
A search-based approach for cost-effective software test automation
decision support and an industrial case study

Amannejad, Y., Garousi, V., Irving, R., & Sahaf, Z. (2014). A search-based approach for cost-effective software
test automation decision support and an industrial case study. In Proceedings - IEEE 7th International
Conference on Software Testing, Verification and Validation Workshops, ICSTW 2014 (pp. 302-311). [6825677]
IEEE Computer Society. https://doi.org/10.1109/ICSTW.2014.34

Published in:
Proceedings - IEEE 7th International Conference on Software Testing, Verification and Validation Workshops,
ICSTW 2014

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2014 IEEE. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of
use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:25. Aug. 2022

https://doi.org/10.1109/ICSTW.2014.34
https://pure.qub.ac.uk/en/publications/513b6067-7b8e-4cd5-9cb7-7adf55456189

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

A Search-based Approach for Cost-Effective Software Test Automation
Decision Support and an Industrial Case Study

Yasaman Amannejad1, Vahid Garousi1, 2,, Rob Irving3, Zahra Sahaf1

1: Software Quality Engineering Research Group (SoftQual)
Department of Electrical and Computer Engineering

University of Calgary, Calgary, Canada
{yasaman.amannejad, vgarousi}@ucalgary.ca

2: System and Software Quality Engineering
Research Group (SySoQual)

Department of Software Engineering
Atilim University, Incek, Ankara, Turkey

vahid.garousi@atilim.edu.tr

3: Pason Systems Corporation
Calgary, Canada

rob.irving@pason.com

Abstract—Test automation is a widely-used approach to reduce
the cost of manual software testing. However, if it is not
planned or conducted properly, automated testing would not
necessarily be more cost effective than manual testing.
Deciding what parts of a given System Under Test (SUT)
should be tested in an automated fashion and what parts
should remain manual is a frequently-asked and challenging
question for practitioner testers. In this study, we propose a
search-based approach for deciding what parts of a given SUT
should be tested automatically to gain the highest Return On
Investment (ROI). This work is the first systematic approach
for this problem, and significance of our approach is that it
considers automation in the entire testing process (i.e., from
test-case design, to test scripting, to test execution, and test-
result evaluation). The proposed approach has been applied in
an industrial setting in the context of a software product used
in the oil and gas industry in Canada. Among the results of the
case study is that, when planned and conducted properly using
our decision-support approach, test automation provides the
highest ROI. In this study, we show that if automation decision
is taken effectively, test-case design, test execution, and test
evaluation can result in about 307%, 675%, and 41% ROI in 10
rounds of using automated test suites.

Keywords—action research, cost-benefit analysis, industrial
case study, search-based software engineering, software test
automation.

I. INTRODUCTION

Software testing is a major cost factor in the software
development life-cycle [1, 2]. Test activities are essential
and inevitable to guarantee high quality software products.
Test automation is a widely-used approach to reduce the
cost of manual testing, while ensuring the quality of
software systems.

However, test automation is not always necessarily cost
effective. Deciding which parts of a given System Under
Test (SUT) should be tested in an automated fashion is a
widely-asked and challenging question for practitioner
testers [3]. A typical software tester may naively argue that
manual testing can be fully replaced with automation, but it
could be the case that such a replacement is not cost-
effective. On importance of carefully choosing what to
automate, Rice et al. [4] state that: “If you do not know
which tests are the most important and which tests are the
most applicable for automation, the tool will only help
perform a bad test faster.” Therefore, selecting which parts

of the system should be automated and which parts should
remain manual is an important decision.

There are a number of studies (e.g., [3-5]) which have
tackled the challenges of test automation, but there have
been no work focusing on the notion of automation
“across” the entire software testing process, from test-case
design, to test-case scripting, to test execution, and test-
result evaluation. The focus of previous works in the field
of software test automation has only been on test execution.

When automation decision should be taken for all
features, use cases or parts of a SUT throughout the entire
testing process, estimating the Return On Investment (ROI)
of automation would not be trivial. Use-cases may impact
each other, e.g., if we automate the testing of a use-case,
testing others may become easier and/or cheaper.
Therefore, ROI of the selected parts of the system for
automation should be considered as a whole. In large
projects when the number of use cases is large, an effective
solution should be applied to find the best solution in a
reasonable computational cost. This paper proposes a
search-based approach based on Genetic Algorithm (GA)
for deciding what parts of the systems should be automated
to gain the highest ROI of testing activities.

The main contributions of this study are:
 A consolidated review of test automation across the

entire software testing process, not just in test
execution (Section 0)

 A search-based approach to address the problem of
what (parts of the system) should be automated
(Section IV)

 An industrial case study to investigate the applicability
and effectiveness of the approach in a real-world
industrial setting (Section V)

The remainder of this paper is organized as follows.
Section II discusses background and related works. Section
0 revisits the notion of test automation across the entire
software testing process. Section IV formulates the cost-
benefit of the effective test automation problem as an
optimization problem and presents a GA to solve it. Section
V describes the industrial case study conducted to evaluate
the approach. Finally, Section VI concludes this study and
states the future work directions.

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

II. BACKGROUND AND RELATED WORKS

This study is in the context of effective software test
automation and relates to the following areas: (1) What to
automate (for the purpose of testing), (2) Cost, benefit, and
ROI of testing, and (3) Action-research and industrial case
studies in software testing. The related works in each area
are briefly discussed next.

A. What to Automate

When deciding what parts of the system should (not) be
automated, several factors need to be considered.
Practitioner testers from Microsoft recommended three
major factors to be considered [3]: “(1) rate of change of
what we are testing: the less stable, the more automation
maintenance costs, (2) frequency of test execution: How
important is each test result and how expensive is to get it?,
and (3) usefulness of automation: Do automated tests have
continuing value to either find bugs or to prove important
aspects about your software, like scenarios?”

