analysis of 

secondary variables 

(interactions, side 

effects) 

                     #   #  #           

WITHDRAWALS/INELIGIBLE 

Were all eligible 

subjects enrolled 

                            #         

Were there specific 

procedures to 

minimise loss 

          #                         #  
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Was there a 

description of not 

eligible or eligible 

who refused 

                     #   ~  #   #  #    #  

Was there a 

description of 

withdrawals 

                    # #   ~ # # # #  # #  #  #  

Was there a 

comparison of non-

participants to 

participants 

          #                #     #      

Adequate ratio of 

retained subjects 

                     # #   # #    #       

Were withdrawals or 

missing data 

analysed correctly 

        #*  #           #    # #     #    ~  

STATISTICAL METHODS 

If Baysian methods 

used, seek 

statistician 

          #                           

Was a statistician 

sought 

       #   #     #        #   #           

Was there a sample 

size assessment 

   #    # #*  #  # # # #     # #  # #  # #  # # ~   ~ #  

Give reasons for 

deviations from 

calculated sample 

size 

                        #             

Was error estimated 

by a measurement 

study included in 

results 

                       #              

Was level of 

measurement correct 

    # #  ~ #  ~  ~        #   #        #      

Higher level of 

measurement 

preferable 

    # #               #   #              

Was there a 

description or 

reference for 

statistical procedures 

       # #  #       #   #   # #  # # # # #     #  

Avoid unit of 

analysis error 

          #            ~ #        #      
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Was there ignorance 

of trend in results 

(no interim analyses 

or multiple looks) or 

prespecified 

correction 

                     #   #  #    #     #  

Appropriate 

retrospective 

analyses (post-hoc 

subgroups) 

                     #   #  #         #  

Was there use of 

hypothesis testing 

       # #*    #   #     # #                

Remove redundant 

data 

                    #                 

Avoid or adjust for 

fishing for results, 

too many tests 

          #  #        #    #      #     #  

Are the statistical 

methods appropriate 

#    # #  # # ~ #  #   #  #   #   # ~  # #  # # #    #  

Statistical analysis 

beyond means, 

percentages, 

standard deviations 

       ~     ~   ~      ~   ~  ~  # ~        

Use of regression or 

correlation as 

appropriate 

~               #           #           

Choose significance 

level before 

commencing 

experiment 

            #                         

Are confidence 

limits included 

       #   #    #       #   #  # #  # # #   # # # 

Were negative 

results assessed for 

type II error 

        #*    #        #   # #  # #  # #     #  

Was type I error 

considered 

        #    #        #   # #  #    #     #  

Was intention to 

treat analysis used 

                     #  # # # #     #    # # 

Were statistical test 

constraints obeyed 

#       # #  #     #     #   # #      #       

Report statistical 

package 

          #                  #         
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Apply both 

parametric and 

nonparametric tests 

and compare 

        #                             

DISCUSSION 

Did the investigators 

critically analyse 

their study 

       #   #          #   # #       #      

Was there 

consideration of 

deterministic vs. 

probabilistic 

causality 

        #*                             

Was there 

interpretation of 

results and do results 

justify conclusions 

#       # # # #  #     #   #   # #  # # #  # #    #  

Is the study 

externally valid 

~ #   # ~  # #* # #  # #     # # #   # #   #    #    #  

Was there 

consideration of 

causal direction 

                    #                 

Do they distinguish 

statistical 

significance vs. 

practical importance 

          #          #   # #   ~          

Was there an 

assessment of 

negative findings 

       #   #              #  # #  # ~       

Was there an 

assessment of 

unexpected findings 

       #                               

Avoid dwelling on 

unexpected findings 

                 #                    

Do the investigators 

describe further 

experiments 

       # #            #                 

PRESENTATION 

Is the abstract 

accurate 

       ~          #      # #      # #      

Are graphics, 

figures, tables used 

appropriately 

          #          #    #  #     #      
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Was there a 

reporting structure 

(e.g. abstract, 

IMRAD, references, 

appendix) 

