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ABSTRACT
Motivation: Noncoding RNA genes produce functional
RNA molecules rather than coding for proteins. One such
family is the H/ACA snoRNAs. Unlike the related C/D
snoRNAs these have resisted automated detection to
date.
Results: We develop an algorithm to screen the yeast
genome for novel H/ACA snoRNAs. To achieve this, we
introduce some new methods for facilitating the search
for noncoding RNAs in genomic sequences which are
based on properties of predicted minimum free-energy
(MFE) secondary structures. The algorithm has been
implemented and can be generalized to enable screening
of other eukaryote genomes. We find that use of primary
sequence alone is insufficient for identifying novel H/ACA
snoRNAs. Only the use of secondary structure filters
reduces the number of candidates to a manageable size.
From genomic context, we identify three strong H/ACA
snoRNA candidates. These together with a further 47 can-
didates obtained by our analysis are being experimentally
screened.
Contact: vincent.moulton@lcb.uu.se
Supplementary Information: Tables 1–5 referred to in
the text can be downloaded from http://RNA.massey.ac.nz/
fisher/

INTRODUCTION

The number of genes identified that code for noncoding
RNAs is growing rapidly (Eddy, 2001; Erdmannet al.,
2001; Meli et al., 2001). While labor-intensive molecu-
lar biological approaches have been successful in identi-
fying noncoding RNAs (Ḧuttenhoferet al., 2001; Lagos-

∗To whom correspondence should be addressed.
† Both authors contributed equally to this work.

Quintanaet al., 2001; Lauet al., 2001; Lee and Ambros,
2001), it is preferable to carry out initial RNA gene pre-
diction in silico, as iscommon with protein-coding genes,
e.g. (Delcheret al., 1999).

Standard search methods such as BLAST (Altschul
et al., 1990) have been used in comparative searches
of bacterial genomes for novel RNAs (Argamanet al.,
2001; Rivaset al., 2001; Wassarmanet al., 2001) and
in searches for novel small regulatory RNAs in animals
and invertebrates (Pasquinelliet al., 2000). In addition,
programs for RNA gene finding are available; for example,
the programstRNAscan-SE (Lowe and Eddy, 1997),
QRNA (Rivas and Eddy, 2001; Rivaset al., 2001), and
RNAMotif (Macke et al., 2001) have been successfully
applied in whole genome searches for novel RNAs.

The importance of primary sequence for the finding
of new RNAs is clear, and was employed heavily in a
comparative search for noncoding RNAs inE.coli (Rivas
et al., 2001). However, in general, standard homology
searches are not suitable for finding RNAs. Thus suc-
cessful searches have tended to use techniques such
as neural networks (Carteret al., 2001), pattern-based
descriptors (Mackeet al., 2001) and covariance models
(Eddy and Durbin, 1994; Lowe and Eddy, 1997, 1999)
which incorporate RNA secondary structure information.

In this paper we investigate an alternative approach
for incorporating secondary structure information into
RNA searches. Secondary structure is amenable to math-
ematical analysis making minimum free-energy (MFE)
structure prediction using algorithms such as dynamic
programming possible. In consequence programs such
as VIENNA (Hofacker et al., 1994) andMfold (Zuker
et al., 1999) can quite accurately predict secondary
structure. Even so, Rivas and Eddy (2000) determined
that a general search for noncoding RNAs in genomes
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using MFE structure stability alone is unlikely to succeed
since background noise is too high.

However, in (Collinset al., 2000) the discovery of an
RNase P candidate in the maize chloroplast genome was
detected using anad hoc combination of comparative
genomics and MFE structure comparison. Encouraged
by this result, we developed the RNA shape comparison
techniques described in (Moultonet al., 2000) and
incorporated them into an algorithm that we present
here which screens the budding yeastSaccharomyces
cerevisiae genome (Goffeauet al., 1996) for H/ACA
snoRNAs. Our method is similar to that used by Lowe
and Eddy (1999) in their successful computational screen
of theS.cerevisiae genome for the related C/D snoRNAs,
which employed a probabilistic model as opposed to MFE
structure prediction.

METHODS
Our search strategy for novel snoRNAs in theS.cerevisiae
or yeast genome uses known H/ACA snoRNAs to form
primary and secondary structure models. Then we make a
sequential search for novel snoRNAs in both directions of
the yeast genome, passing candidate sequences obtained
with the primary structure search through various sec-
ondary structure filters. The sequences that pass through
all of these filters are then scored using both primary and
secondary structure information.