Inside a book on testing [6], generic tips to address the
“what to automate” problem were provided. According to
this book, certain types of testing such as stress, reliability,
and regression testing are amenable types for being
automated. Due to the repetitive nature of the regression
testing, automation can save significant time and effort and
the gained time can be effectively utilized for ad-hoc
testing and other more creative avenues [6]. Similar to the
challenge in our context, finding the right combination of
test cases to be automated, [6] suggested that while starting
automation, the effort should focus on areas where good
scenarios in terms of ROI exist [6], however no systematic
approach was provided.

A comprehensive checklist was provided by another
book on test automation [7], which has considered almost
all the above mentioned factors. Number of executions,
covering critical paths, error-prone areas, data-driven
features, number of supported hardware and software, and
also having promising ROI are the main factors discussed
in this book [7]. Our work is not limited to just providing
the cost and benefit factors. Using these factors, we have
designed and implemented a decision-support approach for
addressing the “what to automate” problem. In addition to
the ROI of test-suite development, maintenance, and
evaluation which were considered in [7], our approach
takes into account the entire testing process including test-
case design, test execution, and test-result evaluation.

Surveying the books and literature, we found some
textbooks that are discussed. Also, we found that there is
lack of relevant papers that mainly focused on the problem
of deciding which part of a software should be automated
and which parts are better to remain manual. This can show
that this area of research needs more attention from
practitioners and researchers.

B. Quantifying Cost, Benefit, and ROI of Testing

Thinking of increasing automated test cases without
considering costs and benefits of each test case, are the
main reasons of failure in test automation projects []. If cost

of maintaining a test case is more than the cost saving that
will be provided, it should not be considered for being
automated. It is worth mentioning that, even if a company
spend a lot of set up costs for its automating its test cases, it
is still a naive decision to automate all test cases. In order
to have a successful test automation solution, precise
investigation of cost and benefit, and ROI of each test case
is necessary before deciding to automate them.

Many of the works in decision-support for test
automation take into account the ROI of testing [1, 7, 8]. In
this context, estimating the potential costs and benefits is
critical part of articulating the impact of implementing
automated software testing [7].

Section 3.3 of the book entitled “Implementing
Automated Software Testing” [7] described how to
calculate the potential cost savings of implementing
automated software testing in comparison to performing
manual tests. Tangible factors discussed in [7] for
calculating ROI are: test setup, test development, and test
evaluation costs.

Reference [8] was an industrial case study which
explored state of test automation in software industry. Cost
and benefit drivers of test automation were introduced in
this paper. According to [8], quality improvement, time
saving, and reusing test-ware were benefits of test
automation while test-code development and maintenance,
and staff training, are among the major cost drivers of test
automation. Similar to this study, our industrial case study
confirms that time saving and reusing test-ware are benefits
of test automation.

A model named “opportunity cost model” was utilized
in [1] to present influencing factors on test automation.
Fixed and variable costs involved in manual and automated
test execution were considered in the opportunity cost
model. Risk exposure was defined as benefit of test
execution and objective of the project was to maximize the
benefit of test process. This model intended to make the
model realistic while keeping it simple enough to be used
in real-world projects. Although we agree that the model
should be simple enough to use but we believe that factors
such as test-code maintenance including quality
improvement [9] and co-maintenance [10] activities, and
reusability of test-ware are important factors that needs to
be considered while calculating cost and ROI of test
automation.

C. Search-Based Software Enginnering (SBSE)

SBSE approaches have been previously applied various
aspects of software testing, such as test data, and test case
generation [11, 12]. Different from these works, this paper
does not use SBSE to find test suites, or generate test data.
Instead, our work uses a search-based technique to
facilitate decision making for test automation purposes.
Although there are other applications of SBSE in other area
of software testing within the literature, the novelty of the
work is in its application of SBSE for the particular
problem of decision-support for test automation. SBSE is

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

used for identifying parts of the test process to be
automated. There were no previous works in this direction.

D. Action Research and Industrial Case Studies in
Software Testing

In the context of software engineering research methods,
the research approaches we use in this work are
“exploratory and improving” case studies [13] and Action
Research (AR) [14].

Our approach was initiated, developed and evaluated
through an AR project between academia and industry. We
have had experience with the AR approach in two recent
industrial testing projects [15, 16] and used our experience
to initiate, plan and execute this study. The details of the
project and case description will be described in Section V.
In the “exploratory” phase, we intended to find out and
characterize “what is happening” in the existing testing
activities and processes of the company under study. In the
“improving” phase, we improved the cost effectiveness of
software test activities. The entire research project was
governed by AR which is an established research
methodology for industry-academia collaborations in
software engineering. In particular, we followed the AR
guidelines proposed by [14].

III. TEST AUTOMATION ACROSS THE SOFTWARE TESTING

PROCESS

By consulting several books and online resources [17-19]
on software testing and incorporating different views and
classifications, we divide the testing tasks into four types:

1. Test-case design: Designating the list of test cases or
test requirements to satisfy coverage criteria, or other
engineering goals.

2. Test scripting: Documenting test cases in manual test
scripts or automated test code.

3. Test execution: Running test cases on the software
under test and recording the outputs.

4. Test evaluation: Evaluating results of testing (pass or
fail), also known as test oracle or test verdict.

Each of the four activities can be done either manually
(by a human), automated (using a software tool) or the mix
of the two. The following four sub-sections discuss each of
the four activities in detail, and discuss the notion of
manual work, partial automation, or full automation in each
activity. Note that this entire section is a consolidated
overview of the topic and will include references to
selected list of existing works in each of the above four
testing activities.

A. Automation in Test-case Design

Test-case design is the activity of designating a list of test
cases or test requirements. Sub-activities such as
identifying test data, including test inputs and expected test
outputs, and test paths are part of test design activity. This
activity can be done either: (1) based on criteria (e.g., line
or requirements coverage), (2) based on human knowledge
(e.g., exploratory testing) [19].

