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ABSTRACT

Motivation: Noncoding RNA genes produce functional
RNA molecules rather than coding for proteins. One such
family is the H/ACA snoRNAs. Unlike the related C/D
snoRNAs these have resisted automated detection to
date.

Results: We develop an algorithm to screen the yeast
genome for novel H/ACA snoRNAs. To achieve this, we
introduce some new methods for facilitating the search
for noncoding RNAs in genomic sequences which are
based on properties of predicted minimum free-energy
(MFE) secondary structures. The algorithm has been
implemented and can be generalized to enable screening
of other eukaryote genomes. We find that use of primary
sequence alone is insufficient for identifying novel H/ACA
snoRNAs. Only the use of secondary structure filters
reduces the number of candidates to a manageable size.
From genomic context, we identify three strong H/ACA
snoRNA candidates. These together with a further 47 can-
didates obtained by our analysis are being experimentally
screened.

Contact: vincent.moulton@lcb.uu.se

Supplementary Information: Tables 1-5 referred to in
the text can be downloaded from http://RNA.massey.ac.nz/
fisher/

INTRODUCTION

Quintanaet al., 2001; Lauet al., 2001; Lee and Ambros,
2001), it is preferable to carry out initial RNA gene pre-
dictionin silico, as iscommon with protein-coding genes,
e.g. (Delcheet al., 1999).

Standard search methods such as BLAST (Altschul
et al., 1990) have been used in comparative searches
of bacterial genomes for novel RNAs (Argamanhal.,
2001; Rivaset al., 2001; Wassarmaset al., 2001) and
in searches for novel small regulatory RNAs in animals
and invertebrates (Pasquinedli al., 2000). In addition,
programs for RNA gene finding are available; for example,
the programstRNAscan-SE (Lowe and Eddy, 1997),
QRNA (Rivas and Eddy, 2001; Rivaat al., 2001), and
RNAMotif (Mackeet al., 2001) have been successfully
applied in whole genome searches for novel RNAs.

The importance of primary sequence for the finding
of new RNAs is clear, and was employed heavily in a
comparative search for noncoding RNAskErcoli (Rivas
et al.,, 2001). However, in general, standard homology
searches are not suitable for finding RNAs. Thus suc-
cessful searches have tended to use techniques such
as neural networks (Cartest al., 2001), pattern-based
descriptors (Mackeet al., 2001) and covariance models
(Eddy and Durbin, 1994; Lowe and Eddy, 1997, 1999)
which incorporate RNA secondary structure information.

In this paper we investigate an alternative approach
for incorporating secondary structure information into

The number of genes identified that code for noncodingRNA searches. Secondary structure is amenable to math-

RNAs is growing rapidly (Eddy, 2001; Erdmaret al.,

ematical analysis making minimum free-energy (MFE)

2001; Meliet al., 2001). While labor-intensive molecu- structure prediction using algorithms such as dynamic

lar biological approaches have been successful in identP

fying noncoding RNAs (ldttenhoferet al., 2001; Lagos-

*To whom correspondence should be addressed.
TBoth authors contributed equally to this work.

rogramming possible. In consequence programs such
as VIENNA (Hofackeret al., 1994) andMfold (Zuker

et al., 1999) can quite accurately predict secondary
structure. Even so, Rivas and Eddy (2000) determined
that a general search for noncoding RNAs in genomes

Bioinformatics 19(7) © Oxford University Press 2003; all rights reserved.

865

220z 1snBny 9| U0 1senB AQ ¥1,€/61/598/./6/9I91LE/SONEULIOJUIOIG/ W00 dNO"OILSPEDE//:SARY WO} POPEOJUMOC



S.Edvardsson et al.

using MFE structure stability alone is unlikely to succeed
since background noise is too high.

However, in (Collinset al., 2000) the discovery of an
RNase P candidate in the maize chloroplast genome was
detected using amd hoc combination of comparative
genomics and MFE structure comparison. Encouraged
by this result, we developed the RNA shape comparison
techniques described in (Moultoset al., 2000) and
incorporated them into an algorithm that we present
here which screens the budding ye&siccharomyces
cerevisae genome (Goffeawet al., 1996) for H/ACA
snoRNAs. Our method is similar to that used by Lowe
and Eddy (1999) in their successful computational screen
of the Scerevisiae genome for the related C/D snoRNAs,
which employed a probabilistic model as opposed to MFE
structure prediction.

