A Search and Learning Model of Export Dynamics

```
Jonathan Eaton, a,b Marcela Eslava, David Jenkinsa, C.J. Krizan, James Tybouta,b
```

^aPenn State, ^bNBER, ^cU. de los Andes, ^dCensus Bureau (CES)

June 5, 2013

2 sets of relevant issues

- Aggregate/industry level export dynamics
 - What makes export responses to exchange rates vary across countries and time periods?
 - Why are export responses to trade liberalization unpredicable?
 - What are the underlying causes of export booms?

2 sets of relevant issues

- Aggregate/industry level export dynamics
 - What makes export responses to exchange rates vary across countries and time periods?
 - Why are export responses to trade liberalization unpredicable?
 - What are the underlying causes of export booms?
- Trade frictions at the firm level
 - What form and how important?
 - How do frictions interact with firm characteristics to determine micro patterns of exporting-cross sectional and dynamic?

2 sets of relevant issues

- Aggregate/industry level export dynamics
 - What makes export responses to exchange rates vary across countries and time periods?
 - Why are export responses to trade liberalization unpredicable?
 - What are the underlying causes of export booms?
- Trade frictions at the firm level
 - What form and how important?
 - How do frictions interact with firm characteristics to determine micro patterns of exporting—cross sectional and dynamic?
- **This paper**: Approach these issues by studying formation, evolution, and dissolution of international buyer-seller relationships.

The exercises

- Characterize buyer-seller relationships in decade's worth of data on individual merchandise shipments from Colombia to the United States
- Develop a (partial equilibrium) dynamic search and learning model that explains patterns found in shipments.
- Fit the model to the data, and quantify exporting frictions:
 - costs of finding new buyers
 - costs maintaining relationships with existing ones.
 - learning about product appeal in foreign markets
 - network effects
- Perform counterfactual exercises

Related literature

- Heterogeneity and trade
 - Melitz (2003), etc.
- Beachhead exporting costs:
 - Theory: Dixit (1989), Baldwin and Krugman (1989), Impullitti, Irarrazabal, and Opromolla (2012)
 - Quantitative: Roberts and Tybout (1997), Bernard and Jensen (2004)
 Das, Roberts, and Tybout (2008)
- Marketing costs: Arkolakis (2009, 2010); Drozd and Nozal (2011)
- Networks: Rauch (1999, 2001), Chaney (2011)
- Learning: Rauch and Watson (2002); Albornoz, Calvo, Corcos and Ornelas (2012)

Stylized facts

- Evidence from Colombian customs data
 - Population of (legal) Colombian export transactions over the course of a decade (1996-2005).
 - Each transaction has a date, value, product code, firm ID, and destination country.
 - See also: Besedes (2006); Bernard et al (2007); Blum et al (2009);
 Albornoz, et al (2010)
- Evidence from U.S. customs records
 - Population of (legal) import transactions over the course of a decade (1996-2009).
 - Each transaction has a date, value, product code, affiliated trade indicator, exporter country and firm ID, and importer firm ID.
 - See also Blum et al, 2009a, 2009b; Albornoz et al, 2010.

Exporters by durability

 As a fraction of total exporters, firms that enter a market and immediately exit are important.

Exporters by durability

 But as a fraction of total export revenue, brand new exporters don't account for much.

Cohort maturation

• The firms that survive their first year grow exceptionally rapidly (see also Ruhl and Willis, 2008).

Cohort maturation

- Hence young cohorts typically gain market share despite rapid attrition.
- Post-1996 entrants account for about half of cumulative export expansion by 2005.

Cohort maturation

- Most new matches fail within a year, but
 - Chances of survival are higher for matches with large initial sales
 - Survival rates improve and converge for all matches after the first year.
 - To sustain or increase exports, firms must continually replenish their foreign clientele.

- Matches that start small tend to stay small.
- After a match's first year, there is no systematic tendency for its annual sales to grow.

A seriously Pareto client distribution

 Most firms have a single buyer, but the distribution of client counts across exporters is fat-tailed.

