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Abstract: Special features in real marine environments such as cloud clutter, sea glint and weather

conditions always result in various kinds of interference in optical images, which make it very

difficult for unmanned surface vehicles (USVs) to detect the sea-sky line (SSL) accurately. To solve

this problem a saliency-based SSL detection method is proposed. Through the computation of

gradient saliency the line features of SSL are enhanced effectively, while other interference factors are

relatively suppressed, and line support regions are obtained by a region growing method on gradient

orientation. The SSL identification is achieved according to region contrast, line segment length and

orientation features, and optimal state estimation of SSL detection is implemented by introducing

a cubature Kalman filter (CKF). In the end, the proposed method is tested on a benchmark dataset

from the “XL” USV in a real marine environment, and the experimental results demonstrate that the

proposed method is significantly superior to other state-of-the-art methods in terms of accuracy rate

and real-time performance, and its accuracy and stability are effectively improved by the CKF.

Keywords: unmanned surface vehicle; sea-sky line; gradient saliency; region growing; line

support region

1. Introduction

In recent years, with their rapid development USVs are playing more and more important roles in

various areas such as meteorological monitoring, maritime search and rescue, enemy reconnaissance

and precision military strikes. To navigate autonomously and accomplish a variety of missions without

human interventions, USVs need to be equipped with different sensors like radars, cameras and

thermal infrared imagers to perceive and comprehend the marine environment and all kinds of targets

around them, and intelligent behaviors including target detection, identification and tracking are

implemented autonomously. As a result, cameras have become an indispensable important sensor for

USVs due to their high resolution, abundant information, similarity to the human visual system and

low cost.

In the optical images obtained by cameras in the marine environment, the sea-sky line (SSL) is

one of the most important cues. Firstly, in optical images where the SSL represents a dividing line, the

sky region above and the sea region below have different pixel value distributions [1], so the accurate

detection of SSL is of great benefit to target detection. Secondly, while a distant target enters into

the field of view (FOV) of a camera, in optical images it always appears around the SSL, and then

moves into the sky region or the sea region during the approaching process, therefore the detection of

SSL is an effective measure to improve the target detection, identification and tracking performance

through narrowing the target searching range and suppressing false detections. Thirdly, according to

the position and motion pattern of the detected SSL, the motion status of USVs can be estimated and
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motion compensation of images can be implemented, which is quite applicable to USV target detection

and tracking.

In optical images the SSL presents itself a dividing line composed of a gradient of maximum

pixels between the sky region and the sea region, which is a straight line without consideration of sea

surface curvature and optical distortion. However, in optical images from real marine environments

there often exist strong interferences, including cloud clutter and sea glint, besides, changeable weather

conditions like fog, snow or rain can seriously decrease the image contrast and sharpness and brings

about noise in images, causing great difficulties for accurate SSL detection.

Kim, et al. extracted horizon pixels based on calculation of a column directional gradient, then a

random sample consensus (RANSAC) algorithm was applied to select inlier horizon pixels and the

final horizon was detected stably by least squares optimization [2]. However, the RANSAC line fitting

method is quite sensitive to widely distributed noise and strong edges and the authors claimed sensor

pose information was exploited to predict the horizon location.

Zou, et al. proposed a shearlet-based edge identification method for SSL detection in infrared

images [3]. Shearlets are capable of direction information analysis and can provide edge geometric

features, but the computational complexity is rather high and such a method is not suitable for real-time

applications at all.

Rahman, et al. accomplished horizon detection with the Canny edge detection and Hough

transform methods [4–8], but the Hough transform needs a compromise between detection accuracy

and computational complexity, moreover, it suffers from interference of strong edges and noise like

cloud clutter and wave glint, and the Hough transform often fabricates false line segments.

Tang, et al. proposed a SSL detection method based on Radon transform [9], but this method

faces the same problems as the Hough transform, besides, the Radon transform cannot determine the

endpoints of line segments.

Rahul, et al. proposed a theoretical framework for generating pseudospectral images from

spectrum analysis of color images, and then an ellipse fitting method derived from calculation of inertia

moments of connected components in binary edge images was introduced for horizon detection [10].

However, when the image contrast or sharpness is weak, or strong interference edges exist, the

probability of false detection increases significantly.

Ahmad, et al. designed a maximally stable external edge detection method on the basis of Canny

edges, then a support vector machine classifier was trained to classify edge points using local scale

invariant features, and finally, a dynamic programming method was applied to extract the horizon

lines [11]. However, machine learning methods always need a large amount of samples to train

the classifier, and the great variations of illumination, reflection, scattering and clutter in marine

environments brings great challenges for these methods.