ACA box

ACANNN] 3

Fig. 1. Schematic of the consensus primary and secondary structural
METHODS elements of the H/ACA box snoRNA. Note the hairpin-hinge-
Our search strategy for novel snoRNAs in fheerevisiae  hairpin-tail secondary structure and the internal loop structures
or yeast genome uses known H/ACA snoRNAs to formtermed the pseudouridylation pockets (Gasbal., 1997b). The
pnmary and Secondary structure models. Then we make iateraction of these pOCketS with rRNA is also Showm.refers to
sequential search for novel snoRNAs in both directions ofe parts of the snoRNA that are complementary to the rRNA.
the yeast genome, passing candidate sequences obtained
with the primary structure search through various sec- ) , ) L )
ondary structure filters. The sequences that pass througiiere information regarding pseudouridines in yeast

all of these filters are then scored using both primary andRNA is presented. We did not include snR9, snR30 or
secondary structure information. snR37 in our training data. For snR9, no capacity for

guiding pseudouridylation has been assigned, and snR30
Training data set is involved in rRNA cleavage, not pseudouridylation.

SnoRNAs (small nucleolar RNAs) are named because o¥nR37 is 386nt long and does not compare well with the
their localization to the eukaryote cell nucleolus. They fallSNORNAs in the training set.
into two families, the C/D box family and the H/ACA .
box family (reviewed in Weinstein and Steitz, 1999). Primary structure search
Within the H/ACA family there is significant conservation The primary structure search algorithm sequentially
of predicted MFE secondary structures, but very limitedidentifies parts of the yeast genome harboring various
conservation of primary sequence Gaetodl., 1997a,b).  primary structural motifs, separated as detailed in Fig-
The H/ACA box family guide site-specific isomerization ure 2. The algorithm first searches for an H-box. This
of rRNA (Ni et al., 1997; Ganogt al., 1997a), whereby motif is a sequence of the forlAN; AN2N3N4Ns with
uridine (U) is converted to pseudouridinarf (reviewed Ni € {A, U, C, G}, N1 # C, N3 # G, and eitheMNs = A
by Ofengand and Fournier, 1998), see Figure 1. To dat®r Ns = A. Once a candidate H-box is identified, it is
44 pseudouridines have been identified on yeast rRNAscored using a probabilistic model that we constructed
(Table 1) and 17 H/ACA snoRNAs have been shownusing the snoRNA dataset. In particular, we compute a
to guide 21 of these (Ofengand and Fournier, 1998similarity score between the putative H-box and each
Samarsky and Fournier, 1999). Based on this data wef the known H-boxes (presented in Table 2) using the
suspect that perhaps 10-20 yeast H/ACA snoRNAs havisequencies of nucleotides at positiotid; N2N3N4Ns)
yet to be identified. (presented in Table 3). The similarity between the putative
We obtained a dataset of 16 yeast H/ACA snoRNAH-box and each known H-box is computed as follows; the
sequences from the Yeast SnoRNA Database (Samarskyo sequences are placed one above the other, matches
and Fournier, 1999). These had been identified primarilyare given a score of 200, mismatches are scored according
by biochemical techniques (Gargital., 1997a; Niet al.,  to the nucleotide frequencies at positi@iNg No N3Nz Ns)
1997) and are provided with demonstrated or predictede.g. if the putative sequencedha G inpositionN; which
locations for H and ACA motifs and rRNA interactions. mismatches it is scored 81.25) and the scores are added,
The sequences flanking the pseudouridylation sites im a similar fashion to the profile matrix method used
rRNA are obtained from (Ofengand and Fournier, 1998y PSI-BLAST (Altschulet al., 1997). If the maximum
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Fig. 2. Primary structure model used to search for putative snoRNAs S50 nucs Hinge >60 nucs Tail
isti 5'/ \ o / AV 3
consisting of an H-box, an ACA-box (here denoted AHA—see text) [ m H Box m W, AHA

and four regions of complementarity to the rRNA subsequences

flanking some pseudouridylation site on rRNA (denoteddbyl,

andW3W,). Our model requiresX + Y + 14 < 142 16 < X < Fig. 3. Secondary structure model of H/ACA snoRNA. It consists of
70, Y > 30,3 < 23,24 < 10,23+ 24 > 9520 < V < two ‘mountains’ with widths as indicated.

