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Abstract—Test automation is a widely-used approach to reduce 
the cost of manual software testing. However, if it is not 
planned or conducted properly, automated testing would not 
necessarily be more cost effective than manual testing. 
Deciding what parts of a given System Under Test (SUT) 
should be tested in an automated fashion and what parts 
should remain manual is a frequently-asked and challenging 
question for practitioner testers. In this study, we propose a 
search-based approach for deciding what parts of a given SUT 
should be tested automatically to gain the highest Return On 
Investment (ROI). This work is the first systematic approach 
for this problem, and significance of our approach is that it 
considers automation in the entire testing process (i.e., from 
test-case design, to test scripting, to test execution, and test-
result evaluation). The proposed approach has been applied in 
an industrial setting in the context of a software product used 
in the oil and gas industry in Canada. Among the results of the 
case study is that, when planned and conducted properly using 
our decision-support approach, test automation provides the 
highest ROI. In this study, we show that if automation decision 
is taken effectively, test-case design, test execution, and test 
evaluation can result in about 307%, 675%, and 41% ROI in 10 
rounds of using automated test suites.  

Keywords—action research, cost-benefit analysis, industrial 
case study, search-based software engineering, software test 
automation.  

I. INTRODUCTION  

Software testing is a major cost factor in the software 
development life-cycle [1, 2]. Test activities are essential 
and inevitable to guarantee high quality software products. 
Test automation is a widely-used approach to reduce the 
cost of manual testing, while ensuring the quality of 
software systems.  

However, test automation is not always necessarily cost 
effective. Deciding which parts of a given System Under 
Test (SUT) should be tested in an automated fashion is a 
widely-asked and challenging question for practitioner 
testers [3]. A typical software tester may naively argue that 
manual testing can be fully replaced with automation, but it 
could be the case that such a replacement is not cost-
effective. On importance of carefully choosing what to 
automate, Rice et al. [4] state that: “If you do not know 
which tests are the most important and which tests are the 
most applicable for automation, the tool will only help 
perform a bad test faster.” Therefore, selecting which parts 

of the system should be automated and which parts should 
remain manual is an important decision. 

There are a number of studies (e.g., [3-5]) which have 
tackled the challenges of test automation, but there have 
been no work focusing on the notion of automation 
“across” the entire software testing process, from test-case 
design, to test-case scripting, to test execution, and test-
result evaluation. The focus of previous works in the field 
of software test automation has only been on test execution.  

When automation decision should be taken for all 
features, use cases or parts of a SUT throughout the entire 
testing process, estimating the Return On Investment (ROI) 
of automation would not be trivial. Use-cases may impact 
each other, e.g., if we automate the testing of a use-case, 
testing others may become easier and/or cheaper. 
Therefore, ROI of the selected parts of the system for 
automation should be considered as a whole. In large 
projects when the number of use cases is large, an effective 
solution should be applied to find the best solution in a 
reasonable computational cost. This paper proposes a 
search-based approach based on Genetic Algorithm (GA) 
for deciding what parts of the systems should be automated 
to gain the highest ROI of testing activities.  

The main contributions of this study are: 
 A consolidated review of test automation across the 

entire software testing process, not just in test 
execution (Section 0)  

 A search-based approach to address the problem of 
what (parts of the system) should be automated 
(Section IV) 

 An industrial case study to investigate the applicability 
and effectiveness of the approach in a real-world 
industrial setting (Section V) 

The remainder of this paper is organized as follows. 
Section II discusses background and related works. Section 
0 revisits the notion of test automation across the entire 
software testing process. Section IV formulates the cost-
benefit of the effective test automation problem as an 
optimization problem and presents a GA to solve it. Section 
V describes the industrial case study conducted to evaluate 
the approach. Finally, Section VI concludes this study and 
states the future work directions. 
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II. BACKGROUND AND RELATED WORKS 

This study is in the context of effective software test 
automation and relates to the following areas: (1) What to 
automate (for the purpose of testing), (2) Cost, benefit, and 
ROI of testing, and (3) Action-research and industrial case 
studies in software testing. The related works in each area 
are briefly discussed next. 

A. What to Automate 

When deciding what parts of the system should (not) be 
automated, several factors need to be considered. 
Practitioner testers from Microsoft recommended three 
major factors to be considered [3]: “(1) rate of change of 
what we are testing: the less stable, the more automation 
maintenance costs, (2) frequency of test execution: How 
important is each test result and how expensive is to get it?, 
and (3) usefulness of automation: Do automated tests have 
continuing value to either find bugs or to prove important 
aspects about your software, like scenarios?” 

Inside a book on testing [6], generic tips to address the 
“what to automate” problem were provided. According to 
this book, certain types of testing such as stress, reliability, 
and regression testing are amenable types for being 
automated. Due to the repetitive nature of the regression 
testing, automation can save significant time and effort and 
the gained time can be effectively utilized for ad-hoc 
testing and other more creative avenues [6]. Similar to the 
challenge in our context, finding the right combination of 
test cases to be automated, [6] suggested that while starting 
automation, the effort should focus on areas where good 
scenarios in terms of ROI exist [6], however no systematic 
approach was provided. 

