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We present a search for low energy antineutrino events coincident with the

gravitational wave events GW150914 and GW151226, and the candidate event

LVT151012 using KamLAND, a kiloton-scale antineutrino detector. We find no

inverse beta-decay neutrino events within ±500 seconds of either gravitational

wave signal. This non-detection is used to constrain the electron antineutrino

fluence and the total integrated luminosity of the astrophysical sources.

Subject headings: gravitational waves — neutrinos

1. Introduction

With the detection of gravitational waves (GW) by the Advanced Laser Interferometer

Gravitational-wave Observatory (LIGO)(Abbott et al. 2016c) and high-energy astrophysical

neutrinos by IceCube (Aartsen et al. 2015), the era of multi-messenger astronomy has started

in earnest. The combination of these signals with electromagnetic observations offers an

unprecedented glimpse into the dynamics of astrophysical phenomena and is already leading

to unexpected results.

The first gravitational wave event was observed by LIGO on 14 Sep 2015 at 09:50:45

UTC. Denoted GW150914, this event was observed to have a false alarm rate of less than

1 event per 203,000 years, corresponding to a significance of > 5.1σ (Abbott et al. 2016c).

This likely originated from the coalescence of two black holes at a luminosity distance of

410+160
−180 Mpc (Abbott et al. 2016c). The second GW event, GW151226, was observed by

LIGO on 26 Dec 2015 at 03:38:53 UTC (Abbott et al. 2016b). GW151226 likely originated

from a black hole-black hole (BH-BH) merger which took place at a luminosity distance of

440+180
−190 Mpc (Abbott et al. 2016b).

We also analyze a GW candidate, dubbed LVT151012 (LIGO-Virgo-Trigger), which

occurred on 12 Oct 2015 at 09:54:43 UTC. While LVT151012 did not cross the threshold

required to claim a detection it is unlikely to be a background event, being the only other

event reported by LIGO at time of writing to have a > 50% chance of astrophysical origin

(Abbott et al. 2016d). The BH-BH merger suggested by LVT151012 occurred at a luminosity

distance of 1100+500
−500 Mpc (Abbott et al. 2016a).

There is no known mechanism for the production of either neutrinos or electromagnetic

waves in a BH-BH merger. mini-balloon While both gamma-ray bursts and neutrino sig-

nals can originate from black holes with rapidly accreting disks, the accretion disk is not

expected to be present during a BH-BH merger and therefore neither a neutrino signal nor

a gamma-ray burst is predicted (Caballero et al. 2012). However, the Fermi telescope ob-
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served a coincident gamma-ray burst occurring 0.4 seconds after GW150914 with a false

alarm probability of 0.0022 (Connaughton et al. 2016). There is large uncertainty in the

origin region but it is consistent with that reported by LIGO (Connaughton et al. 2016).

The statistical treatment has been debated and the event may be consistent with back-

ground (Greiner et al. 2016). If this burst truly originates from the same black hole merger

as GW150914 it could imply that some accretion disk remained during the merger, thus

motivating a multi-messenger analysis including neutrinos of all energies.

In this paper, we search for correlations between these GW events and electron an-

tineutrinos of a few tens of MeV, and place constraints on the neutrino fluence and lumi-

nosity. This work is complementary to the multi-messenger analysis performed by IceCube

and ANTARES at higher energies, which did not find any neutrino events correlated with

GW150914 with sufficient significance (Adrian-Martinez et al. 2016).

2. KamLAND

KamLAND (Kamioka Liquid scintillator Anti-Neutrino Detector) is optimized to search

for ∼ MeV neutrinos and antineutrinos. KamLAND is located under 2,700 meter-water-

equivalent of vertical rock, below Mt. Ikenoyama in Gifu-prefecture, Japan. KamLAND

consists of an 18-m diameter stainless steel sphere which has 1,325 17-inch and 554 20-inch

photomultiplier tubes mounted on its inside surface. The sphere contains a 13-m diameter

EVOH/nylon outer balloon surrounded by pure mineral oil. This outer balloon encloses 1

kton of highly purified liquid scintillator. Surrounding the stainless steel sphere is a cylin-

drical 3.2 kton water-Cherenkov detector to provide shielding and allow cosmic-ray muon

identification. Additional details of KamLAND are summarized in (Suzuki 2014). During

the period corresponding to the detection of GW150914 and LVT151012, a 3.08-m-diameter

transparent nylon inner balloon (“mini-balloon”) containing 13 tons of Xe-loaded liquid scin-

tillator had been placed at the center of the detector (Gando et al. 2012b). At the time that

GW151226 was detected, the mini-balloon had been removed and KamLAND was in its

normal configuration.

