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Abstract The objective of this study was to

evaluate potential human and ecological risks

associated with metals in fish and crayfish from

mining in the Tri-States Mining District (TSMD).

Crayfish (Orconectes spp.) and fish of six frequently

consumed species (common carp, Cyprinus carpio;

channel catfish, Ictalurus punctatus; flathead cat-

fish, Pylodictis olivaris; largemouth bass, Micr-

opterus salmoides; spotted bass, M. punctulatus;

and white crappie, Pomoxis annularis) were

collected in 2001–2002 from the Oklahoma waters

of the Spring River (SR) and Neosho River (NR),

which drain the TSMD. Samples from a mining-

contaminated site in eastern Missouri and from

reference sites were also analyzed. Individual fish

were prepared for human consumption in the

manner used locally by Native Americans (headed,

eviscerated, and scaled) and analyzed for lead,

cadmium, and zinc. Whole crayfish were analyzed

as composite samples of 5–60 animals. Metals

concentrations were typically higher in samples

from sites most heavily affected by mining and

lowest in reference samples. Within the TSMD,

most metals concentrations were higher at sites on

the SR than on the NR and were typically highest in

common carp and crayfish than in other taxa.

Higher concentrations and greater risk were asso-

ciated with fish and crayfish from heavily contam-

inated SR tributaries than the SR or NR

mainstems. Based on the results of this and previ-

ous studies, the human consumption of carp and

crayfish could be restricted based on current

criteria for lead, cadmium, and zinc, and the con-

sumption of channel catfish could be restricted due

to lead. Metals concentrations were uniformly low

in Micropterus spp. and crappie and would not

warrant restriction, however. Some risk to carniv-

orous avian wildlife from lead and zinc in TSMD

fish and invertebrates was also indicated, as was

risk to the fish themselves. Overall, the wildlife

assessment is consistent with previously reported
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biological effects attributed to metals from the

TSMD. The results demonstrate the potential

for adverse effects in fish, wildlife, and humans

and indicate that further investigation of human

health and ecological risks, to include addi-

tional exposure pathways and endpoints, is

warranted.

Keywords Metals Æ Mining Æ Fish Æ Crayfish Æ
Ecological risk Æ Native Americans

Introduction

The Tri-States Mining District (TSMD) occupies

some 2500 mi2 (6475 km2) of Jasper, Newton, and

Lawrence Counties, Missouri; Cherokee County,

Kansas; and Ottawa County, Oklahoma. The

TSMD was mined for zinc (Zn), lead (Pb), and

other metals from the mid-1800s through the 1960s,

with peak production occurring during World War

II (Pope, 2005). Sites contaminated to varying de-

grees by wastes from historical mining, ore pro-

cessing, and smelting are widely distributed in the

area. Metals from these sites, which can be toxic to

fish, wildlife, and humans, have contaminated soils,

surface waters, groundwater, stream sediments,

and biota in the watersheds of the Spring River

(SR) and Neosho River (NR), which drain most of

the TSMD (Allen & Wilson, 1992; Allert, Wild-

haber, Schmitt, Chapman, & Callahan, 1997;

Barks, 1977; Brumbaugh, Schmitt, & May, 2005;

Czarneski, 1985; Davis & Schumacher, 1992; May,

Wiedemeyer, Brumbaugh, & Schmitt, 1997; Mc-

Cormack and Burks, 1987; Neuberger, Mulhall,

Pomatto, Sheverbush, & Hassenein, 1990; Pita &

Hyne, 1975; Pope, 2005; Proctor, Kisvarsanyi,

Garrison, & Williams, 1974; Schmitt et al., 1993,

Schmitt, Wildhaber, Allert, & Poulton, 1997;

Smith, 1988; Spruill, 1987; Wildhaber, Schmitt, &

Allert, 1997, 2000; Yoo & Janz, 2003). Effects on

human health from exposure to mining-derived

metals have been documented (Neuberger et al.,

1990), as have effects on aquatic organisms and

wildlife (Beyer et al., 2004; Schmitt et al., 1993,

Schmitt, Whyte, Brumbaugh, & Tillitt, 2005;

Wildhaber et al., 2000; Yoo & Janz, 2003). Reme-

diation of contaminated sites in the TSMD has

been initiated by the US Environmental Protection

Agency (USEPA) under ‘‘Superfund’’ (i.e. the

Comprehensive Environmental Response, Com-

pensation, and Liability Act and its Amendments).

Northeastern Oklahoma comprises the lands of

ten Native American tribes, whose lands adjoin

both the SR and NR. Locally procured fish and

crayfish are often important in the Native Amer-

ican diet (Bridgen, 2005; Harris & Harper, 1997).

Traditional cooking involves boiling or steaming

fish with intact skin and bones, and the cooking

liquids are often consumed. Although metals

contamination in TSMD rivers and streams has

been well documented (e.g. Pope, 2005), concen-

trations in fish as consumed by local inhabitants

were unknown in 2001 because human health risk

is typically evaluated on the basis of fillet sam-

ples (USEPA, 1990, 2000a). Metals in aquatic

organisms are not homogeneously distributed

(Crawford & Luoma, 1993; Goldstein &

DeWeese, 1999; Schmitt & Finger, 1987; Settle &

Patterson, 1980). Consequently, the methods used

to prepare fish or other aquatic organisms prior to

cooking can affect final concentrations. In addi-

tion to fish, Native Americans may also consume

locally procured crayfish, frogs, turtles, waterfowl,

and indigenous vegetation, and may be exposed to

contaminants through other pathways such as

contact with water and sediments. Native Ameri-

cans have therefore been recognized as a sub-

population at comparatively greater risk from

contaminants due to the proportionally large

amounts of fish and other aquatic organisms in the

diet, methods used to prepare the organisms, and

proximity to contaminated sites (Bridgen, 2005;

Harris and Harper, 1997; USEPA, 2000a, 2000b;

Van Oostdam et al., 1999).

Our study had two primary objectives: (1) to

obtain preliminary information on metals con-

centrations in aquatic organisms (crayfish and

several species of fish) important in the diets of

Native Americans and wildlife; and (2) to conduct

a screening-level evaluation of the potential

hazards associated with Pb, Zn, and cadmium

(Cd) in these organisms to fish, wildlife and

humans, to determine whether more comprehen-

sive human health and ecological risk assessments

were warranted. We collected samples of crayfish

and several species of fish from the Oklahoma

waters of the TMSD; prepared the organisms as
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they would be by local inhabitants and measured

the metals concentrations in the organisms; and

evaluated the risks represented by the metals to

fish, wildlife, and humans based on current stan-

dards and criteria and the results of other studies

reported in the scientific literature. Data from

previous studies in the TSMD and elsewhere were

also incorporated into the assessment to place the

current findings in perspective.

Materials and methods

Collection sites and species

Metals in the SR and NR and its tributaries

originate primarily from mine openings, tailings,

and chat located in Missouri, Kansas, and Okla-

homa (e.g. Pope, 2005; Spruill, 1987). Within

Oklahoma, sources are concentrated primarily in

the watershed of Tar Creek (TC), which joins the

NR in Miami, near the upper end of Grand Lake

of the Cherokees (Grand Lake; Fig. 1). Metals

also originate near the headwaters of Elm Creek,

a tributary of the NR; and from several SR trib-

utaries in Oklahoma (Fig. 1). Fish collection sites

(n = 6) were selected to represent the expected

range of exposure conditions present in the

Oklahoma waters of the SR and NR and at the

upper end of Grand Lake (Fig. 1). Three sites

were located on the SR upstream of Grand Lake,

and one each was located at the confluence of the

SR and NR (within Grand Lake) and in the lower

reaches of TC. One site on the NR (Site 3) was

just upstream of known TSMD pollution sources

(Fig. 1). For fish, the collection target at each site

was four specimens of each of three primary

species: common carp (Cyprinus carpio, hence-

forth carp), largemouth bass (Micropterus sal-

moides), and channel catfish (Ictalurus punctatus).

Alternate species were substituted as necessary

when these species could not be obtained; spotted

bass (Micropterus punctulatus), white crappie

(Pomoxis annularis, henceforth crappie), or both

were the alternates for largemouth bass, and

flathead catfish (Pylodictis olivaris) was the

alternate for channel catfish. Fish from reference

sites and from a contaminated site outside the

TSMD were also analyzed for comparison.

Reference fish included pond-raised largemouth

bass from our laboratory [U.S. Geological Survey,

Columbia Environmental Research Center,

Columbia, Missouri (CERC); Site 7] and channel

catfish from a commercial fish farm (Osage

Fig. 1 Map of
northeastern Oklahoma
showing the locations of
fish (1–6; circles) and
crayfish (10–21; squares)
collection sites on the
Spring and Neosho
Rivers. Also shown is the
general boundary of area
most affected by mining
and the reference (7, 8)
and contaminated (9)
sites in Missouri.
Additional mining-
affected areas are drained
by the Spring River in
Kansas and Missouri,
upstream (north and
northeast) of the area
shown in detail
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Catfisheries, Osage Beach, Missouri; Site 8;

Fig. 1; Table 1). The contaminated site outside

the TSMD was on the Big River (BR; Site 9) in

St. Francois County, Missouri (Fig. 1; Table 1).

The BR is heavily contaminated by mine tailings

from the Old Lead Belt (Brumbaugh et al., 2005;

Dwyer, Schmitt, Finger, & Mehrle, 1988; Gale,

Adams, Wixson, Loftin, & Huang, 2004; Schmitt,

Dwyer, & Finger, 1984, 1993, 2005; Schmitt &

Finger, 1987) and the Missouri Department of

Health and Senior Services (MDHSS) has issued

a fish consumption advisory due to Pb (MDHSS,

2005). Crayfish (mixture of Orconectes virilus and

O. neglectus neglectus), which are eaten by Native

Americans and are important in the diets of many

species of fish and riparian wildlife, were collected

from areas near fish collection Sites 1–4 and 6.

Crayfish were not obtained at Site 5, which is in

the upper part of Grand Lake (Fig. 1; Table 1), or

from the BR; however, historical crayfish data for

the BR were available (Schmitt & Finger, 1982).

Field methods

Fish were collected by electrofishing. They were

processed on a measuring board covered with a

clear polyethylene bag. Each fish was weighed,

measured, scaled (not catfish), headed, eviscer-

ated, washed thoroughly in tap water, wrapped in

aluminum foil (dull side in), and frozen immedi-

ately in dry ice. Between fish samples, all contact

surfaces were thoroughly cleaned with tap water,

dissecting instruments were washed with labora-

tory detergent and rinsed with tap water and

acetone, and the polyethylene bag on which the

fish had been processed was replaced. Crayfish

were collected by hand or with baited traps,

placed in acid-cleaned 2-oz glass jars, and frozen

(–20 �C). All samples were stored frozen (–20 �C)

until prepared for analysis.

Laboratory methods

Each fish was briefly thawed, cut into sections

with a stainless steel knife, and ground twice in a

stainless steel meat grinder. A 100 g subsample

was freeze-dried, then further homogenized in a

blender; 0.25 g was digested (6 mL of concen-

trated HNO3 and 1 mL of 30% high-purity H2O2

in a sealed, Teflon�-lined vessel) in a microwave

oven at 200 �C. The digestate was transferred to a

low-density polyethylene bottle and diluted to

100 mL with ultra-pure H2O for analysis. Frozen

crayfish in glass jars were analyzed as composite

samples of 12–60 animals representing each site.

They were freeze-dried to a constant weight, then

ground in their jars to a coarse powder with an

acid-cleaned glass rod; 0.25 g was digested and

diluted as described for fish samples. Percent

moisture in fish and crayfish was determined from

weight loss during lyophilization. All processing

equipment was disassembled and cleaned (tap

water and detergent; dilute acid; de-ionized

water; acetone) between samples.

Digestates were analyzed by inductively cou-

pled plasma mass spectrometry. Quality control

(QC) measures incorporated at the digestion

stage for each group of samples included tissue

blanks, certified reference materials, replicates,

and fortified samples (spikes). Instrumental QC

included periodic analyses of calibration check

solutions, laboratory control solutions, duplicates,

analysis spikes, and interference checks (dilution

percent difference and a synthetic interference

solution). Limits of detection (LOD) were

0.5–1.0 lg g–1 dry weight (dw) for Zn, 0.008–

0.030 lg g–1 for Cd, and 0.01–0.24 lg g–1 for Pb.

Elemental concentrations and detection limits

were converted to wet weight (ww) values for

reporting and statistical analysis using the indi-

vidually determined moisture content of each

sample. Additional information on the analytical

procedures and QC is reported by Brumbaugh

et al. (2005).