Year-to-year transitions in numbers of clients

Table 3: Transition Probabilities, Number of Clients

t t+1	exit	texit	1	2	3	4	5	6-10	11+
enter	0.000	0.000	0.947	0.044	0.007	0.002	0.001	0.001	0.000
texit	0.000		0.896	0.086	0.014	0.004			0.000
1	0.533	0.081	0.332	0.043	0.008	0.002	0.001		
2	0.180	0.081	0.375	0.249	0.077	0.026	0.007	0.005	0.000
3	0.074	0.043	0.225	0.282	0.206	0.093	0.047		
4	0.045		0.112	0.226	0.259	0.162	0.097	0.078	
5			0.103	0.184	0.197	0.184	0.094	0.197	
6-10				0.070	0.082	0.114	0.149	0.465	0.066
11+	0.000	0.000	0.000	0.000	0.000	-		0.440	0.460

Key model features

- Firms engage in costly search to meet potential buyers at home and (possibly) abroad.
- Firms new to the foreign market don't know what fraction of buyers there will be willing to do business with them.
- As they encounter potential buyers, firms gradually learn the scope of the market for their particular products, and they adjust their search intensities accordingly (learning).
- Search costs fall as firms accumulate successful business relationships (reputation effects).
- Maintaining a relationship with a buyer is costly, so sellers drop relationships that yield meager profits.

Three model components

- A Seller-Buyer Relationship
- 2 Learning About Product Appeal from Encounters with Potential Buyers
- Searching for Potential Buyers

Why continuous time?

- Two types of discrete events occur at random intervals, sometimes with high frequency
 - Sellers meet buyers
 - Once business relationships are established, orders are placed
- With a continuous time formulation, we can:
 - allow for an arbitrarily large number of events during any discrete interval
 - allow agents to update their behavior each time an event occurs

1. Relationship dynamics

profits from a shipment

- Define exogenous state variables:
 - φ_i productivity of seller j (time invariant)
 - x_t^m size of market $m \in \{h, f\}$ (Ehrenfest jump process) Details
 - y_{ijt}^m idiosyncratic shock to operating profits from shipment to buyer i by seller j in market m (Ehrenfest jump process)
- Let Π^m be a profit function scalar (so that all exogenous state variables can be normalized to mean log zero)
- When buyer *i* places an order with seller *j* in market *m* it generates operating profits:

$$\pi(\mathbf{x}_t^m, \varphi_j, \mathbf{y}_{ijt}^m) = \Pi^m \mathbf{x}_t^m \varphi_j^{\sigma - 1} \mathbf{y}_{ijt}^m.$$

Superscripts and subcripts mostly suppressed hereafter:

$$\pi_{\varphi}(x,y) = \Pi x \varphi^{\eta-1} y$$

1. Relationship dynamics

value of a business relationship

- In active business relationships, buyers place orders with exogenous hazard λ^b . Details
- After each order, sellers must pay fixed cost *F* to keep a business relationship active.
- Value to a type- φ seller of a relationship in state $\{x,y\}$:

$$\widetilde{\pi}_{\varphi}(x,y) = \pi_{\varphi}(x,y) + \max\left\{\widehat{\pi}_{\varphi}(x,y) - F, 0\right\}$$

- $\widehat{\pi}_{\varphi}(x,y)$ is the continuation value to a type- φ seller of a relationship in state $\{x,y\}$ Details .
- Continuation values depend negatively on
 - δ : exogenous hazard of relationship death.
 - ρ : seller's discount rate.

1. Relationship dynamics

expected value of a new relationship

- Sellers don't know what y value their next business relationship will begin from.
- Let $Pr(y^s)$ be the probability of initial shock y^s , determined by the ergodic distribution of y.
- Expected value of a successful new encounter:

$$\widetilde{\pi}_{\varphi}(x) = \sum_{y^s} \Pr(y^s) \widetilde{\pi}_{\varphi}(s, y)$$

2. Learning about product appeal

the "true" scope of the market

- Let $\theta_j^m \in [0, 1]$ be the fraction of potential buyers in market m who are interested in seller j's product.
- Assume $\theta_j^{m'}$ s are time-invariant, mutually independent draws from a beta distribution:

$$r(\theta|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} (\theta)^{\alpha-1} (1-\theta)^{\beta-1},$$