Training data set
SnoRNAs (small nucleolar RNAs) are named because of
their localization to the eukaryote cell nucleolus. They fall
into two families, the C/D box family and the H/ACA
box family (reviewed in Weinstein and Steitz, 1999).
Within the H/ACA family there is significant conservation
of predicted MFE secondary structures, but very limited
conservation of primary sequence Ganotet al., 1997a,b).

The H/ACA box family guide site-specific isomerization
of rRNA (Ni et al., 1997; Ganotet al., 1997a), whereby
uridine (U) is converted to pseudouridine (�) (reviewed
by Ofengand and Fournier, 1998), see Figure 1. To date,
44 pseudouridines have been identified on yeast rRNAs
(Table 1) and 17 H/ACA snoRNAs have been shown
to guide 21 of these (Ofengand and Fournier, 1998;
Samarsky and Fournier, 1999). Based on this data we
suspect that perhaps 10–20 yeast H/ACA snoRNAs have
yet to be identified.

We obtained a dataset of 16 yeast H/ACA snoRNA
sequences from the Yeast SnoRNA Database (Samarsky
and Fournier, 1999). These had been identified primarily
by biochemical techniques (Ganotet al., 1997a; Niet al.,
1997) and are provided with demonstrated or predicted
locations for H and ACA motifs and rRNA interactions.
The sequences flanking the pseudouridylation sites in
rRNA are obtained from (Ofengand and Fournier, 1998)

ACA boxH box

3’
rRNA
5’

N

5’ 3’ANANNA ACA NNN

N 21 3 4

Fig. 1. Schematic of the consensus primary and secondary structural
elements of the H/ACA box snoRNA. Note the hairpin-hinge-
hairpin-tail secondary structure and the internal loop structures
termed the pseudouridylation pockets (Ganotet al., 1997b). The
interaction of these pockets with rRNA is also shown.�i refers to
the parts of the snoRNA that are complementary to the rRNA.

where information regarding pseudouridines in yeast
rRNA is presented. We did not include snR9, snR30 or
snR37 in our training data. For snR9, no capacity for
guiding pseudouridylation has been assigned, and snR30
is involved in rRNA cleavage, not pseudouridylation.
snR37 is 386nt long and does not compare well with the
snoRNAs in the training set.

Primary structure search
The primary structure search algorithm sequentially
identifies parts of the yeast genome harboring various
primary structural motifs, separated as detailed in Fig-
ure 2. The algorithm first searches for an H-box. This
motif is a sequence of the formAN1AN2N3N4N5 with
Ni ∈ {A, U, C, G}, N1 �= C , N3 �= G, and eitherN4 = A
or N5 = A. Once a candidate H-box is identified, it is
scored using a probabilistic model that we constructed
using the snoRNA dataset. In particular, we compute a
similarity score between the putative H-box and each
of the known H-boxes (presented in Table 2) using the
frequencies of nucleotides at positions(N1N2N3N4N5)

(presented in Table 3). The similarity between the putative
H-box and each known H-box is computed as follows; the
two sequences are placed one above the other, matches
are given a score of 200, mismatches are scored according
to the nucleotide frequencies at positions(N1N2N3N4N5)

(e.g. if the putative sequence has a G inpositionN1 which
mismatches it is scored 81.25) and the scores are added,
in a similar fashion to the profile matrix method used
by PSI-BLAST (Altschulet al., 1997). If the maximum
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Fig. 2. Primary structure model used to search for putative snoRNAs
consisting of an H-box, an ACA-box (here denoted AHA—see text)
and four regions of complementarity to the rRNA subsequences
flanking some pseudouridylation site on rRNA (denoted by�1�2
and�3�4). Our model requires:X + Y + 14 � 142; 16 � X �
70; Y � 30; 3 � Z3, Z4 � 10; Z3 + Z4 � 9; 20 � V �
100; 11 � W � 17; 3 � Z1, Z2 � 10; Z1 + Z2 � 9.

of these similarities exceeds the threshold value of 800
(obtained using a leave-one-out analysis), the H-box is
accepted and this similarity score is recorded for the
H-box. In addition, 200 is added to the similarity in case
a complete match is obtained between the putative H-box
and an H-box that occurs at least twice for the known
snoRNAs (e.g. snR189 and snR34). Although such an
H-box would be accepted without this bonus, the addition
is made since the similarity is used later when scoring the
final candidates.