Dataset composition and statistical analyses

Carp (total n = 25) were collected at all

Oklahoma sites (Sites 1–6) and from the BR (Site

9); no reference fish were analyzed. Channel

catfish (n = 20) were also obtained from all six

Oklahoma sites and the commercial source (Site

8, n = 12). Flathead catfish (n = 4) were collected

only at Sites 1 and 2. Largemouth bass were

obtained from Sites 1, 5, 6, and 9 (n = 11) and

from our laboratory (Site 7, n = 12). Spotted bass

(n = 9) were collected at Sites 2, 4, 5, and 9. No

reference spotted bass were analyzed, but both
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Micropterus species (i.e., bass) were obtained at

Sites 5 and 9. Crappie (n = 12) were collected at

Sites 3–6; no reference crappie were available nor

were any obtained at Site 9. Information on the

size and age of the fish is presented elsewhere

(Brumbaugh et al., 2005; Schmitt et al., 2005).

A total of 21 composite crayfish samples, each

containing 5–60 animals, were collected from 12

locations (Sites 10–21; Fig. 1; Table 1). The

samples were assigned to the nearest fish station

for statistical analysis and reporting. Crayfish

from the NR near Site 3 were obtained both

upstream and downstream of the mouth of Elm

Creek, a source of contaminants (Fig. 1; Table 1).

These were considered separate stations (3u and

3d, respectively) for statistical analysis and

reporting.

Arithmetic species and species-station means

and standard errors were computed and tabu-

lated, and concentrations were log-transformed

(base-10) prior to statistical analysis. A value of

one-half the LOD was substituted for censored

values (i.e. those < LOD) as necessary in all

computations. The dw carcass metals concentra-

tions of the fish analyzed in this study differed

significantly among species (Brumbaugh et al.,

2005). Separate one-way ANOVAs in which site

was considered a fixed effect were therefore

conducted for each species. Results for flathead

catfish were not tested statistically because of the

small sample size. Differences among individual

sites were tested with Fisher’s protected LSD, and

differences among groups of sites were evaluated

as planned non-orthogonal contrasts using single

Table 1 Fish and crayfish collection sitesa in Missouri (MO) and Oklahoma (OK), and sampling dates

Site type
and no.a

Water body
and location

County and (State)b Date Latitude, longitude

Fish
1 Spring R. at state line Ottawa (OK) 10/15/01 36�59¢50.5¢¢ N, 94�42¢37.4¢¢Wc

2 Spring R. at Blue Hole Ottawa (OK) 10/15/01 36�57¢41.0¢¢ N, 94�43¢20.6¢¢ Wc

3 Neosho R. above Elm Creek Ottawa (OK) 10/16/01 36�53¢25.0¢¢ N, 94�55¢38.5¢¢ Wc

4 Spring R. at Promenade Bridge Ottawa (OK) 10/16/01 36�56¢01.1¢¢ N, 94�44¢40.9¢¢ Wc

5 Neosho R. at Twin Bridges
(Grand Lake)

Ottawa (OK) 10/16/01 36�47¢56.0¢¢ N, 94�45¢18.5¢¢ Wc

6 Tar Creek at Neosho R. Ottawa (OK) 10/17/01 36�51¢25.7¢¢ N, 94�51¢39.2¢¢ Wc

7 USGS-CERCe (reference) Boone (MO) 10/22/01 38�54¢41.5¢¢ N, 92�16¢58.0¢¢ Wc

8 Osage Catfisheries (reference) Camden (MO) 10/23/01 38�07¢38.9¢¢ N, 92�40¢54.5¢¢ Wc

9 Big R. at St. Francois State Park St. Francois (MO) 12/07/01 37�57¢23.1¢¢ N, 90�32¢29.5¢¢ Wc

Crayfish
10 (1) Spring R. at KS/OK line Ottawa (OK) 06/25/02 36�59¢58.7¢¢ N, 94�42¢44.1¢¢ Wc

11 (2) Spring R. above Blue Hole Ottawa (OK) 06/26/02 36�57¢46.1¢¢ N, 94�43¢32.5¢¢ Wc

12 (4) Spring R. at I-44 Bridge Ottawa (OK) 06/27/02 36�55¢29.7¢¢ N, 94�44¢27.9¢¢ Wc

13 (4) Spring R. below I-44 Bridge Ottawa (OK) 06/27/02 36�54¢08.1¢¢ N, 94�44¢12.3¢¢ Wc

14 (4) Spring R. below I-44 Bridge Ottawa (OK) 06/27/02 36�54¢49.7¢¢ N, 94�43¢57.5¢¢ Wc

15 (2) Spring R. at Blue Hole Ottawa (OK) 06/24-25/02 36�57¢38.2¢¢ N, 94�43¢14.2¢¢ Wc

16 (4) Spring R. at Devil’s Promenade Bridge Ottawa (OK) 06/25/02 36�56¢02.5¢¢ N, 94�44¢44.2¢¢ Wd

17 (3u) Neosho R. above Elm Creek Ottawa (OK) 07/15/02 36�53¢30.1¢¢ N, 94�56¢11.7¢¢ Wc

18 (3d) Neosho R. below Elm Creek Ottawa (OK) 07/15-16/02 36�52¢56.4¢¢ N, 94�55¢33.5¢¢ Wc

19 (3d) Neosho R. above Coal Creek Ottawa (OK) 07/16/02 36�52¢10.6¢¢ N, 94�55¢25.3¢¢ Wc

20 (3u) Neosho R. above Elm Creek Ottawa (OK) 10/01/01 36�53¢28.1¢¢ N, 94�55¢59.2¢¢ Wc

21 (6) Tar Creek at Neosho R. Ottawa (OK) 11/01/01 36�57¢14.9¢¢ N, 94�57¢31.8¢¢ Wd

aNumbers in parenthesis indicate the fish site to which the crayfish samples were assigned for statistical analysis and
reporting; 3u and 3d were near fish Site 3 but upstream and downstream, respectively, of Elm Creek, a possible source of
metals to the Neosho River
bAll USA
cFrom global positioning system, datum = WGS 84
dEstimated from map
eUS Geological Survey, Columbia Environmental Research Center, Columbia, MO
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degree-of-freedom F-tests. Unless stated other-

wise, a nominal significance level of p = 0.05 was

used to interpret statistical results. All statistical

analyses were conducted using the Statistical

Analysis System (SAS, 1999).

Evaluation of human health risks

Human exposure to dietary metals was evaluated

by estimating the quantities of the most contam-

inated crayfish, carp, catfish (flathead or channel),

and centrarchids (largemouth bass, spotted bass,

or crappie) from the TSMD and BR that would

have to be consumed per day and per week by

‘‘average-size’’ adults (70 kg) and children

(14.5 kg; USEPA, 2000a) to achieve various rate-

based toxicity thresholds (Table 2). We also

estimated the number of 227 g (8-oz, uncooked

weight) fish and crayfish meals per month that

could be safely consumed by adults and children

without reaching these thresholds. Criteria (all

ww) included the Tolerable Daily Intake (TDI),

Provisionally Tolerable Daily Intake (PTDI), or

Provisionally Tolerable Weekly Intake (PTWI)

rates for Pb and Cd established by the World

Health Organization (WHO, 1992; 1995) and the

U.S. Food and Drug Administration (USFDA; all

summarized by Van Oostdam et al., 1999). The

WHO-TDI for dietary Pb is 3.57 lg/kg body

weight/day for both children and adults; the

PTWI is 25 lg/kg body weight/week (Table 2).

The USFDA-PTDI is 6 lg/day of Pb for children

aged 0–6 year, but there is no USFDA value for

adults (Van Oostdam et al., 1999). The WHO-

PTDI for Cd is 1.0 lg/kg body weight/day (about

400–500 lg/week), but there is also no USFDA

value for Cd; however, the (US) Agency for Toxic

Substances and Disease Registry has determined

a minimum risk level (MRL) for chronic oral Cd

ingestion of 0.2 lg/kg/day (Table 2). The MRL is

the estimated daily exposure to a hazardous

substance that is likely to be without an appre-

ciable risk of adverse non-cancer health effects

(ATSDR, 2002).

The USEPA has also established reference

dose (RfD) values based on body weight for some

pollutants (Table 2). The RfD represents an

estimate of daily oral exposure that is likely to be

without an appreciable risk of adverse health

effects over a lifetime (USEPA, 1992, 1994a,

2000a). Cadmium is considered a probable human

carcinogen; the RfD is 1.0 lg/kg body weight/day

(USEPA, 1994a, 2000a), which is identical to the

WHO-PTDI (Table 2). An RfD has not been

established for Pb, which is recognized and eval-

uated as a developmental toxin (USEPA, 2000a)

with a model that estimates blood Pb in children

based on concentrations in fish together with

other Pb sources (yard soil, drinking water, etc.;

USEPA, 1994b) for which we had no data.

In contrast to Pb and Cd, for which there are

no known physiological requirements, Zn is an

essential element that is required by many

enzymes and for critical biochemical processes

including RNA and DNA synthesis. As such, the

recommended daily allowance (RDA) is 0.16 mg/

kg/day, or 8–13 mg/day for adults, 5–9 mg/day for

children, and 2–3 mg/day for infants (ATSDR,

1999; Table 2). At about two-fold higher intake

rates, Zn is considered toxic; the RfD is 0.3 mg/

kg/day (USEPA, 1992).

We also compared metals concentrations to

available concentration-based criteria. Draft

maximum allowable concentrations (ML) for

contaminants in fish and shellfish have been pro-

posed by the Codex Alimentarius Commission of

the WHO and the Food and Agricultural Organi-

zation of the United Nations (FAO; Table 2). The

proposed ML for Pb is 0.2 lg g–1 for fish muscle

and 0.5 lg g–1 for crustaceans (FAO/WHO, 1999).

An ML for Cd in fish muscle of 0.05–0.10 lg g–1

(depending on species) has also been proposed

(FAO/WHO, 1998); for crustaceans the proposed

value is 0.05 lg g–1 except for lobsters and certain

‘‘brown meats of crabs’’, for which it is 0.10 lg g–1

and which we used to evaluate Cd in fish and

crayfish. The USEPA (2000a) has established

screening values (SVs) for Cd of 4.0 lg g–1 for

recreational fishers and 0.491 lg g–1 for subsis-

tence fishers, the latter presumably for Native

Americans (USEPA, 2000a; Table 2).

It is important to recognize the assumptions

inherent in our approach. We tacitly assumed that

fish or crayfish represent the only route of Pb, Cd,

and Zn exposure; i.e., other potentially important

sources such as other metals-rich foods (organ

meats, certain vegetables, and for Native Ameri-

cans, wildlife and indigenous plants), smoking,

450 Environ Geochem Health (2006) 28:445–471
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drinking water, and the inhalation or ingestion of

particulates were not included, nor were the

effects of multiple contaminants (USEPA,

2000a). For inhabitants of mining districts and

Native Americans, particulates and drinking wa-

ter represent significant routes of metals exposure

(Harris & Harper, 1997; Hettierachchi, Pierzyn-

ski, Oihme, Sonmez, & Ryan, 2003). Because

these other sources were not included, our

screening-level assessments were based on maxi-

mum measured concentrations from our data and

previous studies. We also assumed that all of the

metals in the organisms as analyzed reach the

human consumers, which may vary depending on

preparation methods and consumption habits

(USEPA, 2000a). This assumption may be

appropriate for Native Americans to a greater

extent than for the general public because tradi-

tional preparation involves boiling or steaming

fish and crayfish and the consumption of the

cooking liquids. Metals concentrations in fish

muscle are not greatly affected by processing and

cooking (Zabik & Zabik, 1996). Crayfish may be

more problematic, however; metals concentrate

preferentially in the hepatopancreas, antennal

(green) gland, exoskeleton, and digestive tract

(Crawford & Luoma, 1993; Knowlton, Boyle, &

Jones, 1983; Roldan & Shivers, 1987), and the

extent to which metals in these parts of the ani-

mals are consumed by Native Americans is not

documented.

