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Abstract. We describe the implementation of a distributed computer
search that uses Williamson’s construction for Hadamarttices. The
search program is used to perform a complete search foraeawf orders
100 through 148. No new results are found, confirming exastasults. We
are convinced that no further matrices of any order less ti#hmay be
constructed. For reference purposes, we present tablesdzrhiard matri-
ces of orders 100 through 180 constructed using four cintidggmmetric
(1,—1) matrices in the Williamson array.

1 Introduction

An Hadamard matriH of ordern has elements:1 and satisfie$iHT = nl,.
These matrices are used extensively in coding and comntiorisgsee Seberry
and Yamada [12]]. The order of an Hadamard matrix is O mod 4. The first
unsolved case is order 428. We use Williamson’s constm@sothe basis of our
algorithm to construct a distributed computer search far Hadamard matrices.
We briefly describe the theory of Williamson’s constructiarSection 2. Previ-
ous computer searches for Hadamard matrices using Williaimsondition are
described in Section 3. The implementation of the searcbrishgn is presented
in Section 4, and the results of the search are describecttio8é.

2 Hadamard Matrices from Williamson Matrices

Theorem 1 (Williamson [16]). Suppose there exist fodt, —1) matrices A, B,
C, D of order n which satisfy

XYT=YX" X,Y € {AB,C,D}



Further, suppose

AAT +BB™ +-CCT +DDT = 4nlj, (1)
Then
A B C D
-B A-D C
H=1_c b A-B (2)
-D-C B A
is an Hadamard matrix of ordetn constructed from a Williamson array.
Let the matrixT be called the shift matrixI' = (ujj), uij = 1 if j —i = 1 modn
and zero elsewhere. Note tHett = |, (T")T = T
Let

A=3lgaT, a=+lami=a
B=3"gbT, bi==+1byi=b
C=3"gcT, G==+1Ci=G
D=3"gdT, d=+1dyi=d;
Then matriced\, B,C, D may be represented as polynomials. The requirement that
Xn—i =X, X € {a,b,c,d} forces the matricea, B,C, D to be symmetric.
SinceA, B,C, D are symmetric, (1) becomes:

AZ + B2+ C2+D? =4nl,

3)

and the relatioiXYT =Y X becomes<Y =Y X which is true for polynomials.

Definition 1. Williamson matrices arg¢1, —1) symmetric circulant matrices. As
a consequence of being symmetric and circulant they comimpters.

We use the following theorem of Williamson'’s as the motivditw our search
algorithm:

Theorem 2 (Williamson [16]). If there exist solutions to the equations
S . .
pi:1+22tij(co1+co”’1),i:1,2,3,4 4)
=1

where s= (n— 1), wis a nth root of unity, exactly one afitty;, tsj, taj is nonzero
and equalst1 foreachl < j <s, and
ME+ 1+ 15+ G = 4n
then there exist solutions to the equations:
A=y gaT, ay=la=ani==+1
B=3"gbT!, bo=1bi=bni=+1
C=3"56GT, c=1c=ci==*1
D=y"4dT, do=1,0d =dni==+1

(5)

That is, there exists an Hadamard matrix of ordler.



In matrix form,w +w" ! is represented @Bl +T"I. Since these are sym-
metric, we write _ _
wj = !

Remark 1.The solutions for (4) are independent of the particular tacto ifn as
defined by (1) is prime, we can choaseso that the firspt having anyw; assigned
hasw;. Since the equations are true for all roots of uniythey are also true for
w=1.

Theorem 3 (Williamson [16]). Let n be odd, and matrices, B, C, D satisfy (1)
and (3), supposepa= by = cp = do, then exactly three ofjabj,cj,dj, 1< j <
n—1, have the same sign.

3 Results from previous searches

In many cases complete searches have been conducted fombtaenatrices
of Williamson type. Searches have also been conducted fwialpclasses of
Williamson type Hadamard matrices. Furthermore, an irdidiass of such matri-
ces is known and will also be discussed briefly.

— Baumert and Hall [2] report results of a complete search fders 4, t odd
and 3<t < 23. Some incomplete results for higher orders are also given

— Sawade [11] reports results of a complete search for ordegrs=25,27. The
results fort = 25 were later demonstrated to be incomplete by Dokovic [4].

— Dokovic [5] reports results of a complete search for orders4 29,31. Only
a single non-equivalent solution was found fet 29 and is equivalent to an
earlier result due to Baumert [1].