       # #       #  #   #   # #  ~    # #      

Was IMRAD used            #      #      # #             

Is reporting 

redundant 

           #                          

Is there a balance 

between detail and 

summary results 

                               #      

Is the reporting 

complete 

       ~          ~       #   #          

Are there 

inaccuracies in the 

report 

                        #      #     ~  

Are computation 

errors/contradictions 

present 

                                   #  

Do comparisons use 

same number of 

subjects, if not then 

explained 

                                   #  

Is the manuscript 

concise 

                              # #      

Were references 

correct 

                        #      #       

Were keywords 

included 

           #                          

Is there proper 

reporting of 

denominators 

          #              #      # #      

Is the title 

informative/correct 

           #             #      # #    #  

Is there a lab 

package 

 #        #           #                 

State investigator 

involvement/roles 

                       #              

Were quantitative 

results 

understandable  

                               #      

Was text 

understandable 

                                   #  
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State sources of 

research support 

          #             # #  #         #  

OTHER 

Is there restricted 

generalisability 

across constructs 

                    #                 

Were consent, 

confidentiality, 

ethical issues 

addressed adequately 

       #     #      #  #   # #   #   #     #  

Avoid experiment 

affecting overall 

industrial project 

environment 

                #    #                 

Was the relationship 

between industrial 

project and study 

defined 

     ~           #       #              

Was the experiment 

overly constrained 

                   #                  

Was cost-

effectiveness 

discussed 

       #                # #           #  

Were formative and 

summative studies 

performed 

                       #              

Were lab and field 

studies performed 

                       #              

Did the study go 

beyond the 

developer's point of 

view 

                       #              

Was feedback given 

to participants 

            #      #  #                 

Avoid preconceived 

opinion about 

treatment superiority 

                              #       

Is the study visible to 

researchers or 

practitioners 

#                                     
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Appendix C 

 

2. How clear is the computing technology/method? What is it? What does it do? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

3. How clear is the benefit of the computing technology/method? How is it important? How is it 

useful? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

4. How clear are the objectives of the experiment? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

8. How clear is the independent variable(s)? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

9. How clear are the treatments (factor levels/alternatives)? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

11. How clear is the experimental site? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

12. How complete is the description of the schedule of the experiment? 

|0 no description|    |1 period length only e.g. 12 weeks|     |2 partial date|    |3 full date (d, m, y)| 

 

14. Is it clear what the experimental unit is? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

20. Is it clear how treatment groups were formed? How were subjects allocated to experimental 

groups e.g. random, nonrandom? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

24. Are the materials representative of those that would be used in a real world setting? If materials 

are unclear then NA. 

|0 not representative| |1| |2| |3 moderately representative| |4| |5| 

 |6 representative|  |-- NA| 

 

25. If applicable, are the tasks required of the experimental unit clear? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| |--NA| 

 

26. If applicable, are the tasks representative of those that would be performed in a real-world setting? 

If tasks are unclear then NA. 

|0 not representative| |1| |2| |3 moderately representative| |4| |5| 

 |6 representative|  |-- NA| 

 

27. Are the outcomes clear? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

28. Are the outcomes justified?  

|0 not justified| |1| |2| |3 moderately justified| |4| |5| |6 justified| 

 

29. Are the data collection procedures clear e.g. instrumentation, actual procedure? 

|0 unclear| |1| |2| |3 moderately clear| |4| |5| |6 clear| 

 

33. For what percentage of main/primary outcomes was expected differences defined? The expected 

difference is the pre-specified improvement in outcome from applying the technology/method. 

|0 0-25%| |1 26%-50%| |2 51%-75%| |3 76%-100%| 

 

35. Are the investigators also the developers of the technology/method? 

|0 yes| |1 no| |-- unknown or NA| 
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36. Did the developer of the technology/method financially support the investigators? 

|0 yes| |1 no| |-- unknown or NA| 

 

39. If applicable, do the investigators control for the checklist effect. This occurs when subjects’ 

performance improves due to improved data collection rather than computations over that data e.g. 

collecting well-structured inputs for a decision support system can improve outcomes rather than the 

system itself. This can be quantified by having a control group that collects data but receives no 

system output e.g. paper checklist. 

|0 not controlled or acknowledged| |1inadequate control| |2 controlled but effect not quantified|

 |3 effect quantified| |-- NA| 

 

40. If applicable, do the investigators control for the data completeness effect? This occurs when 

computer-based data collection e.g. a log, is more complete than manual methods used by controls. 