Nasim, et al. presented an approach employing the segmentation of sea surface scenes into several

clusters with a K-means algorithm, then analyzed image clusters to extract the sky region and find a

horizon path between the sky region and the other clusters [12], but for these region segmentation

methods, special features in the sea-sky scene such as low contrast, weak sharpness, cloud clutter and

sea glint may lead to large misalignment or false horizon line detections.

In this paper a novel saliency-based SSL detection method is proposed. Through the computation

of gradient saliency the line features of SSL are enhanced effectively, while other interference factors

are relatively suppressed, and line support regions (LSR) are obtained by a region growing method

based on gradient orientation. The SSL identification is achieved according to region contrast, line

segment length and orientation features of LSRs, and an optimal state estimation of SSL detection is

implemented by introducing CKF.

The structure of this paper is as follows: firstly, the hardware architechture and the principle of the

optoelectronic imaging unit mounted on the “XL” USV are introduced. Then the key algorithms, such

as gradient saliency calculation, region growing algorithm based on gradient orientation, improvement

of detected line features, identification of SSL, and improvement of accuracy and stability based on
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CKF, are detailed in the following sections. Finally, our proposed method is tested on a benchmark

dataset from the “XL” USV in a real marine environment to demonstrate its effectiveness.

2. Hardware Architecture

An optoelectronic imaging unit capable of 2-axis image stabilization is developed in our research

work, and it is mounted on the “XL” USV to acquire optical images in real marine environments.

The hardware architecture is presented in Figure 1, where the optoelectronic imaging unit consists

of three main parts: horizontal bearing stabilization servo, vertical pitch stabilization servo and

stabilization control. Horizontal bearing stabilization servo, the principle of which is the same as

vertical pitch stabilization servo, uses a MEMS gyroscope to measurethe horizontal angular velocity

caused by USV motion disturbances on the camera, and uses an angle encoder to measure the

horizontal angular position of the camera. The sensor data is transmitted to the stabilization control,

which generates control signals for the torque motor according to PID control law, and the torque

motor drives the slip ring on which the camera is mounted to rotate to compensate the horizontal

angular velocity caused by disturbances.

Optoelectronic Imaging Unit

Horizontal Bearing Stabilization Servo

MEMS Gyroscope Angle Encoder Torque Motor

Vertical Pitch Stabilization Servo

MEMS Gyroscope Angle Encoder Torque Motor

Stabilization Control

Video StreamVideo Signal

Angular 
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Sensor Data & 

Control Signal

Figure 1. Hardware architecture of the optoelectronic imaging unit.

The digital video signal of the camera is grabbed and compressed into a video stream by

stabilization control system, which executes some intelligent actions such as SSL detection, target

detection, target identification and target tracking at the same time. The video stream can be saved on

local hard disks or transmitted to a real-time monitoring terminal far away through a suitable datalink.

3. Detection of Line Features

The diagram of the proposed SSL detection method is presented in Figure 2. Firstly, the gradient

saliency is calculated based on RGB color space of optical images. Secondly, the saliency list is

constructed and a region growing algorithm is applied to produce LSRs. Thirdly, the line features

are extracted and improved on the basis of detected LSRs. Finally, the real SSL needs to be identified

from candidate line features, and the accuracy is further improved by CKF according to previous state

estimation and current detection.
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Figure 2. Block diagram of the proposed SSL detection method.

3.1. Gradient Saliency

Saliency originates from visual uniqueness, unpredictability, rarity or surprise, and it is tightly

related to human perception and processing of visual stimuli. The human visual system always pays

more attention to variations in images like color, gradient and edges, and high gradient edges arouse

intense stimuli in the visual system, in other words, high gradient edges obtain high saliency [13].

In this paper global gradient saliency based on the RGB color space is introduced. The reason for

choosing RGB color space instead of gray space in the calculation of gradient saliency is that gradient

information is lost in the transformation from a RGB color image to a gray image, for instance, different

color values could be projected into the same gray value [14], which will have a negative influence on

SSL detection as a result.