Evaluation of risk to fish and wildlife

Risk to wildlife was evaluated with a procedure

analogous to that used to assess potential human

health effects. Food ingestion rates, toxicity,

uncertainty factors, and consensus-based toxic

reference values (TRVs) for avian and mamma-

lian wildlife (Table 2) were employed to assess

Pb, Cd, and Zn in TSMD fish and invertebrates

(USEPA, 1993, 1997, 1999, 2003a, 2003b). The

TRVs are similar to TDI/PTDI and RfD values in

that they are rates expressed in units of toxicant

Table 2 Criteriaa used to evaluate the risks of lead, zinc, and cadmium in fish and crayfish to humans and wildlife

Criteriona Units Lead Cadmium Zinc Source

Human health
TDI/PTDI lg/kg body wt/day 3.57b 1.0 nv WHO (1992, 1995)
PTWI lg/kg body wt/week 25b 400–500c nv WHO (1992, 1995)
PTDI lg/day 6d nv nv USFDA
MRL lg/kg body wt/day nv 0.2 nv ATSDR (2002)
ML (fish) lg g–1 wet-wt 0.2 0.05–0.10 nv FAO/WHO (1998)
ML (crustaceans) lg g–1 wet-wt 0.5 0.05–0.10 nv FAO/WHO (1998)
RfD lg/kg body wt/day nv 1.0 300 USEPA (1994a, 2000a, 2000b)
SV (recreational fishers) lg g–1 wet-wt nv 4.0 nv USEPA (2000a)
SV (subsistence fishers) lg g–1 wet-wt nv 0.491 nv USEPA (2000a)
RDA lg/kg body wt/day nv nv 160 ATSDR (1999)
Ecological risk
NOAEL-TRV (avian) mg/kg body wt/day 1.68 1.47 14.5e USEPA (2003a, 2003b;

Sample et al., 1996)
NOAEL-TRV (mammal) mg/kg body wt/day 4.7 0.77 16.0e USEPA (2003a, 2003b;

Sample et al., 1996)

aTDI, tolerable daily Intake; PTDI, provisionally tolerable daily intake; PTWI, provisionally tolerable weekly intake; MRL,
minimum risk level; ML, maximum allowable concentration; RfD, reference dose; SV, screening value; RDA, recom-
mended daily allowance; NOAEL, no observed adverse effect level; TRV, toxicity reference value; WHO, World Health
Organization; USFDA, US Food and Drug Administration; FAO, Food and Agricultural Organization of the United
Nations; ATSDR, (US) Agency for Toxic Substances and Disease Registry; USEPA, US Environmental Protection
Agency; nv, no value
bFor children and adults
cFor adults; no value for children
dFor children; no value for adults
eInterim value; consensus value pending
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mass per unit of body weight per day (mg/kg/day).

The TRVs are based on either the no-observed-

adverse-effect-level (NOAEL) or lowest-

observed-adverse-effect-level (LOAEL) for each

metal as reported in the scientific literature. We

estimated daily contaminant intake rates using

the measured Pb, Cd, and Zn concentrations in

fish or crayfish and the food intake rates and body

weights of representative mammals and birds,

which were compared with the TRVs either di-

rectly or as a ratio. The ratio, or hazard quotient

(HQ), was obtained by dividing the daily intake

rate by the TRV, with HQ values >1.0 indicating

risk. Maximum concentrations are typically

compared to LOAEL-based TRVs whereas mean

concentrations are evaluated against the

NOAEL-based values when information on other

exposure pathways (incidental sediment inges-

tion, drinking water, etc.) is incorporated into the

analysis (USEPA, 1993). Such analyses are also

typically based on concentrations in whole fish,

which are generally greater than in the headed,

scaled, and eviscerated fish carcasses we analyzed.

As such, and without data describing other

exposure pathways, we used concentration max-

ima and NOAEL-based TRVs, with the under-

standing that this approach indicates only

whether harmful effects are possible, not whether

they are probable (Sample & Suter, 1999).

Weight-normalized food intake rates (kg food/

kg body wt/day) in homeotherms decrease with

body weight and are therefore greater in small than

in large animals (USEPA, 1993). Risk associated

with dietary exposure therefore tends to be great-

est in small mammals and birds, with all other

factors being equal. We used ingestion rates and

body weights representative of a range of avian and

mammalian wildlife to model food chain exposure.

Values for great blue heron (Ardea herodias) and

mink (Mustela vison) were chosen to represent

large, adult fish-eating birds and mammals,

respectively; and American robin (Turdus americ-

anus) and short-tailed shrew (Blarina brevicauda)

represented small birds and mammals. A scenario

in which the receptor is a shrew-sized carnivorous

mammal or robin-sized wetland bird (such as a red-

winged blackbird, Agelaius phoeniceus; killdeer,

Charadrius vociferus; or spotted sandpiper, Actitis

macularia; or nestlings of larger species such as

great blue heron) consuming a diet composed en-

tirely of the most contaminated organisms from the

study area, typically yield the most conservative

wildlife risk estimates (i.e. greatest potential haz-

ards).

There is no analogous procedure with which to

evaluate risk to fish. Consequently, measured

concentrations were compared with benchmark

values from the scientific literature. Maximum

concentrations in fish and crayfish from previous

investigations in the TSMD (Allen & Wilson,

1992; Allert et al., 1997; Wildhaber et al., 1997)

and the BR (Gale et al., 2004; Schmitt & Finger,

1982) were incorporated into the human health,

wildlife, and fish analyses for comparison.

Results

Metals in fish and crayfish—2001–2002

Moisture content in crayfish was highly variable

(60.6–92.8%, mean = 80.5%) but did not differ

significantly among sites (Table 3). Excess site

water, which was present in some samples but not

decanted prior to lyophilization to prevent loss of

metals, was the cause of this variation. Moisture

content was also anomalously low in two samples

collected in 2001, which may have been caused by

water loss during freezer storage. Consequently,

dw concentrations of Pb, Cd, and Zn in crayfish

differed significantly among rivers and sites, but

on a ww basis only Cd differences were significant

(Table 3). On a ww basis, Zn concentrations only

approached significance (p = 0.08) and Pb differ-

ences were not significant (Table 3). Dry-weight

concentrations of all three metals were also sig-

nificantly greater in crayfish from the SR than in

the NR, but on a ww basis only the Cd differences

were significant (Table 3). Maximum ww con-

centrations were 1.01 lg g–1 Pb (Site 3d, NR),

0.37 lg g–1 Cd (Site 2, SR), and 62.6 lg g–1 Zn

(Site 3u, NR; Fig. 2). In the NR, the ww concen-

trations of Pb, Zn, and Cd in crayfish obtained

upstream of the confluence of Elm Creek (Site 3u)

did not differ significantly from those collected

downstream (Site 3d); however, the dw zinc con-

centrations were significantly lower downstream

(Table 3).
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In contrast to crayfish, the moisture content of

fish carcass samples was relatively consistent and

did not differ significantly among species or sites

(Table 4). Moisture in individual fish samples

ranged from 70.6% in a carp from Site 1 to 81.6%

in a channel catfish, both from Site 1 (SR; data

not shown). Species means differed by < 2%,

and site means within species varied by only

2–5% (Table 4).

Carcass Pb concentrations were generally

greatest in carp, intermediate in channel catfish,

and lowest in centrarchids (largemouth bass,

spotted bass, and crappie) and flathead catfish

(Table 4; Fig. 2). Lead concentrations in carp

ranged from minima of 0.06–0.09 lg g–1 ww at

Sites 1 (SR), 3 (NR-ref), and 5 (NR) to 4.96 lg g–1

in one fish from Site 9 (BR; Fig. 2), but concen-

trations varied greatly among the Oklahoma sites;

maxima were 1.15 lg g–1 at Site 1 (SR) and 1.23

lg g–1 at Site 3 (NR-ref), but one sample from

each of these two sites contained only 0.07–0.08

lg g–1. Because of this variability, differences

among sites for Pb in carp were not significant

(p = 0.06; Table 3); however, no reference carp

were analyzed.

Lead concentrations in channel catfish ranged

from minima of 0.01–0.07 lg g–1 at all Oklahoma

sites except Site 2 (SR) to 0.91 lg g–1 at Site 1

(SR; Fig. 2). Only one channel catfish was ob-

tained at Site 2; it contained 0.15 lg g–1 Pb

(Fig. 2). In contrast to carp, Pb in channel catfish

differed significantly among locations; concen-

trations in the commercially obtained reference

fish (Site 8) were significantly lower than at all

Oklahoma sites except Site 3 (NR); and concen-

trations at Site 1 (SR) were significantly higher

than those from Sites 3 and 4 (Table 4). Collec-

tively, Pb concentrations were significantly higher

(by two-fold) in channel catfish from the SR than

the NR (Table 4). Concentrations in flathead

catfish from Sites 1 and 2 were lower than those in

channel catfish (Table 4).

Lead concentrations in centrarchids from the

Oklahoma sites (1–6) were also comparatively

low ( < 0.01–0.09 lg g–1), but were 0.57–1.45

lg g–1 in bass from the BR (Site 9; Fig. 2).

Concentrations in BR largemouth and spotted

bass were significantly higher than in both spe-

cies from all Oklahoma sites, but differences

among the Oklahoma sites were small in both

species (Table 4). Concentrations in largemouth

bass from Site 1 (SR) were significantly greater

than in the laboratory-raised largemouth bass

(Site 7; Table 4). Concentrations were uniformly

Table 3 Moisture content and dry-weight (dw) and wet-weight (ww) concentrations of lead, cadmium, and zinc in crayfish
from sites on the Spring River, Neosho River, and Tar Creek (TC)a

River, site n Moisture Lead (lg g–1) Cadmium (lg g–1) Zinc (lg g–1)

(percent) dw ww dw ww dw ww

Spring 3b 81.8 ± 1.8 A 2.87 ± 0.19 A 0.50 ± 0.05 A 1.58 ± 0.10 A 0.26 ± 0.03 A 176.5 ± 7.1 A 31.7 ± 3.1 A
1 2 79.3 ± 2.8 a 2.23 ± 0.34 a 0.45 ± 0.01 a 1.18 ± 0.08 ab 0.24 ± 0.02 a 159.5 ± 6.5 ab 32.8 ± 3.1 a
2 5 81.9 ± 2.5 a 3.24 ± 0.31 a 0.56 ± 0.06 a 1.75 ± 0.16 a 0.30 ± 0.03 a 199.6 ± 10.9 a 35.5 ± 4.4 a
4 4 84.3 ± 3.7 a 3.15 ± 0.19 a 0.50 ± 0.13 a 1.49 ± 0.04 a 0.24 ± 0.06 a 170.5 ± 1.3 a 26.8 ± 6.4 a
Neosho 3b 78.6 ± 2.1 A 1.58 ± 0.25 B 0.37 ± 0.09 A 0.29 ± 0.01 B 0.06 ± < 0.01 B 107.5 ± 9.4 B 24.1 ± 4.7 A
3u 3 74.3 ± 6.9 a 1.54 ± 0.52 b 0.47 ± 0.27 a 0.31 ± 0.01 b 0.08 ± 0.02 b 110.5 ± 24.2 b 31.7 ± 15.5 a
3d 6 80.1 ± 1.0 a 1.90 ± 0.08 ab 0.39 ± 0.08 a 0.30 ± 0.01 b 0.06 ± < 0.01 b 77.0 ± 2.6 c 15.2 ± 0.6 a
6 (TC) 1 81.3 a 1.29 b 0.24 a 0.24 b 0.05 b 135.0 ab 25.2 a
ANOVA
F (5, 15) 0.90 ns 3.70 ** 0.67 ns 234.36 ** 18.91 ** 26.12 ** 2.43 *c

R2 0.23 0.55 0.18 0.99 0.86 0.90 0.45

aShown are arithmetic station and river means (unweighted) ± standard errors, numbers of observations (n). Also shown
are results of one-way analysis-of-variance (ANOVA) as F-values, coefficients of variation (R2), and degrees-of-freedom for
differences among sites and between rivers (**p £ 0.01; *0.01 < p £ 0.05; ns p > 0.05). Within each group, means followed
by the same letter (lower case letters for site means, upper case for river means) are not significantly different (p > 0.05).
Metal concentrations were log-transformed for statistical analysis
bNumber of means
cp = 0.08
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low in crappie; differences among the Okla-

homa sites only approached significance

(p = 0.06), with concentrations at Site 4 (SR)

slightly greater than those at Sites 3, 5, and 6

(all NR; Table 4). Nevertheless, Pb concentra-

tions in crappie from the SR averaged signifi-

cantly (and more than two-fold) greater than

those from the NR (Table 4). Crappie were not

obtained from either the BR or reference sites

for comparison.

Carcass Cd concentrations were greatest in

carp, lowest in centrarchids, and intermediate

in channel and flathead catfish (Fig. 2; Table 4).

In carp, Cd concentrations were highly variable;

minima at the Oklahoma sites were < 0.003–0.022

lg g–1, but were as great as 0.356 lg g–1 in one

carp from Site 3 (NR) and 0.338 lg g–1 in one

from Site 6 (NR-TC; Fig. 2). Differences among

sites were not statistically significant (Table 4).