A comprehensive checklist was provided by another 
book on test automation [7], which has considered almost 
all the above mentioned factors. Number of executions, 
covering critical paths, error-prone areas, data-driven 
features, number of supported hardware and software, and 
also having promising ROI are the main factors discussed 
in this book [7]. Our work is not limited to just providing 
the cost and benefit factors. Using these factors, we have 
designed and implemented a decision-support approach for 
addressing the “what to automate” problem. In addition to 
the ROI of test-suite development, maintenance, and 
evaluation which were considered in [7], our approach 
takes into account the entire testing process including test-
case design, test execution, and test-result evaluation. 

Surveying the books and literature, we found some 
textbooks that are discussed. Also, we found that there is 
lack of relevant papers that mainly focused on the problem 
of deciding which part of a software should be automated 
and which parts are better to remain manual. This can show 
that this area of research needs more attention from 
practitioners and researchers. 

B. Quantifying Cost, Benefit, and ROI of Testing 

Thinking of increasing automated test cases without 
considering costs and benefits of each test case, are the 
main reasons of failure in test automation projects []. If cost 

of maintaining a test case is more than the cost saving that 
will be provided, it should not be considered for being 
automated. It is worth mentioning that, even if a company 
spend a lot of set up costs for its automating its test cases, it 
is still a naive decision to automate all test cases. In order 
to have a successful test automation solution, precise 
investigation of cost and benefit, and ROI of each test case 
is necessary before deciding to automate them. 

Many of the works in decision-support for test 
automation take into account the ROI of testing [1, 7, 8]. In 
this context, estimating the potential costs and benefits is 
critical part of articulating the impact of implementing 
automated software testing [7].  

Section 3.3 of the book entitled “Implementing 
Automated Software Testing” [7] described how to 
calculate the potential cost savings of implementing 
automated software testing in comparison to performing 
manual tests. Tangible factors discussed in [7] for 
calculating ROI are: test setup, test development, and test 
evaluation costs. 

Reference [8] was an industrial case study which 
explored state of test automation in software industry. Cost 
and benefit drivers of test automation were introduced in 
this paper. According to [8], quality improvement, time 
saving, and reusing test-ware were benefits of test 
automation while test-code development and maintenance, 
and staff training, are among the major cost drivers of test 
automation. Similar to this study, our industrial case study 
confirms that time saving and reusing test-ware are benefits 
of test automation.  

A model named “opportunity cost model” was utilized 
in [1] to present influencing factors on test automation. 
Fixed and variable costs involved in manual and automated 
test execution were considered in the opportunity cost 
model. Risk exposure was defined as benefit of test 
execution and objective of the project was to maximize the 
benefit of test process. This model intended to make the 
model realistic while keeping it simple enough to be used 
in real-world projects. Although we agree that the model 
should be simple enough to use but we believe that factors 
such as test-code maintenance including quality 
improvement [9] and co-maintenance [10] activities, and 
reusability of test-ware are important factors that needs to 
be considered while calculating cost and ROI of test 
automation. 

C. Search-Based Software Enginnering (SBSE) 

SBSE approaches have been previously applied various 
aspects of software testing, such as test data, and test case 
generation [11, 12]. Different from these works, this paper 
does not use SBSE to find test suites, or generate test data. 
Instead, our work uses a search-based technique to 
facilitate decision making for test automation purposes. 
Although there are other applications of SBSE in other area 
of software testing within the literature, the novelty of the 
work is in its application of SBSE for the particular 
problem of decision-support for test automation. SBSE is 
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used for identifying parts of the test process to be 
automated. There were no previous works in this direction. 

D. Action Research and Industrial Case Studies in 
Software Testing 

In the context of software engineering research methods, 
the research approaches we use in this work are 
“exploratory and improving” case studies [13] and Action 
Research (AR) [14]. 

Our approach was initiated, developed and evaluated 
through an AR project between academia and industry. We 
have had experience with the AR approach in two recent 
industrial testing projects [15, 16] and used our experience 
to initiate, plan and execute this study. The details of the 
project and case description will be described in Section V. 
In the “exploratory” phase, we intended to find out and 
characterize “what is happening” in the existing testing 
activities and processes of the company under study. In the 
“improving” phase, we improved the cost effectiveness of 
software test activities. The entire research project was 
governed by AR which is an established research 
methodology for industry-academia collaborations in 
software engineering. In particular, we followed the AR 
guidelines proposed by [14].  