Expected value:

$$E(\theta|\alpha,\beta) = \frac{\alpha}{\alpha + \beta.}$$

• Posterior beliefs, after meeting n^m potential clients in market m, a^m of whom want to do business: • Details

$$[\overline{\theta}^m(a^m, n^m) = E[\theta^m|a^m, n^m] = \frac{a^m + \alpha}{n^m + \alpha + \beta}$$

3. Searching for buyers

the cost of search

- Seller continuously chooses the hazard s with which she encounters a potential buyer at a flow cost c(s,a)
 - Maintain web site
 - Pay to be near top of web search listings
 - Attend trade fairs
 - Research foreign buyers
 - Send sales reps. to foreign markets
 - Maintain foreign sales office
- The number of successful encounters, a, allows for network effects (NYT 2/27/12: Panjiva, ImportGenius).
- Functional form used for estimation (Arkolakis, 2010):

$$c(s,a) = \kappa_0 rac{(1+s)^{(1+1/\kappa_1)} - 1}{(1+a)^{\gamma \cdot (1+1/\kappa_1)} \, (1+1/\kappa_1)}$$

• Define the value of continued search for a type- φ firm with a successes in n meetings, market state x:

$$V_{\varphi}(a,n,x)$$

The first-order for optimal search abroad is: Details

$$\begin{array}{lcl} c_s(s^*,\mathbf{a}) & = & \overline{\theta}_{\mathbf{a},\mathbf{n}}(\widetilde{\pi}_{\varphi}(\mathbf{x}) + V_{\varphi}(\mathbf{a}+1,\mathbf{n}+1,\mathbf{x})) \\ & & + (1-\overline{\theta}_{\mathbf{a},\mathbf{n}})V_{\varphi}(\mathbf{a},\mathbf{n}+1,\mathbf{x}) - V_{\varphi}(\mathbf{a},\mathbf{n},\mathbf{x}). \end{array}$$

3. Searching for buyers

the value of search in the domestic market

- As n increases, $\overline{\theta}_{a,n}$ converges to the true θ .
- There is no more learning, and the reward to search depends on a and n only through network effects.
- We assume this characterizes the domestic market.
- If network effects are ignored, the first-order condition for optimal search at home is thus:

$$c_s(s^*,a) = \theta_j \widetilde{\pi}_{\varphi}(x).$$

The exogenous state variables

- Notation refresher: if z follows an Ehrenfest diffusion process:
 - $e \in I^+$ and $\Delta \in R^+$ determine support:

$$z \in \{-e\Delta, -(e-1)\Delta, .., 0, .., (e-1)\Delta, e\Delta\}$$

• The process jumps with hazard λ_z :

$$F[t] = 1 - e^{-\lambda_z t}$$

 As the grid becomes finer, this type of random variable asymptotes to an Ornstein-Uhlenbeck processes:

$$dz = -\mu z dt + \sigma dW$$

• Asymptotically, $\mu = \lambda_z/e$, $\sigma = \sqrt{\lambda_z}\Delta$ (Shimer, 2006).

The exogenous state variables

- If z observed at regular intervals, can estimate μ and σ by regressing z on lagged z
- For x^f , x^h , obtain maximum likelihood estimates of μ and σ using logged and de-meaned time series on total real consumption of manufactured goods in each country.
- Recover λ_z and Δ using Shimer's mapping.
- Since y is unobservable, recover the parameters of its jump processes using the structure of the dynamic model.

The exogenous state variables

Market-wide Shock Processes (x^f, x^h)							
Orstein-Uhlenbeck Parameters	Colombia	United States					
μ Mean Reversion	0.171	0.174					
σ Dispersion	0.003	0.058					
Ehrenfest Process Parameters							
λ Jump Hazard	1.200	1.215					
Δ Jump Size	0.003	0.053					
grid points	15	15					

remaining parameters

- Unidentified preference parameters taken from literature: ho=0.05, $\sigma=5$
- Remaining parameters identified using indirect inference

$$\Lambda = \left(\Pi^h, \Pi^{f}, \delta, F, \alpha, \beta, \sigma_{\varphi}, \lambda_y, \lambda_b, \gamma, \kappa_0, \kappa_1\right)$$

Indirect inference (Gouriéroux and Monfort, 1996)

• Using reduced-form auxillary regressions and/or moments, summarize key relationships in the data using a vector of statistics $(\widehat{\mathbf{M}})$

- For a candidate set of parameter values (Λ) , simulate same statistics using the model $\widehat{\mathbf{M}}^s(\Lambda)$.
- Construct the loss function:

$$Q(\Lambda) = \left(\widehat{\mathbf{M}} - \widehat{\mathbf{M}}^{s}(\Lambda)\right)' \Omega \left(\widehat{\mathbf{M}} - \widehat{\mathbf{M}}^{s}(\Lambda)\right)$$

where Ω is a positive definite weighting matrix.

