
ELECTRONIC PUBLISHING, VOL. 1(2), 105–116 (SEPTEMBER 1988)

A search strategy for large document bases

DARIO LUCARELLA

Dipartimento di Scienze dell’Informazione
Universit̀a degli Studi di Milano
Via Moretto da Brescia 9, I-20133 Milano
Italy

SUMMARY
In this paper, we emphasize the need of modelling the inherentuncertainty associated with
the information retrieval process. Within this context, a search strategy is proposed for
locating documents which arelikely to be relevant to a given query. A notion of closeness
between document(s) and query is introduced and the implementation of an improved
algorithm for the identification of the closest document set is presented with emphasis on
computational efficiency.

KEY WORDS Information storage and retrieval Retrieval models Similarity computation Document
access methods Search algorithms Search efficiency

INTRODUCTION

The increasing utilization of document preparation systems and document scanning tech-
niques in combination with optical storage is moving towards end-users having large
machine readable document collections. As a side effect of this impressive trend inelec-
tronic publishing, a crucial point becomes the need for sophisticated and innovative re-
trieval systems which provide satisfactory access to these growing textual databases[1,2].

Traditionally, logical design and implementation of document retrieval systems have
been influenced by data base management technology. The result being that thedocument
retrieval problem has been approached as merely a variant ofdataretrieval without taking
into account that the logical foundations of the two processes are quite different[3].

Most of the commercially available systems rely upon Boolean logic and exact match-
ing. In such environments, documents are represented by a list of significant terms with-
out taking into account the different contribution of each term to the document charac-
terization. A term either applies or does not apply to a document. The same is true for
the query which consists of single search terms, denoting concepts, combined together
via Boolean operators. In response, documents are retrieved when the attached index
terms, regarded as secondary keys, match the query specificationexactly. Thus the docu-
ment collection is simply partitioned into two sets: documents that satisfy the query and
documents that do not.

The considerable disadvantages of this approach, for document management applica-
tions, have been frequently pointed out[4,5].

Boolean formulations are difficult to generate by novices. Ordinary people asking for
information have not an exact picture of what they are looking for so that it becomes
difficult to formulate their queries in terms of a rigid and unnatural Boolean notation.
Furthermore, it is difficult to get the right focus for the queries without a good knowledge

0894–3982/88/020105–12$06.00 Received 22 January 1988
c
1988 by John Wiley & Sons, Ltd. Revised 30 April 1988

© 1998 by University of Nottingham.

106 DARIO LUCARELLA

of the document base content. The use of general terms with poor filtering capabilities
leads to the retrieval of a lot of items whereas the use of specific terms may be too
selective yielding no documents in response.

In addition, all of the retrieved items are supposed to be of equivalent importance for
the user. Obviously this is not realistic. Even if many factors influence in a complex way
the users’ judgment of relevance, the system should make an assessment as to whether
or not a document is relevant to the users’ needs and rank returned documents in order
of their estimated usefulness.

All these limitations can be partially removed assuming correctly that, unlike data
retrieval where the information is well structured and named, document retrieval is a
process inherentlyuncertain. Search strategies must be conceived based on different
retrieval models.

In the following, we recall briefly the research work concerning the attempt of mod-
elling uncertainty in information retrieval and discuss the implications for system design.
Within this context, the emphasis is on search strategies and the objective is to show that
an efficient and effective retrieval system can be constructed using innovative techniques.

UNCERTAINTY MODELS

Any attempt of modelling the information retrieval process first requires a clear statement
of what the process is.

Given a document collection, information retrieval systems are designed with the goal
of providing, in response to a users’ request, references to those documents that would
contain the information desired by the user. In other words, the system operates indirectly:
it does not answer the query retrieving the specific information required but provides
instead references to a set of documents that are likely to contain the information that
the user is interested in.

There are several sources of imprecision in this apparently simple process. First, the
user of such a system is looking for information that (s)he does not actually know so
(s)he expresses the information need in the form of a request for information. Such a
request is further transformed in a request for documents. As a result, it is unlikely that
the actual user needs can be exactly reflected and the submitted query will be only an
imperfect expression of the information need.

A document is assumed to contain information, thus a method is required for extracting
and representing the information contained in the documents. A representation of what
the document is about is difficult to build and so, despite any sophisticated technique,
we cannot expect it will be completely satisfactory. We have to assume it will provide
only a partial and imprecise characterization of the document content.