This can be avoided if data collection methods are the same for all groups. 

|0 not controlled or acknowledged| |1inadequate control| |2 controlled but effect not quantified|

 |3 effect quantified| |-- NA| 

 

41. If applicable, do the investigators control for feedback effect? Any form of performance feedback 

to subjects (computerised or otherwise) can increase task performance. This can confound the effect 

of a system on performance. To quantify the effect of a system over general feedback, a feedback-only 

control group can be used. 

|0 not controlled or acknowledged| |1inadequate control| |2 controlled but effect not quantified|

 |3 effect quantified| |-- NA| 

 

42. If applicable, do the investigators control for historical effects? When experimental groups are 

assessed at different times, other factors can arise between times to confound the results. This can be 

avoided by using a parallel-group design. 

|0 not controlled or acknowledged| |1inadequate control| |2 controlled but effect not quantified|

 |3 effect quantified| |-- NA| 

 

43. If experimental units are exposed to multiple treatments/variables, do the investigators control for 

the interaction of different treatments/variables? It may be difficult to distinguish results due to 

individual treatment/variables or combinations. 

|0 not controlled or acknowledged| |1inadequate control| |2 controlled but effect not quantified|

 |3 effect quantified| |-- NA| 

 

44. Are volunteer subjects used? Volunteers tend to be systematically different to non-volunteers e.g. 

more enthusiastic, informed etc. 

|0 yes| |1 no| |-- unknown| 

 

45. What is the Hawthorne effect? This occurs when subjects’ performance improves due to 

investigator scrutiny rather than the technology/method. This can be quantified by discreetly 

collecting data from a pre-study control group. 

|0 not globally affecting control and treatment groups|   |1 globally affecting control and treatment 

groups|   |2 effect quantified| 

 

52. If non-enrolment occurred, how adequate is the comparison of the non-enrolled to the enrolled? 

Were there systematic differences likely to affect outcomes? If it is unknown whether non-enrolment 

occurred then NA. If there was full enrolment then NA. 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| |-- NA| 

 

53. If there were losses/withdrawals, how adequate is the comparison of the lost/withdrawn to the 

enrolled? Were there systematic differences likely to affect outcomes? If it is unknown whether there 

were losses/withdrawals then NA. If there were no losses/withdrawals then NA. 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| |-- NA| 
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54. If there were losses/withdrawals, how adequately are lost data handled in the statistical analysis? If 

it is unknown whether there were losses/withdrawals then NA. If there were no losses/withdrawals 

then NA. 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| |--NA| 

 

56. Are all hypotheses tested using inferential statistics? 

|0 no| |1 partially| |2 yes| 

 

58. Has manipulation of raw data e.g. handling of outliers, missing data, biased the results? 

|0 strong bias| |1| |2| |3 moderately bias| |4| |5| |6 no bias| 

 

62. Are too many tests used (and not corrected for)? When applying too many tests, some may be 

significant due to chance. If corrected then answer 1. 

|0 yes| |1 no| 

 

65. Was the person performing statistical analysis blinded? 

|0 no or unknown| |1 yes| 

 

66. Which statistical software package was used? 

|0 not named| |1 name only| |2 name and version| 

 

71. How adequate is the discussion on the practical importance of the findings? 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| 

 

72. For negative results, how adequate was the assessment of why? E.g. due to type II error. 

|0 inadequate| |1| |2| |3 moderately adequate| |4| |5| |6 adequate| |-- NA| 

 

74. Does the title indicate what the experiment was for and whether it was a controlled experiment? 

E.g. controlled experiment of the effects of a decision support tool on productivity. 

|0 neither| |1 either| |2 both| 

   

75. How accurate is the abstract in reporting the main content? 

|0 inaccurate| |1| |2| |3 moderately accurate| |4| |5| |6 accurate| 

 

76. Is the IMRAD (Introduction, Method, Results, and Discussion) style used? 

|0 no| |1 partially| |2 yes| 

 

77. Are graphics, figures and/or tables used appropriately e.g. understandable, labelled, accurately 

show the data etc? 

|0 inappropriate| |1| |2| |3 moderately appropriate| |4| |5| |6 appropriate| 

 

78. Is the report complete? Is there any further important information that should have been reported? 

|0 incomplete| |1| |2| |3 moderately complete| |4| |5| |6 complete| 

 

79. Are details reported in inappropriate sections e.g. results in Introduction or Discussion rather than 

entirely in Results. 

|0 yes| |1 no| 

 

80. Is the report understandable? 

|0 not understandable| |1| |2| |3 moderately understandable| |4| |5| 

 |6 understandable| 
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Health informatics 