After locating a high-scoring H-box, the algorithm
searches downstream for�3 and�4 motifs. These are two
sequences that are almost complementary to the sequences
flanking a pseudouridylation site in the yeast rRNA, see
Figure 1 (these motifs are listed in Table 1). Similar
complementary motifs were also employed by Lowe and
Eddy (1999) in their search for C/D snoRNAs. To look
for a putative�3 motif, a known�3 motif is directly
compared with the yeast genome. The comparison is
considered a match if either the sequences are identical or
there is at most one wobble, where a wobble corresponds
to a C or an A in�3 lining up to an U or a G in thegenome,
respectively. The wobble corresponds to a non-canonical
base pairing between the H/ACA snoRNA and the rRNA.
Such pairings occur for the known snoRNAs. The same
comparison is performed for the�4 motif. The lengths of
the �3, �4 motifs (Z3 and Z4 in Figure 2), which were
inferred by analyzing the snoRNA dataset, are required
to be between three and ten bases, and the sum of their
lengths must always exceed 8. If�3, �4 motifs are found
in the correct locations (given byX andY in Figure 2), then
the algorithm continues to search for the ACA sequence.
To reduce any confusion from now on we denote this
sequence by AHA, where H can equal A, U or C. The
AHA box is exactly 14 bases from the beginning of the
�4 motif, a distance that is conserved for all known yeast
snoRNAs (Ganotet al., 1997b) and, if found, the complete
H-AHA region is passed to the secondary structure filters
described in the next section. Failure to locate a down-
stream motif in the above procedure in general results in a
continuation of the sequential search for another H-box.

ψ3 ψ4
ψ2ψ1

Hinge Tail

H Box AHA 

>50 nucs >60 nucs
5’ 3’

Fig. 3. Secondary structure model of H/ACA snoRNA. It consists of
two ‘mountains’ with widths as indicated.

Secondary structure filters
The H-AHA region identified by the primary structure
filter is passed through several secondary structure filters
to reduce false positives.

A secondary structure model for yeast H/ACA snoRNA
was derived using MFE structure prediction (Zuker and
Steigler, 1981). For each known snoRNA two sequences
consisting of the H-AHA region together with a sequence
of length 100 or 120 bases upstream from the H-box
were formed and then folded using theRNAfold function
of the VIENNA v. 1.4 package (Hofackeret al., 1994).
The option ‘no dangling ends’, improved the folds.
Upstream lengths of 100 and 120 gave a good signal, even
though these do not correspond exactly to those for the
known snoRNAs. The dynamic length was necessitated
because the 5′ end of a putative snoRNA sequence cannot
be determineda priori in the yeast sequence.

The resulting structures were represented by mountain
plots (see Moultonet al., 2000), which are based on
the representation of Hogeweg and Hesper (1984). This
type of plot allows a simple connection between primary
and secondary structure. The mountain plot consists of
the points with x-coordinate k corresponding to the
kth nucleotide andy-coordinateyk equaling the number
of base-pairs enclosing this nucleotide (see Figure 3).
When we compare structures whose underlying sequences
have different lengths, we normalize the corresponding
mountain plots, scaling thex-coordinates to lie between
0 and 1 and they-coordinates so that the total area under
the graph equals one. In practice, mountain plots are
represented by the vector containing they-coordinatesyk
corresponding to each nucleotidek, whereas normalized
mountains plot are represented by vectors of a suitably
large fixed lengthN , that contain they-coordinatesyi of
the normalized mountain plot atx-coordinates i

N , 1 �
i � N . To obtain these normalized vectors we employed
splines.

Good similarity was observed between the normalized
mountain plots of the known snoRNA dataset (Figure 4).
The significant common structural features were incorpo-
rated into a secondary structure model consisting of two
‘mountains’ separated by a hinge region, the position of
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0 0.2 0.4 0.6 0.8 1

Fig. 4. Normalised mountain plots (L=100) for the 16 yeast
snoRNAs. The thick line represents the mean structure for the whole
snoRNA dataset.

which roughly corresponds to the H-box (Figure 3). As a
preliminary coarse filter, the sequence comprising of the
H-AHA region identified previously, with eitherL = 100
or 120 upstream bases, is folded. The resulting mountain
plot is accepted only if it has a local minimum (corre-
sponding to the hinge position) within±11 bases of the
H-box, the height of this minimum is at most 4 above the
H-box, the width of the left mountain exceeds 50 bases
(fulfilled automatically for the right mountain, see Fig-
ure 2), and above�3 and �4 the graph is high enough
(>4) and also non-zero between these two motifs.