— Koukouvinos and Kounias [10] report results of a complet@ae for or-
der 4, t = 33. These results were later demonstrated to be incompjete b
Dokovic [6].

— Koukouvinos and Kounias [9] report that no circulant synmigetvilliamson
matrices of order 39 exist, a result later demonstrated tinberrect by
Dokovic [6].

— Dokovic [6] reports results of a complete search for ordérs 4 33,35, 39.

— Dokovic [4] reports results of a complete search for orderg & 25,37.
This extends results obtained by Sawade [11}tfer25 and, fort = 37, by
Williamson [16] and later Yamada [17] for a special class atmces.

An infinite family of Hadamard matrices of Williamson typesiaeen proved
to exist under certain conditions [14, 15]:

Theorem 4. If g is a prime power, &1 (mod 4), q+ 1 = 2t, then there exists
a Williamson matrix of ordedt; we have C= D, and A and B differ only on the
main diagonal.



This theorem gives examples of Hadamard matrices of Williamtype for orders
4t,t =31,37,41,45 49,5155, ..., for example.

Yamada [17] has searched for Hadamard matrices of Williantgpe, with
certain restrictions. These matrices are referred Willamson type j matrices
The Williamson equation for such matrices, of orderigt

2 2 2 2

n=11-2 +11-2Y cswsj | +[1-2H dstos ] +[(1-2 dstsi
(2gem) (oo «(agom) (2]
6

wherecs,ds= 41, s = 0+ w S, ' =1,j?°= -1 (modn), A B, A, jBisa

partition of {1,2, ..., ”;21}. Such aj exists if and only if all prime divisors of
are=1 (mod 4. This led to some new results for= 29,37,41.

4 Search Method

4.1 Introduction

The basic search method is to examine all possible combimabfw;,1 < j <
%(n —1) for eachy;,i = 1,2, 3,4, testing each set qf so generated to see if it
satisfies Williamson’s condition and can be used to form adafdzard matrix
of order 4. This search method is documented in more detail in thedtig
sections.

As a result of the large size of the search space, a distdlmlient/server ap-
proach was taken to the problem: the server breaks work ogsimaller portions
which are then processed by the clients; any results dised\ae reported to the
server by the client. Very little work is done by the serveelif.

Using a distributed approach, we are able to perform largeuans of work in
a fraction of the time required for a single computer to perféthe same amount
of work.

At various times during the performance of the searchesjiiagh comput-
ers and computers running some variety of UNIX have beeradlaifor use. To
make best use of the available resources, and to elimingteesd to install soft-
ware beyond that of the client program itself, all commuticdawas performed
using low-level networking APls, sockets [13] on UNIX and é&pTransport [3]
on the Macintosh, rather than using a package such as PVM MP [8] that in
some cases can facilitate the construction of distributednams.

Searches for Hadamard matrices of all orders up to and imduatder 148
have been performed using Williamson’s method implemehted client/server
system. Towards the end of an initial search of order 148 o8ptiters were in-
volved, 20 270MHz Ultra 5 computers from Sun Microsystemsl 47 333MHz
iMacs from Apple Computer. No computers not available onltizal area net-
work were employed in the initial search. However, a subsatjgsearch per-
formed to verify results utilised 35 350MHz Pentium-II comters at the Uni-
versity of Newcastle in addition to 30 local Ultra 5 compster



The details of the implementation of Williamson’s methodhin the frame-
work of a client/server system are discussed in the follgwiections.

4.2 Decomposén into sum-of-squares representation

The first step in performing a search is to decompos@tb all possible sums-of-
squares representations. Observing the form of (4), wehsgevhenw = 1 each
L satisfies:

|| = 1 mod 41 > 0; or )
|| =3 mod 4 < 0.

For example, the possible decompositions for 148 are:

1

AwWwwPRE P
G wwN P
~N N W N o

1

~NO R NP

In the sections to follow, we writex,p, to indicate somey, = ¥ + «" K for
1< k< 3(n—1)whenitis necessary to distinguish frommth root of unity,w.

4.3 Decide on the number ofogy, assigned to eachu

The next step is to assign a numberwaf,, to eachp. Using (7), we see that if
|li| = 1 mod 4, then of theus,p contributing toy;, the number being added tp
will always be“’*"T’l greater than the number @k, that are subtracted. A similar
condition can be derived fop;| = 3 mod 4. Thesex,pare termed “fixed”; others
are “floating” and always occur in pairs, one added and theratlibtracted. These
conditions are enforced to help limit the size of the spadeeteearched.