III. TEST AUTOMATION ACROSS THE SOFTWARE TESTING 

PROCESS 

By consulting several books and online resources [17-19]  
on software testing and incorporating different views and 
classifications, we divide the testing tasks into four types: 

1. Test-case design: Designating the list of test cases or 
test requirements to satisfy coverage criteria, or other 
engineering goals. 

2. Test scripting: Documenting test cases in manual test 
scripts or automated test code. 

3. Test execution: Running test cases on the software 
under test and recording the outputs. 

4. Test evaluation: Evaluating results of testing (pass or 
fail), also known as test oracle or test verdict. 

Each of the four activities can be done either manually 
(by a human), automated (using a software tool) or the mix 
of the two. The following four sub-sections discuss each of 
the four activities in detail, and discuss the notion of 
manual work, partial automation, or full automation in each 
activity. Note that this entire section is a consolidated 
overview of the topic and will include references to 
selected list of existing works in each of the above four 
testing activities. 

A. Automation in Test-case Design  

Test-case design is the activity of designating a list of test 
cases or test requirements. Sub-activities such as 
identifying test data, including test inputs and expected test 
outputs, and test paths are part of test design activity. This 
activity can be done either: (1) based on criteria (e.g., line 
or requirements coverage), (2) based on human knowledge 
(e.g., exploratory testing) [19].  

To conduct criteria-based test-case design in a fully 
automated fashion, there is also a large body of knowledge 
available which is often referred to as software test-data 
generation. Test data generation, including inputs and 
expected outputs, is one of the important part of test design 
activity. The paper by McMinn [17] surveys different 
techniques and tools for test data generation. Also, to 
automate combinatorial criteria-based test approaches such 
as pair-wise testing [19], there are open-source and 
commercial tools which generate test inputs [20]. 

Test-case design based on human knowledge is mostly 
referred to as exploratory testing. As per the nature of this 
type of testing, it is done fully manual. Criteria-based test-
case design can be done manually, automated, or a mix of 
the two. In fully manual criteria-based test-case design, 
depending on whether black- or white-box testing is going 
to be done, tester looks at the requirements or code and 
derives the test cases without using any tool. 

For partial automation, tester would use any of the 
many-available code coverage tools [18], but has to 
conduct manual efforts to derive test cases to increase 
coverage. 

The output of test-case design activity is a test suite 
which is a set of test cases (input and expected output 
values) or test requirements (e.g., control flow paths to be 
covered). The next test activity (test scripting) will make 
use of this output. 

B. Automation in Test Scripting 

In manual testing, test scripting is documenting test cases, 
generated in the previous activity, either in simple 
technologies such as Word file or Wiki’s or using test-
support tools, e.g., IBM Rational Manual Tester. In 
automated testing, test scripting is developing test code 
(scripts) from test cases generated in the previous activity. 
There are many test tools and frameworks available, e.g., 
JUnit [21] and Selenium [22]. 

Test scripting can also be done manually, partially 
automated, or fully automated. Manual development of test 
scripts is obvious, as developing manual test cases is the 
usual and the basic step that is done by most manual 
testers. For partial automation in this context, manual test-
support tools such as IBM Rational Manual Tester are 
used. Also, there are many tools for testing via Graphical 
User Interfaces (GUI) which are mostly called “record-and-
playback” tools, e.g., HP QuickTest Professional (QTP). 
Using these tools, testers records a test scenario (test case) 
by interacting with the SUT’s GUI, while the tool 
automatically generates the test script in the background. 
When recording (test scripting) is done, the automated test 
code can be executed as needed.  

Finally, for fully automated test scripting, there has 
been a good progress in the last decade and many tools for 
automated generation of automated test code are now 
available [5, 16, 23].  

The outputs of test scripting activity are either: (1) 
manual test scripts (in variety of formats), or (2) automated 
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test suites (e.g., using tools such as JUnit, HP QTP). The 
next test activity (test execution) will make use of test 
scripts. 

C. Automation in Test Execution 

Test execution is defined as running the test cases on the 
SUT and recording the results or observing the SUT’s 
output/behavior [19]. We have observed in our interactions 
with our industrial partners that when most practitioners 
discuss about test automation, they often limit their focus 
on automation of test execution only. 

Similar to the above activities, test execution can also 
be done manually, partially automated, or fully automated. 
We can observe at this point that there are inter-
dependencies among the choices (decisions) made in 
following activities. For example, if a tester chooses to 
develop all the tests as automated test suites, test execution 
will obviously be done fully automated. In contrast, if the 
test team decides to develop all their tests as manual test 
scripts, test execution has to be done fully manual. Partial 
automation of test execution will be in the case that a ratio 
of test suites is automated scripts and the others are manual 
test scripts. 

D. Automation in Test Evaluation (Test Oracles) 

After the SUT is exercised by a test case, evaluating the 
test outcome (pass or fail) is an important phase. There are 
usually three approaches for this: (1) a human tester may 
make such a judgment, (2) we may decide to incorporate 
(“hard code”) test evaluations as a verification points (or 
known as assertions) in test-code, and (3) there have also 
been more advanced techniques to build “intelligent” 
(learning) test oracles using machine learning and artificial 
intelligence, e.g.,  [24, 25]. The approaches (2) and (3) are 
considered to have automated test evaluation, but with 
different levels of intelligence. 