Given an optical image I, the gradient submatrix for each color can be calculated through

convolution of the color value submatrix with Sobel operators, thus the gradient saliency of a pixel i in

image I is formulated as a distance measure between the gradient of pixel i and the other pixels:

Spiq “
ÿ

jPI

Dpgi, gjq (1)

where Dpgi, gjq denotes the distance measured between gradient vectors gi and gj of pixels i and j

in image I. Let the pixel number in image I be N the computational complexity of gradient saliency

calculation for all pixels is O(N2). Actually, the definition of gradient saliency ignores spatial relations

among pixels, therefore pixels with the same gradient will have the same gradient saliency, and

gradient saliency can be rewritten as follows [13]:

Spiq “
n

ÿ

k“1

hpgkqDpgi, gkq (2)

where n is the number of distinct gradient vectors in image I, gk and hpgkq denote the gradient vector

and its probability, respectively. Then the computational complexity of gradient saliency calculation is

reduced to O(N + n2). The distance measure Dpgi, gkq is described as follows:

Dpgi, gkq “ ||gi ´ gk||1

gi “
”

BRi BGi BBi

ıT (3)
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where ||gi ´ gk||1 denotes the ℓ1 norm of vector gi ´ gk. If the gradient level of each color is

normalized to l, then the number of distinct gradients is n = l3 and there will be 3l kinds of gradient

saliency. The accurate quantization of gradient saliency is beneficial to SSL detection accuracy, but the

computational cost is high and there will be more SSL gaps. Subsequently, in this paper the gradient

amplitude and orientation are used for gradient saliency calculation as follows [15]:

gi “
!

1
2

“

pϕxx `ϕyyq ` pϕxx ´ϕyyq ¨ cos2θi ` 2ϕxy ¨ sin2θi

‰

) 1
2

θi “ 1
2 arctan

´

2ϕxy

ϕxx´ϕyy

¯ (4)

where θi is gradient orientation of pixel i, and quantities ϕxx, ϕxy and ϕyy are defined as follows:

ϕxx “ BRi
Bx

BRi
Bx ` BGi

Bx
BGi
Bx ` BBi

Bx
BBi
Bx

ϕxy “ BRi
Bx

BRi
By ` BGi

Bx
BGi
By ` BBi

Bx
BBi
By

ϕyy “ BRi
By

BRi
By ` BGi

By
BGi
By ` BBi

By
BBi
By

(5)

Then the distance measure Dpgi, gkq is simplified as follows:

Dpgi, gkq “ |gi ´ gk| (6)

If the gradient level is normalized to l, then the number of distinct gradients is n = l and there will

be l kinds of gradient saliency. The computational cost is effectively reduced, and experiments show

that the continuity and accuracy of detected SSL are satisfactory.

The gradient maps and gradient saliency maps of optical images acquired by the “XL” USV in

typical adverse weather are presented in Figure 3. Figure 3a–c shows the typical original images

obtained in rainy weather, sunny weather with strong illumination and foggy weather, respectively.

                 
 

      

   

     
   

     
     

   
     

     
   

     

 

 
Figure 3. Gradient maps and gradient saliency maps of optical images in typical adverse weather

conditions. (a–c) are original images; (d–f) are gradient maps; (g–i) are gradient saliency maps.
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The gradient maps shown in Figure 3d–f are obtained through convolution of the original images

with Sobel operators; note that there exist high gradient edges formed by certain elements such as the

USV hull, mountains, sunlight illumination and wave glint, which make it very difficult to distinguish

and accurately detect SSLs with relatively weak gradient. In gradient saliency maps, as shown in

Figure 3g–i, the line features of SSL are effectively enhanced, although strong edges formed by various

interference still exist and part of the SSL is missing, the SSL can already be detected accurately in

all probability.

3.2. Region Growing Based on Gradient Orientation

The basic idea of region growing methods is that spatially neighboring pixels with similar

properties should be clustered together to constitute connected regions. The SSL in optical images

shows typical line features, which are actually rectangular regions with a width of several pixels

formed by neighboring pixel sets with high gradient and similar orientation, therefore we can consider

the use of region growing methods to detect line features in gradient saliency maps [16]. In this

paper the seed points of region growing are selected according to gradient saliency, the criterion for

growth is defined as similarity of gradient orientation, and the proximate rectangle regions with similar

gradient orientation, known as LSR, are obtained as a result. Observing gradient saliency maps, we

can conclude that pixels with high gradient saliency and geometric property actually account for a very

small proportion, thus we can select a specific proportion of pixels with the highest gradient saliency

to participate in region growing, and that will effectively decrease the computational complexity of the

region growing method. The region growing process based on gradient orientation can be described

as follows:

Step 1. Calculate the histogram of gradient saliency, select 10% of pixels with the highest gradient

saliency in the histogram and sort them in the order of gradient saliency to construct a saliency list L,

set all the pixels in L as “unlabeled”;

Step 2. Pick up an “unlabeled” pixel i from saliency list L in sequence, initialize a LSR Ck as a

null set, add pixel i into Ck and set it as “labeled” in L, and initialize the region orientation θk of Ck as

gradient orientation of pixel i;

Step 3. For each pixel j in Ck, if its 8-connected pixel l is “unlabeled” in saliency list L, and satisfies

the condition as follows [16]:

|θk ´ θl| ă τ (7)

where θl is gradient orientation of pixel l, τ is tolerance of region growing and τ “ π{8, then add pixel

l into Ck and set it as “labeled”. Update the region orientation as follows:

θk “ arctan

ř

jPCk

sinθj

ř

jPCk

cosθj
(8)

If there is a new pixel added into Ck, then repeat this step;

Step 4. Repeat Steps 2 and 3 until all the pixels in saliency list L are “labeled”.

