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Autism spectrum disorders (ASD) are highly heritable complex neurodevelopmental
disorders with a 4:1 male: female ratio. Common genetic variation could explain 40–60%
of the variance in liability to autism. Because of their small effect, genome-wide
association studies (GWASs) have only identified a small number of individual
single-nucleotide polymorphisms (SNPs). To increase the power of GWASs in complex
disorders, methods like convergent functional genomics (CFG) have emerged to extract
true association signals from noise and to identify and prioritize genes from SNPs using
a scoring strategy combining statistics and functional genomics. We adapted and applied
this approach to analyze data from a GWAS performed on families with multiple children
affected with autism from Autism Speaks Autism Genetic Resource Exchange (AGRE).
We identified a set of 133 candidate markers that were localized in or close to genes with
functional relevance in ASD from a discovery population (545 multiplex families); a gender
specific genetic score (GS) based on these common variants explained 1% (P = 0.01 in
males) and 5% (P = 8.7 × 10−7 in females) of genetic variance in an independent sample
of multiplex families. Overall, our work demonstrates that prioritization of GWAS data
based on functional genomics identified common variants associated with autism and
provided additional support for a common polygenic background in autism.
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INTRODUCTION
Autism Spectrum Disorders (ASDs) are characterized by impair-
ments in social interaction and communication, restricted inter-
ests, and repetitive behaviors with a 4:1 male to female ratio
(Johnson and Myers, 2007). A recent systematic review estimated
a median ASD prevalence of 62/10,000 globally and 65.5/10,000 in
the US and Canada (Elsabbagh et al., 2012). Based on a standard-
ized assessment of description of behaviors from administrative
or health records, not on standardized diagnostic interview in the
general population, the Centers for Disease Control estimated in
2012 that up to 1 in 88 children have an ASD (Wingate et al.,
2012).

The recurrence risk in siblings of children with ASD is esti-
mated to be 18.7% (Ozonoff et al., 2011), which is 16 times
higher than in the general population. Earlier twin studies have
reported pairwise concordance rates for monozygotic (MZ) twins
in the range of 36–96% while in dizygotic (DZ) twins this rate
was lower than 30% resulting in heritability estimates higher than
90% (Folstein and Rutter, 1977; Steffenburg et al., 1989; Bailey
et al., 1995; Farley et al., 2009). The latest twin study to date

confirms this high heritability with 95.2% concordance rate in
MZ twins and 4.3% in DZ twins (Nordenbaek et al., 2013). To
contrast these results, one recent study provided a lower esti-
mate of heritability (37%) but with wide confidence intervals
(CI) (8–84%) (Hallmayer et al., 2011). As many as 15% of cases
may be attributable to rare genetic factors like de novo mutations,
rare copy number variations (CNVs) or chromosomal abnormal-
ities but several common variants including CNVs and single
nucleotide polymorphisms (SNPs) have also been strongly linked
to autism (Cook and Scherer, 2008; Freitag et al., 2010; Devlin and
Scherer, 2012). The contribution of rare and common variants to
autism and their possible interactions remain to be determined,
but available evidence suggests that common variants, despite
each not being causal, increase the susceptibility to the disorder
(Abrahams and Geschwind, 2008; Klei et al., 2012; Stein et al.,
2013). There is an increasing interest in making predictions of
complex traits phenotypes from genetic information (Manolio,
2013). With the availability of genome-wide data, many common
variants have been identified in complex diseases like cancers.
Based on these results, common polygenic models are tested for
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their discriminatory power and potential application in screen-
ing programs (Pharoah et al., 2008; So et al., 2011). To date,
much of the ASD risk information is complex and ethical con-
cerns have been recently discussed (Rossi et al., 2013). However,
prediction may positively impact patient outcome by contribut-
ing to an earlier diagnosis of autism, thereby providing earlier
access to services. Based on a small number of common variants,
polygenic models has recently been proposed to estimate autism
risk (Carayol et al., 2011). Assuming that thousands of common
variants may explain more than 40% of autism genetic variation,
one could expect a high predictive power of a polygenic model
synthesizing their information (Klei et al., 2012).