• Use a robust algorithm to search parameter space for $\widehat{\Lambda} = \arg\min Q(\Lambda).$

basic idea

Indirect inference

identification

- Profit scaling constants, (Π^h, Π^f)
 - means of log home and foreign sales
- Shipment hazards (λ^b)
 - average annual shipment rates per match
- Product appeal parameters (α, β)
 - distribution of home and foreign sales
- \bullet Firm productivity dispersion (σ_{φ})
 - distribution of home and foreign sales
 - covariance of home and foreign sales
- Search cost parameters $(\kappa_0, \kappa_1, \gamma)$
 - match rates
 - client frequency distribution (especially fatness of tail)
 - client transition probabilites
 - fraction of firms that export

Indirect inference

dentification

i

- Idioysncratic shocks to importers (λ^y)
 - cross-plant variances in home and foreign sales
 - covariation of home and foreign sales
 - autocorrelation, match-specific sales
 - client frequency distribution, client transition probabilites
- Match maintenance costs (F)
 - client frequency distribution, client transition probabilites
 - sales among new versus established matches
 - age-specific match failure rates
- ullet Exogenous match separation hazard (δ)
 - separation rates after first year
 - age-specific match failure rates
 - client frequency distribution

Transition probs.,			Share of firms		
no. clients (n^c)	Data	Model	exporting	Data	Model
$\widehat{P}[n_{jt+1}^c = 0 n_{jt}^c = 1]$	0.618	0.534	$\widehat{E}(1_{X_{jt}^f>0})$	0.299	0.351
$\widehat{P}[n_{jt+1}^c = 1 n_{jt}^c = 1]$	0.321	0.358			
$\widehat{P}[n_{jt+1}^c = 2 n_{jt}^c = 1]$	0.048	0.082	Log foreign sales on		
$\widehat{P}[n_{it+1}^c \geq 3 n_{it}^c = 1]$	0.013	0.024	log domestic sales	Data	Model
$\widehat{P}[n_{jt+1}^c = 0 n_{jt}^c = 2]$	0.271	0.260			
$\widehat{P}[n_{jt+1}^c = 1 n_{jt}^c = 2]$	0.375	0.321	\widehat{eta}_1^{hf}	0.727	0.515
$\widehat{P}[n_{it+1}^c = 2 n_{it}^c = 2]$	0.241	0.281	$\widehat{\mathfrak{se}}(\epsilon^{hf})$	2.167	1.424
$\widehat{P}[n_{jt+1}^c \ge 3 n_{jt}^c = 2]$	0.113	0.135			

Match death hazards	Data	Model	Exporter exit rate	Data	Model
Death rate, $A_{iit-1}^m = 0$	0.694	0.857	Exit rate, $A_{iit-1}^m = 0$	0.709	0.748
Death rate, $A_{iit-1}^{m} = 1$	0.515	0.329	Exit rate, $A_{iit-1}^{m} = 1$	0.383	0.099
Death rate, $A_{iit-1}^{m} = 2$	0.450	0.304	Exit rate, $A_{iit-1}^{m} = 2$	0.300	0.121
Death rate, $A_{iit-1}^m = 3$					
Death rate, $A_{ijt-1}^m = 4$					