In addition to the problem of documents and queries characterization, a crucial point
is to establish a relationship between the users’ request and the documents to determine
whether a document is likely to be relevant or not. It should be recalled that a document
must be considered relevant if, and only if, the document meets the actual users’ needs.
Hence relevance is a user dependent concept connected to a notion ofaboutness. A
document is relevant if it is about the information sought[6]. This means there is only
a probabilistic relationship between the request and the likelihood that the user will
be satisfied with that response. From a logical point of view, this selection process is
essentially a decision under uncertainty.

A SEARCH STRATEGY FOR LARGE DOCUMENT BASES 107

With these premises, it is reasonable to assume the impossibility of building a perfect
system in whichonly andall the relevant documents are retrieved.

This is the reason why there is a general consensus among researchers about the need
that traditional information systems have to evolve in order to capture the vagueness and
uncertainty which occur in reality.

Different approaches have been undertaken to cope with inexact representation of doc-
uments and queries and the consequent difficulties in determining the relevance of doc-
uments to a given users’ request. They are based on fuzzy set concepts such as degree
of membership, similarity relations and possibility distribution[7,8]. With the same ob-
jective, other researchers have approached the design of intelligent retrieval systems with
a knowledge base and inferential capabilities to establish connections between a request
and a set of documents[9]. Recently, VanRijsbergen has proposed a new framework to
deal with the inherent uncertainty of the retrieval process. He proposes to use formal
semantics for text representation and to formalize the relationship between a document
and a request as a logical implication to which an uncertainty measure is attached[6].

A well known approach adopting fairly simple techniques for the design of a doc-
ument retrieval system with the above goals is the Vector Space Model. It has been
proposed and extensively investigated by Salton[4] and recently generalized by Wong
and Raghaven[10]. According to this model, documents, identified by a set of attributes,
are represented by vectors inn-dimensional space, each dimension denoting a concept.
A particular documentDi is represented by the following vectorDi = (ti1, . . .tij , . . .tin)
where thej th coordinate of the vector is a real number between zero and one which
reflects the degree of membership, that is to say, the importance of thej th term for qual-
ifying the documentDi . The same applies to each query. It is represented by the vec-
tor Q = (q1, . . .qj , . . .qn) whereqj denotes the weighted presence of thej th term in the
queryQ.

In this setting, a retrieval operation involves the identification of those documents in
the collection which exhibit a higher degree of resemblance with the submitted query.
A similarity function S must be defined in order to measure theclosenessbetween two
given vectors. So, givenQ, the functionS produces for each document a real number
S(Di ,Q) in the range [0,1] with a high value implying a high degree of resemblance. As
a consequence, it is possible to arrange and present the documents in decreasing order
of similarity as measured by theS-values with respect to the queryQ. A threshold can
be defined for theS-values so that the trade-off can be controlled varying the threshold
in proper way.

The adoption of this model could help to remove many of the problems mentioned
in the introduction. There is no need for the user to specify Boolean interconnections
between terms, it is easy to take into account weights reflecting the relative importance of
different terms and the returned documents can be ranked in order of presumed relevance
to the users’ request.

In the following section, the main features of a prototype document retrieval system
based on this model and implemented on personal workstation are overviewed[11].

SYSTEM FEATURES

The activities involved in the design and implementation of the system cover three main
areas: document indexing, search strategies and access methods.

Indexing refers to the process of document characterization that requires the application

108 DARIO LUCARELLA

of an automatic procedure to the full text or some surrogate of the document in order to
identify index terms to be used in the vector representation.

In principle, an indexing method suited for content representation of natural language
texts should be based on linguistic considerations. Unfortunately, linguistic analysis tech-
niques are difficult to apply efficiently to large text samples and, furthermore, they require
general knowledge about the subjects covered in the documents. On the other hand, com-
plex indexing methods aimed at identifying syntactic components of the text have never
been proved to be more effective in terms of retrieval performance[9,12].

A large number of studies on indexing strategies has been reported by Salton and the
results of this work suggest that the simplest techniques are the most effective[12,13].
According to these suggestions, an automatic procedure can be designed to perform
the content analysis on the text excerpt. Stop-words are skipped and word suffixes are
removed to reduce words to common stems. Remaining terms are weighted and lowest
weighted terms are dropped to reduce the size of the document representative.

In order to assign a weight to each term, several weighting schemes have been devised.
Once again fairly simple techniques are sufficiently effective. A measure that has been
recently tested with good results is theaugmented normalized term frequency[14]. The
weight wij which reflects the presumed importance of termtj for qualifying the content
of documentDi is defined as:

wij =
�

0.5 + 0.5
Fij

Fmaxi

�
(1)

whereFij represents the occurrence frequency of the termtj in the documentDi normal-
ized by Fmaxi , the maximum occurrence frequency among the terms associated to the
vector Di . The effect of such a normalization being thatwij is in the range [0.5 . . . 1.0]
and longer documents do not produce higher term weights than shorter ones.