Several genome-wide association studies (GWASs) have been
performed to decipher the genetic etiology of autism that is
attributable to common variants (i.e., SNPs) with only a few
variants having shown significant associations and replicated in
an independent population or in endophenotypes (Wang et al.,
2009; Weiss et al., 2009; Anney et al., 2010; Connolly et al., 2012).
Considering their small effect, these SNPs represent only a small
proportion of the large number of common variants required to
reach the reported high heritability estimates (Klei et al., 2012).
By virtue of their joint effect, SNPs that do not reach the stringent
genome-wide significance level in GWASs may be biologically
important nonetheless (Meuwissen et al., 2001; Wray et al., 2007),
and their information, if combined in genetic risk models, could
be used to estimate the genetic susceptibility to complex diseases
(Purcell et al., 2009; Bush et al., 2010; Levinson et al., 2012; Stahl
et al., 2012). To overcome the lack of power inherent in GWASs
and to decipher the common polygenic background of complex
disease, novel methods (e.g., statistical noise reduction or gene
ontology enrichment) have emerged that make it possible to pri-
oritize results that did not reach statistical significance in autism
studies (Anney et al., 2011; Hussman et al., 2011). In autism, a
pathway-based approach was proposed to prioritize SNPs from
GWAS data and combine them in a genetic classifier (Skafidas
et al., 2012). Convergent functional genomic (CFG) analysis is
an alternative gene-level analysis method that is used to priori-
tize common variants that did not reach the significance level in
GWAS, based on the function of the genes in which they stand
and the potential impact on the disease, through the integration
of multiple lines of biological and genetic evidence (Le-Niculescu
et al., 2009; Patel et al., 2010; Ayalew et al., 2012). This strategy
was demonstrated to be successful in studies of bipolar disor-
der and schizophrenia in which SNPs, despite displaying weak
statistical signals, were selected on the basis of gene-based analy-
ses. Combined in a genetic risk prediction score, these prioritized
common variants were demonstrated to discriminate affected
subjects from healthy controls (Patel et al., 2010; Ayalew et al.,
2012), while polygenic models based on SNPs selected according
to simple P-value criteria from GWAS provide evidence about
the role of common variants in the disorders (up to 3% of
genetic variance explained) but have little value for risk prediction
(Purcell et al., 2009).

Using a discovery sample of multiplex families from the
Autism Genetic Resource Exchange (AGRE) (Lajonchere, 2010),
we aimed to identify SNPs that were overtransmitted from parents
to affected or unaffected children and which also discriminate

children with autism from their unaffected siblings (Sacco et al.,
2007). For this purpose, a GWAS that combined association infor-
mation from parent-offspring transmission and a comparison
of affected-unaffected siblings was performed. Because there is
significant sexual dimorphism of the genetic risk for autism,
ignoring sex effects lessens the statistical power and could lead
to the failure to identify a significant proportion of the genes
that contribute to risk (Ober et al., 2008; Lu and Cantor, 2012).
Through adding evidence of sex-specific risk alleles, genetic mod-
els, and variable penetrance of alleles in ASD, we performed
the GWAS with and without sex stratification (Stone et al.,
2004; Schellenberg et al., 2006; Weiss et al., 2006; Sato et al.,
2012). A scoring approach similar to CFG was then applied to
extract genome-wide association signals from “noise.” The scor-
ing algorithm of the prioritization method integrates statistical
characteristics from the GWAS with functional genomic evidence.

Using an independent validation population of multiplex fam-
ilies, SNPs that were detected within the discovery population
were selected and combined in a sex specific genetic score (GS).
The GS was tested for association in this validation sample and
the proportion of genetic variance explained evaluated.