Log sales per client			Ave. log sales		
vs. no. clients	Data	Model	by cohort age	Data	Model
\widehat{eta}_1^m	2.677	0.842	$\widehat{E}(\ln X_{it}^f A_{it}^c=0)$	8.960	9.306
\widehat{eta}_2^m	-0.143	0.042	$\widehat{E}(\ln X_{it}^f A_{it}^c=1)$	10.018	10.806
$s\widehat{e}(\epsilon^m)$	2.180	1.622	$\widehat{E}(\ln X_{it}^f A_{it}^c=2)$	10.231	10.755
No. clients, inverse			$\widehat{E}(\ln X_{it}^f A_{it}^c = 3)$	10.369	10.679
CDF regression	Data	Model	$\widehat{E}(\ln X_{jt}^f A_{jt}^c \ge 4)$	10.473	10.669
$\frac{\widehat{\beta_1}^c}{\widehat{\beta_2}^c}$ $\widehat{se}(e^{n^c})$	-1.667	-1.587			
$\widehat{\beta_2}^c$	-0.097	-0.280			
$s\overline{\widehat{e}}(\epsilon^{n^c})$	0.066	0.128			

Match death			Log match		
prob regression	Data	Model	sale autoreg.	Data	Model
\widehat{eta}_0^d $\widehat{eta}_{1 ext{st year}}^d$	1.174	1.640	\widehat{eta}_1^f	0.811	0.613
\widehat{eta}_{1st}^d year	0.166	0.203	eta_{1st}^f year	0.233	0.370
\widehat{eta}_{Isales}^d	-0.070	-0.100	$s\widehat{e}(\epsilon^f)$	1.124	0.503
$\widehat{se}(\epsilon^d)$	0.453	0.395	Log dom. sales		
Match shipments			autoregression	Data	Model
per year	Data	Model	\widehat{eta}_1^h	0.976	0.896
$\widehat{E}(n^s)$	4.824	3.770	$\widehat{se}(\epsilon^h)$	0.462	0.683

Parameters

Parameters Estimated using indirect inference (Λ)				
	Parameter	value	std. error	
rate of exogenous separation	δ	0.267	0.001	
domestic market size	Π^h	11.344	0.017	
foreign market size	Π^f	10.675	0.017	
log fixed cost	In <i>F</i>	7.957	0.018	
First $ heta$ distribution parameter	α	0.716	0.007	
Second $ heta$ distribution parameter	β	3.161	0.029	

- A substantial fraction of matches fail for exogenous reasons.
- fixed cost of maintaining a relationship: exp(7.957) = \$2,855, about 35% of the value of a typical shipment.
- only about $\alpha/(\alpha+\beta)=0.18$ of the potential buyers a typical exporter meets are interested in doing business
- success rates vary across exporters with standard deviation $\sqrt{\alpha\beta/\left[(\alpha+\beta)^2(\alpha+\beta+1)\right]}=0.176$

Parameters

Parameters Estimated using indirect inference (Λ)

	Parameter	value	std. error	
demand shock jump hazard	λ_y	0.532	0.001	
demand shock jump size	Δ^{y}	0.087	0.001	
shipment order arrival hazard	λ_b	8.836	0.006	
std. deviation, log firm type	$\sigma_{m{arphi}}$	0.650	0.002	
network effect parameter	$\gamma^{'}$	0.298	0.001	
search cost function curvature parameter	κ_1	0.087	0.001	
search cost function scale parameter	κ_0	111.499	0.512	

- convexity of search cost function is important
- cost of search at hazard s = 1: \$5,786 when a = 0; \$437 when a = 1.
- cost of search at hazard s=5: $\$5.277\times 10^9$ when a=0; \$6, \$6, \$6 when a=20.

The policy function

 Search intensity over trials and productivity, holding the number of successes constant at 0.

History and the policy function

 Search intensity as a function of past successes and failures, allowing for reputation effects

History and the policy function

 Search intensity as a function of past successes and failures, shutting down reputation effects

network_policy

A 20% reduction in search costs

A 20% reduction in fixed costs

A 20% increase in foreign market size

Eliminating reputation effects

Summary

- Micro patterns of transactions and buyer-seller relationships through the lens of the model:
 - Large volume of small scale exporters explained by large volume of inexperienced firms, searching at a low level.
 - High exit rate reflects short lifespan of typical match, combined with low-level search and learning about product appeal.
 - Small number of major exporters reflects combination of skewed distribution of product appeal and reputation effects.
- Search costs, multi-period matches, learning, and reputation effects combine to provide an explanation for hysteresis in trade.
 - Reputation effects appear to be particularly important.
 - Since learning is mainly relevant for new, marginal players, probably doesn't have a big effect on short-run export dynamics.