All possible permutations of the number of floatitg,, are assigned to each
pover the course of the search of a particular sum-of-squiapgesentation, sub-
ject to certain restrictions that are useful for reducing sfze of the space to be
searched:

1. The number ofxypassigned tqy must be greater than or equal to the number
of wsyp assigned te; wherej < i andy; andy; correspond to the same value
in the sum-of-squares decomposition. We may apply this iti@mcbecause
for the purposes of testing the set pto see if Williamson’s condition is
satisfied y andy; are interchangeable, and it is desirable to perform the test
only once rather than twice. This may be extended furtheoifexthan twau
have the same value in the sum-of-squares decomposition.



2. If nis prime, then we may always placa in the firsty to which anywsyp
are assigned. This corresponds to solving the set fof somenth root of
unity, !, such thatu, is present in the firgi to which anyws,p are assigned.
Furthermore, if there ar@sp both added and subtracted from thjsve may
either subtract or addy; we do not need to check both. If this condition is
in force, then condition 1 is not applied in the case of iite which wy is
assigned, but remains applicable for oth@orresponding to the same value
from the sum-of-squares decomposition. Enforcing thigld@om can greatly
reduce the size of the space to be searched: for examplgirghis condi-
tion for searching for Hadamard matrices of size 148 redtlvesize of the
space to be searched to 37% of its size were this conditiotorm enforced
(reducing from about 32,387,862,644,280 to 12,062,45488! .

For each permutation of floatingpthat is generated, we must assign specific
identities to eaclwsyy and evaluate Williamson'’s condition.

4.4 Assign specific identities to eachyyp

We must now assign specific identities to eaghy, so that Williamson’s condition
may be tested.

Let the number ofosp added tqy be represented kg1 and the number of
Wsub SUbtracted fronp; by cyi. i1 is the set ofugyp added tqy andS; is the set
of wsyp subtracted frony;. That is, there are eight sefstwo for eachi. Some of
these set§S may be empty.

W=1+2 5 -2 5%
VieSi-1 V€S

Dividing wsyp into two groups, one added tqieaand the other subtracted, helps to
simplify the procedure for iterating over all possible cangtions ofwsp,.

The sets§ are formed by choosing elements from the set ofsp not already
allocated to ar§;, j < i. Recalling thas= 3(n— 1), St o is defined as:

Sro= {1, wp, W3,...,Ws}.

Sr,i is defined as:
Sri=Sri-1—-S-1,i=1,...,8. (8)

For convenience, we say that:
=0

1 We would have achieved an even greater reduction in the $iteesearch space had
we not been checking for solutions by both adding and sutitigae; where this option
was available. In this case, the size of space to be searshessithan half of the above
figure.



Williamson'’s condition may be tested ong.. . ., Sg have been generated. All
possible combinations @ elements fronr; are examined; once the combina-
tions are exhausted, the next combination$on, is generated. The process is
illustrated by the small segment of pseudocode shown inrBigyu

for k from jto 8

populateSy k from Sr 1 andS,_; using (8);

generate combinatio® by choosings, elements fronSy ;
‘ Test Williamson Condition using, ..., Sg to generatey, . .., J4;
j:=8;
g:=false
while ((j > 0) and (g == false)

generate new combinatic; usingc; elements fronSr |

if successful

g:=true;

j=i+1
else

j=i-1

while (j > 0);

Fig.1. Segment of pseudocode illustrating generation of comiginat for testing
Williamson'’s condition.

So it should be easy to see that the number of tests of Wilbareagondition
for a particular set o€y, . . ., cg can be calculated as follows:

8
e |Sr.il
Evaluations= H( N > 9

Usually, however, the total number of evaluations perfatmél be less than this,
for two reasons:

1. If condition 2 from Section 4.3 is applied, we choose omweefewsp, for the
setSin which wy is to appear.

2. If w andy;,i < j correspond to the same value in the sum-of-squares de-
composition of 4 and have the same numberwf,, assigned, then we may
require that ity is thewsy, of smallest subscript assignedyandwy, has the
smallest subscript assignedytp thatx < y. Otherwise, work will be repeated
wheny; replicates a sequence that had previously occurreg.iinforcing
this condition ensures that no repetition takes place atidces the size of



the search space slightly. The reduction is unfortunatetyas substantial as
that for applying condition 2 from Section 4.3.