The same indexing and weighting process is performed on the natural language text
of the query presented by the user. In this case the weight attached to each query term
is determined by itsIDF (Inverse Document Frequency)value. For each termj it is
computed asIDFj = log(N/Nj) whereN is the number of documents in the collection
and Nj is the number of documents in which the termj appears. Such weights express
the value of a term for searching as they indicate how useful it is to differentiate the
document from the collection.

During the matching process in which the two weights are combined, the effect is to
combine the local occurrence of a term within a document, which reflects itsimportance,
with the global occurrence of the same term within the collection, which reflects its
discriminationpower.

The retrieval procedure locates all documents relevant to the users’ request and arranges
them in decreasing order of similarity.

When the user enters the query facility, the system displays an appropriate template.
The user optionally specifies some values for fixed attributes and a natural language
statement describing in a rough way the topic which (s)he is interested in.

Documents retrieved are those that satisfy the combination of selection conditions, if
specified, and whose topic resembles as much as possible the proposed one. The user is
presented with a few of the top documents and is requested to mark the relevant ones
among those displayed. In this way, a better picture of the user’s concept of the relevant
document is obtained and used to rerank documents.

A SEARCH STRATEGY FOR LARGE DOCUMENT BASES 109

Such arelevance feedbackprocess allows a successive improvement of the query
combining the result of the earlier search operation with the users’ judgment. The effect is
equivalent to moving the query in the concept space toward the set of relevant documents
by enhancing the importance of terms that appear in the descriptors of those documents
marked as relevant by the user.

So, given the original queryQ= (q1,q2, . . .qk), a new expanded queryQ0 = (q1,q2, . . .qk,
tk+1, . . .tn) is prepared consisting of the initial terms plus additional terms coming from
the descriptors of the marked documents. The weight of each term in the new query is
computed combining the value it has in the original query, if present, to the values it has
in the marked descriptors.

The document access method is based on inverted files. Despite processing and storage
overheads for index management, the main advantage of an inverted file organization is
the speed with which responses to users’ queries are obtained. No search operation is
carried out on the main file but closest documents are located by manipulating only the
pointer lists in the directories.

Index term stems are found in the concept dictionary where pointers to the inverted
lists are stored together with the total number of postings for each term. This last value
is used to compute theinverse document frequencyweights for query terms.

The postings list for each termt consists of pairs of values (Di ,wi), Di referencing the
document header andwi indicating the weight the termt has for the documentDi . The
variable length inverted lists are stored in fixed length blocks in order to improve their
manipulation and updating.

When the document is loaded the indexing procedure is applied to the text excerpt
in order to identify significant terms. Such terms and the document reference are used
respectively to update the concept dictionary and the postings file.

A crucial point with models based on similarity evaluation is the efficiency of the
search procedure considering the high number of query-document comparisons that must
be carried out in order to locate the closest set. The problem is approached in further detail
in the next section whereas a range of search procedures based on this file organization
can be found in[15].

THE SEARCH PROCEDURE

Within the previous framework, documents as well as queries can be regarded as points
in n�dimensional space. So, the retrieval problem can be rephrased in the following
way, often referred to asnearest neighboursearching[16]. Given a setN, of pointsDi

in n�space and a specific pointQ, find the setR (R� N) of pointsD1 . . .Dr closestto
Q. Closeness being measured by some appropriate function.

In the following, assume to compute the query-document closeness with the well tested
cosine correlation[4]. Thus the similarity of a documentDi with respect to the queryQ
is given by the following equation:

S(Di ,Q) =

Pn
j=1 qj tijqPn

j=1 q2
j .
Pn

j=1 t2
ij

=

Pn
j=1 qj tij

LQ . LDi
(2)

LQ andLD being, respectively, the query and document vector lengths.

110 DARIO LUCARELLA

The straightforward way to obtain the relevant set is to compute the similarity function
for each document in the collection to obtainr closest neighbours. It requiresO(N)
computations which is impractical for large real collections.

So the problem is to organize the document setN so that subsequent searches for the
closest points to a new pointQ can be answered quickly. The objective is to eliminate
from further consideration those documents which fail to comply with the submitted
query as soon as possible.

One approach consists in preprocessing the collection partitioning it in clusters, each
cluster consisting of similar documents and a representative of the included documents.
The other approach followed here is based on the availability of a combined inverted
file/document file as presented before. It has been proved by Voorhees[17] that such an
organization is comparable or better in terms of effectiveness but it is more efficient.