Bonevski (212) 0.634 0.635 0.608 0.610 1 2.39 6 9 70 1999 

Brownbridge (213) 0.425 0.423 0.303 0.301 0  4 5 13 1986 

Cannon (214) 0.534 0.532 0.388 0.385 0 3.979 2 8 26 2000 

Christakis (215) 0.678 0.679 0.633 0.635 1 5.012 6 4 21 2001 

Demakis (216) 0.642 0.643 0.631 0.633 1 23.175 9 6 26 2000 

Dexter (217) 0.595 0.596 0.549 0.551 1 14.78 7 9 55 1998 

Fitzmaurice (218) 0.408 0.410 0.331 0.335 1 1.938 5 3 17 1996 

Fitzmaurice (219) 0.552 0.550 0.517 0.514 0 7.92 6 6 25 2000 

Gonzalez (220) 0.581 0.580 0.502 0.499 0 1.518 4 7 22 1989 

Hickling (221) 0.574 0.572 0.436 0.434 0 4.406 3 5 13 1989 

Horn (222) 0.394 0.393 0.257 0.255 0 1.634 5 12 16 2002 

Kuperman (223) 0.553 0.551 0.348 0.346 0 3.979 9 11 33 1999 

Lewis (224) 0.572 0.570 0.523 0.521 0 1.558 4 7 28 1996 

Lowensteyn (225) 0.585 0.587 0.592 0.595 1 2.39 6 8 21 1998 

Mazzuca (226) 0.648 0.649 0.601 0.603 1 1.388 6 16 27 1990 

McAllister (227) 0.697 0.698 0.663 0.665 1 9.245 5 5 22 1986 

McDonald (228) 0.588 0.589 0.511 0.514 1 14.78 7 9 26 1984 

Poller (229) 0.616 0.617 0.566 0.568 1 25.8 7 5 11 1998 

Rosser (230) 0.577 0.576 0.501 0.498 0 6.862 3 7 30 1991 

Rossi (231) 0.734 0.735 0.691 0.693 1 2.964 2 7 18 1997 

Rotman (232) 0.722 0.723 0.642 0.644 1 3.979 10 9 20 1996 

Ryff-de Leche (233) 0.538 0.536 0.449 0.447 0  5 9 14 1992 

Schriger (234) 0.801 0.798 0.789 0.784 0 3.12 5 9 24 2001 

Selker (235) 0.770 0.771 0.805 0.806 1 14.78 19 11 21 1998 

Tamblyn (236) 0.759 0.760 0.759 0.760 1 6.862 8 8 50 2003 

Tang (237) 0.519 0.517 0.404 0.402 0 3.979 4 7 25 1999 

Thomas (238) 0.505 0.504 0.395 0.393 0 0.518 3 7 7 1983 

Tierney (239) 0.607 0.605 0.521 0.518 0 23.175 4 10 30 1993 

Vadher (240) 0.706 0.707 0.699 0.700 1 9.245 3 5 24 1997 

Vadher (241) 0.557 0.556 0.493 0.490 0 0.921 3 5 13 1997 

Verner (242) 0.549 0.548 0.410 0.408 0 2.029 8 5 28 1992 

Wexler (243) 0.391 0.390 0.303 0.302 0  4 3 3 1975 

Young (244) 0.386 0.384 0.272 0.271 0 0.551 1 5 5 1981 

Computer science 

Alibabar (187) 0.627 0.626 0.600 0.598 0  2 9 27 2006 

Alibabar (188) 0.653 0.651 0.605 0.601 0  3 10 46 2006 

Anda (189) 0.522 0.521 0.453 0.451 0  2 11 23 2003 

Arisholm (190) 0.499 0.500 0.531 0.534 1 1.03 3 47 19 2001 

Briand (180) 0.622 0.620 0.571 0.568 0 2.132 3 18 29 2001 
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Bunse (191) 0.630 0.628 0.591 0.587 0 1.03 1 41 52 2006 

Canfora (192) 0.624 0.622 0.629 0.626 0  5 8 15 2006 

Golden (193) 0.534 0.532 0.430 0.428 0  3 10 16 2005 

Hu (194) 0.411 0.410 0.356 0.354 0  4 8 36 2006 

Johnson (195) 0.582 0.580 0.498 0.495 0  2 10 14 1997 

Lopes (196) 0.441 0.440 0.316 0.314 0  3 10 11 1993 

Lott (197) 0.604 0.602 0.590 0.587 0 1.03 1 21 14 1997 

Muller (198) 0.571 0.570 0.562 0.559 0 0.592 1 14 27 2005 

Myers (199) 0.529 0.530 0.438 0.439 0 1.509 1 9 11 1978 

Myrtveit (179) 0.506 0.505 0.495 0.493 0 2.132 2 16 8 1999 

Ng (200) 0.519 0.518 0.490 0.487 0  4 11 29 2006 

Prechelt (201) 0.493 0.492 0.475 0.472 0 2.132 2 11 22 1998 

Prechelt (202) 0.498 0.496 0.504 0.501 0 2.132 5 11 11 2001 

Prechelt (203) 0.538 0.537 0.524 0.521 0 2.132 4 12 31 2002 

Prechelt (204) 0.540 0.539 0.527 0.524 0 0.592 4 12 16 2003 

Sears (205) 0.526 0.525 0.525 0.522 0  2 25 24 1994 

Sonnenwald (206) 0.713 0.714 0.687 0.689 1  3 27 40 2003 

Vokac (207) 0.555 0.554 0.606 0.603 0 1.03 5 47 19 2004 

Wojcicki (208) 0.534 0.536 0.466 0.469 1  2 10 53 2006 

Zettel (209) 0.601 0.599 0.600 0.596 0 1.03 1 28 47 2005 
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 1 6 1 0 5 6 5 3 5 5 0 2 1 6 6 3 6 6 4 3 4 4 5 