4.5 Dividing up the work for distribution

The obvious manner in which to reduce the amount of work peréad by the
clients to a reasonable level was to make the server perfarhopthe work de-
scribed in Section 4.4. The server performs no evaluatisel,but would choose
setsS,. .., S, for somei < 8. The client would evaluate all the possibilities for
the choice of the remaining se#s.1, ..., Ss.

The server decides what valushould take by estimating the amount of work
involved in a subproblem using a modification of Equation (Byo constants
Shin @nd Smax must be specified to the server: a subproblem is of acceptable
size if its size lies between the two limits. Unfortunatehjs does not yield sub-
problems with an even division of work: there are some vemydand very small
subproblems. Very small subproblems can be solved quighlyresult in a large
number of reports of completed problems and requests forpretMems being
handled by the server over a short period of time. This caseaongestion and
is not desirable.

The solution that was ultimately adopted was for the servatlocate multi-
ple small subproblems to a client looking for work. The semso maintains a
gueue of pre-allocated subproblems ready for assignmetietats, so that client
requests can be satisfied as rapidly as possible.

5 Search Results

Unfortunately, no new matrices were found as a result of #aeches run so far.
However, we are able to provide independent verificatioreséilts from previous
searches. This is considered of utility since some prevéeasches, such as that
conducted by Sawade [11], for example, failed to revealdiltfons that are now
known for the order searched, in that case, order 100. Inicpéat, we provide
verification of results reported by Dokovic [6, 4] for ordet80, 140 and 148.
Results for order 100 are also verified by Christos Koukoosin

For reference purposes, tables of Hadamard matrices dérom Williamson
matrices using circulant symmetri&, —1) matrices in the Williamson array for
orders 100 through 180 are presented in Appendix A. A coraglearch of order
156 is claimed by Dokovic [6]. Results for orders 164, 172 486 are incom-
plete.



A Tables of Hadamard Matrices of orders 100 through 180
from Williamson Matrices

Hadamard matrices of orders 100 through 180 are shown ire Tabirough Ta-
ble 3 using the Williamson decomposition. In Table 4, we shuatrices of order
148 using the row sums of the Williamson matrices, where eashof the solu-
tion represents the first row of one of the circulant matriggd, C, D.

The relationship between two current methods for clagsifiilliamson ma-
trices, the Williamson decomposition ofidnto four squaress? +s3 + S5 + 5 =
4n, and the row sums of the Williamson matrigasg np, mg, My, is now discussed.

Lemma 1. Let the Williamson decomposition into four squares e 5 + <5 +
sz = 4n. Further, let the row sums of the four Williamson matrice8 &, D be

my, Mp, M, My. Let

-1 1 1 1 S1 m
11111 | = | m
1 1 1-1 57 my

Then
S+HS+ S+ =4 M+ Mp 4 Mg+ g = 4n

and

Ms=me Mm=s
Proof. From (4) we have, using the roat= 1, a decompaosition with
S
s=u=1+4%t;,i=1234
2,

By Williamson’s assumption condition,

S+S+5+5=4n.
On the other hand,

n—1 n—1 n—1 n—1

2 2 2 2
= l—ZZtlj—i-ZZ t2j+22t3j +ZZI4J'
=1 =1 =1 =1
1

—1 s Dtge-1)+

1
=s(atetsty)

(%—D+Q&—D

1
2 2



Similarly,

1
=58 -2+Ss+%)

2
1

mSZE(SCL-FSQ—SB‘f‘Sﬂ«)
1

My = S(S1+%+%—%)