MATERIALS AND METHODS
PARTICIPANTS AND GENOTYPING
Two independent sets of DNA samples from autism multiplex
families were used in this study (Figure 1). The discovery popu-
lation consisted of 545 multiplex families from AGRE repository
and included 964 affected siblings (773 males, 191 females; 4.1:1
male-to-female sex ratio) and 317 unaffected siblings (144 males,
173 females). The validation population consisted of 288 multi-
plex families from a collection at the University of Pennsylvania
(originally collected at the University of Washington) that was
enriched with a complementary set of 339 families from AGRE
(independent from the discovery sample). It was composed of
1,000 affected siblings (812 males, 188 females; 4.3:1 male-to-
female sex ratio) and 288 unaffected siblings (141 males, 147
females). The diagnosis of autism was made using the stan-
dard Autism Diagnostic Interview-Revised (ADI-R) algorithm
(Lord et al., 1994). Only individuals with a “strict” definition of
autism (93 and 86% of children with ASD in the discovery and
validation populations, respectively), including individuals who
exceeded the ADI-R cut-off for autism in all domains as defined
in the AGRE repository (http://www.agre.org/), were selected to
improve the power of the GWAS by homogenizing the phenotype
(Shao et al., 2002; McCarthy et al., 2008). Members of the AGRE
families were genotyped using the Infinium II HumanHap550
BeadChip at the Center for Applied Genomics at The Children’s
Hospital of Philadelphia (CHOP), as previously described (Wang
et al., 2009). SNPs that failed the Hardy Weinberg Equilibrium
Test (P < 10−3) or that had a call rate less than 90% or a minor
allele frequency less than 5% were removed. Mendelian transmis-
sion of alleles was checked for every SNP; genotypes that were
inconsistent with Mendelian inheritance in one or several fami-
lies were considered as unknown in all members of the families
showing the error. SNPs identified in the discovery population
were genotyped in the University of Pennsylvania collection, as
previously described (Carayol et al., 2011).
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FIGURE 1 | Flow chart displaying the different steps for SNPs prioritization with details of the scoring strategy.

ASSOCIATION STUDIES
In the discovery population of 545 multiplex families from AGRE,
family-based association tests were performed using the Family
Based Association Test (FBAT) software (Laird et al., 2000) under
additive, recessive, and dominant inheritance models to maxi-
mize power (Burton et al., 2007; Kang et al., 2010). FBAT tests
for an excess of an individual SNP allele from parents to affected
siblings. The interaction of sex with genotype may manifest in
a genotypic effect that is apparent only in affected females, only
in affected males, or in both sexes but with different magnitude
or direction of effect (Strohmaier et al., 2013). Furthermore, the
difference in ASD prevalence may result in male- and female- spe-
cific genes, or, more likely, from the differential penetrance of
some risk alleles on the basis of the sex of the affected individ-
ual, leading to a lower power to detect existing weak effects in a
particular gender stratum, compared with a higher effect in the
other stratum (Hirschhorn et al., 2002; Schellenberg et al., 2006;
Lu and Cantor, 2012). Consequently, affected male and female
siblings were analyzed together and then independently. Because
of the potential for protective alleles in autism pathogenesis,
the transmission of markers from parents to unaffected siblings
was also assessed (Sacco et al., 2007). SNPs associated with a
P-value < 10−3 were evaluated for their ability to discriminate
individuals with autism from their unaffected siblings through a

sibling case-control association analysis under the same gender
specificity. Odds ratios (ORs) were estimated using a generalized
estimating equation (GEE) model with an independence correla-
tion matrix to account for the non-independence of individuals
from the same family (Zeger and Liang, 1986; Hancock et al.,
2007). Gender was introduced as an adjustment covariate when
it was not used as a variable of stratification. SNPs associated at
the nominal level were selected for further analysis.

SNP-GENE PAIR PRIORITIZATION
Many association tests were performed based on different genetic
models and gender stratification to extract a maximum of the
association signals but at the cost of an inflated number of
false positive results. One way to minimize these false positive
results consists of correcting P-values for multiple testing. At the
genome-wide level, a 5 × 10−8 P-value threshold is generally used
to define an association between a SNP and the disease as sig-
nificant. Unfortunately, such criterion is too stringent in GWA
study of complex disease to identify low risk common variants
in samples of moderate size like in autism. To extract associa-
tion signals from GWAS and minimize false-positive results, we
developed a gene-based scoring method based on CFG, in which
points were allocated to SNPs as indicated in Table 1. “Related
gene” refers to the nearest gene to the SNP (± 5 kb upstream and
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downstream) or, when no gene matched this criterion, both the
closest downstream and upstream genes within 50 kb of the SNP.
For scoring, information was integrated from previous reports
of SNP-related genes that may be linked to autism and to other
neurodevelopmental disorders demonstrated to share a common
genetic background [schizophrenia, bipolar disorder, and men-
tal retardation (Ben-Shachar et al., 2009; Carroll and Owen,
2009; Berkel et al., 2010; Crespi et al., 2010)] as well as from
genomic characteristics of the scored SNP (SNP location and
eQTL property). Human data from autism brain gene expres-
sion and lymphoblastoid cell line expression studies were also
considered in order to determine the specific role or expression
of the SNP-associated gene in the central nervous system (CNS)
(Purcell et al., 2001; Garbett et al., 2008). Involvement of the
SNP-related gene in a pathway implicated in ASD was jointly
integrated with data about impairment of the CNS or function
in knockout models such as mouse. The maximum score for a
gene was 9 (Table 1). SNPs were selected for further analyses if
they displayed a score greater than or equal to 4. This cut-off
was chosen based on observation of all SNPs scored and the dis-
tribution of points in the different categories. Only SNPs with

a score above this cut-off displayed points allocated to statisti-
cal (“Statistical Parameters” in Table 1) and functional genomic
evidences.