Those candidates displaying these coarse criteria
are then passed through more-sensitive filters. The
first filter computes a squared distance from its nor-
malized mountain plot to a mean snoRNA structure
(d = ∑N

i=1(yi − yL
i )2, whereyi is the normalized struc-

ture andyL
i is the mean normalized snoRNA structure

taken over the training dataset). Figure 4 displays this
mean snoRNA structure for the caseL = 100. The
distanced between a known snoRNA and the mean
snoRNA is typically about 150 (see Figure 5) so that low
values ofd are not expected for candidate snoRNAs. Even
though distances for candidate snoRNAs are expected to
be about the same as for known snoRNAs (see Figure 5),
a candidate snoRNA is still allowed to pass through this
filter if d < 300.

A second filter uses the observation that known snoRNA
structures whether obtained using the old (v1.3) or new
(v1.4) folding parameters (Mathewset al., 1999) provided
in theVIENNA package were similar—a property that we
did not observe in general for random sequences (data
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Fig. 5. Distanced from the 16 known snoRNAs to the mean
snoRNA structure. The dotted lines represent the standard devia-
tions (±1SD). A candidate structure will pass ifd < 300 for either
L = 100 orL = 120.

not shown). This may be because a small perturbation in
parameters does not significantly change stable secondary
structures. We implemented a stability filter that com-
pares normalized mountain plots generated for candidate
snoRNA sequences using both the old and new folding pa-
rameters. In particular, we compute the distancesdold and
dnew for the ‘old’ and ‘new’ normalized mountain plots.
Only candidate snoRNAs satisfying|dold − dnew| < 300
are accepted.

Scoring the output
The last stage computes a score based on both primary
and secondary structure for each candidate snoRNA. A
score for the AHA-box is added to the H-box similarity
score described earlier. TheH in the AHA-box is scored
according to:A = 6.25, U = 18.75, C = 75 andG
is not allowed (based on frequencies from the training
dataset; see Table 2). The scores are added as described
in the section above and then transformed into a number
0 � P1 � 1.

As part of the score we also computed three other
quantitiesP2, P3 and P4 defined as follows (see Figure 2
and Table 4). IfX � 40 then we putP2 = 1, else
P2 = 0.5. Furthermore, if 66� X + Y � 100 then we
put P3 = 1, elseP3 = 0.5. The score is also based on
the performance of the secondary structure. The average
distanced is computed for the training dataset. For a
putative snoRNA if

∣∣d − d
∣∣ > d, then we putP4 = 0,

else P4 = (d − ∣∣d − d
∣∣)/d. Thus, the closerd is to the

averaged, the higher the score. The putative snoRNA is
only accepted if bothP1 > 0.8 andP4 > 0.65 hold.
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The total scorePtot of the candidate snoRNA is then
computed using the formula

Ptot = 100

[
w1P1 + w2P2 + w3P3 + w4P4

w1 + w2 + w3 + w4

]
,

where w1=10, w2=2, w3=1, and w4=2. The values of
the weightswi were obtained by optimization using
the Nelder–Mead method (see e.g. Kelley, 1999) on the
training dataset. Only ifPtot > 70 is the structure
accepted. All snoRNAs in the training dataset satisfy
Ptot � 70 (see Figure 6).

Final processing
In case we target snoRNAs also having the complementary
pair �1 and�2, a special procedure is called. This looks
for the motifs�1 and�2, that fulfill the criteriaV � 20
(the majority haveV in the range 30–40) and 11� W �
17 (the majority haveW = 14)—see Figure 2 and Table 4.

RESULTS
We have implemented the strategies and filters described
above in a C program (Fisher). This is available via
electronic mail [sverker.edvardsson@mh.se].