andMs= m. Inverting we have, asl 1 = M, Mm=. It is easy to check that

M+ Mg+ M+ = S+ G+ 5+ = 4n.
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t]n[B+18+15+15 N? H He ks Ha
251000124 12+ 72+ 72 1 1 14 2006 + 2012 — 200 — 263 |14 200 + 209 — 26 — 20
— 2005 — 207 —20w10— 2011
1+ 203 — 2w7 1+ 204 — 2001 1+ 2008 — 2009 — 20010 — 2w1 1| 1+ 206 — 2000 — 205 — 2012
1+ 203 — 209 1+ 204 — 212 1—201 — 2wy 1+ 20 + 2008 — 200 — 205
—2u0— 20011
25(100112+ 32+ 32+ 92 1+ 2w — 2011 1+ 263 — 201 — 2012 1+ 2wy — 2607 — 26X 1+ 20 + 205 + 20010 — 2008
1+ 200 + 2010 — 201 — 2ug|1 — 265 1+2w9+ 2011 — 203 — 204 |1+ 206 + 2012
—2wy7
1 14201 + 20 — 203 — 2wg |14 2W7 + 2w11 — 24 — 2w |1+ 2005+ 2010
—209 —2u12
25(1001% 4 5% + 5% + 72 1+ 25— 2w10 1+ 2wg + 2011 — 26 1+ 204 + 209 + 2012 — 207 |1 — 201 — 2w
—2wg
25/100{5% 4 52 + 52 + 52 14 201 + 209 — 2w 142057 + 2012 — 2008 1+ 200 + 205 — 204 14 20010+ 211 — 203
1+ 201 + 209 — 205 1+ 207+ 2w12 — 208 1+ 2003+ 205 — 2011 1+ 2004+ 2w10— 20
1+ 201 + 20 — 2003 1+ 20 + 209 — 210 1+ 207+ 2011 — 2004 1+ 208+ 2w12 — 205
27/110812 412 + 52+ 92 1 1 1+ 2006 + 208 + 2W10+ 2w13| 1+ 204 + 205 + 207 + 2012
—2u — 2000 — 2w11 —2003 — 209
1+ 201 + 2003 — 2004 — 20 |1+ 200 + 2012 — 20010 — 2w1 1|1 + 207 + 2008 — 20 1+ 2ws+ 20013
1+ 2wg + 2013 — 205 — 2wg |1+ 2wz — 210 1+20p 1+ 2w1 + 206 + 207 + 2w11
—204 — 2012
27/10812 4+ 32+ 72 4 72 1+ 20 + 205 — 2037 — 2wg |1+ 209 — 2010 — 2011 1+ 203 — 2004 — 20 — 2w13 |1 — 2001 — 212
1429 — 200 1+ 2w11— 205 — 2w7 1+ 2wg+ 203 — 2w1 — 203 |1 — 20 — 2012
—2wg — 2010
27/10832 4324324 92 No solutions.
27/11083%2 452 4+ 52 4 72 14 2001 — 204 — 2w 14 20010+ 213 — 2011 1+ 200 + 205 — 2012 14 2057 — 2003 — 2Wg — 20y
29/11612+ 324524+ 92 1+ 260 + 206 4 20012 — 2004 | 1+ 207 + 210 — 2003 — 2005 |1+ 20 1+ 213+ 2u4
—209 — 2w11 —208
29|116324+ 324724+ 72 No solutions.
311240124+ 12 +12 4122 |1 1 1+ 23+ 2044 2005 — 20 |14 2607 + 2w 0+ 2w 5— 26
—208 — 212 —200 — 209 — 2011 — 2013
—2u14

Table 1.Hadamard matrices of orders 100-124 from Williamson Magic




t]n [ug+i5+p+1g N7 b 2 Hs Ha

31|12412 + 52+ 72 + 72 No solutions.

31|12432 + 32+ 52 + 92 1+ 20y — 2010 — 2015 1+ 2w13— 200 — 214 142w + 2003+ 207 — 205 |1+ 208 + 2009 + 2011 — 20012
72(*)6
31|12452 4 52+ 52 4 72 No solutions.
331320124+ 124+ 32+ 112 |1+ 201 4 20014 — 20013 — 2016|1 + 200 + 205 + 2w11 — 20 |1+ 212 — 203 — 2wy 1— 204 — 2010 — 2015
—2wg — 209
331320124+ 12+ 724+ 92 1+ 2034 20014 — 200 — 2W10 |1+ 20011 + 20016 — 206 — 2008 | 1+ 201 — 205 — 2012 — 201 5|1 + 204 + 2009 4 2013 — 2037
3313212 + 5%+ 52 + 92 1+ 200 + 20010 — 2008 — 25 |1+ 2004 -+ 2013 — 2037 1+ 2012+ 2614 — 20 1+ 2003 + 205 + 201 1 + 2016
—20g — 209
1+ 205+ 2012 — 27 — 2015 |1+ 2010+ 20016 — 2002 14 2w4+ 206+ 2009 — 2001 |1+ 2003 + 208 + 2011 — 20014
—2w13
33|132)32 +- 52+ 72+ 72 1+ 2012 — 207 — 2w11 14214+ 2005 — 205 1+ 200 — 2004 — 2010 — 201 6|1 + 201 4 2009 — 2003 — 2Wg
—2wg — 2013