100 11< W <17, 3< 21,22 < 10, Z1+ Z5 > 9.

Secondary structurefilters

of these similarities exceeds the threshold value of 80Ghe H-AHA region identified by the primary structure
(obtained using a leave-one-out analysis), the H-box isilter is passed through several secondary structure filters
accepted and this similarity score is recorded for thqo reduce false positives.
H-box. In addition, 200 is added to the similarity in case A secondary structure model for yeast H/ACA snoRNA
a complete match is obtained between the putative H-boxvas derived using MFE structure prediction (Zuker and
and an H-box that occurs at least twice for the knownsSteigler, 1981). For each known snoRNA two sequences
snoRNAs (e.g. snR189 and snR34). Although such agonsisting of the H-AHA region together with a sequence
H-box would be accepted without this bonus, the additiorpf length 100 or 120 bases upstream from the H-box
is made since the similarity is used later when scoring thvere formed and then folded using thiéAf o1d function
final candidates. of the VIENNA v. 1.4 package (Hofackegt al., 1994).
After locating a high-scoring H-box, the algorithm The option ho dangling ends’, improved the folds.
searches downstream fég and W4 motifs. These are two  Upstream lengths of 100 and 120 gave a good signal, even
sequences that are almost complementary to the sequeneggugh these do not correspond exactly to those for the
flanking a pseudouridylation site in the yeast rRNA, seeknown snoRNAs. The dynamic length was necessitated
Figure 1 (these motifs are listed in Table 1). Similarbecause the’®nd of a putative SnoRNA sequence cannot
complementary motifs were also employed by Lowe anche determinea priori in the yeast sequence.
Eddy (1999) in their search for C/D snoRNAs. To look The resulting structures were represented by mountain
for a putative Wz motif, a known Wz motif is directly  plots (see Moultonet al., 2000), which are based on
compared with the yeast genome. The comparison ithe representation of Hogeweg and Hesper (1984). This
considered a match if either the sequences are identical @ype of plot allows a simple connection between primary
there is at most one wobble, where a wobble correspondsnd secondary structure. The mountain plot consists of
toaCoranAinkzlininguptoanUoaGinthegenome, the points with x-coordinate k corresponding to the
respectively. The wobble corresponds to a non-canonicath nucleotide and/-coordinateyyx equaling the number
base pairing between the H/ACA snoRNA and the rRNA.of base-pairs enclosing this nucleotide (see Figure 3).
Such pairings occur for the known snoRNAs. The sameéVhen we compare structures whose underlying sequences
comparison is performed for thi4 motif. The lengths of have different lengths, we normalize the corresponding
the W3, W4 motifs (Z3 and Z4 in Figure 2), which were mountain plots, scaling the-coordinates to lie between
inferred by analyzing the snoRNA dataset, are required and 1 and the/-coordinates so that the total area under
to be between three and ten bases, and the sum of thelte graph equals one. In practice, mountain plots are
lengths must always exceed 84fg, W4 motifs are found represented by the vector containing fheoordinatesyk
in the correct locations (given ByandY in Figure 2), then  corresponding to each nucleotidewhereas normalized
the algorithm continues to search for the ACA sequencemountains plot are represented by vectors of a suitably
To reduce any confusion from now on we denote thislarge fixed lengthN, that contain they-coordinatesy; of
sequence by AHA, where H can equal A, U or C. Thethe normalized mountain plot ast—coordinates'ﬁ, 1<
AHA box is exactly 14 bases from the beginning of thei < N. To obtain these normalized vectors we employed
W, motif, a distance that is conserved for all known yeastplines.
snoRNAs (Ganogt al., 1997b) and, if found, the complete  Good similarity was observed between the normalized
H-AHA region is passed to the secondary structure filtersnountain plots of the known snoRNA dataset (Figure 4).
described in the next section. Failure to locate a downThe significant common structural features were incorpo-
stream motif in the above procedure in general results in gated into a secondary structure model consisting of two
continuation of the sequential search for another H-box. ‘mountains’ separated by a hinge region, the position of
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] ) ) Fig. 5. Distanced from the 16 known snoRNAs to the mean
Fig. 4. Normalised mountain plotsL€100) for the 16 yeast gpoRNA structure. The dotted lines represent the standard devia-