In this analysis, we will focus on the detection of antineutrinos through the inverse

beta-decay (IBD) reaction: ν̄e + p → e+ + n. This process is characterized by a delayed-

coincidence event pair signature. The prompt event is a combination of the deposition of the

kinetic energy of the positron and its subsequent annihilation into gamma rays. This event

encodes the energy of the incoming antineutrino. This annihilation occurs on a very short

time scale. Because the angular distribution of the positron emission and the subsequent

scintillation light are isotropic, KamLAND has no directional sensitivity. The delayed event
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is the emission of a gamma-ray when the neutron captures on carbon or a proton, with a

mean neutron capture time of 207.5± 2.8 µs (Abe et al. 2010). The detection of this second

gamma-ray completes the delayed coincidence pair.

KamLAND’s main background source depends on the energy region. At energies of a

few MeV, reactor neutrinos and geoneutrinos dominate for standard analysis (Gando et al.

2013). For the purposes of this coincidence search we have used the maximum possible de-

tector volume and removed filters which screen out accidental radiation from the support

structure. Thus, the background is dominated by low-energy events caused by accidental

coincidences of natural radioactivity. The majority of the remaining low-energy backgrounds

are from reactor neutrinos and geoneutrinos; the event rate of reactor neutrinos was about

0.1-0.2 events per day during this period, and the geoneutrino background rate was about

0.1 event per day. Above ∼ 7.5 MeV, the majority of the background comes from neu-

tral current interactions with atmospheric neutrinos (Gando et al. 2012a). This background

is effectively constant up to ∼100 MeV. For a more detailed discussion of KamLAND’s

backgrounds, please see Asakura et al. (2015) and Gando et al. (2013). KamLAND’s lower

energy threshold gives it an advantage in this low energy neutrino range compared to the

IceCube and Super-Kamiokande detectors.

3. Coincidence Search

The detection of the gamma-ray burst by the Fermi telescope suggests that the BH-BH

merger detected by LIGO might have retained its accretion disk. The spectrum of accretion

disk neutrinos around a single black hole is expected to peak around 10 MeV, with the

majority falling well below 100 MeV (Caballero et al. (2012) and McLaughlin & Surman

(2007)). In the absence of a mechanism for neutrino production by a BH-BH merger, we

consider the single BH accretion model and search for IBD events with visible energies

between 0.9 and 100 MeV, corresponding to neutrino energies between 1.8 and 111 MeV.

We choose a coincidence window of ±500 seconds by selecting the largest expected time gap

between GW events and high energy neutrino events described in (Baret et al. 2011). We

use the standard KamLAND event selection (Abe et al. 2010). This restricts the analysis to

R < 6 m to remove backgrounds from the main balloon. It also applies a veto of 2 s within

a 3 m cylinder or a 2 s full detector veto following muon events depending on the quality of

the muon track reconstruction to reduce background due to the long-lived muon spallation

product 9Li/8He (Abe et al. 2010). The muon veto leads to a difference in the livetime to

real time ratio, where livetime is defined as the period of time during which the detector was

sensitive to ν̄e and includes corrections for calibration periods, detector maintenance, and
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other factors. The average livetime to real time ratio is ǫlive = 0.89 for the two KamLAND

runs containing GW150914 and LVT151012. The livetime to real time ratio is ǫlive = 0.81

for the run containing GW151226.

Two changes were made to the standard KamLAND criteria (Gando et al. 2013); we

removed the mini-balloon cut and the likelihood selection. These cuts increase the back-

ground due to the mini-balloon and main balloon. The total detection efficiency of ǫs = 0.93

was then estimated from Monte Carlo simulation.