E.  Assumptions 

Each use case or object-oriented unit under test can have 
several test cases. Although it is possible to make fine grain 
decisions in test case level, in this paper that, we make 
decision in use case level. In fact, we have assumed that 
when using our approach, all test cases of a use-case will 
either be decided to be automated or done manually. This 
assumption helps us reduce the complexity of our decision 
support approach and make it applicable to be used in real 
world scenarios. 

IV. DECISION SUPPORT FOR EFFECTIVE TEST AUTOMATION 

AS AN OPTIMIZATION PROBLEM 

In this section, we formulate the effective test automation 
as an optimization problem and develop a solution 
approach using GA. 

A. Multiple Decisions  for Test Automation and a 
Motivating Example 

We start with an example hypothetical test-automation 
scenario. Let us assume that we intend to conduct black-
box testing of a SUT with a GUI. Assume that the SUT has 
n use-cases: UC1, UC2…, UCn. For each of these use cases, 

the above mentioned test activities (discussed in Section 0) 
could be done manually or automated. One possible 
combination of test automation approach for this SUT is 
shown in Table I. We refer to the matrix notion shown in 
Table I as a Test-Automation Decision Matrix (TADM), 
where each matrix cell is a binary value (0 or 1). Note that 
as we discussed in Section 0, some of the four test activities 
could also be done in a partially automated manner. 
However, as the initial version of our approach, we only 
include either complete manual or complete automated 
testing combinations in the rest of this article. 

By reviewing the TADM in Table I, we can easily see 
that there could be a large number of combinations of 
possible choices in this context. In cases that there is a 
fixed budget for all test activities, which is the usual 
situation in practice, decision should be taken considering 
all activities together. Also, selection of use cases for 
automation can impact each other. Therefore, the number 
of possible choices is dependent on the number of use cases 
and the number of test activities. There are 
2|# 	 	 | |#	 	 	 | different combinations 
that should be considered to find the most optimal (cost 
effective) combination. 

For example, let us assume that we have three use cases 
and the four test activities. In this case, there will be 
23x4=4,096 different combinations of manual/automated 
choices in this matrix. Each of those combinations will be 
one possible decision for test automation in this context, 
and will lead to a different ROI at the end for the entire 
testing process. If any of the “micro” decisions, e.g., 
whether to automate test execution for UC1 is made 
improperly, large amounts of rework and test-code “repair” 
(co-maintenance) costs [10, 26] will be potentially incurred 
to the project and will negatively impact the cost-benefit of 
testing. 

TABLE I.  A Test Automation Decision Matrix (TADM) 

Use-case Test 
design 

Test 
scripting 

Test 
execution 

Test 
evaluation 

UC1 1a 0 0 0 
UC2 1 1 1 0 
UC3 1 0 0 1 
…. … … … … 
UCn 0 1 1 1 

a. 1 = Automated, 0 = Manual 

B. Formulation of the Optimization Problem 

The objective of the optimization problem is to find a 
single combination among all possible combinations of the 
search space (all possible values in a TADM) that would 
yield the highest ROI. 

Deciding what to automate in the context of cost-
effective test automation is thus a combinatorial 
optimization problem. Given the influencing factors in each 
phase of test automation, TADM matrix representing a 
candidate solution containing binary choices for 
automating each use case in each phase of software testing 
process. In selection of use cases for automation, possible 
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number of usage of the test-ware during the life of the SUT 
is important. Based on the estimated number of usage of 
test artifacts during the life-span of the software product, 
use cases for automation are selected by the proposed 
solution in a way that the highest ROI is achieved before 
retirement of the application and its test suites. 

The ROI is usually calculated by net profit divided by 
the investment. We calculate the ROI of test automation in 
comparison to manual testing, as in Equation (1).  

	
∆	 	 	 	

∆	 	 	 	
              (1) 

The goal is to maximize the ROI value. Each decision 
in TADM has its costs and benefits. Total cost and benefit 
of all automation decisions can be calculated using 
Equations (2), (3), respectively. 

∆ 	∑ ∑ , . ,          (2) 

∆ ∑ ∑ , . ,        (3) 

where COST and BNFT are two matrices representing the 
cost and benefits of automating use cases in testing 
activities during the life-span of the SUT. TADM, COST, 
and BNFT are  matrices, where  is the number of 
use cases, and  is the number of test activities which 
equals to 4.  