snoRNAs. The thick line represents the mean structure for the wholggng (£1SD). A candidate structure will passdf< 300 for either
snoRNA dataset. L =100 orL = 120.

which roughly corresponds to the H-box (Figure 3). As anot shown). This may be because a small perturbation in
preliminary coarse filter, the sequence comprising of th@garameters does not significantly change stable secondary
H-AHA region identified previously, with eithdr = 100  structures. We implemented a stability filter that com-
or 120 upstream bases, is folded. The resulting mountaipares normalized mountain plots generated for candidate
plot is accepted only if it has a local minimum (corre- SNnoRNA sequences using both the old and new folding pa-
sponding to the hinge position) withift11 bases of the rameters. In particular, we compute the distardgsand
H-box, the height of this minimum is at most 4 above thedne,, for the ‘old’ and ‘new’ normalized mountain plots.
H-box, the width of the left mountain exceeds 50 base$nly candidate snoRNAs satisfyindod — dnew| < 300
(fulfilled automatically for the right mountain, see Fig- are accepted.
ure 2), and abovass and W4 the graph is high enough )
(>4) and also non-zero between these two motifs. Scoring the output
Those candidates displaying these coarse criteridhe last stage computes a score based on both primary
are then passed through more-sensitive filters. Thand secondary structure for each candidate snoRNA. A
first filter computes a squared distance from its norscore for the AHA-box is added to the H-box similarity
malized mountain plot to a mean snoRNA structurescore described earlier. Th¢ in the AHA-box is scored
d= ZiNzl(yi — Vi'-)z, wherey; is the normalized struc- according to:A = 6.25,U = 1875,C = 75 andG
ture andy- is the mean normalized snoRNA structure is not allowed (based on frequencies from the training
taken over the training dataset). Figure 4 displays thi§lataset; see Table 2). The scores are added as describe
mean snoRNA structure for the case = 100. The In the section above and then transformed into a number
distanced between a known snoRNA and the mean0 < P1< 1.
snoRNA is typically about 150 (see Figure 5) so that low AS part of the score we also computed three other
values ofd are not expected for candidate snoRNAs. EverfluantitiesP,, P3 and P, defined as follows (see Figure 2
though distances for candidate snoRNAs are expected ®'d Table 4). IfX < 40 then we putP, = 1, else
be about the same as for known snoRNAs (see Figure 52 = 0.5. Furthermore, if 66< X +Y < 100 then we
a candidate snoRNA is still allowed to pass through thisPut P3 = 1, elsePs = 0.5. The score is also based on
filter if d < 300. the performance of the secondary structure. The average
A second filter uses the observation that known snorNAlIStanced is computed for the training dataset. For a
structures whether obtained using the old (v1.3) or nevputative snoRNA ifld —d| > d, then we putP; = 0,
(v1.4) folding parameters (Mathewesal., 1999) provided elsePs = (d — |d —d|)/d. Thus, the closed is to the
in the VIENNA package were similar—a property that we aveaged, the higher the score. The putative SnoRNA is
did not observe in general for random sequences (datanly accepted if botiP; > 0.8 and P4 > 0.65 hold.
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A search for HHACA snoRNAs

The total scoreP;y; of the candidate snoRNA is then guiding this pseudouridylation. Furthermore, we find that
computed using the formula many of the known H/ACA snoRNAs can potentially
guide more than 2 pseudouridylations.