To conduct criteria-based test-case design in a fully
automated fashion, there is also a large body of knowledge
available which is often referred to as software test-data
generation. Test data generation, including inputs and
expected outputs, is one of the important part of test design
activity. The paper by McMinn [17] surveys different
techniques and tools for test data generation. Also, to
automate combinatorial criteria-based test approaches such
as pair-wise testing [19], there are open-source and
commercial tools which generate test inputs [20].

Test-case design based on human knowledge is mostly
referred to as exploratory testing. As per the nature of this
type of testing, it is done fully manual. Criteria-based test-
case design can be done manually, automated, or a mix of
the two. In fully manual criteria-based test-case design,
depending on whether black- or white-box testing is going
to be done, tester looks at the requirements or code and
derives the test cases without using any tool.

For partial automation, tester would use any of the
many-available code coverage tools [18], but has to
conduct manual efforts to derive test cases to increase
coverage.

The output of test-case design activity is a test suite
which is a set of test cases (input and expected output
values) or test requirements (e.g., control flow paths to be
covered). The next test activity (test scripting) will make
use of this output.

B. Automation in Test Scripting

In manual testing, test scripting is documenting test cases,
generated in the previous activity, either in simple
technologies such as Word file or Wiki’s or using test-
support tools, e.g., IBM Rational Manual Tester. In
automated testing, test scripting is developing test code
(scripts) from test cases generated in the previous activity.
There are many test tools and frameworks available, e.g.,
JUnit [21] and Selenium [22].

Test scripting can also be done manually, partially
automated, or fully automated. Manual development of test
scripts is obvious, as developing manual test cases is the
usual and the basic step that is done by most manual
testers. For partial automation in this context, manual test-
support tools such as IBM Rational Manual Tester are
used. Also, there are many tools for testing via Graphical
User Interfaces (GUI) which are mostly called “record-and-
playback” tools, e.g., HP QuickTest Professional (QTP).
Using these tools, testers records a test scenario (test case)
by interacting with the SUT’s GUI, while the tool
automatically generates the test script in the background.
When recording (test scripting) is done, the automated test
code can be executed as needed.

Finally, for fully automated test scripting, there has
been a good progress in the last decade and many tools for
automated generation of automated test code are now
available [5, 16, 23].

The outputs of test scripting activity are either: (1)
manual test scripts (in variety of formats), or (2) automated

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

test suites (e.g., using tools such as JUnit, HP QTP). The
next test activity (test execution) will make use of test
scripts.

C. Automation in Test Execution

Test execution is defined as running the test cases on the
SUT and recording the results or observing the SUT’s
output/behavior [19]. We have observed in our interactions
with our industrial partners that when most practitioners
discuss about test automation, they often limit their focus
on automation of test execution only.

Similar to the above activities, test execution can also
be done manually, partially automated, or fully automated.
We can observe at this point that there are inter-
dependencies among the choices (decisions) made in
following activities. For example, if a tester chooses to
develop all the tests as automated test suites, test execution
will obviously be done fully automated. In contrast, if the
test team decides to develop all their tests as manual test
scripts, test execution has to be done fully manual. Partial
automation of test execution will be in the case that a ratio
of test suites is automated scripts and the others are manual
test scripts.

D. Automation in Test Evaluation (Test Oracles)

After the SUT is exercised by a test case, evaluating the
test outcome (pass or fail) is an important phase. There are
usually three approaches for this: (1) a human tester may
make such a judgment, (2) we may decide to incorporate
(“hard code”) test evaluations as a verification points (or
known as assertions) in test-code, and (3) there have also
been more advanced techniques to build “intelligent”
(learning) test oracles using machine learning and artificial
intelligence, e.g., [24, 25]. The approaches (2) and (3) are
considered to have automated test evaluation, but with
different levels of intelligence.

E. Assumptions

Each use case or object-oriented unit under test can have
several test cases. Although it is possible to make fine grain
decisions in test case level, in this paper that, we make
decision in use case level. In fact, we have assumed that
when using our approach, all test cases of a use-case will
either be decided to be automated or done manually. This
assumption helps us reduce the complexity of our decision
support approach and make it applicable to be used in real
world scenarios.

IV. DECISION SUPPORT FOR EFFECTIVE TEST AUTOMATION

AS AN OPTIMIZATION PROBLEM

In this section, we formulate the effective test automation
as an optimization problem and develop a solution
approach using GA.

A. Multiple Decisions for Test Automation and a
Motivating Example

We start with an example hypothetical test-automation
scenario. Let us assume that we intend to conduct black-
box testing of a SUT with a GUI. Assume that the SUT has
n use-cases: UC1, UC2…, UCn. For each of these use cases,

the above mentioned test activities (discussed in Section 0)
could be done manually or automated. One possible
combination of test automation approach for this SUT is
shown in Table I. We refer to the matrix notion shown in
Table I as a Test-Automation Decision Matrix (TADM),
where each matrix cell is a binary value (0 or 1). Note that
as we discussed in Section 0, some of the four test activities
could also be done in a partially automated manner.
However, as the initial version of our approach, we only
include either complete manual or complete automated
testing combinations in the rest of this article.

By reviewing the TADM in Table I, we can easily see
that there could be a large number of combinations of
possible choices in this context. In cases that there is a
fixed budget for all test activities, which is the usual
situation in practice, decision should be taken considering
all activities together. Also, selection of use cases for
automation can impact each other. Therefore, the number
of possible choices is dependent on the number of use cases
and the number of test activities. There are
2|#௢௙	௨௦௘	௖௔௦௦௘|ൈ|#	௢௙	௧௘௦௧	௔௖௧௜௩௜௧௜௘௦| different combinations
that should be considered to find the most optimal (cost
effective) combination.

For example, let us assume that we have three use cases
and the four test activities. In this case, there will be
23x4=4,096 different combinations of manual/automated
choices in this matrix. Each of those combinations will be
one possible decision for test automation in this context,
and will lead to a different ROI at the end for the entire
testing process. If any of the “micro” decisions, e.g.,
whether to automate test execution for UC1 is made
improperly, large amounts of rework and test-code “repair”
(co-maintenance) costs [10, 26] will be potentially incurred
to the project and will negatively impact the cost-benefit of
testing.