C. Solution Approach and Design of the GA 

The goal of the optimization is to maximize the ROI value. 
Due to the nature of the COST and BNFT matrices, the 
problem is non-linear. Looking back to the TADM 
example provided in Table I, we can easily see that there 
could be a large number of combinations of possible 
choices. Brute force, as a simple search technique 
systematically enumerates all possible candidates for the 
solution. In most real contexts, the number of use cases is 
large enough to make brute force an inefficient technique 
for this problem. 

To deal with the large search space, meta-heuristic 
search techniques are usually used in other software 
engineering problem domains, referred to as SBSE. We 
thus select GA as our solution approach.  

We designed a GA in which the initial population is a 
set of randomly-generated individuals (chromosomes). 
Each individual represents a TADM matrix. Each cell of a 
TADM matrix (a binary decision for automation) 
corresponds to a gene (genome) in our GA. In each 
iteration of the GA, the algorithm selects the parents using 
the fitness function to produce the next generation. The 
ROI of test automation serves as the fitness function. 
Crossover and mutation are two operators of the GA that 
occur based on defined probabilities. Crossover operator 
aims at passing desirable genes to the next generation and 
creates new children by mixing the selected fragments of 
the parents. Our crossover operator selects a random 
position in the list of use cases, from which the next rows 
of TADM matrix in two parents are replaced (Fig. 1). To 
avoid the GA from staying in local optima, mutation 
operator is used. The mutation operator alters defined 

number of genes in each individual, depending on the 
probability of mutation (Fig. 1). The termination condition 
is specified as a maximal number of iterations. The selected 
chromosome shows the best combination of automation 
decisions for all use cases through the entire testing 
activities. 

     

1 1 1 0 

1 0 0 1 

0 1 1 0 

0  0 0 0 

      

 

0 0 0 0 

0 1 1 0 

1 0 0 1 

0 1 1 1 

                

     

1 1 1 0 

1 0 0 1 

1 0 0 1 

0   1 1 1 

      

 

0 0 0 0 

0 1 1 0 

0 1 1 0 

0 0 0 0 

      

 

1   1 1 0 

1 1 1 1 

1 0 0 0 

0   1 1 1 
 

0 0 0 0 

0 0 0 0 

0 1 1 0 

0 1 1 1 
  

Fig. 1. Crossover and mutation of chromosomes. 

D. Implementation (Tool Support) 

To select the best combination of use cases to be automated 
in each test activity, we implemented a tool called the 
Automated Testing Decision-Support System (ATDSS), 
which automated our approach. ATDSS is implemented in 
Java and supports both brute force and the proposed GA-
based technique. The tool is provided as open source and 
can be downloaded online from [27]. 

The inputs of the tool include: cost and benefit 
measures (COST and BNFT matrices). Output of the 
system is the optimal TADM matrix. Also, for the selected 
combination, the ROI estimated from automating the 
selected use cases in each activity is computed as output of 
the tool. 

V. INDUSTRIAL CASE STUDY 

A. Case Description 

The case study was conducted in the context of an Action 
Research (AR) project as an industry-academia 
collaboration between Pason Systems Corporation and a 
team of researchers from the University of Calgary. The 
goal was to select the right combination of use cases for 
automation to maximize the ROI of the testing process. The 
SUT is called Electronic Tour Sheet (ETS), which is an 

Parent I Parent II 

Crossover 

Mutation 
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important sub-system of Pason’s Electronic Drilling 
Recorder (EDR) system [28]. EDR is a legacy system and 
now is in maintenance phase. ETS has about 30 use cases. 
Company has just started to add automated test cases for 
their future regression tests of this system, and they needed 
to select the test cases that will be more cost-effective. 

B. Case Study Design 

Based on the guidelines provided by [13], the design of the 
case study is outlined below. 

1) Goal and Research Questions 

The overall business goal of the study is to decrease cost of 
software testing while increasing effectiveness of 
regression tests and ensuring the quality of the SUT. To 
implement this strategy and reach the business goals, we 
followed the GQM+ methodology [29] and defined the 
technical goal of this study as follows: design and 
implementation of a methodology for improving the cost 
effectiveness of software testing activities from the point of 
view of researchers and practitioner software testers. Based 
on the above goal, we raised the following research 
questions (RQ): 

 RQ 1 – What is the best combination of use cases to 
be automated in each phase of testing? 

 RQ 2 – How does the approach scale to larger number 
of use cases? 

2) Metrics and Measurements 

To answer the RQs, Table II shows the mapping 
between the RQs and the selected metrics. We briefly 
describe next the selected metrics and discuss the 
measurement method we used in this case study. 

TABLE II.  Metrics used in this study 

RQ Metrics 

1 Fixed costs of each activity, Test design productivity, 
Test scripting productivity, Test execution productivity, 
and test-result evaluation productivity,  Maintenance 
costs (Co-maintenance, and Quality improvement), 
Number of input parameters of each use case, Number 
of manual test steps, Number of assertions, Number of 
test cases for each use case 

2 Execution time of the GA and Brute force algorithm, 
Number of use cases 

Productivity measures the efficiency of conducting an 
activity. We measured productivity metric for each test 
activity and used it to find out the average time needed for 
fulfillment of the activity. For example, Equation (4) shows 
how we calculated the test-case design time. 