We searched for events which fell within a 500 second window of the two GW events

GW150914 and GW151226, and the candidate event LVT151012. No events were found

within the target window of GW150914 (Figure 1), GW151226 (Figure 2), or LVT151012

(Figure 3). The closest neutrino candidate event to either GW event occurred 1124 seconds

prior to LVT151012. This event was at a very low energy of 1.4 MeV and occurred near the

nylon corrugated pipe which supports the mini-balloon. Therefore, this event was consistent

with expected background and may have been caused by contamination from the mini-

balloon support structure. There were no other events within three hours of LVT151012.

The closest neutrino candidate to GW151226 occurred about 40 minutes away and was of

less than 3 MeV. The closest two neutrino candidate events to GW150915 occurred about

2.5 hours away from the event and were both of less than 2 MeV. Therefore all adjacent

observed events are likely background.

The background rate for GW150914 and LVT151012 is given by the average number of

IBD events under 100 MeV occurring per second of detector livetime between April 2015 and

early November 2015. KamLAND’s background during this period is (2.02 ± 0.04) × 10−4

events per second of livetime. This corresponds to 0.18 events in a 1000 second real time

window. The accidental coincidence rate during this period was 1.7× 10−4 events/sec; thus

accidental coincidences dominate the background.

We checked the stationarity of the background rate and found that the event rate was

statistically constant. Using the previously calculated background rate and the detection of

no coincidence events, we determined the 90% confidence limit on the number of detected

neutrinos is calculated from the background rate to be N90 = 2.26 using the Feldman Cousins

method (Feldman & Cousins 1998).

The background rate for GW151226 is given by the average number of IBD events under

100 MeV occurring per second of detector livetime between 23 Dec 2015 and 4 Jan 2016.

This time period was chosen to avoid the period during which KamLAND underwent some

refurbishment work. The background rate during this period was found to be (3.4±0.6)×10−5

events per second of livetime, givingN90 = 2.41 (Feldman & Cousins 1998). This background
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corresponds to 0.03 events per 1000 seconds of real time. We expect this background to be

lower than that for the period from April to November because the mini-balloon, a source of

background contamination, was not in the detector during this time period. The accidental

coincidence rate during this period was 2.6× 10−5 events/sec.

4. Fluence and Luminosity

We translate our Feldman Cousins upper limit into a fluence upper limit at the detector.

This fluence upper limit is given in neutrinos per cm2 by

FUL =
N90

NT ǫliveǫs
∫

σ(Eν)λ(Eν)dEν

, (1)

where NT is the total number of target protons in the fiducial volume, ǫlive is the mean

livetime to real time ratio, ǫs is the total detection efficiency, σ(Eν) is the total neutrino

cross section, and λ(Eν) is the normalized neutrino energy spectrum (Fukuda et al. 2002).

The estimated target number for KamLAND is NT = (5.98 ± 0.13) × 1031. The neutrino

IBD cross section was taken from Strumia & Vissani (2003). The quenching effect and the

effect of energy resolution were considered and found to be negligible; thus, these effects are

not included in equation (1).

The electron antineutrino fluence upper limit without oscillation and assuming a monochro-

matic spectrum is given by

FUL(Eν) =
N90

NTσ(Eν)ǫliveǫs
. (2)

The resulting upper limit on fluence ranges from about 1013 cm−2 for a neutrino energy of 1.8

MeV to about 108 cm−2 for a neutrino energy of 100 MeV. The monochromatic spectrums

for electron antineutrino fluence upper limit are shown in Figure 4.

In the absence of a BH-BH merger-specific neutrino energy spectrum prediction, we

choose the spectrum given by the normalized pinched Fermi-Dirac distribution for zero chem-

ical potential and pinching factor η = 0:

λFD(E) =
1

T 3F2(η)

E2

eE/T−η + 1
, (3)

where the complete Fermi Dirac integral Fn(η) is given by

Fn(η) =

∫

∞

0

xn

ex−η + 1
dx. (4)



– 7 –

The temperature is given by T = 〈E〉/3.15. We choose E = 12.7 MeV from Caballero et al.

(2016); the small change in average energies between accretion disk models had a negligible

impact on the result.