Hazards

• From the perspective of time 0, let the probability that an event will occur before time t be described by the exponential distribution:

$$F[t] = 1 - e^{-qt}$$

 The likelihood of the event happening exactly at t (the "hazard rate" at t) is then:

$$\frac{f(t)}{1 - F(t)} = \frac{qe^{-qt}}{e^{-qt}} = q$$

This hazard rate doesn't depend upon t.

Hazards

• Suppose k independent events occur with hazard $q_1, q_2, ... q_k$. The probability that none occur before t is:

$$\prod_{j=1}^k (1 - F_j(t)) = e^{-t\Sigma_j q_j}$$

• So by time t, at least one event occurs with probability $1-e^{-t\Sigma_jq_j}$, and the likelihood that this happens exactly at t is

$$\frac{\sum_{j} q_{j} \left[e^{-t \sum_{j} q_{j}} \right]}{e^{-t \sum_{j} q_{j}}} = \sum_{j} q_{j}$$

Relationship dynamics

Ehrenfest jump processes

- Any variable z that obeys Ehrenfest process:
 - changes value with hazard λ_z . Next jumps occur within interval t with probability

$$F[t] = 1 - e^{-\lambda_z t}$$

has discrete support, equally-spaced values:

$$e \in I^+ : z \in \{-e\Delta, -(e-1)\Delta, ..., 0, ..., (e-1)\Delta, e\Delta\}$$

• jumps only to contiguous values:

$$z' = \left\{ egin{array}{l} z + \Delta \ z - \Delta \ ext{ other} \end{array}
ight. ext{ with probability } \left\{ egin{array}{l} rac{1}{2} \left(1 - rac{z}{e \triangle}
ight) \ rac{1}{2} \left(1 + rac{z}{e \triangle}
ight) \ 0 \end{array}
ight.
ight.$$

• As the grid becomes finer ($\uparrow e, \downarrow \Delta$), Ehrenfest processes asymptote to Ornstein-Uhlenbeck processes:

$$dz = -\mu z dt + \sigma dW$$

Relationship dynamics

match continuation value

- let $q_{xx'}^X$ be the hazard of transiting from market state x to state x'.
- let $q_{yy'}^Y$ be the hazard of transiting from match-specific state y to state y'.
- $oldsymbol{\lambda}_{x}^{X} = \sum_{x'
 eq x} q_{xx'}^{X}$ is hazard of any change in market-wide state x
- $\lambda_y^Y = \sum_{y' \neq y} q_{yy'}^Y$ is hazard of any change in match-specific state y.
- ullet let λ^b be the hazard of a new purchase order from existing client.
- au_b time until the next change in state, which occurs with hazard $\lambda^b + \lambda_x^X + \lambda_y^Y$

Relationship dynamics

match continuation value

Continuation value of a business relationship in state (x,y) for a type- φ exporter :

$$\begin{split} \widehat{\pi}_{\varphi}(x,y) &= \mathbf{E}_{\tau_{b}} \left[e^{-(\rho+\delta)\tau_{b}} \frac{1}{\lambda^{b} + \lambda_{x}^{X} + \lambda_{y}^{Y}} \right. \\ & \left. \cdot \left(\sum_{x' \neq x} q_{xx'}^{X} \widehat{\pi}_{\varphi}(x',y) + \sum_{y' \neq y} q_{yy'}^{Y} \widehat{\pi}_{\varphi}(x,y') + \lambda^{b} \widetilde{\pi}_{\varphi}(x,y) \right) \right] \\ &= \frac{1}{h} \left(\sum_{x' \neq x} q_{xx'}^{X} \widehat{\pi}_{\varphi}(x',y) + \sum_{y' \neq y} q_{yy'}^{Y} \widehat{\pi}_{\varphi}(x,y') + \lambda^{b} \widetilde{\pi}_{\varphi}(x,y) \right) \end{split}$$

where

- ullet δ is the exogenous hazard of relationship death.
- ullet ρ is the seller's discount rate.
- $h = \rho + \delta + \lambda^b + \lambda_x^X + \lambda_y^Y$

□ ► <
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □ </l

experience and expected success rates

- Suppress market superscripts to reduce clutter.
- The prior distribution is:

$$r(\theta|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} (\theta)^{\alpha-1} (1-\theta)^{\beta-1},$$