Minimum Cd concentrations in channel catfish

from the Oklahoma sites were < 0.002–0.009 lg g–1

except for Site 2 (SR), where only one fish was

obtained; it contained 0.06 lg g–1 (Fig. 2). Maxi-

mum concentrations in channel catfish were

0.055–0.057 lg g–1 at Sites 1 (SR) and 6 (NR-TC),

respectively. Concentrations in the commercially

obtained reference channel catfish (Site 8) were

uniformly low ( < 0.004 lg g–1; Fig. 2). In contrast

to carp, Cd concentrations in channel catfish dif-

fered significantly among locations (Table 4). The

greatest Oklahoma concentrations (Sites 1, 2,

and 6) differed significantly from reference fish

(Site 8; Table 4). Overall, Cd concentrations in

channel catfish from the SR and NR were not

significantly different, but were significantly

greater than reference fish (Table 4). Concentra-

tions in flathead catfish were within the range of

those for channel catfish from Sites 1 and 2 (0.07–

0.08 lg g–1).

Cadmium concentrations were comparatively

low ( < 0.001–0.008 lg g–1) in all centrarchid

samples, including bass from the BR (Fig. 2).

Only one (of 12) pond-raised largemouth bass

contained detectable Cd (0.004 lg g–1). Differ-

ences among sites were statistically significant in

largemouth bass, marginally significant (p = 0.07)

in spotted bass, and not significant in crappie

(Table 4). No reference crappie or spotted bass

were analyzed, however. Regardless, only two

spotted bass contained detectable Cd—one each

from Sites 5 (NR, 0.002 lg g–1) and 9 (BR,

0.008 lg g–1; Fig. 2). Concentrations in large-

mouth bass from Site 1 (SR) were significantly

greater than all others except the BR (Site 9), and

concentrations in spotted bass from Site 9 were

significantly greater than most from Oklahoma

(Table 4). Only two crappie samples contained

Fig. 2 Concentrations of lead (Pb), cadmium (Cd), and
zinc (Zn) in fish of three taxa and in crayfish from sites in
Oklahoma (1–6) and Missouri (7–9). Also shown are draft
maximum allowable concentrations (ML) for Pb and Cd in
fish (f) and crustaceans (c; FAO/WHO, 1998, 1999) and
the Cd screening value (SV) for subsistence fishers
(USEPA, 2000a); there are no SVs for Pb or Zn and no
MLs for Zn. Censored values for Cd are plotted as 50% of
the limit-of-detection
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Table 4 Moisture content (percent) and concentrations of lead, cadmium, and zinc (all lg g–1, wet-weight) in fish carcass
samples from Oklahoma (Sites 1–6) and from reference sites (Ref, Sites 7 and 8) and the Big River (BR, Site 9) in Missouria

Species, river or
type, and site

n Moisture Lead Cadmium Zinc

Common carp 25 75.4 ± 0.4 0.63 ± 0.20 0.076 ± 0.19 34.5 ± 2.7
All SR 3b 75.1 A 0.49 A 0.039 A 41.4 A
1 (SR) 4 74.7 ± 1.7 a 0.57 ± 0.27 a 0.043 ± 0.027 a 32.4 ± 2.0 a
2 (SR) 4 75.3 ± 1.3 a 0.51 ± 0.12 a 0.045 ± 0.014 a 48.0 ± 7.8 a
4 (SR) 3 75.3 ± 0.7 a 0.40 ± 0.13 a 0.029 ± 0.008 a 43.9 ± 13.6 a
All NR 3b 75.6 A 0.32 A 0.096 A 29.4 A
3 (NR) 4 76.4 ± 0.09 a 0.51 ± 0.26 a 0.155 ± 0.078 a 27.4 ± 1.8 a
5 (NR) 3 74.6 ± 1.3 a 0.18 ± 0.09 a 0.037 ± 0.021 a 27.2 ± 2.4 a
6 (NR-TC) 5 75.8 ± 0.5 a 0.28 ± 0.10 a 0.096 ± 0.061 a 33.7 ± 6.7 a
9 (BR) 2 (1b) 75.8 ± 1.0 aA 3.18 ± 1.79 aA 0.127 ± 0.080 aA 24.8 ± 2.7 aA
ANOVA – – – –
F(6, 18) 0.30 ns 2.14 *e 1.00 ns 2.11 ns
R2 0.09 0.42 0.25 0.41
Channel catfish 35 77.4 ± 0.4 0.11 ± 0.03 0.010 ± 0.002 16.2 ± 1.5
All SR 3b 77.8 A 0.20 A 0.014 A 17.9 A
1 (SR) 5 78.6 ± 1.3 a 0.37 ± 0.16 a 0.020 ± 0.009 ab 24.6 ± 2.3 a
2 (SR) 1 78.3 a 0.15 ab 0.016 ad 14.0 ab
4 (SR) 5 76.6 ± 1.0 a 0.09 ± 0.02 b 0.007 ± 0.002 cde 15.1 ± 1.7 ab
All NR 3b 76.4 A 0.10 B 0.014 A 17.6 A
3 (NR) 4 78.1 ± 0.4 a 0.04 ± 0.01 bc 0.007 ± 0.003 cde 14.2 ± 1.0 ab
5 (NR) 2 73.8 ± 2.5 a 0.05 ± 0.04 ab 0.009 ± 0.006 abcde 11.6 ± 2.4 b
6 (NR-TC) 3 77.4 ± 0.9 a 0.20 ± 0.14 ab 0.025 ± 0.016 ab 26.8 ± 13.0 a
8 (Ref) 12 (1b) 77.5 ± 0.4 aA 0.02 ± < 0.01 cC < 0.003 ± < 0.001 eB 12.1 ± 0.4 bB
ANOVA 31 – – – –
F 6 1.58* 8.60 ** 4.33 ** 4.99 **
R2 25 0.28 0.67 0.51 0.45
Flathead catfishc 4 77.3 ± 0.7 < 0.03 ± < 0.01 0.008 ± 0.001 11.1 ± 0.7
1 (SR) 2 76.1 ± 0.1 < 0.03 ± < 0.01 0.007 ± < 0.001 11.7 ± 1.0
2 (SR) 2 78.5 ± 0.5 < 0.03 ± < 0.01 0.009 ± 0.001 10.5 ± 1.0
Largemouth bass 21 77.5 ± 0.4 0.08 ± 0.07 0.002 ± < 0.001 10.9 ± 0.5
1 (SR) 2 (1b) 77.3 ± 0.1 abB 0.03 ± < 0.01 bB 0.004 ± 0.001 aA 14.7 ± 0.3 aA
All NR 2b 75.7 B 0.03 B 0.001 B 8.4 C
5 (NR) 2 76.6 ± 0.1 ab 0.01 ± < 0.01 c 0.001 ± < 0.001 b 7.1 ± 0.3 c
6 (NR) 4 74.9 ± 0.8 b 0.02 ± < 0.01 bc 0.001 ± < 0.001 b 9.8 ± 0.5 b
7 (Ref) 12 78.5 ± 0.2 aA 0.01 ± < 0.01 cB 0.001 ± < 0.001 bB 11.3 ± 0.4 abB
9 (BR) 1 (1b) 78.5 aA 1.45 aA 0.003 ± 0.001 abB 11.3 abB
ANOVA 20 – – – –
F 4 12.05 ** 13.96 ** 4.70 * 13.12 **
R2 16 0.75 0.78 0.54 0.77
Spotted bass 9 77.1 ± 0.4 0.19 ± 0.10 – 0.003 ± 0.001 – 14.1 ± 0.7
All SR 2b 76.7 A 0.04 B 0.002 B 13.6 A
2 (SR) 3 76.7 ± 0.6 a 0.04 ± 0.02 b 0.002 ± < 0.001 b 12.8 ± 0.5 a
4 (SR) 3 76.7 ± 0.7 a < 0.03 ± < 0.01 b < 0.002 ± < 0.001 b 14.3 ± 0.5 a
5 (NR) 1 (1b) 77.7 aA 0.05 abB 0.002 abB 18.0 aA
9 (BR) 2 (1b) 78.1 ± 0.8 aA 0.71 ± 0.14 aA 0.006 ± 0.002 aA 13.7 ± 2.0 aA
ANOVA 8 – – – –
F 3 0.90 ns 34.35 ** 4.56 *d 2.43 ns
R2 5 0.35 0.95 0.73 0.59
White crappie 12 75.9 ± 0.4 0.03 ± 0.01 0.002 ± < 0.001 12.7 ± 0.7
4 (SR) 3 (1b) 77.6 ± 0.4 aA 0.05 ± 0.02 aA 0.002 ± 0.001 aA 15.7 ± 0.5 aA
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detectable Cd—one each from Sites 4 (SR, 0.003

lg g–1) and 6 (NR-TC, 0.002 lg g–1).

Carcass Zn concentrations were also greatest

in carp and lowest in centrarchids (Fig. 2). In

carp, Zn concentrations ranged from 22 lg g–1 at

Sites 5 (NR) and 9 (BR) to 71 lg g–1 at Sites 2 and

4 (both SR; Fig. 2). Site means ranged from

25 lg g–1 (Site 9, BR) to 48 lg g–1 (Site 2, SR;

Table 4). Differences among sites were not sig-

nificant in carp (Table 4), but no reference carp

were analyzed.

Zinc concentrations in channel catfish ranged

from 9.2 lg g–1 at Site 5 (NR) to 52.8 lg g–1 at

Site 6 (NR-TC; Fig. 2). Site means ranged from

12–15 lg g–1 at Sites 2–5 and the reference fish

(Site 8) to 25–27 lg g–1 at Sites 1 and 6 (Table 4).

In contrast to carp, Zn in channel catfish differed

significantly among locations; sites with the

greatest concentrations (1 and 6) differed from

the lowest (5 and 8; Table 4). As a group, Zn

concentrations in channel catfish from the SR and

NR were not significantly different, but both were

significantly greater than the reference fish (Site

8; Table 4). Concentrations in flathead catfish

from Sites 1 and 2 were lower than those in

channel catfish from these sites (Table 4).

Zinc concentrations in centrarchids were only

slightly lower than those in catfish and spanned a

comparatively narrow range—from 6.8 lg g–1 in

largemouth bass to 18 lg g–1 in spotted bass, with

both extremes at Site 5 (NR, Fig. 2). Site means

for all centrarchids were 7.1–18.0 lg g–1; differ-

ences among sites were statistically significant in

largemouth bass and crappie, but not in spotted

bass (Table 4). Overall, Zn concentrations in

largemouth bass from the SR were significantly

greater than those from the BR (one fish) and the

reference site (8); the latter were not significantly

different but were in turn significantly greater

than those in largemouth bass from the NR

(Table 4). Concentrations in crappie from the SR

were also significantly greater than those from the

NR, but Zn in spotted bass did not differ signifi-

cantly among sites (Table 4).

Metals in fish and crayfish-previous studies

Maximum concentrations (ww and dw) of metals

in crayfish collected in 2001–2002 were lower than

(Pb, Cd) or comparable to (Zn) most previously

reported values for crayfish from contaminated

parts of the SR system (Table 5). Wildhaber et al.

(1997) reported concentrations as high as

5.21 lg g–1 (ww) Pb, 1.64 lg g–1 Cd, and

119.4 lg g–1 Zn in crayfish from mining-contami-

nated SR tributaries in Kansas and Missouri; these

were two-fold (Zn) to five-fold (Cd) greater than

2001–02 values (Table 5). Wildhaber et al. (1997)

Table 4 continued

Species, river or
type, and site

n Moisture Lead Cadmium Zinc

All NR 2b 75.4 cB 0.02 B 0.002 A 11.5 B
3 (NR) 2 76.1 ± 0.7 ab < 0.03 ± < 0.01 b < 0.002 ± < 0.001 a 10.1 ± 1.0 b
5 (NR) 4 75.7 ± 0.4 bc 0.02 ± < 0.01 ab < 0.001 ± < 0.001 a 12.3 ± 0.8 b
6 (NR-TC) 3 74.4 ± 0.3 c 0.03 ± 0.01 ab 0.001 ± < 0.001 a 12.1 ± 0.8 b
ANOVA 11 – – – –
F 3 8.52 ** 3.72 *e 1.70 ns 6.49 *
R2 8 0.76 0.58 0.39 0.70

aSR, Spring River; NR, Neosho River; TC, Tar Creek. Shown are arithmetic station and river means (unweight-
ed) ± standard errors and numbers of observations or means (n); and results of one-way analysis-of-variance (ANOVA) as
F-values (**p £ 0.01; *0.01 < p £ 0.05; ns p > 0.05), degrees-of-freedom, and coefficients of variation (R2). Within taxa,
means followed by the same letter (lower case letters for site means, upper case for river means; ranked alphabetically from
largest to smallest) are not significantly different (p > 0.05); metals concentrations were log-transformed for statistical
analysis
bNumber of means
cFlathead catfish not analyzed statistically due to small n
dp = 0.07
ep = 0.06
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also reported concentrations as great as 2.80 lg g–1

(ww) Pb, 0.39 lg g–1 Cd, and 67.4 lg g–1 Zn in

crayfish from the SR at the state line (our Site 1;

Table 5). Maximum concentrations in crayfish

from the uncontaminated SR tributaries sampled

by Wildhaber et al. (1997) were 1.73 lg g–1 Pb,

0.25 lg g–1 Cd, and 44.9 lg g–1 Zn (Table 5).