 2 6 4 0 1 0 3 3 3 1 0 2 0 1 0 0 3 5 1 0 0 0 6 

 3 6 6 5 3 6 3 6 1 3 4 5 0 5 6 1 5 6 6 3 6 5 6 

 4 6 2 3 4 6 5 6 2 3 5 5 0 4 3 3 6 4 5 4 3 3 3 

 5 6 5 6 6 6 6 6 6 6 6 5 6 6 6 6 6 6 6 5 5 6 5 

 6 6 4 4 5 4 4 6 3 3 6 5 6 6 4 4 6 4 6 4 4 2 4 

 7 6 2 2 5 4 6 6 5 3 0 1 2 1 3 0 6 6 4 2 6 6 6 

 8 6 6 6 6 4 6 6 0 1 0 6 1 6 6 5 6 6 1 3 6 6 6 

 9 6 6 6 6 4 1 0 0 0 0 0 0 6 6 1 6 0 4 3 3 0 6 

 10 6 0 3 4 6 5 6 0 0 6 6 5 3 0 0 6 1 6 2 4 6 0 

 11 6 5 6 5 4 6 6 5 6 6 4 5 6 4 5 6 5 6 4 5 5 5 

 12 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 

 13 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 

 14 6 6 3 4 4 3 3 3 4 1 6 3 4 4 2 4 6 6 3 5 6 5 

 15 6 3 6 4 0 6 0 2 6 0 2 0 4 4 0 5 2 4 6 5 5 4 

 16 6 5 6 4 5 5 3 4 6 3 5 1 4 4 3 5 2 3 5 5 5 5 

 17 3 3 3 0 0 0 0 0 0 0 2 0 1 1 0 0 3 2 0 0 0 0 

 18 6 6 5 4 4 6 6 6 4 0 3 0 5 6 0 4 5 5 5 6 6 6 

 19 3 2 2  1  2  2 2 0 0   0   3 3 2 1 2 

 20 3 0 0  2  2 0  2 2 0  0 0  0  0    

 21 2 1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 2 0 

 22 2 0 2 0 0  0 2 0 2 0 0 0 0 0 0 2 1 2 0 2 0 

 23 6 6 6 6 5 6 6 6 3 0 4 0 6 6 0 6 5 3 5 6 6 6 

 24 6 5 6 6 6 1 6 6 6 4 6 0 6 4 3 3 5 5 3 5 6 6 

 25 6 0 3 6 6 0 6 6 6 5 6 0 6 0 0 5 0 5 0 5 5 6 

 26 6 3 6 6 6 6 6 4 4 1 5 1 6 4 2 5 6 5 6 6 3 6 

 27 3 3 3 1 3 3 3 3 3 0 1 0 2 3 0 2 3 3 3 3 3 1 

 28 2 2 2 1 2 2 2 2 0 0 2 0 2 1 0 2 0 2 0 1 2 2 

 29 6 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 6 

 30 6 6 6 6 6 6 6 5 6 0 6 0 6 4 5 3 5 3 5 5 6 5 

 31 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 0 

 32 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 0 

 33 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 

 34 6 2 2 6 6 4 6 1 2 2 2 0 3 2 1 6 2 4 6 4 6 2 

 35 6 1 2 6 4 4 3 1 1 0 2 0 3 1 0 6 2 4 5 4 3 1 

 36 6 3 3 5 6 6 5 6 6 0 6 4 6 6 1 6 4 6 5 6 5 6 

 37 6 3 3 6 6 5 4 5 6 3 6 1 3 3 2 6 2 2 5 6 6 5 

 38 6 2 2 4 6 5 4 3 4 0 4 1 4 3 2 6 3 3 6 5 6 5 

Sum   110 119 135 140 125 137 103 107 66 120 43 129 107 55 146 115 127 116 134 134 134 

Applicable   179 179 173 179 171 179 176 176 179 179 179 173 176 179 173 176 176 179 176 176 176 

 