TABLE I. A Test Automation Decision Matrix (TADM)

Use-case Test
design

Test
scripting

Test
execution

Test
evaluation

UC1 1a 0 0 0
UC2 1 1 1 0
UC3 1 0 0 1
…. … … … …
UCn 0 1 1 1

a. 1 = Automated, 0 = Manual

B. Formulation of the Optimization Problem

The objective of the optimization problem is to find a
single combination among all possible combinations of the
search space (all possible values in a TADM) that would
yield the highest ROI.

Deciding what to automate in the context of cost-
effective test automation is thus a combinatorial
optimization problem. Given the influencing factors in each
phase of test automation, TADM matrix representing a
candidate solution containing binary choices for
automating each use case in each phase of software testing
process. In selection of use cases for automation, possible

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

number of usage of the test-ware during the life of the SUT
is important. Based on the estimated number of usage of
test artifacts during the life-span of the software product,
use cases for automation are selected by the proposed
solution in a way that the highest ROI is achieved before
retirement of the application and its test suites.

The ROI is usually calculated by net profit divided by
the investment. We calculate the ROI of test automation in
comparison to manual testing, as in Equation (1).

ܫܱܴ ൌ 	
∆	஻௘௡௘௙௜௧	ሺ௔௨௧௢௠௔௧௜௢௡	௢௩௘௥	௠௔௡௨௔௟ሻ

∆	஼௢௦௧	ሺ௔௨௧௢௠௔௧௜௢௡	௢௩௘௥	௠௔௡௨௔௟ሻ
 (1)

The goal is to maximize the ROI value. Each decision
in TADM has its costs and benefits. Total cost and benefit
of all automation decisions can be calculated using
Equations (2), (3), respectively.

ݐݏ݋ܥ∆ ൌ 	∑ ∑ .௜,௝ܯܦܣܶ ܱܵܥ ௜ܶ,௝
௠
௝ୀଵ

௡
௜ୀଵ (2)

ݐ݂݅݁݊݁ܤ∆ ൌ ∑ ∑ .௜,௝ܯܦܣܶ ܨܰܤ ௜ܶ,௝
௠
௝ୀଵ

௡
௜ୀଵ (3)

where COST and BNFT are two matrices representing the
cost and benefits of automating use cases in testing
activities during the life-span of the SUT. TADM, COST,
and BNFT are ݊ ൈ݉ matrices, where ݊ is the number of
use cases, and ݉ is the number of test activities which
equals to 4.

C. Solution Approach and Design of the GA

The goal of the optimization is to maximize the ROI value.
Due to the nature of the COST and BNFT matrices, the
problem is non-linear. Looking back to the TADM
example provided in Table I, we can easily see that there
could be a large number of combinations of possible
choices. Brute force, as a simple search technique
systematically enumerates all possible candidates for the
solution. In most real contexts, the number of use cases is
large enough to make brute force an inefficient technique
for this problem.

To deal with the large search space, meta-heuristic
search techniques are usually used in other software
engineering problem domains, referred to as SBSE. We
thus select GA as our solution approach.

We designed a GA in which the initial population is a
set of randomly-generated individuals (chromosomes).
Each individual represents a TADM matrix. Each cell of a
TADM matrix (a binary decision for automation)
corresponds to a gene (genome) in our GA. In each
iteration of the GA, the algorithm selects the parents using
the fitness function to produce the next generation. The
ROI of test automation serves as the fitness function.
Crossover and mutation are two operators of the GA that
occur based on defined probabilities. Crossover operator
aims at passing desirable genes to the next generation and
creates new children by mixing the selected fragments of
the parents. Our crossover operator selects a random
position in the list of use cases, from which the next rows
of TADM matrix in two parents are replaced (Fig. 1). To
avoid the GA from staying in local optima, mutation
operator is used. The mutation operator alters defined

number of genes in each individual, depending on the
probability of mutation (Fig. 1). The termination condition
is specified as a maximal number of iterations. The selected
chromosome shows the best combination of automation
decisions for all use cases through the entire testing
activities.

1 1 1 0

1 0 0 1

0 1 1 0

0 0 0 0

0 0 0 0

0 1 1 0

1 0 0 1

0 1 1 1

1 1 1 0

1 0 0 1

1 0 0 1

0 1 1 1

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

1 1 1 0

1 1 1 1

1 0 0 0

0 1 1 1

0 0 0 0

0 0 0 0

0 1 1 0

0 1 1 1

Fig. 1. Crossover and mutation of chromosomes.

D. Implementation (Tool Support)

To select the best combination of use cases to be automated
in each test activity, we implemented a tool called the
Automated Testing Decision-Support System (ATDSS),
which automated our approach. ATDSS is implemented in
Java and supports both brute force and the proposed GA-
based technique. The tool is provided as open source and
can be downloaded online from [27].

The inputs of the tool include: cost and benefit
measures (COST and BNFT matrices). Output of the
system is the optimal TADM matrix. Also, for the selected
combination, the ROI estimated from automating the
selected use cases in each activity is computed as output of
the tool.

V. INDUSTRIAL CASE STUDY

A. Case Description

The case study was conducted in the context of an Action
Research (AR) project as an industry-academia
collaboration between Pason Systems Corporation and a
team of researchers from the University of Calgary. The
goal was to select the right combination of use cases for
automation to maximize the ROI of the testing process. The
SUT is called Electronic Tour Sheet (ETS), which is an

Parent I Parent II

Crossover

Mutation

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

important sub-system of Pason’s Electronic Drilling
Recorder (EDR) system [28]. EDR is a legacy system and
now is in maintenance phase. ETS has about 30 use cases.
Company has just started to add automated test cases for
their future regression tests of this system, and they needed
to select the test cases that will be more cost-effective.