As shown in Figure 4a–c, the gradient saliency histograms are calculated by the gradient saliency

maps shown in Figure 3g–i, where the red dot dashed lines denote the thresholds of 10% of pixels with

the highest gradient saliency. Figure 4d–f are saliency lists displayed in graphical format showing that

the saliency lists essentially contain all the effective edges in the corresponding gradient saliency maps.
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Figure 4. Histograms of gradient saliency and saliency list images. (a–c) are histograms of gradient

saliency; (d–f) are saliency list images.

The region growing process based on gradient orientation is illustrated by the example of a

20 ˆ 20 local region around SSL, as shown in Figure 5.

 

 

 
 
 

Φ

Φ
  

    

  

Figure 5. Region growing process based on gradient orientation. (a) is the original image of the local

region; (b–d) show the LSR in growing; (e) is the final LSR in the end of region growing; (f) is minimum

enclosing rectangle of the LSR.

Figure 5a presents the original image of the local region, and the gradient orientation of each

pixel is indicated by an arrow, as depicted in Figure 5b, where the red one denotes a seed point with

maximum gradient saliency. In Figure 5c a LSR is obtained by region growing from the seed point,

through appending to the seed point neighboring pixels that have high gradient saliency and similar

gradient orientation, the LSR continues growing along the SSL, as shown in Figure 5c, until the final

LSR depicted in Figure 5e is formed. The blue rectangle in Figure 5f is the minimum enclosing rectangle

of the obtained LSR.
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3.3. Line Feature Extraction and Improvement

LSRs obtained by the region growing method indicate line features that exist in optical images,

the mathematical description of line features can be generated by calculating statistical parameters of

the LSR. The saliency centroid pxk, ykq of LSR Ck can be calculated as follows:

xk “

ř

iPCk

Spiqxi

ř

iPCk

Spiq
, yk “

ř

iPCk

Spiqyi

ř

iPCk

Spiq
(9)

where pxi, yiq is pixel coordinates of pixel i, Spiq is gradient saliency of pixel i. The correlation matrix

Φk of LSR Ck is formulated as follows [16]:

Φk “

«

φxx φxy

φxy φyy

ff

(10)

where φxx, φxy and φyy are second order saliency central moments defined as follows:

φxx “

ř

iPCk

Spiqpxi´xkq2

ř

iPCk

Spiq
,φyy “

ř

iPCk

Spiqpyi´ykq2

ř

iPCk

Spiq

φxy “

ř

iPCk

Spiqpxi´xkqpyi´ykq

ř

iPCk

Spiq

(11)

The main orientation θk of LSR Ck should be the angle denoted by eigenvector associated with

the smaller eigenvalue of correlation matrix Φk. The line feature represented by Ck corresponds to

a geometric object that is a minimum enclosing rectangle Rk of Ck with the main orientation θk. To

calculate the length lk and width wk of Rk for LSR Ck, which are also the size of the line feature

represented by Ck, all the pixels in Ck are rotated by θk around centroid pxk, ykq, and the length lk and

width wk are set to the smallest values that make the rectangle cover the complete LSR Ck.

The region growing method exploits similarity of gradient orientation as the predefined criterion

for growth, the neighboring pixels, the gradient orientation of which is within the tolerance to main

orientation of LSR, are appended to the LSR, thus some curve edges with small curvature or polyline

edges with small orientation change may grow into LSR. In two local regions of the gradient saliency

maps shown in Figure 6, due to the small variation of gradient orientation, the polyline edge in

Figure 6a and the arc edge in Figure 6b, which are marked by red rectangles, form two false LSRs

after the region growing process. If statistical parameters are computed on the basis of a false LSR,

the line feature error will be huge, thus the curve edges and polyline edges should be approximately

interpreted as several line features.
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Figure 6. False detections of line features. (a) is polyline edge; (b) is curve edge.
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A LSR is improved according to its aligned point density, which is defined as follows:

dk “
npCkq

npRkq
“

npCkq

lk ¨ wk
(12)

where npCkq and npRkq denote the pixel number of LSR Ck and its minimum enclosing rectangle Rk, dk

is the aligned point density of LSR Ck. If the aligned point density dk exceeds the threshold td, the LSR

represents an effective line feature, otherwise the LSR should be interpreted as several line features,

that means it needs to be cut into several LSRs by the following methods:

Method 1. Reduce the tolerance of the region growing method to τ “ π{16, mark all the pixels

included in the LSR as “unlabeled” and repeat region growing on this pixel set, compute the aligned

point density of the new LSR, if it still does not exceed threshold the td, try Method 2;

Method 2. Define the radius rk of LSR Ck as the maximum distance between the seed point and

all the other pixels in Ck, reduce rk to 80% of current value and remove all the outlier pixels from Ck,

then repeat this procedure until the aligned point density dk exceeds threshold td. The threshold td

needs to be set by experience, if td is set too large, the edges will be overcut, else if td is set too small,

the aforementioned curve and polyline problem cannot be solved; generally td is set to 0.7.

The computed line features of LSRs are shown in original optical images, as depicted in Figure 7.

Note that the curve edges in images are approximately interpreted as several line segments due to

improvement of line features. Consequently, the negative influence of various edges on SSL detection

is effectively suppressed by improvement of line features, otherwise there will be huge error in

computation of line features for SSL detection, when other edges accidentally intersect SSL with

small angles.

  
(a) (b) (c) 

 ψ
ψ

ψ    



ψ ψ

    

  

  

    
  ψ ψ

 ψ 

ψ ψ  

 ψ   

Figure 7. Line feature detection results of optical images in typical adverse weather conditions. (a–c) are

optical images with extracted line features.

4. Identification of SSL

If we observe the line feature detection results of optical images acquired under typical adverse

weather condtions, it is easy to discover that there are gaps in the SSL, or even part of the SSL is missing

due to the adverse effect of factors such as target position, illumination, rain, snow and fog. To achieve

accurate identification of SSL, the line features of SSL need to be merged into an integral line feature

first. Suppose that the line feature set detected from an optical image is denoted by tψkuwhere ψk is

the unique parameter vector of a line feature:

ψk “
“

x1k, y1k, x2k, y2k, θk

‰T
(13)

where px1k, y1kq and px2k, y2kq are coordinates of the start point and the end point of the line feature,

θk is the orientation of the line feature. Then the necessary and sufficient condition that two line

features ψj and ψk belong to the same line segment is formulated as follows:
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ˇ

ˇθj ´ θk

ˇ

ˇ ă δ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1j y1j 1

x2j y2j 1

x1k y1k 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă λ||px1j, y1jq ´ px2j, y2jq||
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1j y1j 1

x2j y2j 1

x2k y2k 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă λ||px1j, y1jq ´ px2j, y2jq||
2

(14)

where δ is the line feature orientation tolerance and δ “ π{32, λ is the line feature offset tolerance

and λ “ 2. When this condition is met, line features ψj and ψk are merged into a new line feature.

To reduce the computational complexity of line feature merging, the line feature set tψku is arranged

by the order of orientation θk, so each time we only need to examine if two neighboring line features

ψk and ψk`1 satisfy the condition above. If there are nψ line features in tψku, then the computational

complexity is reduced from Opn2
ψq to Opnψlognψq. The experimental results of line feature merging

are shown in Figure 8, where the blue line segments denote new line features, which are obtained by

merging several line features that satisfy the condition above.

  
(a) (b) (c) 

 ψ

 

     
 
 



 



 



  
    

 



Figure 8. Line feature merging results of optical images in typical adverse weather conditions. (a–c) are

optical images with improved line features.

Note that besides the line feature denoted by SSL, there are other line features produced by wave

glint, the USV hull, the target, mountains, etc. Therefore the SSL needs to be identified from among the

line feature set according to region contrast, line segment length and orientation features. The region

contrast ηk of line feature ψk is formulated as follows:

ηk “
ÿ

j‰k

exp

¨

˝´
||pxk, ykq ´ pxj, yjq||2

2

σ2
η

˛

‚npCjq
ˇ

ˇSpCkq ´ SpCjq
ˇ

ˇ (15)

where SpCjq and SpCkq denote the mean gradient saliency of LSRs Cj and Ck corresponding to line

features ψj and ψk, respectively. pxj, yjq and pxk, ykq are the saliency centroids of Cj and Ck, variance

ση controls the weighting strength of spatial distance between saliency centroids and in this paper

σ2
η “ 0.64 is used.