A test scan through a randomized genome sequence

In order to investigate the performance of our search strat-
where w1=10, w=2, w3=1, andw4=2. The values of ¢y \ith respect to false positives we created a random-
the weightsw; were obtained by optimization using i eq test genome sequence. To conserve the approximate
the_ I_\Ielder—Mead methqd (see e.g. K_elley, 1999) on th?requencies of A, U, C and G, our test genome was cre-
training dataset. Only ifPot > 70 is the structure aieq phy copying a sequence of length 540 000 bases from
accepted. All sn_oRNAs in the training dataset satisfyi,q yeast genome. The sequence was shuffled using an
Prot >> 70 (see Figure 6). algorithm that preserves dinucleotide frequencies (Work-
Final processing man and Krogh, 1999; AIt;chuI and Erikson, 1985). For a

. sequence of lengt, this is performed by randomly se-
In case we target snoRNAs also having the complementarhécting pairs of triplets of the form XQY and XPY and
pair W3 and Wy, aspecial procedure is called. This l00ks {han exchanging Q and P. This is repeatedl 1nes. We
for the mo_tifS\Ifl anqqu, that fulfill the criteriaV > 20 ihen added all 13 snoRNAS that havgW,-pairs (Table 2)
(the majority havev in the range 30-40) and IX W < (g ¢reate the final test genome. A complete scan through
17 (the majority hav8V = 14)—see Figure 2 and Table 4. ;5 genome took about a day on an AMD Athlon 1.4 Ghz
which was reasonable for testing purposes.

RESULTS The total number of hits obtained by the primary search
We have implemented the strategies and filters describedias 66600, which demonstrates that it is unrealistic to
above in a C programF{sher). This is available via only consider the primary motifs of H/ACA snoRNAs.
electronic mail [sverker.edvardsson@mbh.se]. However, several of these were actually at the same H-

) ) box position. This redundancy occurs since the search can
W-pair assignments locate several different3Ws-pairs and AHA-boxes. For
In the known yeast H/ACA snoRNA dataset, no twoeach H-box we only kept hits with highest primary score
snoRNAs have been demonstrated to guide the samee. 10Qw1P1 + w2P2 4+ w3P3) /(w1 + w2 + w3)). After
pseudouridylation (Table 1). However, of the snoRNAs inthe initial secondary structure filters have been applied, we
our dataset, only 13 of 22 assign@dpairs perform the are left with 15428 hits.
corresponding pseudouridylation (see Table 2) and snR3 The scoresP;q for these hits are plotted in Figure 6.
is potentially capable of more than one pseudouridylatiorThe squares indicate the scores obtained for the known
at the 3 pocket @3¥,4). We therefore examined the snoRNAs, which were planted within the first 54 000 bases
known snoRNAs for redundancy, using our primary struc-of the test genome. Out of the 15 428 hits, 2397 have total
ture engine to search for all; Wo- andW3Wy-pairs within -~ scores greater than 70. We observe in Figure 6 that the
these (see Table 5). We used the following constraintssnoRNAs have scores well above most of the other hits.
25 <V < 45 and 13< W < 16 (see Figure 2). Our The snoRNA with the lowest score was ranked 192. Thus,
algorithm locates all the assignddpairs except 39, cor- to hit all of the known snoRNAs we need to accept 179
responding to snR34 (Table 2). The reason is the unusuallalse positives. The final requirement that bdeh & 0.8)
large distanc&V = 38. A potential stem involving 242 and (P4 > 0.65) hold simultaneously, further reduced
bases lies between snR34lg and the H-box. Despite the number of false positives to 96. Thus, out of the
this feature, it is reasonable to assume that functionallyL5 428 distinct hits, 96 false positives remained, giving a
important spatial determinants are preserved (W. Decatuperformance 015 415-96)/15 415= 99.4% (searching
J. Ni, and M. Fournier, pers. commun.). This is the onlythe reverse complemented test genome gave 99.3%).
such situation known to exist for the yeast snoRNAs. Our Unfortunately, snR8 does not satisfi?( > 0.8) and
examination of sequence complementarity between théP, > 0.65). Of course, this last filter could be relaxed
rRNA and thew; ¥, and ¥3W, sequence pairs in thé 5 in order to hit snR8, but then we would need to deal with
and 3 pseudouridylation pockets of the known H/ACA many more false positives. After considerable testing, we
snoRNAs reveals extensive potential for functional re-concluded that the balance between the number of false
dundancy (Table 5). For instance, pseudouridylation opositives and false negatives was acceptable.
U1os6in the 25S rRNA subunit (23 in Table 1) is guided ) . )
by snR44 (Ganott al., 1997a; Samarsky and Fournier, SCreening the yeast genome with Fisher
1999), yet our analysis (Table 5) suggests that snR3Ihe yeast genome is approximately 12 Mb, which is about
snR33, snR36 and snR49 are also potentially capable &0 times larger than our test genome, and we must search it