B. Case Study Design

Based on the guidelines provided by [13], the design of the
case study is outlined below.

1) Goal and Research Questions

The overall business goal of the study is to decrease cost of
software testing while increasing effectiveness of
regression tests and ensuring the quality of the SUT. To
implement this strategy and reach the business goals, we
followed the GQM+ methodology [29] and defined the
technical goal of this study as follows: design and
implementation of a methodology for improving the cost
effectiveness of software testing activities from the point of
view of researchers and practitioner software testers. Based
on the above goal, we raised the following research
questions (RQ):

 RQ 1 – What is the best combination of use cases to
be automated in each phase of testing?

 RQ 2 – How does the approach scale to larger number
of use cases?

2) Metrics and Measurements

To answer the RQs, Table II shows the mapping
between the RQs and the selected metrics. We briefly
describe next the selected metrics and discuss the
measurement method we used in this case study.

TABLE II. Metrics used in this study

RQ Metrics

1 Fixed costs of each activity, Test design productivity,
Test scripting productivity, Test execution productivity,
and test-result evaluation productivity, Maintenance
costs (Co-maintenance, and Quality improvement),
Number of input parameters of each use case, Number
of manual test steps, Number of assertions, Number of
test cases for each use case

2 Execution time of the GA and Brute force algorithm,
Number of use cases

Productivity measures the efficiency of conducting an
activity. We measured productivity metric for each test
activity and used it to find out the average time needed for
fulfillment of the activity. For example, Equation (4) shows
how we calculated the test-case design time.

݁݉݅ܶ݊݃݅ݏ݁ܦ ൌ
1

ݕݐ݅ݒ݅ݐܿݑ݀݋ݎܲ	݊݃݅ݏ݁ܦ	ݐݏ݁ܶ
ൈ ሺ4ሻ			ݏܥܶ#

Productivity of the activities is measured for manual
and automated tests separately. For example, for
calculating the test-case design productivity of manual
testing, we manually applied the equivalence class
partitioning, boundary value analysis, and combinatorial

strategies to generate test data for each use case. For
automated test-case design, we used the productivity value
achieved by using Hexawise [30], an automatic data
generator tool based on equivalence class partitioning. We
should mention that all these measurements were
conducted systematically and directly in the context of the
project and inside the company when conducted by
practitioners. We benefitted from systematic measurement
guidelines such as [31] in our measurement activities.

We used different methods for data measurements, as
discussed next. Whenever data were available in the
software repositories in the firm (e.g., test management,
issue tracking, code management tools), we used the
existing recorded data. For the cases when the data were
not available or had not been recorded precisely, we used
interview or estimation models. For example, for test cases
whose manual test execution time had not been recorded
precisely, we customized and used a test execution effort
estimation model presented in [32]. Due to confidentiality,
we are not able to disclose further details of our
measurement activities.

For test scripts, in addition to development cost, we
considered the maintenance cost. There are two main
sources for maintenance of test-ware which we considered
in our approach: (1) maintenance in the production code
which leads to co-maintenance cost, and (2) preventive and
perfective refactoring activities in the test code which lead
to quality improvement cost. We used the software
maintenance estimation principle of COCOMO [14] to
calculate the test maintenance cost according to test
development cost, as shown in Equation (5).

ݐݏ݋ܥ	݁ܿ݊ܽ݊݁ݐ݅݊ܽܯ	 ൌ ߙ ൈ (5) ݐݏ݋ܥ	ݐ݊݁݉݌݋݈݁ݒ݁ܦ	ݐݏ݁ܶ

Where ߙ	shows the proportion of development cost that
is invested for maintenance purposes. In our industrial case
study, we calculated ߙ	according to the average
maintenance effort invested in similar projects within the
company.

Extracting cost and benefit matrixes needs some efforts.
We collected data in an interactive way with the
practitioner testers, using available data for current project
and also data from similar projects of the company. All our
collected and estimated data have been verified by
company’s manual testers, automation experts before using
in the experiment.

3) Procedure

In the “exploratory” phase of the case study [13],
researchers were involved in characterizing “what is
happening” in Pason’s current testing activities and
processes. In the “improving” phase, we improved the cost
effectiveness of testing activities.

In terms of our research approach, we followed both the
improving case study [13] and the AR approaches [33]. To
plan, execute and manage our AR project, we used the
recommendation and guidelines provided in [33].

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

C. Results

In this section, the results of the study are presented for
each of the RQs 1-2.

1) RQ 1-Use case selection for optimized automation

For selection of the best combination of use cases to be
automated in each test activity, we applied the designed
GA. Before applying GA, we had to tune its parameters.
Other researchers, e.g., [34], and we [35, 36] have
empirically found in previous studies that the execution
time, the quality of outputs, and convergence of a GA are
dependent on how well its parameters have been tuned.
Using the guidelines reported in [34-36], we empirically
tuned the control parameters of the GA. The parameter
values that led to the most optimal GA performance in our
case study were as follows: number of GA iterations = 160,
population size=60, crossover ratio=0.85, mutation
ratio=0.008. GA is repeated 1000 number of times for each
experiment. Then, we executed our tool using GA and the
most optimal TADM was generated for the estimated
number of usage of artifacts during the life-span of the
SUT. In fact, based on the estimated usage of test artifacts
during the life-span of the software product, use cases for
automation were selected in a way that benefits achieved
before retirement of the application. Table III shows a
sample result of the tool which relates to five rounds of
usage/execution of the automated test artifacts. Due to
space limitation, only five out of 30 use cases are shown in
Table III and the names of use cases have been masked due
to confidentiality. After executing our tool, the binary
decision for all use cases and activities, and also the ROI of
the selected combination were reported by our tool. The
total ROI is the sum of ROI values achieved by different
test activities. For this scenario, total ROI (367%) is the
sum of ROI of test activities for five rounds of execution in
Fig. 2, which is 101% and 266% for test design, and test
execution, respectively.