The likelihood µk of each line feature belonging to SSL can be calculated as follows:

µk “ exp

ˆ

lk
l0

´ 1

˙

ηk
ř

ηj
cosθk (16)

where lk and l0 denote length of the line feature and the image diagonal, respectively. The line feature

with the maximum likelihood µk will be selected as the SSL detection result.
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5. Detection Accuracy Improvement

The Kalman filtering theory considers a processed signal as the system output under the effect

of Gaussian white noise, and the relationship between input and output can be described by state

space equations, thus the optimal state estimation can be recursively calculated by previous system

state estimation and current measurement [17,18]. To solve the high dimensional nonlinear filtering

problems, Haykin, et al. proposed a spherical-radial cubature rule to numerically compute multivariate

moment integrals encountered in the nonlinear Bayesian filter, and this nonlinear filter, known as

CKF, achieves higher accuracy and stability for state estimation of nonlinear system over conventional

nonlinear filters [19,20]. There exist various interference factors like low contrast, low sharpness and

noise in optical images from real marine environment, besides there are some approximations in SSL

detection method, and those cause errors in SSL detection results.

To illustrate the noise distribution pattern in SSL detection results, we have mounted the

optoelectronic imaging unit at the same height above the sea surface as the “XL” USV so that the

camera is absolutely stationary without any impact of USV motion status. Optical images are acquired

under different weather conditions and camera poses, and the SSL detection results are compared

with the ground truth labeled by experts. The comparison verifies that the noise amplitude obeys a

Gaussian distribution and its power spectral density is uniformly distributed, approximately. Thus

we can use CKF to estimate the actual position of the SSL. The geometric model of SSL detection is

shown in Figure 9, where W and H are the image width and height, y1 and y2 are vertical coordinates

of points where the SSL intersects with the left and right image borders, y0 is the vertical coordinate of

the midpoint on the SSL, and θ0 is the orientation of the SSL.
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H
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Figure 9. Geometric model of SSL detection.

The process equation for the SSL detection problem is formulated as follows:

ŷk`1 “ f
`

ŷk

˘

` vk “

»

—

—

—

—

—

—

—

–

1 ∆t 0.5 ¨ ∆t2 0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t 0.5 ¨ ∆t2

0 0 0 0 1 ∆t

0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨ ŷk ` vk (17)

where ŷk is the system state at time k and ŷk “
”

y1
.
y1

..
y1 y2

.
y2

..
y2

ıT

k
, vk is Gaussian white

noise with zero mean and covariance Qk, ∆t is the period for acquiring optical images.
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The measurement equation is formulated as follows:

ẑk`1 “ hpŷk`1q ` wk`1 “

« y1`y2
2

atanp
y2´y1

W q

ff

k`1

` wk`1 (18)

where wk`1 is Gaussian white noise with zero mean and covariance Rk`1. The cubature point set and

the corresponding weights are set as follows [19]:

εi “
b

m
2 r1si

ωi “ 1
m , i “ 1, 2, ¨ ¨ ¨ , m “ 2n

(19)

where r1si is the i-th element of a complete fully symmetric set of points, n is state dimension and

n “ 6 in this paper. The cubature Kalman filtering process is described as follows [20]:

5.1. Time Update

Factorize state covariance Pk|k with Cholesky decomposition:

Pk|k “ Sk|kST
k|k (20)

Evaluate the cubature points:

Yi,k|k “ Sk|kεi ` ŷk|k, i “ 1, 2, ¨ ¨ ¨ , m “ 2n (21)

Evaluate the propagated cubature points:

Y˚
i,k`1|k “ fpYi,k|kq (22)

Estimate the predicted state and error covariance:

ŷk`1|k “ 1
m

m
ř

i“1
Y˚

i,k`1|k

Pk`1|k “ 1
m

m
ř

i“1
Y˚

i,k`1|kY˚T
i,k`1|k ´ ŷk`1|kŷT

k`1|k ` Qk

(23)

5.2. Measurement Update

Factorize predicted error covariance Pk`1|k with Cholesky decomposition:

Pk`1|k “ Sk`1|kST
k`1|k (24)

Evaluate the cubature points:

Yi,k`1|k “ Sk`1|kεi ` ŷk`1|k, i “ 1, 2, ¨ ¨ ¨ , m “ 2n (25)

Evaluate the propagated cubature points:

Zi,k`1|k “ hpYi,k`1|kq (26)

Estimate the predicted measurement and error covariance:

ẑk`1|k “ 1
m

m
ř

i“1
Zi,k`1|k

Pzz,k`1|k “ 1
m

m
ř

i“1
Zi,k`1|kZT

i,k`1|k ´ ẑk`1|kẑT
k`1|k ` Rk`1

(27)
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Estimate the cross-covariance:

Pxz,k`1|k “
1

m

m
ÿ

i“1

Yi,k`1|kZT
i,k`1|k ´ x̂k`1|kẑT

k`1|k (28)

Estimate the Kalman gain:

Wk “ Pxz,k`1|kP´1
zz,k`1|k

(29)

Estimate the updated state:

ŷk`1|k`1 “ ŷk`1|k ` Wkpẑk`1 ´ ẑk`1|kq (30)

Update the state covariance:

Pk`1|k`1 “ Pk`1|k ´ Wk`1Pzz,k`1|kWT
k`1 (31)

5.3. Initial Conditions

The initial conditions of CKF for SSL detection are set as follows:

P0|0 “ diag
”

100.0 9.0 1.0 100.0 9.0 1.0
ı

ŷ0 “
”

180.0 0.0 0.0 180.0 0.0 0.0
ıT (32)

The covariance matrices of process noise and measurement noise are set as follows:

Qk “

«

γ 0

0 γ

ff

,γ “

»

—

–

∆t5{20 ∆t4{8 ∆t3{6

∆t4{8 ∆t3{3 ∆t2{2

∆t3{6 ∆t2{2 ∆t

fi

ffi

fl

Rk`1 “ diag
”

100.0 16.0
ı

(33)

6. Experimental Results and Discussion

To demonstrate the effectiveness and superiority of the proposed saliency based SSL detection

method, the “XL” USV was used to acquire optical images of a marine environment in typical

adverse weather like rainy weather, sunny weather with strong illumination, and foggy weather

in the Penglai Sea area, Shandong Province, China, as shown in Figure 10. The exposure and focus of

the optoelectronic imaging unit were set to auto mode, and the optical image resolution was set to

640 ˆ 480. We have evaluated the proposed method on a benchmark dataset including 400 optical

images and compared it against other state-of-the-art methods, including RANSAC line fitting [2],

Hough transform [5], Radon transform [9] and shearlet transform [3]. The experimental environment

was the C++ compiler of Microsoft Visual Studio 2012 on a Dual Core 2.5 GHz machine with 2 GB

RAM. For the Hough transform and Radon transform, we used the authors’ implementations, while

for RANSAC line fitting and shearlet transform, we implemented the algorithms in C++ since we

failed to obtain the authors’ implementations.

 

   
   

       
      







 

Figure 10. “XL” USV and the optoelectronic imaging unit.
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The proposed method is similar to Hough transform and Radon transform in line feature detection,

therefore the performance of the three methods in line feature detection is contrasted first. Figure 11a–c

shows the line feature detection results of the Hough transform. The basic principle of the Hough

transform is to search for local peaks in Hough space to determine the line feature parameters, however,

random edges caused by wave glints, illumination, mountains and cloud clusters accumulate in Hough

space to form local peaks, and many mutually unrelated edges are connected in error to form false

line features as a result, which causes great difficulty for the identification of the SSL. Figure 11d–f

shows the line feature detection results of Radon transform. The Radon transform projects gradient

maps into sinograms by line integrals, then the local peaks are searched to determine the line feature

parameters, thus it is confronted with the same problem as the Hough transform, besides, the Radon

transform can not determine the endpoints of line features. Figure 11g–i is the results obtained by the

proposed method. The interference edges are obviously suppressed, and it is feasible to accurately

identify the SSL from the detected line features. Therefore, the line feature detection performance of

the proposed method is significantly superior to that of the Hough transform and Radon transform.

 

Figure 11. Line feature detection results of optical images: (a–c) are results of the Hough transform

method; (d–f) are results of Radon transform method; (g–i) are results of the proposed method.

However, the SSL is usually weak or maybe even partly missing, so the interference edge points

may randomly constitute lines which have many or even the most inliers, thus not only is the number

of false alarmd of RANSAC line fitting rather high, but also the computational cost is enormously huge.

Figure 12d,i,n,s,x are detection results of the shearlet transform. With the advantage of edge

geometric features provided by the shearlet transform, the edge direction information is extracted

and classified, but usually interference edges have better gradient orientation consistency than the

relatively weak SSL, thus the detection accuracy of shearlet transform are not satisfactory, while the

computational complexity is unacceptably huge.
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Figure 12. Comparison of SSL detection results. (a,f,k,p,u) are detection results of the Hough

transformation method; (b,g,l,q,v) are detection results of the Radon transformation method;

(c,h,m,r,w) are detection results of the RANSAC line fitting method; (d,i,n,s,x) are detection results of

the shearlet transformation method; (e,j,o,t,y) are detection results of the proposed method.