Py + w2Ps + wP3 + waP
Ptotzloo[wl 1+ waPy + w3Ps + wa 4}

w1+ w2 + w3 + w4
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Fig. 6. The total scoreRot) for the hits in the shuffled test genome. GCUAUUAUAUCGUCAGUACAUAGAUUUUUUGUUUUUAUAAAUGAUGUUCUAUAGAUGUUC

The |eft flg ure ShOWS the Wh0|e test genome Consisting Of 540 000 ACAUGAUGAAAGCGGGGAUGAUAUUAAUGUACAAAUUGUAAUAUGUGCGAACACA

bases. The snoRNAs were planted amongst the first 54 000 bases.

This part is enlarged on the right. The total scores for th&4 /-

snoRNAs are marked with squares. For a normal search we onligig. 7. An example of a typical hit in the yeast genome. This

accept hits with scores above 70 (marked with the bold line). particular hit has both &4W, (32) and al3W4-pair (2). Reading
left to right, the bold motifs in the above sequence dre; Wy, H-
box, ¥3, ¥4 and AHA-box.

in both directions. Thus, from the results above we expect

Fisher to yield perhaps ten quite_highly ranked novel o present an example of a putative snoRNA Bhiather
snoRNAs and about 4000 false positives. located in the yeast genome. The motis; Wy, H-box,

In order to decrease this rather large number of Xy, W, and the AHA-box are marked in bold. I8-pairs
pected false positives we created a reduced yeast genorgg, Uy ¥,=32 andW; W,=2 (see Table 1); these have
sequence of approximately 3.5 Mb. This consisted ofyot heen previously assigned to any known snoRNA. The
the NotFeature.fasta file (produced by removing alljistances between the motifs ave = 61, W = 17,
regions corresponding to ORFs listed in the yeast ORF _— 27 andY = 91 (see Figure 2). The secondary
files), obtained by ftp from th&accharomyces Genome  strycture, that exhibits the typical double mountain, is also
Database (Cherrgt al., 2001), together with the known gisplayed in Figure 7. Encouragingly, the highest scoring
introns in yeast obtained from the Ares lab Yeast Introncandidates showed a clear over-representatioti-phirs
Database version 2.0 (Dave al., 2000). This not only  that are not assigned to known snoRNAs, whereas hits
reduced the expected number of false positives to abougith lower scores more often habl-pairs that are already
1000, but also saved significant CPU time (run time wasassigned to known snoRNAs.
about one week). Both the 50 candidates and the known snoRNAs are

Instead of the approximately 1000 false positives/novebroadly distributed on the yeast genome, with all chromo-
snoRNAs that we expected for the reduced yeast genomgomes possessing either known snoRNAs or candidates,
we in fact found 579. These candidates were furthepr both. Chromosome XV is notable in that it carries the
examined and reduced in number by considering theigenes for four known snoRNAs, and is also the chromo-
scores and performing some manual processing, suagtbme with the largest number of candidates located along
as checking primary and secondary structures. We alsigs length. Most of our top candidates are located in chro-
checked the high ranking candidates regarding theimosomes XII-XVI.
genomic context. Amongst the 579 candidates, we only Three of our candidates were found to have especially
found 31 snoRNA structures having bothlaWw,- and a interesting genomic locations. Two are located in the
W3Wy-pair. To create a list of 50 candidates for experi-introns of the genes for the yeast ribosomal proteins,
mental screening, we also added another 19 of our mofRRPL43A and RPS11A (both genes contain one intron
interestingWs Ws-candidates. only). We consider this to be a strong indication that these