�-pair assignments
In the known yeast H/ACA snoRNA dataset, no two
snoRNAs have been demonstrated to guide the same
pseudouridylation (Table 1). However, of the snoRNAs in
our dataset, only 13 of 22 assigned�-pairs perform the
corresponding pseudouridylation (see Table 2) and snR3
is potentially capable of more than one pseudouridylation
at the 3′ pocket (�3�4). We therefore examined the
known snoRNAs for redundancy, using our primary struc-
ture engine to search for all�1�2- and�3�4-pairs within
these (see Table 5). We used the following constraints:
25 � V � 45 and 13� W � 16 (see Figure 2). Our
algorithm locates all the assigned�-pairs except 39, cor-
responding to snR34 (Table 2). The reason is the unusually
large distanceW = 38. A potential stem involving 24+ 2
bases lies between snR34’s�2 and the H-box. Despite
this feature, it is reasonable to assume that functionally
important spatial determinants are preserved (W. Decatur,
J. Ni, and M. Fournier, pers. commun.). This is the only
such situation known to exist for the yeast snoRNAs. Our
examination of sequence complementarity between the
rRNA and the�1�2 and�3�4 sequence pairs in the 5′
and 3′ pseudouridylation pockets of the known H/ACA
snoRNAs reveals extensive potential for functional re-
dundancy (Table 5). For instance, pseudouridylation of
U1056 in the 25S rRNA subunit (23 in Table 1) is guided
by snR44 (Ganotet al., 1997a; Samarsky and Fournier,
1999), yet our analysis (Table 5) suggests that snR31,
snR33, snR36 and snR49 are also potentially capable of

guiding this pseudouridylation. Furthermore, we find that
many of the known H/ACA snoRNAs can potentially
guide more than 2 pseudouridylations.

A test scan through a randomized genome sequence
In order to investigate the performance of our search strat-
egy with respect to false positives we created a random-
ized test genome sequence. To conserve the approximate
frequencies of A, U, C and G, our test genome was cre-
ated by copying a sequence of length 540 000 bases from
the yeast genome. The sequence was shuffled using an
algorithm that preserves dinucleotide frequencies (Work-
man and Krogh, 1999; Altschul and Erikson, 1985). For a
sequence of lengthN , this is performed by randomly se-
lecting pairs of triplets of the form XQY and XPY and
then exchanging Q and P. This is repeated 10N times. We
then added all 13 snoRNAs that have�3�4-pairs (Table 2)
to create the final test genome. A complete scan through
this genome took about a day on an AMD Athlon 1.4 Ghz
which was reasonable for testing purposes.

The total number of hits obtained by the primary search
was 66600, which demonstrates that it is unrealistic to
only consider the primary motifs of H/ACA snoRNAs.
However, several of these were actually at the same H-
box position. This redundancy occurs since the search can
locate several different�3�4-pairs and AHA-boxes. For
each H-box we only kept hits with highest primary score
(i.e. 100(w1P1 + w2P2 + w3P3)/(w1 + w2 + w3)). After
the initial secondary structure filters have been applied, we
are left with 15 428 hits.

The scoresPtot for these hits are plotted in Figure 6.
The squares indicate the scores obtained for the known
snoRNAs, which were planted within the first 54 000 bases
of the test genome. Out of the 15 428 hits, 2397 have total
scores greater than 70. We observe in Figure 6 that the
snoRNAs have scores well above most of the other hits.
The snoRNA with the lowest score was ranked 192. Thus,
to hit all of the known snoRNAs we need to accept 179
false positives. The final requirement that both (P1 > 0.8)
and (P4 > 0.65) hold simultaneously, further reduced
the number of false positives to 96. Thus, out of the
15 428 distinct hits, 96 false positives remained, giving a
performance of(15 415−96)/15 415= 99.4% (searching
the reverse complemented test genome gave 99.3%).

Unfortunately, snR8 does not satisfy (P1 > 0.8) and
(P4 > 0.65). Of course, this last filter could be relaxed
in order to hit snR8, but then we would need to deal with
many more false positives. After considerable testing, we
concluded that the balance between the number of false
positives and false negatives was acceptable.

Screening the yeast genome with Fisher
The yeast genome is approximately 12 Mb, which is about
20 times larger than our test genome, and we must search it
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Fig. 6. The total score (Ptot ) for the hits in the shuffled test genome.
The left figure shows the whole test genome consisting of 540 000
bases. The snoRNAs were planted amongst the first 54 000 bases.
This part is enlarged on the right. The total scores for the 13�3 �4-
snoRNAs are marked with squares. For a normal search we only
accept hits with scores above 70 (marked with the bold line).

in both directions. Thus, from the results above we expect
Fisher to yield perhaps ten quite highly ranked novel
snoRNAs and about 4000 false positives.