Figure 12e,j,o,t,y shows the detection results of the proposed method. Obviously the SSL can be

more accurately detected in the presence of various interfering factors, and the detection accuracy

performance is superior to that of the other state-of-the-art methods. A detection result is considered

to be accurate if it overlaps more than 50% of the real SSL. Based on this criterion the accuracy rates of

the Hough transform, Radon transform, RANSAC line fitting, shearlet transform and the proposed

method were statistically compared. Besides, the real-time requirement for application on USVs is

considered and the average consumed time is also contrasted. As observed in Table 1, the accuracy

rate and real-time performance of the proposed method significantly outperform other state-of-the-art

methods. RANSAC line fitting gets the worst accuracy rate, and it takes a lot of time to process a single

image due to random edge point selection and inlier verification. The shearlet transform achieves a

better accuracy rate, but its computational complexity is huge and its real-time performance is the

worst. Both the accuracy rate and the real-time performance of the Hough transform are similar

to those of the Radon transform, but the Radon transform projected gradient maps into sinograms,

while the Hough transform projects binary edge maps into Hough space, thus the accuracy rate of

the Radon transform is slightly better but its average consumed time is a bit longer than that of the

Hough transform.

Table 1. SSL detection result comparison of different methods on the benchmark dataset.

Measure
Hough

Transform
Radon

Transform
Ransac Line

Fitting
Shearlet

Transform
The Proposed

Method

Accuracy rate 76.8% 79.0% 67.3% 84.3% 94.8%
Average consumed time 167 ms 185 ms 1354 ms 5629 ms 52 ms
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In a real marine environment a sequence of optical images were continuously acquired by

optoelectronic imaging unit with a sampling period ∆t “ 80 ms and processed by our proposed

method online to detect the SSL. Taking 450 frames acquired during 36 s as an example, we compare

the SSL detection results with state estimation by CKF, as depicted in Figure 13.
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Figure 13. The SSL state comparison of detection results and state estimation by CKF. (a) are detection

results and state estimation of vertical coordinate y1; (b) are detection results and state estimation of

vertical coordinate y2.

Generally, the vertical coordinates y1 and y2 should be continuously and smoothly changing with

time k, yet there exist many peaks which represent abrupt changes in the SSL state caused by USV

motion and various interference factors. Thus CKF is applied to estimate the optimal state of the SSL

according to the previous state estimation and current measurement, which denotes the SSL detection

result of the current image. As observed in Figure 13, the SSL state estimation by CKF is changing

more smoothly with time, when it is accurately tracking the SSL state.

To quantitatively evaluate the accuracy improvement by CKF, the SSL detection results and state

estimation by CKF have been contrasted with the ground truth, which is the manually labeled SSL in

the dataset by experts. The root mean square error (RMSE) at time k is defined as follows:

RMSEpkq “

g

f

f

e

1

k

k
ÿ

i“0

pŷk ´ ŷk|kq2 (34)

where ŷk is the ground truth at time k, and ŷk|k is the detection result or state estimation by CKF at

time k. The RMSE of detection results and state estimation by CKF is shown in Figure 14. After CKF

applied to the proposed method, the RMSE of state estimation decreases by more than 50% and the

accuracy of SSL detection is obviously improved.
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Figure 14. The RMSE comparison of detection results and state estimation by CKF. (a) is RMSE of

detection results and state estimation of vertical coordinate y1; (b) is RMSE of detection results and

state estimation of vertical coordinate y2.

The proposed method has been used on the “XL” USV to accelerate target searching by reducing

the search area and computational complexity. The sea trial results show that the search time for a

single target decreases by more than 82% with knowledge of the SSL location. Future research work

will be concentrated on accurate noise modeling with compensation of USV motion status so that

nonlinear Bayesian filtering method could separate the noise to further improve the accuracy and

stability of SSL detection method. The proposed method could also be used for horizon detection of

monochromatic images such as infrared images or spectrum images.

7. Conclusions

Through the computation of gradient saliency, the line features of the SSL in optical images

acquired in typical adverse weather can be effectively enhanced, while other interference factors are

relatively suppressed. The region growing method on gradient orientation can accurately extract

line features which have good gradient orientation consistency, meanwhile avoiding the problems in

other line feature detection methods like the Hough transform and Radon transform where mutually

unrelated edges often get connected by mistake to form false line features. Experimental results

from the “XL” USV in typical adverse weather demonstrate that the proposed method is significantly

superior to other state-of-the-art methods in terms of accuracy rate and real-time performance, and its

accuracy and stability has been further improved by CKF.
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