Crayfish obtained from the BR in the early 1980s

contained as much as 38.65 lg g–1 (ww) Pb,

0.41 lg g–1 Cd, and 35.9 lg g–1 Zn, however

(Schmitt & Finger, 1982; Table 5).

Concentrations of Pb, Cd, and Zn in 2001 fish

carcass samples from the TSMD were generally

similar to or less than those reported for whole

fish of the same or similar species in previous

studies. Allen and Wilson (1992) analyzed whole

fish of several species obtained from the Kansas

reach of the Spring River in the late 1980s. Their

highest metals concentrations, which were in

carp, were 1.00 lg g–1 (ww) Pb, 0.50 lg g–1 Cd,

and 120 lg g–1 Zn (Table 6). Concentrations in

whole channel catfish, largemouth bass, and

crappie analyzed by Allen and Wilson (1992)

were lower than those in carp and were similar to

the 2001 carcass concentrations in those species

(data not shown). Concentrations of Pb in our fish

from tailings-contaminated waters of the BR

were similar to those reported previously (Dwyer

et al., 1988; Schmitt & Finger, 1987; Schmitt

et al., 1984, 1993), but there are no previously

reported concentrations for carp from the BR.

Gale et al. (2004) recently reported Pb concen-

trations as high as 0.960 lg g–1 (ww) in longear

sunfish (Lepomis megalotis) fillets, 0.185 lg g–1 in

bass (Micropterus spp.) fillets, and 42.09 lg g–1 in

whole longear sunfish, however.

Risks of metals in fish and crayfish to humans

The maximum ww metals concentrations in

crayfish obtained from the Oklahoma waters of

the TSMD in 2001–2002 were 1.01 lg g–1 Pb (Site

Source of information and river or stream Location or reach Lead Cadmium Zinc

This study
Neosho River Above Miami, OK (Sites 3u, 3d) 1.01 0.12 62.6
Tar Creek Miami, OK (at Neosho River, Site 6) 0.24 0.04 25.2
Spring River Sites 1, 2, and 4 0.76 0.37 47.9
Wildhaber et al. (1997)
Cottonwood River Emporia, KSb < 1.07 0.10 21.5
Neosho River Neosho Rapids-Chetopa, KSb 0.68 0.12 44.9
Spring River Waco, MO < 1.13 0.07 31.0
Spring River Crestline, KS 1.73 0.25 40.9
Center Creek Joplin, MO (at Spring River) 5.21 1.09 119.4
Spring River Belleville-Lawton, KS 1.07 0.35 48.0
Turkey Creek Galena, KS (at Spring River) 3.54 0.70 102.2
Shoal Creek Galena, KS 3.43 1.64 74.0
Spring River Riverton, KS 1.06 0.18 36.9
Spring River KS/OK line (Site 1) 2.80 0.39 67.4
Spring River Baxter Springs, KS 1.24 0.21 59.2
Spring River Quapaw, OK (Site 4) 1.33 0.19 35.8
Allen and Wilson (1992)
Cow Creek Lawton, KS (at Spring River; R) 0.30 0.02 23.0
Spring River Empire Lake (Riverton, KS) 2.70 0.63 56.0
Spring River Baxter Springs, KS 3.20 0.30 55.0
Schmitt and Finger (1982)
Big River Irondale, MOb 0.39 0.12 24.0
Big River Desloge, MO (upstream of Site 9) 38.65 0.41 55.2

aIndicated concentrations from this study are maxima; all others represent individual composite samples
bReference site

Table 5 Concentrationsa (all lg g–1 wet-weight) of
cadmium, lead, and zinc in crayfish (Orconectes sp.) from
the Spring-Neosho River system of Missouri (MO),
Kansas (KS), and Oklahoma (OK), USA, and from the

Big River in Eastern Missouri, as reported by this and
previous investigations. Within rivers, sites are listed
upstream to downstream. Values in italics were used to
assess potential hazards to humans, wildlife, or both
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3u), 0.37 lg g–1 Cd (Site 2), and 62.6 lg g–1 Zn

(also Site 3u; Fig. 2). The TDI/PTDIs for both Pb

(3.6 lg/kg/day) and Cd (1.0 lg/kg/day) would be

reached by eating 2.7–3.6 g/kg/day of this crayfish;

a 70-kg adult would reach the TDI/PTDI for Pb

by eating about 250 g (0.5 lb) of crayfish per day

or for Cd by eating 210 g (0.46 lb) per day,

or roughly 3–4 lb/week or 23–31 meals/month

(Table 7). A 14.5-kg child would reach the TDI/

PTDI for Pb after eating only about 40–50 g/day

(0.6–0.8 lb/week), or 5–6 meals/month (Table 7).

Based on the RfD for Cd (1.0 lg/kg/day), the

USEPA (2000a) would recommend that a 70-kg

adult consume no more than four 8-oz crayfish

meals per month. For Zn, the RfD of 300 lg/kg/

day (USEPA, 2000b) would be reached by con-

suming 4.8 g/kg/day of the most contaminated

2001–2002 crayfish, which would represent 41

meals/month for adults and 9 meals/month for

children (Table 7).

Crayfish collected from the Kansas reach of the

SR in 1988 by Allen and Wilson (1992) contained

as much as 3.2 lg g–1 (ww) of Pb, 0.63 lg g–1 of

Cd, and 56.0 lg g–1 of Zn (Table 5). Crayfish

obtained from this reach in 1994 by Wildhaber

et al. (1997) contained up to 2.8 lg g–1 of Pb,

0.39 lg g–1 of Cd, and 67.4 lg g–1 of Zn (Ta-

ble 5). About 1.3–2.6 g/kg/day of these more re-

cently collected crayfish could be eaten before

reaching the TDI/PTDIs for Pb and Cd, respec-

tively, or 90–180 g/day (0.2–0.4 lb/day; 11–22

meals/month) for a 70-kg adult and 19–37 g/day

(0.02–0.04 lb/day; 2–5 meals/month) for a 14.5-kg

child (Table 7). These crayfish would also be in

the USEPA (2000a) four-meal-per-month cate-

gory. An adult would need to consume 312 g/day

(38 meals/month) and a child 65 g/day (8 meals/

month) to reach the RfD for Zn, however

(Table 7). The most contaminated crayfish from

SR tributaries in Kansas (Shoal Creek, Turkey

Sample type and collection location Lead Cadmium Zinc

Individual headless, scaled, eviscerated fish carcasses
Neosho R., Spring R., and Big R.a

Neosho R., OK 0.06–1.23 0.007–0.356 22.4–60.2
Spring R., OK 0.08–1.15 < 0.003–0.118 28.6–71.0
Big R., MO 1.39–4.96 0.047–0.207 22.2–27.5

Composite samples of whole fish
Neosho R. system, KSb

Cottonwood R. @ Cottonwood Falls < 0.50–0.50 0.20–0.35 62.0–64.0
Neosho R. @ Neosho Rapids 0.20–0.30 0.11–0.25 44.0–64.0
Neosho R. @ Humboldt < 0.50–0.50 0.17–0.17 52.0–59.0
Neosho R. @ Oswego 0.20–0.20 0.37–0.38 45.0–65.0
Neosho R. @ Chetopa < 0.50–0.60 0.17–0.26 41.0–60.0

Spring R., KSc

Spring R. @ Empire Lake 0.20 0.08 75.0
Spring R. @ Baxter Springs 0.30–1.00 0.10–0.50 71.0–120

Central U.S. riversd

Verdigris R. @ Oologah Lake, OK 0.18–0.31 0.220–0.270 72.7–101
Arkansas R. @ Keystone Lake, OK 0.14–0.17 0.083–0.092 62.3–73.5
Canadian R. @ Eufaula Lake, OK 0.23–0.28 0.109–0.141 76.2–150
Red R. @ Lake Texoma, OK 0.10–0.11 0.045–0.067 54.1–81.7
Kansas R. @ Bonner Springs, KS 0.08–0.14 0.140–0.239 57.2–75.1
Missouri R. @ Hermann, MO 0.05–0.07 0.084–0.111 37.8–48.7

aThis study
bFrom Allen et al. (2001)
cFrom Allen and Wilson (1992)
dFrom Schmitt (2004)

Table 6 Range of lead, cadmium, and zinc concentrations
(all lg g–1 wet-weight) in common carp from sites in
Missouri (MO), Kansas (KS), and Oklahoma (OK) as

reported by this and previous investigations. Values shown
in italics were used to assess potential hazards to humans,
wildlife, or both
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Location,
collection
period, taxon,
and metal

Max. conc.
(lg g–1 ww)

Site(s) Daily intake,
g/kg/day

Adults (70 kg) Children (14.5 kg)

g/day lb/day lb/week Meals/monthh g/day lb/day lb/week Meals/monthh

TSMD, 2001–2002
Crayfish, Pb 1.01 3u 3.6 250 0.5 3.8 31 52 0.1 0.8 6
Crayfish, Cd 0.370 2 2.7 189 0.4 2.9 23 40 0.1 0.6 5
Crayfish, Zn 62.6 3u 4.8 336 0.7 5.2 41 70 0.2 1.1 9
Carp, Pb 1.23 3 2.9 205 0.5 3.2 25 43 0.1 0.7 5
Carp, Cd 0.356 3 2.8 197 0.4 3.0 24 41 0.1 0.6 5
Carp, Zn 71.0 2, 4 4.2 296 0.7 4.6 36 62 0.1 0.9 8
Catfishc, Pb 0.91 1 4.0 277 0.6 4.3 34 58 0.1 0.9 7
Catfishc, Cd 0.057 6 17.5 1229 2.7 18.9 151 255 0.6 3.9 31
Catfishc, Zn 52.8 6 5.7 398 0.9 6.1 49 83 0.2 1.3 10
Centrarchidd, Pb 0.09 2 40.0 2800 6.2 43.1 345 580 1.3 8.9 72
Centrarchidd, Cd 0.008 1 125.0 8750 19.3 134.8 1078 1813 4.0 27.9 223
Centrarchidd, Zn 18.0 5 16.7 1166 2.6 18.0 144 242 0.5 3.7 30
TSMD, pre-2000e

Crayfish, Pb 2.80 Ke 1.3 90 0.2 1.4 11 19 < 0.1 0.3 2
Crayfish, Cd 0.39 Ke 2.6 180 0.4 2.8 22 37 0.1 0.6 5
Crayfish, Zn 67.4 Ke 4.5 312 0.7 4.8 38 65 0.1 1.0 8
Crayfish, Pb 5.21 Te 0.7 49 0.1 0.7 6 10 < 0.1 0.2 1
Crayfish, Cd 1.64 Te 0.6 44 0.1 0.7 5 9 < 0.1 0.1 1
Crayfish, Zn 119.4 Te 2.5 176 0.4 2.7 22 36 0.1 0.6 5
Big River, 2001
Carp, Pb 4.96 9 0.7 51 0.1 0.8 6 11 < 0.1 0.2 1
Carp, Cd 0.207 9 4.8 339 0.7 5.2 42 70 0.2 1.1 9
Carp, Zn 27.5 9 10.9 764 1.7 11.8 94 158 0.3 2.4 20
Centrarchidd, Pb 1.45 9 2.5 174 0.4 2.7 21 36 0.1 0.6 4
Centrarchidd, Cd 0.008 9 125.0 8750 19.3 134.8 1078 1813 4.0 27.9 223
Centrarchidd, Zn 15.7 9 19.1 1338 2.9 20.6 165 277 0.6 4.3 34
Big River, pre-2001
Crayfish, Pbf 38.65 D 0.1 7 < 0.1 0.1 < 1 1 < 0.1 < 0.1 < 1
Crayfish, Cdf 0.410 D 2.4 171 0.4 2.6 21 35 0.1 0.5 4
Crayfish, Znf 35.9 D 8.4 585 1.3 9.0 72 121 0.3 1.9 15
Centrarchid, Pbg 0.96 F 3.8 263 0.6 4.0 32 54 0.1 0.8 7
Centrachid, Cdg 0.118 F 8.5 594 1.3 9.1 73 123 0.3 1.9 15
Centrachid, Zng 29.8 F 10.1 705 1.6 10.9 87 146 0.3 2.2 18

a3.57 lg/kg/day or 25 lg/kg/week for Pb; 400-500 lg/week or 1.0 lg/kg/week for Cd [World Health Organization (WHO)
1995]
b0.3 mg/kg/day [U.S. Environmental Protection Agency (USEPA) 2000b]
cChannel catfish (Ictalurus punctatus) or flathead catfish (Pylodictis olivaris)
dLargemouth bass (Micropterus salmoides), spotted bass (M. punctalatus), or white crappie (Pomoxis annularis)
eFrom Wildhaber et al. (1997); T, tributary; K, Kansas (all upstream of 2001–2002 study area)
fFrom Schmitt and Finger (1982); D, near Desloge, MO (upstream of 2001 site)
gLongear sunfish (Lepomis megalotis) fillets, from Gale et al. (2004); F, Flat River Creek (BR tributary near Desloge, MO,
upstream of 2001 site)
h8-oz (227-g) meals