DEFINITION OF THE GENETIC MODELS AND DEVELOPMENT OF GSs
SNPs fulfilling statistical and functional genomic criteria in the
discovery analysis were used to construct a GS. Sex-specific GSs
of individuals were built in the discovery sample as the sum of
deleterious alleles under their best fitted genetic model (Carayol
et al., 2011). The “best-fitted” model was defined as the one that
maximized the proportion of genetic variance in the discovery
population when all SNPs were considered in a polygenic model.
When only SNPs with consistent direction of allelic association
were analyzed, genetic models without consistent direction of
effect were excluded from the “best-fitted” model evaluation. The
proportion of genetic variance explained by the GSs was esti-
mated as in Wray et al. (2010) according to the most recent
prevalence of autism in the United States, estimated to be 1 in
88 children (1 in 54 males and 1 in 252 females) and recur-
rence risk in siblings estimated to be 25.9 and 9.6% in male and
female siblings, respectively in a large, international, multicenter,

Table 1 | Prioritization and scoring algorithm rules (details are given in Supplementary Table 2) for SNPs selected with P < 0.001 in the

family-based GWA and P < 0.05 in the siblings case-control studies performed in the discovery sample.

General principle Points Example

Statistical parameters (max 2 points)

P-value of the association of the SNP with autism in GWAS is <10−8 vs. between
10−8 and 10−5.

1 vs. 0.5 None* vs. rs7974275 (GRIN2B)

Odds ratio associated with the risk-associated allele of the SNP is ≥1.5 in the sibling
case-control study.

1 rs4251859 (PLAUR)

Genomic characteristics (max 2 points)

The SNP is located within the gene (including 5 kb upstream and downstream
regions).

1 rs2770298 (HTR2A)

The SNP acts as an eQTL of the gene as determined by two eQTL databases,
“Genevar” (Yang et al., 2010) and “eQTL resource @ Pritchard’s lab”
(eqtl.uchicago.edu) (Veyrieras et al., 2008; Degner et al., 2009; Pickrell et al., 2010).

1 rs2297389 (GABRR1)

Previous reporting (max 1 point)

The gene has been associated through genome-wide or gene candidate association
studies, mutations, or structural abnormalities with autism vs. with a related
neurodevelopmental genetic disorder (e.g., schizophrenia, bipolar, mental
retardation).

1 vs. 0.5 rs3928471 (SLC9A9) vsrs72723811 (NRG1)

Physiological properties (max 4 points)

The expression of the gene is significantly different in patients with autism compared
with controls in brain (Purcell et al., 2001; Garbett et al., 2008) or in lymphoblastoid
cell lines (Gregg et al., 2008; Hu et al., 2011).

1 vs. 0.5 rs3928471 (SLC9A9) vs. rs636624 (PTPRG)

The gene has a specific role or restricted expression in the CNS. 1 rs12514116 (KCNIP1)

A mouse model exhibits either impairment of CNS development or function with or
without an autism-related behavior as reported in the mouse gene informatics
database from the JAX laboratory (Blake et al., 2011) and literature.

1 rs314253 (DLG4)

The gene is a part of a pathway in which other genes have been strongly associated
with autism (development of the CNS, neurogenesis, neuronal migration, neuron
projection, synaptogenesis, synaptic transmission) or is a part of a biochemical
pathway from in which other genes have been strongly associated with autism (e.g.,
TSC/mTOR, MET receptor tyrosine kinase pathways).

1 rs9940922 (CDH13)
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prospective study in siblings of children with ASD (Ozonoff et al.,
2011; Wingate et al., 2012).

The GS model was evaluated in the validation sample testing
its association to the disorder and estimating the genetic relative
risk (GRR) using a GEE in males and females separately. Inflation
effect on GRRs because of SNPs selection according to consistent
direction of allele effect in the validation sample was evaluated
based on 1,000 bootstraps resampling (Efron and Tibshirani,
1986). Mean of GRR values estimated in each bootstrap sample
was then compared to the GRR observed value. Empirical 95%
CIs were determined by bootstrapping 1000-times the validation
sample using each family as a resampling unit.