35140112+ 3%2+32+112]  |No solutions.
35140012 + 32+ 72+ 92 No solutions.
35(14032 4 52 + 52 + 92 No solutions.
37/14812 + 12+ 52 +11%| |1 1 1+ 201 + 26034 205 + 2w10 |1+ 211+ 2014 — 200 — 20
420017+ 20018 — 204 — 209 |—207 — 2W8 — 20013
—2W12— 25— 26
37|114812 4+ 72+ 72 + 72 1 1+ 205+ 2007 — 201 — 2wy |1+ 264 + 26013 — 209 — 2010|1 + 203 + 20018 — 2008 — 201 1
—205 — 202 —204— 2017 —2w15— 216

37114832 +32+324+112| |No solutions.
37|114832 4324+ 72 + 92 No solutions.
37/1485% + 52+ 72 4 72 1+ 2003+ 2004 + 2007 — 20 |1+ 205+ 2013+ 20018 — 20| 1 4 26— 262 — 209 — 2w10|1 + 2615 — 2W12 — 2014 — 2017

720011 *2(*)8
1+ 200 + 20015+ 2017 — 2001 3|1 + 2009 + 2012+ 2016 — 2004 |1 — 2003 — 2018 1+ 208 + 2011 — 2001 — 2005
—2W14 —2mo —2wg — 207

Table 2. Hadamard matrices of orders 124—148 from Williamson Magricont.)




t]n [Wg+iB+15+1g N7 H H Hs Ha

39/156112+32+52+112|  [No solutions.
3915612 + 52+ 72+ 92 No solutions.

39|1563%2 + 72+ 72472 1—2w13 14 2005 4 2017 — 2003 — 2W10 |1+ 2007 4 20016 — 200 — 2wg |1+ 201 + 200 — 204 — 2009
—2w11— 218 —2w12— 2014 —2w15— 2019

39|15652 4 52+ 52 4 92 No solutions.

4116412+ 12+ 92+ 9? 1 1 1+ 2001 4 2007 + 2w + 20011 |1+ 203 -+ 20 + 2wg -+ 2010
4217+ 218 — 20012 — 2015 |+2W13+ 20014 — 2004 — 205
—2006— 20020 —2w7 —2m9

43]17212 4+ 12+ 124132 |1+ 2001 4 206 + 207 — 2091 + 2W10+ 2W16+ 20017 — 2003| 1 + 25 + 2008 + 2w13— 200 |1+ 204 + 2015+ 2W1g

—2w11— 20020 —218— 20p1 —2w12— 2014

45(180124+12+32+13?| |1 1 1+ 204 + 20017+ 2W19+ 26021|1 + 2001 + 2Wg + 209 + 2W10
=20 — 2002 — 2013 — 214 | +2015+ 2016+ 20018+ 20022
—200 —2003 — 205 — 207 — 208

—2m11

Table 3.Hadamard matrices of orders 156—180 from Williamson Magricont.)




t] n | u+p5+ 15+ pg [N?[Solution

371483% + 32 + 77+ 92 11-1-1--—-11--1--1111--1--11----1-1-1
11-1-1----11--1--1111--1--11----1-1-1
1---1----1-11-111----111-11-1--—-1---
1111-1111-1--1---1111---1--1-1111-111
37/148112+ 3+ 3+ 3| [1--111-1--—--- 1————11-——-1--——- 1-111--
11111-1----- 11--=-11----11----- 1-1111
1--1-1-1-11---1--1111--1---11-1-1-1--
1---11-11--1-1-11----11-1-1--11-11---
37|1487°+7%+72+12 | |No solutions.

37/1481%+1?+ 52+ 11?| |No solutions.

3714872+ 7% + 52 + 52 11-—-1---—-1-1-11-11-11-1-1-—-—-1---1
1--11-111------ 11--=-11------ 111-11--
1-1111-1-11--1-1--11--1-1--11-1-1111-
1--111-1----111-111111-111----1-111--

1-1-1---1-11---1-1--1-1---11-1---1-1-
1-11----11-11--11111111--11-11----11-
111--111-1--1--111--111--1--1-111--11
Table 4. Hadamard matrices of order 148 from Williamson matrices; sams notation
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