TABLE III. The most optimal TADM

UC

Test
Design

Test
Scripting

Test
Execution

Test
Evaluation

… … … … …

UC 6 1 0 0 0

UC 7 1 1 1 0

UC 8 1 0 0 0

UC 9 1 1 1 0

UC 10 1 1 1 0

… … … … …

Total ROI = 378%

To provide insights into the most optimal TADM in our
case study, we discuss the case of one example use-case.
For UC 8, the GA recommended that test design to be done
automated while other test activities were selected to be
done manually. The rationale behind these decisions were
that the amount of effort needed to be invested in
development and maintenance of this use case was greater
than the amount of time saving that could be returned in
five rounds of test execution. Due to interdependency

between test scripting and execution activities, these
activities were selected to be done manual. Fixed costs
related to implementing facilities for automated test
evaluation were high to be returned in five rounds of usage
of automated test suites. Thus, test evaluation is also
selected to be done manually. Based on the estimated
number of usage of test suites during the life-span of the
SUT, as an input for our tool, the decision can be changed.
For example, if the life of SUT was estimated to be longer
and it was possible to get returns before retirement of the
SUT, the use case would be selected by the tool for
automation.

In addition to find the most optimal TADM, we were
interested to find out the ROI achieved from different test
activities for the selected TADM by our tool. Fig. 2 shows
the ROI received from each test activity for different
number of usage/execution of test suites. As it can be seen
from the chart, ROI of all activities increase by the rise in
the usage of test artifacts during the life-span of SUT. For
test design, test execution, and evaluation, receiving
benefits from automation starts after 2, 3, and 8 executions,
respectively. Therefore, the tool has not selected any use
case for these activities before these points. This means that
if the life-span of the SUT is short in a way that it would
not be possible to utilize the automated test evaluation
artifacts for at least 8 times, SUT will be retired before
providing benefits for the test process. Automation before
these points will result in loss of investment.

Fig. 2. ROI of test activities for different number of test artifact usage

 Fig. 2 also shows that the major amount of ROI is
acquired from automated test execution, followed by
automated test design, and test-result evaluation. The
results confirm that, although in comparison to other
activities, automation in scripting activity leads to the
highest ROI in test execution and evaluation, automation of
other activities is also important. To receive higher ROI
from test automation, analysis of all activities is essential.
For this case study, when test artifacts are used for 10
times, in total 307%, 675%, and 41% return will be
achieved in test-design, test execution, and test evaluation
activities, respectively. In term of time saving, the achieved
ROI are equal to 85, 275, and 21 days (8-hour work day)
saving for the test process. According to the results,
investment in scripting and design activities is highly

0

5

10

15

0 5 10 15

R
et
u
rn
 o
n
 In
ve
st
m
en

t

Number of usage/execution of test artifacts

Test Design Test Execution Test Evaluation

ROI = 7.75 [675% return]

ROI = 4.07 [307% return]

ROI = 1.41 [41% return]

ROI = 3.66 [266% return]

ROI = 2.12 [112% return]

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

beneficial for this software. Importance of these activities
can be due to the fact that SUT involved in this study was a
data-intensive application. When we applied data-driven
testing approach for this SUT, in which one test script can
be used for execution of several designed inputs and
outputs, we received high amount of ROI.

Since GA is a randomized algorithm, we discuss the
repeatability of the algorithm next. We investigated the
repeatability of GA results by analyzing the variation in
maximum values of objective function of the best GA
individual (chromosome) after the execution was finished.
Then, we assessed the extent to which those values were
repeatable. For this purpose, we run the algorithm for 1000
times and Fig. 3 shows distribution of the values for the
objective function.

Fig. 3. Experimental results for repeatibality of the GA

As it can be seen in Fig. 3, there is a variation in GA
results. Such a variation in fitness values across multiple
runs is expected when using randomized algorithm such as
GAs on a complex optimization problem such as decision
making for test automation.

Most of the results are in range of [480 - 500], which
shows the ability of GA algorithm to find a near optimal
solution. As it is discussed in section V.B.2, each GA run
lasts a few milliseconds, and it is possible to rely on
multiple runs for making decision using GA. TABLE IV.
shows the statistical result of our experiment with GA.
These values are extracted from 1000 rounds of
experiments for test artifacts with life-span of five times.

TABLE IV. Statistical values for objective function of GA

Average 4.78 (378%)

Minimum 3.99
(299%)

Maximum 5.05
(4.05%)

2) RQ 2-Scalability of the GA

To evaluate scalability of the designed approach with the
increasing number of use cases, we compared the execution
time of the GA for different number of use cases with the
execution time of the brute force approach in Fig. 4. We
used a similar approach followed in our previous GA-based
test technique which was in the context of performance

testing of real-time systems [35, 36]. Brute force is a search
technique which tries all combinations (searches the entire
search space exhaustively) and guarantees to find a solution
if it exists. Therefore, cost of brute force search is
proportional to the size of the search space.

Fig. 4 shows the execution time of both algorithms for
different number of use cases. It should be noted that in
order to show both curves clearly, we had to use different
scales for the algorithms. Execution time of the brute force
algorithm is shown in Fig. 4–a in “minute” scale, and Fig.
4–b relates to GA, in “second” scale. Both approaches were
implemented in Java as part of our ATDSS tool [27] and
were executed in the same machine and environment. The
execution time was recorded for both genetic and brute
force algorithms. There are 2|#୙ୗ୉	େ୅ୗ୉|ൈ|#୅େ୘୍୚୍୘ଢ଼|
different combinations that should be considered in brute
force approach and as it can be seen from the graph, with
the increase in the number of use cases, the execution time
of brute force approach grows sharper and this limits the
scalability of the brute force technique for larger systems.
However, the GA shows acceptable execution time for
large number of use cases.