In order to decrease this rather large number of ex-
pected false positives we created a reduced yeast genome
sequence of approximately 3.5 Mb. This consisted of
the NotFeature.fasta file (produced by removing all
regions corresponding to ORFs listed in the yeast ORFs
files), obtained by ftp from theSaccharomyces Genome
Database (Cherryet al., 2001), together with the known
introns in yeast obtained from the Ares lab Yeast Intron
Database version 2.0 (Daviset al., 2000). This not only
reduced the expected number of false positives to about
1000, but also saved significant CPU time (run time was
about one week).

Instead of the approximately 1000 false positives/novel
snoRNAs that we expected for the reduced yeast genome,
we in fact found 579. These candidates were further
examined and reduced in number by considering their
scores and performing some manual processing, such
as checking primary and secondary structures. We also
checked the high ranking candidates regarding their
genomic context. Amongst the 579 candidates, we only
found 31 snoRNA structures having both a�1�2- and a
�3�4-pair. To create a list of 50 candidates for experi-
mental screening, we also added another 19 of our most
interesting�3 �4-candidates.

Wenow discuss these 50 hits in more detail. In Figure 7

0 50 100 150 200 250

Ψ
1
 Ψ

2
 

H box 

Ψ
3
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4
 

AHA box 

UAUAUUUCUAGUUGUUCCUUAACAAAAUUUUUCAUUCAAUGGCAUAAAUCACUUUACACG
UUCUCGAGAACAGUAGAUGCGAUGAGUAUGAUAAAUAGUA AGAAUAAUAUGAUAAUGUAC
GCUAUUAUAUCGUCAGUACAUAGAUUUUUUGUUUUUAUAAAUGAUGUUCUAUAGAUGUUC
ACAUGAUGAAAGCGGGGAUGAUAUUAAUGUACAAAUUGUAAUAUGUGCGAACACA

Fig. 7. An example of a typical hit in the yeast genome. This
particular hit has both a�1�2 (32) and a�3�4-pair (2). Reading
left to right, the bold motifs in the above sequence are:�1, �2, H-
box,�3, �4 and AHA-box.

we present an example of a putative snoRNA thatFisher
located in the yeast genome. The motifs:�1 �2, H-box,
�3 �4 and the AHA-box are marked in bold. Its�-pairs
are �1 �2=32 and�3 �4=2 (see Table 1); these have
not been previously assigned to any known snoRNA. The
distances between the motifs areV = 61, W = 17,
X = 27 andY = 91 (see Figure 2). The secondary
structure, that exhibits the typical double mountain, is also
displayed in Figure 7. Encouragingly, the highest scoring
candidates showed a clear over-representation of�-pairs
that are not assigned to known snoRNAs, whereas hits
with lower scores more often had�-pairs that are already
assigned to known snoRNAs.

Both the 50 candidates and the known snoRNAs are
broadly distributed on the yeast genome, with all chromo-
somes possessing either known snoRNAs or candidates,
or both. Chromosome XV is notable in that it carries the
genes for four known snoRNAs, and is also the chromo-
some with the largest number of candidates located along
its length. Most of our top candidates are located in chro-
mosomes XII-XVI.

Three of our candidates were found to have especially
interesting genomic locations. Two are located in the
introns of the genes for the yeast ribosomal proteins,
RPL43A and RPS11A (both genes contain one intron
only). We consider this to be a strong indication that these
two candidates are indeed snoRNAs, since the majority of
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intronic snoRNAs are found in the introns of ribosomal
protein genes (Maxwell and Fournier, 1995) and, in
yeast, all intronic snoRNAs except one are in ribosomal
or ribosome-associated proteins (Samarsky and Fournier,
1999). An examination of orthologous ribosomal proteins
in other organisms revealed no additional information,
though (Higaet al., 1999) have demonstrated that the
human and mouseRps11 genes house U35 (a C/D family
snoRNA) in the third intron (the yeastRPS11A gene
has only one intron). A third candidate was located in
the ORF coding for the snoRNP U3 protein MPP10.
This candidate is not intronic, and completely overlaps
the coding sequence. This arrangement has been recently
demonstrated for the C/D family snoRNA U86, in yeast
(Filippini et al., 2001). Given this demonstration of
completely overlapping snoRNA-protein coding genes,
and the fact that the host gene for our candidate is
also involved in snoRNA-dependent rRNA processing, we
consider this hit to be a good candidate for abona fide
snoRNA. This suggests that future genomic searches may
require the entire genome sequence.