RESULTS
A flow chart illustrating the identification and prioritization of
SNPs, as well as the validation processes followed in this study,
is shown in Figure 1. A set of 900 SNPs (Table 1 in supple-
mentary materials) was identified from the family-based GWAS
performed in the discovery population with risk allele associ-
ated at the nominal level in the sibling case-control study. This
set of SNPs was then prioritized through the selected scoring
strategy. One SNP, rs11123610 in the allantoicase gene, was sta-
tistically associated at the genome-wide level (P < 1.3 × 10−8

assuming a 5 × 10−8 genome-wide significativity threshold and
a Bonferroni correction for four different GWA studies) under
a recessive model with P = 8.8 × 10−9. Allantoicase participates
in the uric acid degradation pathway, but its activity is absent
in mammals (Vigetti et al., 2002). Based on statistical evidence,
this SNP should be considered for replication; however, the cor-
responding gene did not provide any functional evidence of
relation to autism and was thus discarded by our scoring cri-
teria as a likely false-positive association. Among genes related
to SNPs identified through the GWAS, 330 were associated with
some functional evidence in human and/or animal models (at
least 1 point from “Physiological properties,” Table 1), suggesting
potential involvement in autism. After prioritization of SNP-
gene pair scores, a subset of 133 SNPs related to 119 genes had
a score greater than 4 (Supplementary Table 2). The highest
score was 7 for a unique SNP-gene pair, which was observed
for rs4251859 related to PLAUR, the gene encoding the plas-
minogen activator, urokinase receptor. This gene has previously
been described as an autism-risk gene in a large association
study and has also been linked to autism based on strong func-
tional genomic evidence from animal models and expression
studies in brains from patients with autism (Powell et al., 2003;
Eagleson et al., 2005; Campbell et al., 2008; Garbett et al.,
2008).

One SNP was discarded from subsequent analyses because
of genotyping failure in the validation population. From the
subset of 132 SNPs selected by the scoring strategy (Table 3
in Supplementary materials), 123 were associated to the dis-
order in males and 122 in females in the Discovery sam-
ple before selection based on consistency of direction of
allele effect. They respectively explained 1 and 5% of the
genetic variance in the validation sample. GSs were significantly
associated with autism in males (P = 0.01) and in females (P =
8.7 × 10−7).

DISCUSSION
The scoring strategy utilized in the present study prioritized a
set of 132 independent common variants with low evidence of
association in a GWAS that are related to 119 genes with potential
links to autism. Combined in a sex-specific GS, these common
variants explained 1% of the genetic variance in males and 5% in
females, producing additional support for a common polygenic
background in autism and the role of common variants as a part
of risk for developing autism.

The present gene-based scoring approach was inspired by
CFG, which has been previously shown to identify genes and
pathways implicated in bipolar disorder (Le-Niculescu et al.,
2009)—some of which have been confirmed in independent stud-
ies (McGrath et al., 2009)—and schizophrenia (Ayalew et al.,
2012). To determine the score of a SNP-gene pair, points were
allocated to the statistical characteristics of the SNP that reflected
its discriminative ability. Points were also allocated to the related
gene according to its association with autism and/or its role in the
CNS. For example, several SNPs received points since they were
located within the locus of known autism-susceptibility genes
such as PLAUR, HTR2A, RORA, CADM1, SLC9A9, GRIN2A,
GABRA4, GABRB1, RBFOX1, and PCDH10. Although the vast
majority of scored genes had no previous evidence (significant
association, mutations, differential expression) of a link with
autism, some had been previously linked to genetically-related
neuropsychiatric disorders such as schizophrenia and bipolar dis-
order and may be potentially implicated in autism, as has been
demonstrated for genes such as HTR2A, GRIN2A, and RBFOX1
(Carroll and Owen, 2009). Additionally, in light of the abnor-
mal brain development and functioning observed in autism, the
vast majority of identified genes were prioritized since they have
a predominant role in the CNS and its functioning (Courchesne
et al., 2007; Polsek et al., 2011). Genes with a specific role in
the major processes that are altered in autism (development of
the CNS, neurogenesis/neuronal migration/neuron projection,
and synaptogenesis/synaptic transmission) were allocated more
points to reflect their greater potential for a role in autism eti-
ology (Bauman and Kemper, 2005; Geschwind and Levitt, 2007;
Bourgeron, 2009; Wegiel et al., 2010; Melom and Littleton, 2011).
The precise function of each gene was determined through a care-
ful review of the literature including the analysis of knockout
mouse models, a crucial step in the determination of the gene’s
function during brain development.