1
	 	

# 			 4  

Productivity of the activities is measured for manual 
and automated tests separately. For example, for 
calculating the test-case design productivity of manual 
testing, we manually applied the equivalence class 
partitioning, boundary value analysis, and combinatorial 

strategies to generate test data for each use case. For 
automated test-case design, we used the productivity value 
achieved by using Hexawise [30], an automatic data 
generator tool based on equivalence class partitioning. We 
should mention that all these measurements were 
conducted systematically and directly in the context of the 
project and inside the company when conducted by 
practitioners. We benefitted from systematic measurement 
guidelines such as [31] in our measurement activities.  

We used different methods for data measurements, as 
discussed next. Whenever data were available in the 
software repositories in the firm (e.g., test management, 
issue tracking, code management tools), we used the 
existing recorded data. For the cases when the data were 
not available or had not been recorded precisely, we used 
interview or estimation models. For example, for test cases 
whose manual test execution time had not been recorded 
precisely, we customized and used a test execution effort 
estimation model presented in [32]. Due to confidentiality, 
we are not able to disclose further details of our 
measurement activities. 

For test scripts, in addition to development cost, we 
considered the maintenance cost. There are two main 
sources for maintenance of test-ware which we considered 
in our approach: (1) maintenance in the production code 
which leads to co-maintenance cost, and (2) preventive and 
perfective refactoring activities in the test code which lead 
to quality improvement cost. We used the software 
maintenance estimation principle of COCOMO [14] to 
calculate the test maintenance cost according to test 
development cost, as shown in Equation (5).  

	 	 	 	    (5)          

Where 	shows the proportion of development cost that 
is invested for maintenance purposes. In our industrial case 
study, we calculated 	according to the average 
maintenance effort invested in similar projects within the 
company. 

Extracting cost and benefit matrixes needs some efforts. 
We collected data in an interactive way with the 
practitioner testers, using available data for current project 
and also data from similar projects of the company. All our 
collected and estimated data have been verified by 
company’s manual testers, automation experts before using 
in the experiment. 

3) Procedure 

In the “exploratory” phase of the case study [13], 
researchers were involved in characterizing “what is 
happening” in Pason’s current testing activities and 
processes. In the “improving” phase, we improved the cost 
effectiveness of testing activities. 

In terms of our research approach, we followed both the 
improving case study [13] and the AR approaches [33]. To 
plan, execute and manage our AR project, we used the 
recommendation and guidelines provided in [33].  
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C. Results 

In this section, the results of the study are presented for 
each of the RQs 1-2. 

 

1) RQ 1-Use case selection for optimized automation 

For selection of the best combination of use cases to be 
automated in each test activity, we applied the designed 
GA. Before applying GA, we had to tune its parameters. 
Other researchers, e.g., [34], and we [35, 36] have 
empirically found in previous studies that the execution 
time, the quality of outputs, and convergence of a GA are 
dependent on how well its parameters have been tuned. 
Using the guidelines reported in [34-36], we empirically 
tuned the control parameters of the GA. The parameter 
values that led to the most optimal GA performance in our 
case study were as follows: number of GA iterations = 160, 
population size=60, crossover ratio=0.85, mutation 
ratio=0.008. GA is repeated 1000 number of times for each 
experiment. Then, we executed our tool using GA and the 
most optimal TADM was generated for the estimated 
number of usage of artifacts during the life-span of the 
SUT. In fact, based on the estimated usage of test artifacts 
during the life-span of the software product, use cases for 
automation were selected in a way that benefits achieved 
before retirement of the application. Table III shows a 
sample result of the tool which relates to five rounds of 
usage/execution of the automated test artifacts. Due to 
space limitation, only five out of 30 use cases are shown in 
Table III and the names of use cases have been masked due 
to confidentiality. After executing our tool, the binary 
decision for all use cases and activities, and also the ROI of 
the selected combination were reported by our tool. The 
total ROI is the sum of ROI values achieved by different 
test activities. For this scenario, total ROI (367%) is the 
sum of ROI of test activities for five rounds of execution in 
Fig. 2, which is 101% and 266% for test design, and test 
execution, respectively. 