DISCUSSION
We have presented an algorithm for searching the yeast
genome for H/ACA snoRNAs. It is reasonably fast and
can be tuned to produce a manageable number of good
candidates.

The method we describe could in principle be applied
to any family of RNAs with low level conserved sequence
and well-conserved secondary structure. However, it
might be that it works well for H/ACA snoRNAs since
the corresponding structure is quite simple; more studies
need to be made to determine whether the method works
for more complex structures. In any case, some of the
methods we have developed might still be usefully
incorporated into existing search strategies.

Two issues warranting discussion are the number of
false hits and overtraining. For the test genome described
in the results section our strategy had an performance of
99.4%, but this also required the introduction of one false
negative (snR8). Since we did not include snR9, snR30, or
snR37 in our training data, it is likely that our approach
will not hit all known H/ACA snoRNAs, but it will
hopefully recover most, as per the computational screen
for yeast C/D snoRNAs (Lowe and Eddy, 1999). We are
as yet unaware how iteration (adding verified candidates
to the training dataset) will affect the ability of our method
to identify new H/ACA snoRNAs, and it is not possible to
predict how many iterations will be required to recover the
majority of H/ACA snoRNAs in yeast. However, since it
was found that the known snoRNAs were close to the top
in the candidate list for the test genome, partial screening
might be expected to effectively recover the majority of

additional H/ACA snoRNAs.
In terms of immediate application of our algorithm to

other organisms, the human genome provides an important
data set for which genome sequence and a sizeable
number of characterized H/ACA snoRNAs is available
(International Human Genome Sequencing Consortium,
2001; Venter et al., 2001). Preliminary work on the
known human H/ACA snoRNAs indicates greater H-
box and secondary structural homogeneity than for yeast.
However, since the human genome is about 250 times
longer than the yeast genome and since time complexity
for folding a sequence withn bases isO(n3), the search
may become too slow if too much secondary structure
filtering is required. This could be offset by, for example,
adapting the scanning algorithms described in Rivas and
Eddy (2000) or by parallelizing the search. Perhaps more
importantly with regards to folding, the accuracy of MFE
structure prediction can depend quite heavily on the length
of the subsequence of the genome that is being folded.
Even so, we emphasize that the ability of the predicted
structures to provide signal for discovery of new RNA
family members is more important than their correctness.

In conclusion, as additional sequence data for yeasts
becomes available (Soucietet al., 2000), it should be
possible to not only identify known snoRNAs in other
yeasts using BLAST (Cliftenet al., 2001; Cervelli et
al., 2002), but also to evaluate a list of candidates by
genome comparison. This has two implications. First,
preliminary evidence that a candidate is a snoRNA
can be gathered bioinformatically, as opposed to using
labor-intensive experimental screening. Second, we can
potentially reverse our approach and establish the site
of pseudouridylation. While this does not replace the
importance of experimentally determining the position of
pseudouridylation, it does mean that our methods can
in principle be applied in reverse order in cases where
there is comparative data available but no experimentally
determined pseudouridylation sites. We are currently
developing this strategy, together with a comparative
pseudouridylation map for rRNA alignments that may aid
in assigning confidence to H/ACA snoRNAs identified by
comparative genome analysis.
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Hüttenhofer,A., Kiefmann,M., Meier-Ewert,S., O’Brien,J.,
Lehrach,H., Bachellerie,J.P. and Brosius,J. (2001) RNomics:
an experimental approach that identifies 201 candidates for
novel, small, non-messenger RNAs in mouse.EMBO J., 20,
2943–2953.

International Human Genome Sequencing Consortium (2001) Ini-
tialsequencing and analysis of the human genome.Nature, 409,
860–921.

Kelley,C.T. (1999)Iterative Methods for Optimization, Frontiers in
Applied Mathematics, SIAM, 18, Philadelphia.

Lagos-Quintana,M., Rauhut,R., Lendeckel,W. and Tuschl,T. (2001)
Identification of novel genes coding for small expressed RNAs.
Science, 294, 853–858.

Lau,N.C., Lim,L.P., Weinstein,E.G. and Bartel,D.P. (2001) An
abundant class of tiny RNAs with probable regulatory roles in
Caenorhabditis elegans. Science, 294, 858–862.

Lee,R.C. and Ambros,V. (2001) An extensive class of small
RNAs in Caenorhabditis elegans. Science, 294, 862–864.