D. Discussions and Lessons Learned

From a technical point of view, the ultimate goal of
practitioners was selecting the right (the most cost
effective) combination of use cases to be tested in an
automated manner. Selection of use cases before starting to
automate them can prevent large amounts of rework in
terms of test maintenance activities in the project.

Once we used our GA tool to determine the most
optimal TADM, we started the “improving” phase of the
case study to improve the cost effectiveness of testing
activities in the project under study. The improvements
have started already in the project under study and we have
already been observing noticeable cost savings in the test
processes.

Fig. 4. Execution time of genetic and brute force algorithms

0

100

200

300

400

0 10 20 30

Ex
e
cu
ti
o
n
 T
Im

e
(M

in
u
te
)

Brute Force

0

0.01

0.02

0.03

0.04

0 5 10 15 20 25 30

Ex
e
cu
ti
o
n
 T
im

e

(S
e
co
n
d
)

Number of usecases

GA

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

Based on our study, the decision for test automation
should be studied in a wider context than only writing test
scripts. Automation should be seen as a strategy to be
applied on the entire testing process rather than just in test
execution. Automating other phases of testing can be
helpful for getting higher ROI, as we discussed in Section
V.C. Also, the scalability of such an approach to be
applicable in industrial case studies is very important and
solutions designed in theory should be applicable in real
contexts to be able to utilize them.

In terms of lessons learned from the research approach
standpoint, we learned throughout the project that AR
studies do not only help solving a real industrial problem,
but it also helps both researchers and practitioners to
collaborate more closely and exchange solutions and points
of view. Researchers’ on-site presence helped them to
better understand real industry-relevant issues and
challenges. Collaboration and exchange of information
between researchers and practitioners can help to design
more applicable approaches that are easily transferable to
the industry. Moreover, we learned that although
AR studies are initiated to solve an immediate problem, the
researchers can use the opportunity to design general
approaches applicable in other contexts, while making sure
that the approach benefit the practitioners in current
context. The proposed search-based approach designed in
this study is independent of the properties of the SUT and
will replace subjective automation decisions with
systematic approach for making automation decisions.

E. Threats to Validity

Based on the guidelines provided in [13], this section
discusses the construct and external threats to the validity
of the reported study. We discuss next the steps we have
taken to mitigate the potential threats to validity.

Construct validity aspects reflect to what extent the
operational measures that are studied really represent the
aim of the study. To limit this type of threat and to follow
the goal of the practitioners in the operational measurement
level, we used the GQM+ approach [29] which explicitly
links measurement goal to business level goals.
Measurement goal, question and metrics were reviewed
and finalized among researches and practitioners before
conducting the measurements. One other potential
construct threat to validity of this study is concerned with
measurement bias, i.e., the extent with which the data and
the analysis as conducted by the specific researchers. To
limit the validity, two of the researchers involved in this
study measured the data individually and compared and
discussed the measured values before using them in the
model. Also, we reviewed the measured data with
practitioner testers in our regular weekly meetings.
However, there is still possibility that the collected data can
be different from the real context and it would be better for
industrial settings to have systematic provisions in place to
collect and update the influencing factors such as execution
time, scripting, and maintenance rate during their test
process.

External validity is concerned with to what extent the
results of a study can be generalized to other contexts.
Although this study is done as an AR-based study to solve
a specific problem in a single company, we do not see any
reason that our proposed solution would be limited for that
specific context. The proposed search-based technique is
intended to be applicable in other industrial contexts.
Although at the moment, we have no empirical data on
whether this approach will work equally well on other
contexts, but can think of no reason why it would not.

VI. CONCLUSIONS AND FUTURE WORKS

In this study, we investigated effective test automation
problem across the entire testing life-cycle. In practice, the
number of possible combinations to be considered can be
large and needs effective search techniques to be applied. A
specific GA was developed in this study to find the best
solution at a reasonable computational cost. In our context,
experiments show that the GA worked faster than the brute
force algorithm for higher number of use cases.

Similar to many other practitioners and researchers [3-
5, 37], the focus of test automation in the company under
study was only on test execution. The results of this study
show that automation in other test activities can have
benefits for test process and practitioner test automation
experts need to pay attention to automation of the entire
test activities.

The proposed model was designed to support two
extreme decisions for each test activity: (1) fully manual,
and (2) fully automated. As a future step, we plan to extend
the approach to support the in-between case as well, i.e.,
partially automated. Also, we plan to conduct further
empirical validations on this approach by applying it in
other industrial settings and relaxing the assumptions.
Furthermore, similar to our previous work in other area of
SBSE [36, 38], we plan to conduct empirical studies on the
performance and repeatability aspects of our GA approach.

ACKNOWLEDGMENT

This work was primarily supported by an NSERC
ENGAGE grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC). Vahid
Garousi was additionally supported by the Visiting
Scientist Fellowship Program (#2221) of the Scientific and
Technological Research Council of Turkey (TÜBİTAK)
and Atilim University. We would like to sincerely thank
all the software engineers in Pason who devoted their time
to this action-research project.

REFERENCES

[1] R. Ramler and K. Wolfmaier, "Economic perspectives in
test automation: balancing automated and manual testing
with opportunity cost," in Proceedings of the 2006
international workshop on Automation of software test,
2006, pp. 85-91.

[2] I. Burnstein, T. Suwanassart, and R. Carlson, "Developing
a testing maturity model for software test process

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

evaluation and improvement," in Test Conference, 1996.
Proceedings., International, 1996, pp. 581-589.

[3] K. Stobie, "Too much automation or not enough? When to
automate testing," 2009.

[4] R. W. Rice, C. CSQA, and L. Rice Consulting Solutions,
"Surviving the top ten challenges of software test
automation," CrossTalk: The Journal of Defense Software
Engineering, pp. 26-29, 2003.

[5] D. J. Mosley and B. A. Posey, Just Enough Software Test
Automation: Prentice Hall Professional, 2002.

[6] S. Desikan and G. Ramesh, Software Testing: Principles
and Practices: Pearson Education India, 2006.