An allele score approach based on thousands of SNPs selected
using P-value criteria in a GWA study explained up to 0.78% of
autism variance (Anney et al., 2012). The scoring strategy alone or
combine with a selection of less than a hundred of SNPs according
to consistency of their allelic effect also extract a non-negligible
proportion of genetic variance. Although a different cohort from
the Autism Genome Project was used in their study, our results
provide some evidence that the scoring strategy allow to extract
true association from noise and reduce the number of selected
SNPs from thousands to hundreds of informative SNP.

A set of SNPs identified during a discovery association study
may include false-positive results that will outweigh the effects
from true variants, decrease the predictive accuracy, and sub-
sequently decrease the explained genetic variance (Wray et al.,
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2010). Such a SNP set could be enriched for true positives com-
pared with false positives by increasing discovery sample size
(Evans et al., 2009). However, because of the small effect size
of common variants, a sufficiently large sample size may not be
practical for autism at this time because of the limited number
of multiplex families with available genotypic information. The
scoring strategy is a powerful alternative to reduce the “noise”
variants by excluding SNPs in genes without functional evidence.
Moreover, the proportion of genetic variance explained by GWAS
data increased when the P-value association threshold for autism
was increased from 10−5 to 0.5, similar to observations in related
neurodevelopmental disorders, which suggests that thresholds
used in the present GWAS could be relaxed to enrich the GS
models with true variants (Purcell et al., 2009; Anney et al., 2010).

A pathway-based approach was proposed in autism to prior-
itize SNPs from GWAS and design a polygenic score that could
predict autism diagnosis with good accuracy (Skafidas et al.,
2012). This method only used pathway data while our scoring
strategy combined their information with other biological and
genetic evidences. A set of SNPs was identified in a first case-
control sample and used to predict autism diagnosis with good
accuracy in a second independent sample. Despite an interest-
ing statistical approach to generate a common polygenic model in
autism, results were biased because population structure of cases
and controls was not considered (Belgard et al., 2013; Robinson
et al., 2013).

Population structure may confound genetic classifiers as
demonstrated in autism (Belgard et al., 2013; Robinson et al.,
2013). However, use of unaffected siblings in association studies
(instead of independent controls) protects against false positives
resulting from population stratification (Dempfle et al., 2008). So,
to maintain statistical power, affected, and unaffected individuals
from the different families were analyzed as a whole without con-
sidering ethnicity, but limiting false positive results coming from
population stratification using unaffected siblings as controls.

Although not in the scope of our study, it would have been of
interest to better characterize the true underlying genetic model
of the common variants. Reproducibility of the genetic models
for each common variant was compared in the 2 populations
using a bootstrap reproducibility index (RI) (Ma, 2006; Carayol
et al., 2011). A subset of 57 SNPs with highly reproducible genetic
models (RI > 80%) in both populations explained a large propor-
tion of the genetic variance in the validation population (data not
shown).

We acknowledge that different ways of scoring SNP-gene pairs
could have given slightly different results. Nevertheless, the simple
scoring system that was developed in this study provides a good
prioritization of SNPs with regard to our focus of mining real
statistical signals from “noise” in the GWAS. The major limitation
of the proposed scoring approach is its dependence on available
information about genes; however, its power will increase with the
evolution of knowledge.

In conclusion, adding function evidence of genes to GWA
results is a powerful alternative to allele score approach in order
to identify common variants associated to autism. In a sample of
moderate size, the scoring strategy like the CFG method allow to
extract and prioritize biologically relevant signals when classical

GWA studies based on p-value selection only identified a limited
number of SNPs. Common variants displaying liberal association
p-value (p-value > 0.05) explain a proportion of genetic variance
in autism (Anney et al., 2012) like in schizophrenia and bipolar
disorder (Purcell et al., 2009; Levinson et al., 2012). Apply the
scoring strategy to SNPs selected with liberal p-value from GWAS
could identify additional genes and enhance our understanding
of the common genetic basis of autism.
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