Lowe,T.M. and Eddy,S.R. (1997) tRNAscan-SE: a program for
improved detection of transfer RNA genes in genomic sequence.
Nucleic Acids Res., 25, 955–964.

Lowe,T.M. and Eddy,S.R. (1999) A computational screen for
methylation guide snoRNAs in yeast.Science, 283, 1168–1171.

Macke,T.J., Ecker,D.J., Gutell,R.R., Gautheret,D., Case,D.A. and
Sampath,R. (2001) RNAmotif, an RNA secondary structure def-
inition and search algorithm.Nucleic Acids Res., 29, 4724–4735.

Mathews,D.H., Sabina,J., Zucker,M. and Turner,H. (1999) Ex-
panded sequence dependence of thermodynamic parameters pro-
vides robust prediction of RNA secondary structure.J. Mol. Biol.,
288, 911–940.

Maxwell,E.S. and Fournier,M.J. (1995) The small nucleolar RNAs.
Annual Reviews of Biochemistry, 35, 897–934.

Meli,M., Albert-Fournier,B. and Maurel,M.C. (2001) Recent find-
ings in the modern RNA world.Int. Microbiol., 4, 5–11.

Moulton,V., Zuker,M., Steel,M., Pointon,R. and Penny,D. (2000)
Metrics on RNA secondary structures.J. Comp. Biol., 7, 277–
292.

872

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/7/865/197314 by guest on 16 August 2022



A search for H/ACA snoRNAs

Ni,J., Tien,A.L. and Fournier,M.J. (1997) Small nucleolar RNAs
direct site-specific synthesis of pseudouridine in ribosomal RNA.
Cell, 89, 565–573.

Ofengand,J. and Fournier,M.J. (1998) The pseudouridine residues
of ribosomal RNA: number, location, biosynthesis, and function.
In Grosjean,H. and Benne,R. (eds),Modification and Editing of
RNA. ASM Press, pp. 229–253.

Pasquinelli,A.E.et al. (2000) Conservation of the sequence and
temporal expression of let-7 heterochronic regulatory RNA.
Nature, 408, 86–89.

Rivas,E. and Eddy,S.R. (2000) Secondary structure alone is gen-
erally not statistically significant for the detection of noncoding
RNAs.Bioinformatics, 16, 583–605.

Rivas,E. and Eddy,S.R. (2001) Noncoding RNA gene detection
using comparative sequence analysis.BMC Bioinformatics, 2, 8.

Rivas,E., Klein,R.J., Jones,T.A. and Eddy,S.R. (2001) Computa-
tional identification of noncoding RNAs inE.coli by comparative
genomics.Curr. Biol., 11, 1369–1373.

Samarsky,D.A. and Fournier,M.J. (1999) A comprehen-
sive database for the small nucleolar RNAs from
Saccharomyces cerevisiae. Nucleic Acids Res., 27,
161–164. http://www.bio.umass.edu/biochem/rna-sequence/
YeastsnoRNADatabase/snoRNADataBase.html.

Souciet,J.-L.et al. (2000) Genomic Exploration of the Hemias-
comycetous Yeasts: 1. A set of yeast species for molecular evo-
lution studies.FEBS Lett., 487, 3–12.

Venter,J.C.et al. (2001) The sequence of the human genome.
Science, 291, 1304–1351.

Wassarman,K.M., Repoila,F., Rosenow,C., Storz,G. and Gottesman,S.
(2001) Identification of novel small RNAs using comparative
genomics and microarrays.Genes Dev., 15, 1637–1651.

Weinstein,L.B. and Steitz,J.A. (1999) Guided tours: from precursor
snoRNA to functional snoRNP.Curr. Opin. Cell Biol., 11, 378–
384.

Workman,C. and Krogh,A. (1999) No evidence that mRNAs have
lower folding free energies than random sequences with the
same dinucleotide distribution.Nucleic Acids Res., 27, 4816–
4822.

Zuker,M., Mathews,D.H. and Turner,D.H. (1999) Algorithms and
thermodynamics for RNA secondary structure prediction: a
practical guide in RNA biochemistry and biotechnology. In
Barciszewski,J. and Clark,B.F.C. (eds),NATO ASI Series.
Kluwer Academic Publishers.

Zuker,M. and Stiegler,P. (1981) Optimal computer folding of
large RNA sequences using thermodynamics and auxiliary
information.Nucleic Acids Res., 9, 133–148.

873

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/7/865/197314 by guest on 16 August 2022