Table 7 Amounts of the most contaminated crayfish
and fish of several taxa obtained in 2001–2002 and
previous studies from sites in the Tri-States Mining
District (TSMD) and from the Big River that would
need to be consumed by adults or children of the

indicated body weights to reach the Tolerable or
Provisionally Tolerable Daily Intake or Provisionally
Tolerable Weekly Intake for lead (Pb) and cadmium
(Cd)a, or the chronic effect reference dose (RfD) for zinc
(Zn)b
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Creek) and Missouri (Center Creek) sampled by

Wildhaber et al. (1997) in 1994 contained as much

as 5.2 lg g–1 (ww) of Pb, 1.6 lg g–1 of Cd, and

119.4 lg g–1 of Zn (Table 5). Only 0.6–0.7 g/kg/

day of these crayfish could be consumed before

reaching the TDI/PTDI for Pb or Cd; i.e., by

adults after consuming only 44–49 g/day ( < 0.1 lb/

day, 5-6 meals/month) or by children after 10 g/

day (0.1 lb/week, 1 meal/month; Table 7), and the

USEPA (2000a) would recommend not more

than one meal per month. Adults could consume

176 g/day (22 meals/month) and children 36 g/day

(5 meals/month), or 2.5 g/kg/day, of this crayfish

before reaching the RfD for Zn (Table 7). The

crayfish obtained from the SR mainstem in 1988

by Allen and Wilson (1992) would have been

intermediate between the Wildhaber et al. (1997)

values. The Cd in crayfish from tributaries re-

ported by Wildhaber et al. (1997) also exceeded

the Cd SV for subsistence fishers (0.491 lg g–1;

Fig. 2), as did the maximum concentration in

crayfish from the SR mainstem reported by Allen

and Wilson (1992; Table 5), but no TSMD cray-

fish exceeded the SV for recreational fishers

(4.0 lg g–1; USEPA, 2000a).

Crayfish obtained from the BR during the 1980s

contained substantially greater Pb, but less Cd and

Zn, than those from the TSMD. As such, human

consumption of only 0.1 g/kg/day of BR crayfish

would exceed the TDI/PTDI for Pb, which would

represent only 6.5 g/day (0.1 lb/week, < 1 meal/

month) for adults and 1.4 g/day ( < 0.1 lb/week)

for children (Table 7). The TDI/PTDI for Cd

would be reached by adults eating 2.4 g/kd/day

(2.6 lb/week, 21 meals/month) and by children

eating 0.5 lb/week (4 meals/month; Table 7). The

consumption of crayfish containing this amount of

Cd would probably not be restricted according

to current guidelines (USEPA, 2000a). For Zn,

adults would need to consume 72 meals/month

and children 15 meals/month, or 8.4 g/kg/day, to

reach the RfD (USEPA, 2000b; Table 7).

Concentrations of Pb in some 2001–2002

crayfish from Sites 2, 3, and 4 exceeded the pro-

posed ML for Pb (0.5 lg g–1; Fig. 2). Crayfish

from Sites 1–4 also exceeded the proposed ML

for Cd in crustaceans (0.1 lg g–1; Fig. 2). The

samples obtained in 1995 by Wildhaber et al.

(1997) from the SR at Site 1 and from SR

tributaries in Missouri and Kansas also exceed the

proposed MLs for both Pb and Cd, as did those

obtained from the SR in Kansas by Allen and

Wilson (1992) and form the BR by Schmitt and

Finger (1982; Table 5). Based on the Wildhaber

et al. (1997) data, which indicated two-fold

greater metals concentrations in crayfish from

contaminated tributaries than in the SR, it is

reasonable to suspect that concentrations in

crayfish from Tar Creek and other tributaries in

northeastern Oklahoma are also greater than

those from the SR and NR mainstems.

Metals concentrations in 2001 fish carcasses

were greatest in carp (Fig. 2, Table 4). Maximum

concentrations of Pb (1.23 lg g–1, Site 3), Cd

(0.36 lg g–1, also Site 3), and Zn (71.0 lg g–1,

Sites 2 and 4) were similar to those in crayfish

(Fig. 2), as were the amounts of each that would

have to be consumed to achieve the same toxicity

thresholds (Table 7). The TDI/PTDIs for both Pb

and Cd would be reached by eating 2.8–2.9 g/kg/

day of this carp, and a 70-kg adult would reach

the TDI/PTDI for both Pb and Cd by consuming

about 200 g/day (0.4–0.5 lb/day, 3 lb/week) of

TSMD carp; a 70-kg adult could consume 24 8-oz

meals/month. However, children would reach the

TDI/PTDIs after eating only 41–42 g/day (0.1 lb/

day, 0.6–0.7 lb/week, 5 meals/month) of this fish.

The RfD for Zn would be reached by eating 4.2 g/

kg/day of the most contaminated carp, or 36

meals/month for adults and 5 meals/month for

children (Table 7).

The maximum Pb concentration in catfish

(0.91 lg g–1, channel catfish from Site 1) ap-

proached the maxima for carp and crayfish, but the

maximum Cd concentration was lower

(0.057 lg g–1, channel catfish from Site 6). The

TDI/PTDI for Pb would be reached by eating 4 g/

kg/day, but for Cd it would require 17.5 g/kg/day. A

70-kg adult would reach the TDI/PTDI for Pb by

consuming 277 g/day (0.6 lb/day, 34 meals/month)

of TSMD catfish, but would have to consume

1.2 kg/day (2.7 lb/day, 151 meals/month) to reach

the TDI/PTDI for Cd (Table 7). A child would

reach the TDI/PTDI for Pb by eating 57.4 g/day

(0.1 lb/day, 7 meals/month) of catfish, but would

need to consume 254 g/day (31 meals/month) to

reach the TDI/PTDI for Cd (Table 7). The

USEPA (2000a) considers the consumption of fish
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containing < 0.088 lg g–1 of Cd to be unrestricted

(that is, the consumption of >16 8-oz meals per

month by a 70-kg adult is acceptable). The RfD for

Zn would be reached by eating 5.7 g/kg/day of

catfish, or 49 meals/month for adults and 10 meals/

month for children (Table 7).

The maximum concentrations of Pb in centrar-

chids (0.09 lg g–1, crappie from Site 2), Cd

(0.005 lg g–1, largemouth bass from Site 1), and Zn

(18.0 lg g–1, spotted bass from Site 5) were low

compared to other taxa (Fig. 2). As such, 40–125 g/

kg/day of this fish could be consumed before

reaching the TDI/PTDI for Pb or Cd and 16.7 g/kg/

day would be required to reach the RfD for Zn

(Table 7). A 70-kg adult would need to consume

2.8 kg/day (6.2 lb/day, 345 meals/month) of the

most contaminated crappie or bass to reach the

TDI for Pb and 8.8 kg/day (19.3 lb/day, 1078 meals/

month) to reach the PTDI for Cd; and a 14.5-kg

child could safely consume 0.6-1.8 kg/day (1.3-4.0

lb/day, 72–223 meals/month; Table 7). As was true

for catfish, the USEPA (2000a) would consider the

consumption of fish containing Cd at these con-

centrations to be unrestricted. The RfD for Zn

would be reached by an adult after eating 144

meals/month or a child eating 30 meals/month

(Table 7).

Based on 2001 concentrations, fish from the

BR represent substantially greater risk to humans

than those from the TSMD due to their greater

Pb content; the Pb TDI/PTDI would be reached

by consuming only 0.7 g/kg/day of BR carp

(Table 7). A 70-kg adult would reach the TDI/

PTDI for Pb after consuming about 51 g/day

(0.1 lb/day, 6 meals/month) of carp or 174 g/day

(0.4 lb/day, 21 meals/month) of bass (Table 7).

Children could consume only 10.5 g/day ( < 0.1 lb/

day, 1 meal/month) of carp or 36.0 g/day (0.1 lb/

day, 4 meals/month) of bass (Table 7). Risks

associated with Cd in fish from the BR are lower

than those for the most contaminated fish from

the TSMD, however; 4.8 g/kg/day of carp and

125 g/kg/day of bass could be consumed before

reaching the PTDI for Cd, which represents about

5 lb/week (42 meals/month) of carp and 135 lb/

week (>1000 meals/month) of bass for adults and

1 lb/week (9 meals/month) of carp and 28 lb/

week (>200 meals/month) of bass for children

(Table 7). The USEPA (2000) would recommend

not more than 12 meals per month of carp con-

taining >0.2 lg g–1 of Cd, but the consumption of

bass from the BR would not be restricted due to

Cd. Similarly, adults would need to eat 94 carp

meals/month or 165 bass meals/month and chil-

dren 20 carp meals/month or 34 bass meals/month

to reach the RfD for Zn (Table 7). In addition, at

least one carp from all TSMD sites exceeded the

proposed ML for Pb (0.2 lg g–1 ww), as did the

maximum carcass concentrations in catfish from

several Oklahoma and all carp and bass carcass

samples from the BR (Fig. 2). Carp from several

Oklahoma sites also exceeded the proposed ML

for Cd in fish, as did one carp from the BR (Fig. 2).

Risks of metals to wildlife based on food chain

analysis in model species

In the scenario evaluated here, a robin-sized wet-

land bird (red-winged blackbird, killdeer, or spot-

ted sandpiper) would exceed the NOAEL-based

TRVs for Pb (HQ = 1.1) and Zn (HQ = 7.4) on a

100% diet containing the maximum 2001 TSMD

concentrations in carp (Table 8). The TRVs would

also be approached or exceeded on a diet of 100%

maximally contaminated crayfish or other inver-

tebrate (Table 8). Neither the small mammal

(shrew), the larger bird (great blue heron), nor the

larger mammal (mink) would exceed any current

TRVs (all HQs < 1.0) due to the lower weight-

adjusted food intake rates of these species

(Table 8). Substitution of the maximum concen-

trations reported by the most recent previous

investigations for the 2001–2002 values did not

change these findings appreciably. The greater

concentrations of Pb, Cd, and Zn in crayfish

(Wildhaber et al., 1997) elevated daily intake rates

for all three metals in the small bird (illustrated by

the American robin) further above the TRVs for

Pb and Zn (HQs = 4.8 for Pb, 12.5 for Zn), and

raised the daily intake rate of Cd slightly above the

TRV (HQ = 1.1; Table 8). In the fish diet the

greater Zn concentrations of the pre-2001 carp also

further elevated the HQ in the small bird (to 12.6),

but the Cd HQ remained < 1.0 (Table 8). In addi-

tion, the greater concentrations of Zn in both carp

and crayfish from the earlier studies elevated the

daily intake rates over the NOAEL-based TRV in

the large bird (great blue heron HQ = 0.2–1.5;

Environ Geochem Health (2006) 28:445–471 461

123



Table 8). However, the HQ for Pb was < 1.0 for all

species evaluated against the lower maximum Pb

concentration in the pre-2001 carp (1.0 lg g–1;

Tables 6, 8). In contrast to the bird models, the

mammalian TRVs were not exceeded by the daily

intake rates of either species (shrew, mink) even

under these worst-case scenarios (HQs £ 0.7;

Table 8).

The consumption of fish and crayfish from the

BR also appears to represent a risk to wildlife due

to Pb and Zn, but not Cd (Table 8). The daily

intake of Pb and Zn from the most contaminated

BR carp exceeded both TRVs for Pb and Zn in

the small bird (robin, HQ = 2.9–4.6), but not in

any of the other models. However, the daily in-

takes of Pb from the most contaminated crayfish

(Schmitt and Finger, 1982) exceeded the TRVs

for all species (HQs = 1.8–36.0), as did the intake

of Zn for the robin (HQ = 3.8; Table 8). It is also

important to note that higher concentrations of

Pb have been reported in whole fish from the BR

(e.g. Gale et al., 2004).