[7] E. Dustin, T. Garrett, and B. Gauf, Implementing
automated software testing: How to save time and lower
costs while raising quality: Addison-Wesley Professional,
2009.

[8] S. Berner, R. Weber, and R. K. Keller, "Observations and
lessons learned from automated testing," in Proceedings of
the 27th international conference on Software engineering,
2005, pp. 571-579.

[9] G. Meszaros, xUnit test patterns: Refactoring test code:
Pearson Education, 2007.

[10] B. Daniel, T. Gvero, and D. Marinov, "On test repair using
symbolic execution," in Proceedings of the 19th
international symposium on Software testing and analysis,
2010, pp. 207- 218.

[11] F. Ensan, E. Bagheri, and D. Gašević, "Evolutionary
search-based test generation for software product line
feature models," in Advanced Information Systems
Engineering, 2012, pp. 613-628.

[12] K. Lakhotia, M. Harman, and P. McMinn, "A multi-
objective approach to search-based test data generation," in
Proceedings of the 9th annual conference on Genetic and
evolutionary computation, 2007, pp. 1098-1105.

[13] P. Runeson and M. Höst, "Guidelines for conducting and
reporting case study research in software engineering,"
Empirical Software Engineering, vol. 14, pp. 131-164,
2009.

[14] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, "A
model for technology transfer in practice," Software, IEEE,
vol. 23, pp. 88-95, 2006.

[15] C. Pinheiro, V. Garousi, F. Maurer, and J. Sillito,
"Introducing Automated Environment Configuration
Testing in an Industrial Setting," in Software Engineering
and Knowledge Engineering (SEKE), 2010, pp. 186-191.

[16] S. A. Jolly, V. Garousi, and M. M. Eskandar, "Automated
Unit Testing of a SCADA Control Software: An Industrial
Case Study Based on Action Research," in Software
Testing, Verification and Validation (ICST), 2012 IEEE
Fifth International Conference on, 2012, pp. 400-409.

[17] P. McMinn, "Search-based software test data generation: a
survey," Software Testing, Verification and Reliability, vol.
14, pp. 105–156, 2004.

[18] A. P. Mathur, Foundations of Software Testing: Addison-
Wesley Professional, 2008.

[19] P. Ammann and J. Offutt, Introduction to Software
Testing: Cambridge University Press, 2008.

[20] J. Czerwonka, "Pairwise Testing,"
http://www.pairwise.org/, Online, Last accessed: Aug. 4,
2013.

[21] P. Tahchiev, F. Leme, V. Massol, and G. Gregory, JUnit In
Action: Manning Publications Company, 2010.

[22] C. T. Brown, G. Gheorghiu, and J. Huggins, An
Introduction to Testing Web Applications with twill and
Selenium: O'Reilly Media, 2007.

[23] S. R. Shahamiri, W. M. N. W. Kadir, and S. Z. Mohd-
Hashim, "A Comparative Study on Automated Software
Test Oracle Methods," in International Conference on
Software Engineering Advances, 2009.

[24] S. R. Shahamiri, W. M. N. W. Kadir, and S. Z. Mohd-
Hashim, "A comparative study on automated software test
oracle methods," in Software Engineering Advances, 2009.
ICSEA'09. Fourth International Conference on, 2009, pp.
140-145.

[25] M. S. Feather and B. Smith, "Test oracle automation for
V&V of an autonomous Spacecraft's planner," in Proc. of
the 2001 AAAI Symposium, 2001.

[26] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso,
"WATER: Web Application TEst Repair," in Proceedings
of the First International Workshop on End-to-End Test
Script Engineering, 2011, pp. 24 - 29.

[27] Y. Amannejad and V. Garousi, "ATDSS source code,"
http://www.softqual.ucalgary.ca/sw_tools.html, Online,
Last access: Sep. 22, 2013.

[28] P. S. Corporations, "Products & Services,"
http://www.pason.com/, Online, Last accessed: Aug. 4,
2013.

[29] V. Basili, J. Heidrich, M. Lindvall, J. Munch, M. Regardie,
and A. Trendowicz, "GQM^+ Strategies--Aligning
Business Strategies with Software Measurement," in
Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on, 2007, pp.
488-490.

[30] Hexawise Team, "Hexawise – Pairwise Testing Made
Easy," http://www.hexawise.com, Online, Last accessed:
Dec. 3, 2012.

[31] R. E. Park, W. B. Goethert, and W. A. Florac, "Goal-
Driven Software Measurement. A Guidebook," Technical
report, CMU/SEI-96-HB-002, 1996.

[32] E. Aranha and P. Borba, "An estimation model for test
execution effort," in Empirical Software Engineering and
Measurement, 2007. ESEM 2007. First International
Symposium on, 2007, pp. 107-116.

[33] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen,
"Action research," Communications of the ACM, vol. 42,
pp. 94-97, 1999.

[34] A. Arcuri and G. Fraser, "On parameter tuning in search
based software engineering," in Search Based Software
Engineering, ed: Springer, 2011, pp. 33-47.

[35] V. Garousi, "A genetic algorithm-based stress test
requirements generator tool and its empirical evaluation,"
Software Engineering, IEEE Transactions on, vol. 36, pp.
778-797, 2010.

[36] V. Garousi, "Empirical analysis of a genetic algorithm-
based stress test technique," in Proceedings of the 10th

This is the post-print of a paper that has been published with the following DOI: http://dx.doi.org/10.1109/ICSTW.2014.34

annual conference on Genetic and evolutionary
computation, 2008, pp. 1743-1750.

[37] E. Dustin, J. Rashka, and J. Paul, Automated software
testing: introduction, management, and performance:
Addison-Wesley Professional, 1999.

[38] V. Garousi, L. C. Briand, and Y. Labiche, "Traffic-aware
stress testing of distributed real-time systems based on
UML models using genetic algorithms," Journal of
Systems and Software, vol. 81, pp. 161-185, 2008.