TABLE III.  The most optimal TADM 

 
UC 

Test 
Design 

Test 
Scripting 

Test 
Execution 

Test 
Evaluation 

… … … … … 

UC 6 1 0 0 0 

UC 7 1 1 1 0 

UC 8 1 0 0 0 

UC 9 1 1 1 0 

UC 10 1 1 1 0 

… … … … … 

Total ROI = 378% 

To provide insights into the most optimal TADM in our 
case study, we discuss the case of one example use-case. 
For UC 8, the GA recommended that test design to be done 
automated while other test activities were selected to be 
done manually. The rationale behind these decisions were 
that the amount of effort needed to be invested in 
development and maintenance of this use case was greater 
than the amount of time saving that could be returned in 
five rounds of test execution. Due to interdependency 

between test scripting and execution activities, these 
activities were selected to be done manual. Fixed costs 
related to implementing facilities for automated test 
evaluation were high to be returned in five rounds of usage 
of automated test suites. Thus, test evaluation is also 
selected to be done manually. Based on the estimated 
number of usage of test suites during the life-span of the 
SUT, as an input for our tool, the decision can be changed. 
For example, if the life of SUT was estimated to be longer 
and it was possible to get returns before retirement of the 
SUT, the use case would be selected by the tool for 
automation. 

In addition to find the most optimal TADM, we were 
interested to find out the ROI achieved from different test 
activities for the selected TADM by our tool. Fig. 2 shows 
the ROI received from each test activity for different 
number of usage/execution of test suites. As it can be seen 
from the chart, ROI of all activities increase by the rise in 
the usage of test artifacts during the life-span of SUT. For 
test design, test execution, and evaluation, receiving 
benefits from automation starts after 2, 3, and 8 executions, 
respectively. Therefore, the tool has not selected any use 
case for these activities before these points. This means that 
if the life-span of the SUT is short in a way that it would 
not be possible to utilize the automated test evaluation 
artifacts for at least 8 times, SUT will be retired before 
providing benefits for the test process. Automation before 
these points will result in loss of investment. 

 

 

 

 

 

 

 

 

 

Fig. 2. ROI of test activities for different number of test artifact usage 

 Fig. 2 also shows that the major amount of ROI is 
acquired from automated test execution, followed by 
automated test design, and test-result evaluation.  The 
results confirm that, although in comparison to other 
activities, automation in scripting activity leads to the 
highest ROI in test execution and evaluation, automation of 
other activities is also important. To receive higher ROI 
from test automation, analysis of all activities is essential. 
For this case study, when test artifacts are used for 10 
times, in total 307%, 675%, and 41% return will be 
achieved in test-design, test execution, and test evaluation 
activities, respectively. In term of time saving, the achieved 
ROI are equal to 85, 275, and 21 days (8-hour work day) 
saving for the test process. According to the results, 
investment in scripting and design activities is highly 
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beneficial for this software. Importance of these activities 
can be due to the fact that SUT involved in this study was a 
data-intensive application. When we applied data-driven 
testing approach for this SUT, in which one test script can 
be used for execution of several designed inputs and 
outputs, we received high amount of ROI.  

Since GA is a randomized algorithm, we discuss the 
repeatability of the algorithm next. We investigated the 
repeatability of GA results by analyzing the variation in 
maximum values of objective function of the best GA 
individual (chromosome) after the execution was finished. 
Then, we assessed the extent to which those values were 
repeatable. For this purpose, we run the algorithm for 1000 
times and Fig. 3 shows distribution of the values for the 
objective function. 

 

 

 

 

 

 

 

Fig. 3. Experimental results for repeatibality of the GA 

As it can be seen in Fig. 3, there is a variation in GA 
results. Such a variation in fitness values across multiple 
runs is expected when using randomized algorithm such as 
GAs on a complex optimization problem such as decision 
making for test automation.  

Most of the results are in range of [480 - 500], which 
shows the ability of GA algorithm to find a near optimal 
solution. As it is discussed in section V.B.2, each GA run 
lasts a few milliseconds, and it is possible to rely on 
multiple runs for making decision using GA. TABLE IV. 
shows the statistical result of our experiment with GA. 
These values are extracted from 1000 rounds of 
experiments for test artifacts with life-span of five times. 

TABLE IV.  Statistical values for objective function of GA 

Average  4.78 (378%) 

Minimum 3.99 
(299%) 

Maximum 5.05 
(4.05%) 

2) RQ 2-Scalability of the GA 

To evaluate scalability of the designed approach with the 
increasing number of use cases, we compared the execution 
time of the GA for different number of use cases with the 
execution time of the brute force approach in Fig. 4. We 
used a similar approach followed in our previous GA-based 
test technique which was in the context of performance 

testing of real-time systems [35, 36]. Brute force is a search 
technique which tries all combinations (searches the entire 
search space exhaustively) and guarantees to find a solution 
if it exists. Therefore, cost of brute force search is 
proportional to the size of the search space.  

Fig. 4 shows the execution time of both algorithms for 
different number of use cases. It should be noted that in 
order to show both curves clearly, we had to use different 
scales for the algorithms. Execution time of the brute force 
algorithm is shown in Fig. 4–a in “minute” scale, and Fig. 
4–b relates to GA, in “second” scale. Both approaches were 
implemented in Java as part of our ATDSS tool [27] and 
were executed in the same machine and environment. The 
execution time was recorded for both genetic and brute 
force algorithms. There are 2|# 	 | |# | 
different combinations that should be considered in brute 
force approach and as it can be seen from the graph, with 
the increase in the number of use cases, the execution time 
of brute force approach grows sharper and this limits the 
scalability of the brute force technique for larger systems. 
However, the GA shows acceptable execution time for 
large number of use cases. 