Risk of metals to fish and wildlife based on

comparisons with benchmark values

Because Pb does not bioaccumulate (Settle &

Patterson, 1980), environmental Pb has histori-

cally been perceived as a greater hazard to lower

trophic level organisms (such as herbivorous

waterfowl) than to predators, including piscivo-

rous wildlife (Eisler, 1988; Henny, Blus, Hoffman,

& Grove, 1994, Henny et al., 2000). However,

and as reported by many studies cited in a com-

prehensive review (Jarvinen & Ankley, 1999), Pb

exposure and accumulation may affect fish.

Data source and
species

Crayfish Carp

Lead Cadmium Zinc Lead Cadmium Zinc

DI, mg/
kg/day

HQ DI, mg/
kg/day

HQ DI, mg/
kg/day

HQ DI, mg/
kg/day

HQ DI, mg/
kg/day

HQ DI, mg/
kg/day

HQ

TSMD, 2001–2002
Robin 1.54 0.9 0.56 0.4 95.2 6.6 1.87 1.1 0.54 0.4 107.9 7.4
Heron 0.18 0.1 0.07 < 0.1 11.3 0.8 0.22 0.1 0.06 < 0.1 12.8 0.9
Shrew 0.63 0.1 0.23 0.3 38.8 0.2 0.76 0.2 0.22 0.3 44.0 0.3
Mink 0.22 0.1 0.08 0.1 13.8 0.1 0.27 0.1 0.08 0.1 15.6 0.1
TSMD, pre-2001c

Robin 7.90 4.8 1.66 1.1 181.5 12.5 2.13 1.3 0.76 0.5 182.4 12.6
Heron 0.94 0.6 0.20 0.1 21.5 1.5 0.25 0.2 0.09 0.1 21.6 1.5
Shrew 3.22 0.7 0.68 0.9 74.3 0.5 0.87 0.2 0.31 0.4 74.4 0.5
Mink 1.14 0.2 0.24 0.3 26.3 0.2 0.31 0.1 0.11 0.1 26.4 0.1
Big Riverd

Robin 58.75 36.0 0.62 0.9 54.6 3.8 7.54 4.6 0.31 0.2 41.8 2.9
Heron 6.96 4.3 0.07 0.1 6.5 0.4 0.89 0.5 0.04 < 0.1 0.3 0.3
Shrew 23.96 5.1 0.25 0.3 22.3 0.1 3.08 0.7 0.13 0.2 17.1 0.1
Mink 8.50 1.8 0.09 0.1 7.9 < 0.1 1.09 0.2 0.05 0.1 6.1 < 0.1

aShown are estimated daily intake rates (DI) and hazard quotients (HQ) for small and large carnivorous birds (represented
by data for the American robin, Turdus migratorius and great blue heron, Ardea herodias) and mammals (short-tailed
shrew, Blarina brevicauda and mink, Mustela vison) relative to No Adverse Effect Level (NOAEL)-based Toxicity Ref-
erence Values (TRVs) for Pb, Cd, and Zn (HQ = DI / TRV). Daily intake rates that exceed their respective TRVs and
HQs > 1.0 are shown in italics
bNOAEL-based TRVs for birds, Cd = 1.47, Pb = 1.68, Zn = 14.5; for mammals, Cd = 0.77, Pb = 4.7, Zn = 160. TRVs for
Cd and Pb are consensus values from USEPA (2003a) and (2003b), respectively; TRVs for Zn are provisional values from
Sample et al. (1996); all other wildlife and toxicity data from USEPA (1993)
cPre-2001 crayfish data from Wildhaber et al. (1997); pre-2001 fish data from Allen and Wilson (1992)
dBig River crayfish data from Schmitt and Finger (1982)

Table 8 Potential hazards of food-borne cadmium (Cd),
lead (Pb), and zinc (Zn) to carnivorous wildlife
represented by the consumption of the most

contaminated fish (carp) and crayfish collected from the
TSMD and from the Big River, in eastern Missouri, by this
and previous investigationsa, b
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Among the studies reviewed, the lowest reported

effect concentration was associated with reduced

hatchability in third-generation brook trout

(Salvelinus fontinalis) embryos, which occurred at

a whole-body Pb concentrations of 0.4 lg g–1

(Holcombe, Benoit, Leonard, & McKim, 1976).

Reduced growth at various life stages in brook

trout was associated with whole-body concentra-

tions of 4.0–8.8 lg g–1 (Holcombe et al., 1976).

Carcass Pb concentrations in some TSMD fish

exceeded 0.4 lg g–1, and concentrations in fish

from the BR (this and other studies cited) ex-

ceeded 4.0 lg g–1 (Fig. 2). Effects on enzymes

involved in heme synthesis have been reported in

fish with whole-body Pb concentrations exceeding

1.0 lg g–1 and varying with Zn burden (Schmitt

et al., 1984, 1993, 2002), which is consistent with

the biochemical effects reported by Schmitt et al.

(2005) in fish from the TSMD and the BR.

Although biochemical responses to environ-

mental Pb exposure in fish are well documented,

effects at higher levels of biological organization

are not. Effects on fish behavior and growth have

been induced by waterborne Pb exposure in lab-

oratory studies (Alados & Weber, 1999; Burden,

Sandheinrich, & Caldwell, 1998; Shafiq-ur-Reh-

man, 2003; Weber, Russo, Seale, & Spieler, 1991),

but concentrations in the fish were not measured

in these studies so there is no basis for compari-

son with our data. Reduced bone strength, which

may impair swimming performance and ulti-

mately lower the ability to escape predators, was

reported in longear sunfish with fillet Pb concen-

trations of about 1.0 lg g–1 ww (Dwyer et al.,

1988). Reduced condition factors were associated

with effects on heme synthesis in two species of

catfish (Pimelodidae) from a tailings-contami-

nated stream in Brazil (Moraes et al., 2003) in

which the fish community was also found to be

depauperate. Muscle Pb concentrations averaged

2.97 lg g–1 and 7.55 lg g–1 dw (0.59 lg g–1 and

1.51 lg g–1 ww, assuming 80% moisture) in the

two catfish species, which is within the range of

carcass concentrations in fish from the BR and

TSMD (Fig. 2, Table 4) and of BR fillet concen-

trations (Gale et al., 2004).

Eisler (1985) indicated that a Cd concentration

of 2 lg g–1 (ww) in fish is evidence of contamina-

tion, 5 lg g–1 is potentially hazardous to the fish,

and 13–15 lg g–1 represents a threat to higher

trophic levels. For fish, the review by Jarvinen and

Ankley (1999) cited only one laboratory study that

evaluated the effects of Cd exposure relative to

whole-body concentrations (Spehar, 1976); con-

centrations >2.8 lg g–1 were associated with de-

creased spawning and number of embryos

produced in flagfish (Jordanella floridae). All Cd

concentrations in fish from the TSMD reported to

date (this study; Allen & Wilson, 1992) were

below these benchmarks, but concentrations in

whole fish as high as 2.76 lg g–1 have been re-

ported from the BR (Schmitt et al., 1993).

Farag et al. (1999) induced biochemical,

histopathological, and behavioral effects in

westslope cutthroat trout (Oncorhynchus clarki

lewisi) with a diet of invertebrates from the Coeur

d’Alene River, Idaho that contained 452–

792 lg g–1 (dw) of Pb, 29.1–29.9 lg g–1 of Cd, and

2119–2336 lg g–1 of Zn. Maximum Pb concen-

trations in crayfish from the SR-NR system (this

and other studies cited) are about one tenth of

those that induced effects in cutthroat, but his-

torical concentrations in BR crayfish (Schmitt &

Finger, 1982) were only about half those in the

Coeur d’Alene (Fig. 2). Maximum concentrations

of Cd and Zn in crayfish from the BR and the SR-

NR system (this and other studies cited) were also

at least ten-fold lower than those that induced

effects in cutthroat (Farag et al., 1999). However,

it is also important to note that the Coeur d’Alene

invertebrates contained substantial quantitites of

other contaminants, including arsenic, chromium,

copper, and mercury (Farag et al., 1999).

Birds and mammals are sensitive to dietary Pb,

which accumulates to potentially harmful con-

centrations in aquatic organisms. In contrast,

internal Zn concentrations are generally well-

regulated by fish and many other aquatic organ-

isms (Bury, Walker, & Glover, 2003; Crawford &

Luoma, 1993; Giesy & Wiener, 1977), and Zn does

not bioaccumulate. As illustrated by our data,

concentrations in fish and crayfish span only about

a factor of two (Fig. 2), which is consistent with

previous studies (e.g. Schmitt et al., 1993; Schmitt,

2004). Nevertheless, and as is also true for hu-

mans, dietary Zn may be toxic to wildlife at con-

centrations < 2-fold greater than those required

for optimal growth; according to Eisler (1993), Zn
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concentrations in the diets of young chickens and

ducks should be 25–38 mg kg–1 (lg g–1, dw) to

prevent Zn deficiency, 93–120 mg kg–1 for

adequate to optimal growth, < 178 mg kg–1 to

prevent marginal sublethal effects, and

< 2000 mg kg–1 to prevent death. Maximum Zn

concentrations in crayfish collected from the SR

and NR in Oklahoma during 2001–2002 were 173–

227 lg g–1 dw (48–63 lg g–1 ww), which are about

the same as those reported for the SR in Cherokee

County by Wildhaber et al. (1997) but lower than

maximum concentrations in SR tributaries (102–

119 lg g–1 ww, 421–429 lg g–1 dw). The latter

concentrations are within the range associated

with sublethal effects in ducks and chickens (Eis-

ler, 1993). Birds and mammals are comparatively

resistant to Cd; dietary toxicity thresholds in the

studies reviewed by Eisler (1985) were all

>100 lg g–1. However, recent studies have shown

that Cd can act as an estrogen mimic in rats (e.g.

Johnson et al., 2003), indicating that reproductive

effects in wildlife may occur at exposure levels

previously believed to be safe.

Discussion

Metals in fish and crayfish

Maximum concentrations of Pb in crayfish from

the SR-NR system (all studies) were about ten-fold

lower than those obtained from the BR during the

early 1980s (Schmitt & Finger, 1982), but maxi-

mum Cd and Zn concentrations in crayfish from

the TMSD were similar to those from the BR.

Maximum TSMD concentrations of all three

metals in crayfish were also about ten-fold lower

than those in invertebrates from tailings-contami-

nated reaches of the Coeur d’Alene River, Idaho

(Farag, Woodward, Goldstein, Brumbaugh, &

Meyer, 1998, 1999), but Pb, Cd, and Zn concen-

trations documented by Wildhaber et al. (1997,

2000) in crayfish and other invertebrates from SR

tributaries exceeded those associated with delete-

rious effects in fish elsewhere (Farag, Boese,

Woodward, & Bergman, 1994; Woodward,

Brumbaugh, DeLonay, Little, & Smith, 1994).

Metals concentrations in 2001–2002 crayfish were

also variable; those with the greatest ww Pb and Zn

concentrations came from Site 3u (Fig. 2), which is

upstream of known metals sources to the NR, but

the greatest dw and mean concentrations were at

sites on the SR (Table 3). We attribute this varia-

tion to the wide range of moisture content in our

samples (Table 3), which probably reflected both

the inclusion of excess site water and moisture lost

during freezer storage in a few samples; and the

fact that the Site 3u crayfish were obtained only a

short distance upstream of the Elm Creek

confluence (Fig. 1, locations 17 and 20). Regard-

less, data from this and previous studies (Table 5)

indicate that crayfish from the most contaminated

parts of the TSMD contain greater concentrations

of Pb, Cd, and Zn than those from uncontaminated

parts of the SR-NR system. Concentrations of Cd

and Zn in TSMD crayfish also exceeded those from

the BR, but Pb concentrations in BR crayfish were

substantially higher (Table 5).

Maximum concentrations of Pb, Cd, and Zn in

most 2001 fish carcasses from the TSMD were

lower than those in whole fish samples of the same

or similar species reported by previous TSMD

studies (Fig. 2; Table 6). However, the historical

concentrations differ from our maxima by < 2-fold

(Cd and Zn greater, Pb lower; Fig. 2; Table 6).