We now discuss these 50 hits in more detail. In Figure Awo candidates are indeed snoRNAs, since the majority of
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intronic snoRNAs are found in the introns of ribosomal additional H/ACA snoRNAs.

protein genes (Maxwell and Fournier, 1995) and, in In terms of immediate application of our algorithm to
yeast, all intronic snoRNAs except one are in ribosomabther organisms, the human genome provides an important
or ribosome-associated proteins (Samarsky and Fourniedata set for which genome sequence and a sizeable
1999). An examination of orthologous ribosomal proteinsnumber of characterized H/ACA snoRNAs is available
in other organisms revealed no additional information(International Human Genome Sequencing Consortium,
though (Higaet al., 1999) have demonstrated that the2001; Venteret al., 2001). Preliminary work on the
human and mousipsll genes house U35 (a C/D family known human H/ACA snoRNAs indicates greater H-
snoRNA) in the third intron (the yeadRPSL1A gene box and secondary structural homogeneity than for yeast.
has only one intron). A third candidate was located inHowever, since the human genome is about 250 times
the ORF coding for the snoRNP U3 protein MPP10.longer than the yeast genome and since time complexity
This candidate is not intronic, and completely overlapsfor folding a sequence with bases isO(n®), the search

the coding sequence. This arrangement has been recenthay become too slow if too much secondary structure
demonstrated for the C/D family snoRNA U86, in yeastfiltering is required. This could be offset by, for example,
(Filippini et al., 2001). Given this demonstration of adapting the scanning algorithms described in Rivas and
completely overlapping snoRNA-protein coding genesEddy (2000) or by parallelizing the search. Perhaps more
and the fact that the host gene for our candidate ismportantly with regards to folding, the accuracy of MFE
also involved in snoRNA-dependent rRNA processing, westructure prediction can depend quite heavily on the length
consider this hit to be a good candidate fobana fide  of the subsequence of the genome that is being folded.
snoRNA. This suggests that future genomic searches mawven so, we emphasize that the ability of the predicted

require the entire genome sequence. structures to provide signal for discovery of new RNA
family members is more important than their correctness.
DISCUSSION In conclusion, as additional sequence data for yeasts

ecomes available (Souciet al., 2000), it should be
ossible to not only identify known snoRNAs in other
asts using BLAST (Clifteret al., 2001; Cervelliet
, 2002), but also to evaluate a list of candidates by
jgenome comparison. This has two implications. First,
preliminary evidence that a candidate is a SnoRNA

We have presented an algorithm for searching the yea%
genome for H/ACA snoRNAs. It is reasonably fast and
can be tuned to produce a manageable number of go%(iiE
candidates. :
The method we describe could in principle be applie
to any family of RNAs with low level conserved sequence .- o gathered bioinformatically, as opposed to using
%r:ghtwt?él-tchoarlsifrv\\//i?k:(x:eolln ?oarrL /Zt(f:%t:r:(e)RNHAO;vi\l/r?ée IE’;lbor—intensive experimental screening. Second, we can
X . g ) ._potentially reverse our approach and establish the site
the corresponding structure is quite simple; more studleg

. f pseudouridylation. While this does not replace the
need to be made to determine whether the method Work|§nportance of experimentally determining the position of
for more complex structures. In any case, some of th

) : %seudouridylation, it does mean that our methods can
mg(t)?ogrsat(\;v;in?(?\(leiis?iiveg:e%?gh r;'r%?é is(;c!l be usefullyin principle be applied in reverse order in cases where
TW(FJJ iSSUES warranting discussion a%e tﬁe number o here is comparative data available but no experimentally

false hits and overtraining. For the test genome describ:@{ termined. pseudouridylation sites. We are currently

in the results section our strategy had an performance eveloping this strategy, together with a comparative
gy P seudouridylation map for rRNA alignments that may aid

o . . / :
ggiﬁ\;:g;gg)ag%gqxged? Jﬂg;?ﬁggggg&gf 22&;%'3 an assigning confidence to H/ACA snoRNAs identified by
g : ’ ' comparative genome analysis.

snR37 in our training data, it is likely that our approach
will not hit all known H/ACA snoRNAs, but it will
hopefully recover most, as per the computational screeACKNOWLEDGEMENTS
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