D. Discussions and Lessons Learned 

From a technical point of view, the ultimate goal of 
practitioners was selecting the right (the most cost 
effective) combination of use cases to be tested in an 
automated manner. Selection of use cases before starting to 
automate them can prevent large amounts of rework in 
terms of test maintenance activities in the project. 

Once we used our GA tool to determine the most 
optimal TADM, we started the “improving” phase of the 
case study to improve the cost effectiveness of testing 
activities in the project under study. The improvements 
have started already in the project under study and we have 
already been observing noticeable cost savings in the test 
processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Execution time of genetic and brute force algorithms 
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Based on our study, the decision for test automation 
should be studied in a wider context than only writing test 
scripts. Automation should be seen as a strategy to be 
applied on the entire testing process rather than just in test 
execution. Automating other phases of testing can be 
helpful for getting higher ROI, as we discussed in Section 
V.C. Also, the scalability of such an approach to be 
applicable in industrial case studies is very important and 
solutions designed in theory should be applicable in real 
contexts to be able to utilize them. 

In terms of lessons learned from the research approach 
standpoint, we learned throughout the project that AR 
studies do not only help solving a real industrial problem, 
but it also helps both researchers and practitioners to 
collaborate more closely and exchange solutions and points 
of view. Researchers’ on-site presence helped them to 
better understand real industry-relevant issues and 
challenges. Collaboration and exchange of information 
between researchers and practitioners can help to design 
more applicable approaches that are easily transferable to 
the industry. Moreover, we learned that although 
AR studies are initiated to solve an immediate problem, the 
researchers can use the opportunity to design general 
approaches applicable in other contexts, while making sure 
that the approach benefit the practitioners in current 
context. The proposed search-based approach designed in 
this study is independent of the properties of the SUT and 
will replace subjective automation decisions with 
systematic approach for making automation decisions. 

E. Threats to Validity 

Based on the guidelines provided in [13], this section 
discusses the construct and external threats to the validity 
of the reported study. We discuss next the steps we have 
taken to mitigate the potential threats to validity. 

Construct validity aspects reflect to what extent the 
operational measures that are studied really represent the 
aim of the study. To limit this type of threat and to follow 
the goal of the practitioners in the operational measurement 
level, we used the GQM+ approach [29] which explicitly 
links measurement goal to business level goals. 
Measurement goal, question and metrics were reviewed 
and finalized among researches and practitioners before 
conducting the measurements. One other potential 
construct threat to validity of this study is concerned with 
measurement bias, i.e., the extent with which the data and 
the analysis as conducted by the specific researchers. To 
limit the validity, two of the researchers involved in this 
study measured the data individually and compared and 
discussed the measured values before using them in the 
model. Also, we reviewed the measured data with 
practitioner testers in our regular weekly meetings. 
However, there is still possibility that the collected data can 
be different from the real context and it would be better for 
industrial settings to have systematic provisions in place to 
collect and update the influencing factors such as execution 
time, scripting, and maintenance rate during their test 
process. 

External validity is concerned with to what extent the 
results of a study can be generalized to other contexts. 
Although this study is done as an AR-based study to solve 
a specific problem in a single company, we do not see any 
reason that our proposed solution would be limited for that 
specific context. The proposed search-based technique is 
intended to be applicable in other industrial contexts. 
Although at the moment, we have no empirical data on 
whether this approach will work equally well on other 
contexts, but can think of no reason why it would not. 

VI. CONCLUSIONS AND FUTURE WORKS 

In this study, we investigated effective test automation 
problem across the entire testing life-cycle. In practice, the 
number of possible combinations to be considered can be 
large and needs effective search techniques to be applied. A 
specific GA was developed in this study to find the best 
solution at a reasonable computational cost. In our context, 
experiments show that the GA worked faster than the brute 
force algorithm for higher number of use cases. 

Similar to many other practitioners and researchers [3-
5, 37], the focus of test automation in the company under 
study was only on test execution. The results of this study 
show that automation in other test activities can have 
benefits for test process and practitioner test automation 
experts need to pay attention to automation of the entire 
test activities. 

The proposed model was designed to support two 
extreme decisions for each test activity: (1) fully manual, 
and (2) fully automated. As a future step, we plan to extend 
the approach to support the in-between case as well, i.e., 
partially automated. Also, we plan to conduct further 
empirical validations on this approach by applying it in 
other industrial settings and relaxing the assumptions. 
Furthermore, similar to our previous work in other area of 
SBSE [36, 38], we plan to conduct empirical studies on the 
performance and repeatability aspects of our GA approach. 
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