Whole carp obtained from the NR in Kansas, up-

stream of the TSMD, contained < 0.20–0.60 lg g–1

(ww) of Pb, 0.11–0.38 lg g–1 of Cd, and 45–

65 lg g–1 of Zn (Allen, Blackford, Tabor, &

Cringan, 2001); these concentrations are greater

than the lowest concentrations in our carcass

samples from the TSMD, but similar to (Cd) or less

than (Pb, Zn) our maxima (Fig. 2; Table 6). Metals

concentrations in whole channel catfish, large-

mouth bass, and crappie reported by Allen and

Wilson (1992) were similar to 2001 carcass con-

centrations. Most 2001 carcass metals concentra-

tions from the BR were within the ranges reported

for BR fillets by Gale et al. (2004); however, and as

noted previously, these authors reported concen-

trations as great as 42.1 lg g–1 Pb, 1.00 lg g–1 Cd,

and 173 lg g–1 Zn in whole sunfish (Lepomis spp.).

It therefore appears that metals concentrations in

whole fish samples from the TSMD differ by only

about two-fold from those in the carcass samples

we analyzed, and that the carcass concentrations

used together with NOAEL-based TRVs reason-

ably represent metals risk to wildlife associated

with the consumption of fish from the TSMD. In
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contrast, carcass concentrations may underesti-

mate the risks of Pb in fish from the BR to wildlife.

Concentrations of Pb, Cd, and Zn in carp, bass,

crappie, and catfish carcasses from our Oklahoma

sites were within the ranges reported for whole

fish of the same species from the large rivers in

the Central U.S. sampled in 1995 by Schmitt

(2004). However, Zn concentration in whole carp

obtained from impoundments in Oklahoma in

1995 by Schmitt (2004) were as great as 150 lg g–1

(ww), which exceeded even the maximum previ-

ously reported concentration in whole carp from

the TSMD (Table 6). Concentrations of Pb and

Cd in TSMD carp carcasses were greater than

those in whole carp from elsewhere in Oklahoma,

Kansas, and Missouri, however (Table 6). Com-

paratively high Zn concentrations in carp from

Oklahoma reservoirs may reflect widespread

atmospheric pollution from Zn smelters, which

operated historically throughout northeastern

Oklahoma and adjoining parts of Kansas and

Missouri. However, it is also important to note

that Zn concentrations > 100 lg g–1 (ww) in

whole carp have been reported from sites not

directly associated with mining (Schmitt, Zajicek,

May, & Cowman, 1999; Schmitt, 2004). Goldstein

and DeWeese (1999) reported mean concentra-

tions of only 0.035 lg g–1 (ww) Pb, 0.055 lg g–1

Cd, and 54 lg g–1 Zn (all computed from dw

values assuming 75% moisture) in whole carp

from rural areas of Minnesota and North Dakota,

which may more accurately represent background

concentrations. All SR and NR concentrations

(this and previous studies, including the NR up-

stream of the TSMD) exceeded the Pb and Cd

concentrations for Minnesota and North Dakota,

but TSMD Zn concentrations were similar (Ta-

ble 6). Overall, these findings support the gener-

ally held assumption that Zn concentrations are

much more highly regulated by fish than con-

centrations of Pb and Cd.

Carcass Pb concentrations in carp (1.39–

4.96 lg g–1) and bass (0.57–1.45 lg g–1) from the

BR were substantially greater than those in whole

carp and bass from the large river sites sampled

by Schmitt (2004) and were about the same as

those in whole carp (4.39 lg g–1) from the Mis-

sissippi River downstream of a smelter complex

in Herculaneum, Missouri (Schmitt et al., 2002).

However, whole channel catfish from Hercula-

neum contained only slightly greater concentra-

tions of Pb (1.22 lg g–1) than the maximum

carcass Pb concentrations in channel catfish

samples from Oklahoma (0.91 lg g–1, Site 1;

Fig. 2), and carcass Cd and Zn concentrations in

carp and catfish from Oklahoma were about the

same as those in whole fish of the same species

from Herculaneum (Schmitt et al., 2002). Our

results therefore confirm previously reported

elevated Pb concentrations in fish from the BR,

which have not changed appreciably since the

1980s (Dwyer et al., 1988; Gale et al., 2004; Sch-

mitt & Finger, 1987; Schmitt et al., 1984, 1993),

and are consistent with the current Pb-based fish

consumption advisory for the BR (MDHSS,

2005). We also note that the flathead catfish from

the TSMD we analyzed were relatively small for

this species (470–651 mm, 0.5–2.5 kg; Brumbaugh

et al., 2005), and that greater concentrations (and

associate risk) may occur in larger fish; concen-

trations of 12 lg g–1 (ww) Pb, 0.34 lg g–1 Cd, and

23 lg g–1 Zn were reported in the muscle tissue of

a 1-m long flathead catfish from a site on the BR

where concentrations in channel catfish fillets

were only 0.13 lg g–1 Pb, 0.03 lg g–1 Cd, and

5.1 lg g–1 Zn (Schmitt & Finger, 1982). Collec-

tively, our results and those of the other studies

cited indicate that concentrations of Pb and Cd in

TSMD fish are elevated relative to other parts of

the Midwest, but that Pb concentrations in BR

fish are substantially higher.

In addition to being higher, metals concentra-

tions in carp also varied more than in the other

fish species we analyzed. Consequently, differ-

ences among sites were not statistically significant

(Table 4). In addition, both the highest and low-

est concentrations of Pb and Cd in carp were in

samples from Site 3 (Fig. 2, Table 4), which is

nominally upstream of known sources of metals

to the NR. Concentrations of Zn in crayfish from

Site 3 were also greater upstream of Elm Creek

than downstream (Table 3). Brumbaugh et al.

(2005) attributed the variation in carp to fish

movement caused by severe flooding in the

months preceding collection of the fish. However,

and as noted for crayfish, some fish from Site 3

were obtained < 1 km upstream of the mouth of

Elm Creek.
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Uncertainties in the assessment of metals

hazards to wildlife and humans

In addition to the previously noted differences

between carcass and whole-fish metals concen-

trations, there are other substantial sources of

uncertainty in both the human health and wildlife

food chain exposure analyses. First, the wildlife

TRVs for Zn are currently not defined as con-

sensus values; the NOAEL-based value we used

(from Sample, Opresko, & Suter, 1996) is cur-

rently being reviewed pending adoption as con-

sensus values, as has already been done for Pb

and Cd (USEPA, 2003a, b). Second, a wide range

of body weights characterize the various life

stages of the organisms (including humans) eval-

uated. We selected values believed to be repre-

sentative for both humans (adults and children)

and wildlife (adults only) from available data. For

wildlife, the exposure of (and corresponding risk

to) smaller, younger animals would exceed that of

the adult animals we evaluated, which could be

especially problematic for nestling birds fed con-

taminated fish or crayfish. Third, caveats analo-

gous to those identified for the evaluation of

human health risks based solely on food intake

also apply for wildlife. As recognized by the

USEPA (1993), the incidental ingestion of con-

taminated sediments by wildlife feeding on

aquatic organisms from an area such as the

TSMD, along with the inhalation of contaminated

dust and any water consumed by the animals

either through drinking or while feeding, may

represent additional and important routes of

exposure; for example, as much as 30% of the diet

of sandpipers (Calidris spp.) may be composed of

sediment (Beyer, Connor, & Gerould, 1994).

Although sediment and water contamination are

widespread in the TSMD, none of these latter

exposure routes have been incorporated into the

screening-level analyses presented here. Con-

versely, it is unlikely that the diet of the organ-

isms evaluated (or those they might represent as

surrogates) would be composed of either 100%

crayfish or carp (or of other fish or invertebrates

contaminated to the same extent) from the most

contaminated parts of the TSMD. Fourth, the

concentrations of Pb, Cd, and Zn in the crayfish

and large fish we analyzed might not accurately

estimate the concentrations in other prey organ-

isms such as benthic insect larvae, snails, and

smaller fish. Besser, Brumbaugh, May, and Sch-

mitt (2006) reported that metals concentrations in

benthic insect larvae from streams draining the

New Lead Belt of southeastern Missouri were

typically higher than those in crayfish, which were

both higher than concentrations in snails. Con-

centrations of Pb and Cd, but not of Zn, in small

fish (largescale stoneroller, Campostoma oligol-

epis; and juvenile longear sunfish) were higher

than concentrations in all invertebrates. In addi-

tion, it is likely that metals concentrations in bi-

valve mollusks are higher even still (e.g. Schmitt

& Finger, 1982). Consequently, the incorporation

of metals concentrations in crayfish and large fish

into the risk analysis for small birds and mammals

is reasonable. And finally, the risk assessment

approaches used here assume that the contami-

nants evaluated act independently. Lead, Cd, Zn,

and other metals co-occur throughout the TSMD,

and their cumulative effects are not necessarily

independent or additive (e.g. Joselow, 1980;

Schmitt et al., 1984, 1993). Regardless of these

uncertainties, however, the data in Tables 5 and 6

indicate the potential for adverse effects in

humans and wildlife from metals in aquatic

organisms in the TSMD, and that a more com-

plete risk assessment is warranted.

In 2002, one year after our fish were collected,

the Oklahoma Department of Environmental

Quality (ODEQ) initiated a more thorough

investigation of Pb, Zn, and Cd concentrations in

TSMD fish that corroborated many of our find-

ings (ODEQ, 2003). The ODEQ collected sam-

ples representing multiple fish species from the

Oklahoma waters of the TSMD in northeast

Oklahoma and prepared the fish for analysis as

skinless, boneless fillets; as head-on, eviscerated

carcasses; and as whole fish. Metals concentra-

tions were greatest in whole fish and head-on

carcasses and lowest in fillets of the same species.

Our concentrations in headless carcasses were

typically greater than ODEQ fillet concentrations

but less than the ODEQ values for head-on car-

casses and whole fish. The ODEQ (2003) data

also indicated that metals concentrations were

generally greater at sites on the SR than on the

NR. Based on these findings and application of
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the risk model for Pb (USEPA, 1994b), the

ODEQ recommended that only fillets of fish from

the Oklahoma waters of the TSMD be eaten.

Summary and conclusions

Our results and those of a subsequent study

(ODEQ, 2003) corroborated those of previous

investigations showing that metals from historical

mining activity in the TSMD have been trans-

ported to the SR and NR and accumulated by

aquatic organisms important to Native Americans.

Comparatively high concentrations of metals were

evident in fish and crayfish from both the SR and

the NR. Within the TSMD, concentrations were

generally greater in samples from the SR than in

the NR, but there was considerable variability

within and among sites. Overall, concentrations of

Pb in TSMD fish and crayfish were greater than

those from reference sites, but were lower than in

the BR and other historical mining areas. Never-

theless, data from this and other studies indicate

that concentrations of Pb and Cd in carp, catfish,

and crayfish from some TSMD sites are sufficiently

high to represent a potential health risk to human

consumers and to possibly warrant consumption

advisories. Based on USEPA and WHO recom-

mendations and subject to previously discussed

caveats, the human consumption of carp and

crayfish prepared in the manner described here

(i.e. headed and eviscerated) from the most con-

taminated TSMD sites could warrant restriction

due to Pb or Cd. Channel catfish consumption

might also be restricted due to Pb, but Cd con-

centrations in catfish were lower than in crayfish

and carp and would probably not warrant restric-

tion. Concentrations of both metals were low in

bass and crappie, and their consumption would

also probably not be restricted. Concentrations of

Zn were comparatively high in carp and crayfish,

but would probably not warrant restriction. The

consumption of carp and other fish from the BR is

currently restricted due to Pb by the MDHSS

(2005); and the ODEQ (2003) recommends the

consumption of only fillets of fish from the Okla-

homa waters of the TSMD, also due to Pb.

Risk to fish and to carnivorous wildlife was

evaluated by comparing concentrations in fish and

crayfish to benchmark values from the scientific

literature. Risk to wildlife was also evaluated

using an approach based on food chain analysis,

which is analogous to the procedures used to as-

sess human health risk. The conclusions of these

assessments were essentially identical; i.e., min-

ing-derived metals in aquatic organisms may also

represent risk to carnivorous wildlife in the

TSMD. Preliminary analysis indicates some risk to

birds from the consumption of Pb and Zn con-

taminated fish and invertebrates, but not Cd. This

assessment is also consistent with recent reports of

biochemical effects in fish (Schmitt et al., 2005;

Yoo & Janz, 2003) and of Zn poisoning in TSMD

waterfowl (Beyer et al., 2004). Collectively, the

results of this and the other investigations cited

indicate that fish in the TSMD are also exposed to

comparatively high concentrations of Pb, Cd, and

Zn and possibly other elemental contaminants

from mining. Further studies should seek to re-

solve some of the uncertainties associated with

other routes of wildlife exposure and to more

thoroughly document contaminant effects in fish

and wildlife.
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