Substituting this spectrum into (1) and performing the integration between electron

antineutrino energies of Emin = 1.8 MeV and Emax = 111 MeV, we get a total integrated

electron antineutrino fluence for both GW150914 and LVT151012 of

F ≤ 3.1× 109cm−2. (5)

The total integrated electron antineutrino fluence for GW151226 is

F ≤ 3.6× 1010 cm−2. (6)

There is a large uncertainty in the distance for all of GW150914, GW151226 and

LVT151012, so the total energy upper limit is here displayed as a function of the true distance

to source, DGW. The electron antineutrino total energy upper limits without oscillation for

GW150914, GW151226 and LVT151012 are thus given by

EGW150914 ≤ 1.26× 1060
(

Dgw

410 Mpc

)2

ergs (7)

and

EGW151226 ≤ 1.71× 1060
(

Dgw

440 Mpc

)2

ergs (8)

and finally,

ELVT151012 ≤ 9.06× 1061
(

Dgw

1100 Mpc

)2

ergs. (9)

This limit complements the upper limit on total energy found by the IceCube-ANTARES

joint analysis since the results are based on a different energy region. The IceCube-ANTARES

upper limit on total radiated energy is

Eul
ν, tot ∼ 1052 - 1054

(

Dgw

410 Mpc

)2

ergs (10)

for neutrinos in the ≫ GeV energy range (Adrian-Martinez et al. 2016).

The neutrino event rate scales as a function of the disk’s mass accretion rate For current

detector masses (for example, Super-Kamiokande), the number is ∼ 10, 000 events at 10 kpc,

so accounting for the 1/r2 scaling with distance, Super-Kamiokande may see one event from

a black hole merger at 1 Mpc (Caballero et al. 2016).
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Unfortunately, our results do not constrain any viable accretion disk model. Caballero et al.

(2016) predicts approximately 500 events per kiloton at 10 kpc for accretion rates on the

order of 5M⊙/s. At 1000 Mpc a 100 gigaton detector would be required. This detector

would be similar to IceCube (Adrian-Martinez et al. 2016), but instrumented more densely

to obtain a ∼ 10MeV energy threshold.

5. Conclusion

No coincident neutrino events were found within 500 seconds of either GW150914,

GW151226, or LVT151012. We determined a monochromatic fluence upper limit, as well as

an upper limit on the source luminosity for each GW event and candidate GW event using

the standard source model. This places a bound on the total energy released as low energy

neutrinos. The lack of coincident IBD events detected by KamLAND further supports the

conclusion by the Dark Energy Survey Collaboration that GW150914 was not a core-collapse

supernova in the Large Magellanic Cloud (Annis et al. 2016).

As Advanced LIGO continues its operation, we can expect many more opportunities

to perform multi-messenger searches and look for coincidence neutrinos. The more com-

plete understanding of the source dynamics provided by such a search grants us an exciting

opportunity to explore black holes, supernova, and other elusive astrophysical phenomena.
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Fig. 1.— Neutrino events between 0.9-100 MeV visible energy occurring on 14 Sep 2015.

The highest energy event in this time span was at 3.05 MeV. The time of GW150914 is

marked. There were no events within 500 seconds of GW150914.
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Fig. 2.— Neutrino events between 0.9-100 MeV visible energy occurring on 26 Dec 2015.

The highest energy event in this time span was at 2.58 MeV. The time of GW151226 is

marked. There were no events within 500 seconds of GW151226. The closest event occurred

approximately 40 minutes after GW151226 and was consistent with background.
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Fig. 3.— Neutrino events between 0.9-100 MeV visible energy occurring on 12 Oct 2015.

The highest energy event in this time span was at 2.78 MeV. The time of LVT151012 is

marked. There were no events within 500 seconds of LVT151012. The closest event occurred

at 1124 seconds prior to LVT151012 and was consistent with background.
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Fig. 4.— Upper limit of electron antineutrino fluence at detector for each energy between

0.9 and 100 MeV assuming a monochromatic spectrum. The spectrums for GW150914 and

LVT151012 are the same, due to their shared background rate, and thus they share a fluence

upper limit. The background rate for GW151226 is about an order of magnitude lower and

thus its fluence upper limit is a bit higher.
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