• The likelihood: Given θ , and given that a seller has met n potential buyers, the probability that a of these buyers were willing to buy her product is binomially distributed:

$$q\left[a|n, heta
ight]=inom{n}{a}\left[heta
ight]^{a}\left[1- heta^{m}
ight]^{n-a}.$$

• The posterior distribution for θ :

$$p(\theta|a, n) \propto q[a|n, \theta] \cdot r(\theta|\alpha, \beta)$$

• The expected success rate after a successes in n trials is thus:

$$\overline{\theta}(a, n) = E[\theta|a, n] = \frac{a + \alpha}{n + \alpha + \beta}$$

Sellers base their search intensity on this posterior mean.

Searching for buyers

the value of search

The value of continued search for a type- φ firm with a successes in n meetings is:

$$\begin{split} &V_{\varphi}(\textbf{\textit{a}},\textbf{\textit{n}},\textbf{\textit{x}}) = \\ &\max_{s} \textbf{\textit{E}}_{\tau_{s}} \left[-c(s,\textbf{\textit{a}}) \int_{0}^{\tau_{s}} e^{-\rho t} dt + \frac{e^{-\rho \tau_{s}}}{s + \lambda_{x}^{X}} \cdot \left(\sum_{\textbf{\textit{x}}' \neq \textbf{\textit{x}}} q_{\textbf{\textit{x}}\textbf{\textit{x}}'}^{X} V_{\varphi,}(\textbf{\textit{a}},\textbf{\textit{n}},\textbf{\textit{x}}') \right. \\ &+ s \left[\overline{\theta}_{\textbf{\textit{a}},\textbf{\textit{n}}} (\widetilde{\pi}_{\varphi}(\textbf{\textit{x}}) + V_{\varphi}(\textbf{\textit{a}} + \textbf{\textit{1}},\textbf{\textit{n}} + \textbf{\textit{1}},\textbf{\textit{x}}) + (1 - \overline{\theta}_{\textbf{\textit{a}},\textbf{\textit{n}}}) V_{\varphi}(\textbf{\textit{a}},\textbf{\textit{n}} + \textbf{\textit{1}},\textbf{\textit{x}}) \right] \right) \end{split}$$

where:

- $\lambda_x^X = \sum_{x' \neq x} q_{xx'}^X$ is the hazard of any change in the market-wide state x.
- au_s is the random time until the next search event, which occurs with hazard $s + \lambda_x^X$.

Taking expectations over τ_s yields:

$$\begin{aligned} &V_{\varphi}(a,n,x) \\ &= \max_{s} \frac{1}{\rho + s + \lambda_{x}^{X}} \left[-c(s,a) + \sum_{x' \neq x} q_{xx'}^{X} V_{\varphi,}(a,n,x') \right. \\ &\left. + s \left\{ \overline{\theta}_{a,n} \left[\widetilde{\pi}_{\varphi}(x) + V_{\varphi}(a+1,n+1,x) \right] + (1 - \overline{\theta}_{a,n}) V_{\varphi}(a,n+1,x) \right\} \right. \end{aligned}$$

The first-order condition is thus:

$$\begin{array}{lcl} c_s(s^*,\mathbf{a}) & = & \overline{\theta}_{\mathbf{a},\mathbf{n}}(\widetilde{\pi}_{\varphi}(\mathbf{x}) + V_{\varphi}(\mathbf{a}+1,\mathbf{n}+1,\mathbf{x})) \\ & & + (1-\overline{\theta}_{\mathbf{a},\mathbf{n}})V_{\varphi}(\mathbf{a},\mathbf{n}+1,\mathbf{x}) - V_{\varphi}(\mathbf{a},\mathbf{n},\mathbf{x}). \end{array}$$

- In the domestic market the reward to search depends on a and n only through network effects.
- The value of search at home is thus simply:

$$V_{arphi}(x) = \max_{s} rac{1}{
ho + \lambda_{x}^{X}} \left[-c(s, a) + \sum_{x'
eq x} q_{xx'}^{X} V_{arphi}(x') + s heta_{j} \widetilde{\pi}_{arphi}(x)
ight]$$

• The associated first-order condition is:

$$c_s(s^*, a) = \theta_j \widetilde{\pi}_{\varphi}(x).$$