The availability of the inverted file definitely reduces the number of documents that
must be considered as potential candidates for the closest set. With reference to the cosine
similarity function used here,S(Di ,Q) =/ 0 if and only if the query and the document
vectors have at least one common term. It means that we have to take into account only
those documents which appear at least once in the postings corresponding to the query
terms while all other documents can be discarded.

A first algorithm that reaches this goalminimizing the number of accesses to the
document file was proposed by Noreaultet al[18]. The basic idea is to process the query
lists allocating a counter to each encountered document and setting it to one. When a
document appears once again in a subsequent list, its counter is incremented by one. The
end result is to have in each counter the number of matching terms between the document
and the query. If the terms have attached weights, as in our setting, the counters will be
incremented by the product of such weights. The result being that the counters will
contain the inner product between the document and query vectors. The pseudo-code for
this algorithm is reported.

Procedure Search;
for each QueryTerm qj do

Read InvertedList; (* composed of couples (Di , wi) *)
for each Document Di in the list do

if NewDocument then
AllocateCounter C(Di);
C(Di) := 0;

endif ;
C(Di) := C(Di) + (qj * wi);

endloop ;
endloop ;
for each Counter C(Di) do

C(Di) := C(Di)/(LQ * LDi); (* evaluation of S-function *)
endloop ;
Sort C(Di) in decreasing order;
Present the top r documents;

end Search.

The above procedure computes the document-query similarity for each document that
appears in the inverted lists and, consequently, has a non-zero value for theS-function.
Nevertheless the set of involved documents may be considerably large. Perry and Willet,

A SEARCH STRATEGY FOR LARGE DOCUMENT BASES 111

experimenting with several document collections, have shown in[15] there is a consid-
erable number of documents having a very small similarity with the query. That implies
the useless calculation of many low-value similarities for documents that will not reach
the closest set.

Starting from these considerations, various algorithms have been proposed in order
to refine and optimize the basic procedure discussed before. The common objective is
the elimination of many of the query-document comparisons while still ensuring that
the documents at the top of ranking are identified. A critical review of such algorithms
is given by Perry and Willet in[15]. Previous work related to our approach has been
reported by Harper[19] and Buckley[14]. The first algorithm optimized the number of
documents to be maintained in internal storage whereas the second author worked at the
inverted lists to be inspected.

A BOUNDED STRATEGY

The considerations developed before suggest two ways for optimizing the basic algorithm.
The first improvement is oriented toward identifying the closest set manipulatingonly the
inverted lists without making any access to the document file. In the above procedure,
access is required to get the document length and this operation is carried out for each
distinct document appearing in the lists.

Such a number can be high, according to the previous consideration, and, furthermore,
the document file could be located on slow access devices like compact disks. The
problem can be solved if we are able to allocate in the inverted lists all the information
necessary to compute the similarity function. A slight modification to the term weighting
scheme is required: instead of storing for each document in the list the pair (Di ,wi),
we have to store the weight normalized by the document vector length (Di ,wi /LDi). So
given the documentD = (w1/LD , . . .wj /LD , . . .wn/LD) and the queryQ = (q1/LQ, . . .qj /LQ,
. . .qn/LQ), the inner product between the two vectors

Pn
j=1 wj /LD . qj /LQ is equivalent

to the cosine correlation reported in(2).
This change eliminates in the previous algorithm the presence of the last loop and no

access to the document file is required. The counters, at the end, will contain the inner
product between the vectors which already corresponds to the final similarity between
the associated documents and the query.

Further improvements can be achieved if we minimize both the number of documents to
be evaluated and the number of inverted lists to be inspected. Particularly, with reference
to the second point, if we find out, before completion, that we have already determined
the closest set then the algorithm can be stopped and the remaining lists need not be
examined.

As a first step, the query terms are sorted in order of decreasing weight. Since the term
weight is determined by itsIDF value, the effect is to have those terms which apply to
few documents at the top. Consequently, we process the shorter inverted lists first leaving
at the bottom the lists which include a larger number of documents.

Then we start to process the query lists in this order. Let us assume we have processed
m query lists out ofk and we have a current closest setR including the documents
D1, . . .Dr in decreasing order of similarity.

We have to process now them+ 1st query list. For each documentDi referenced in the
list, anupperboundfor the similarity value can be computed assumingDi should happen

112 DARIO LUCARELLA

to match all the remaining query terms. If the computed upperbound forDi is less than
the similarity value associated toDr , it means the documentDi will never reach theR
set so that it can be removed from further consideration.

Moreover, we can terminate the algorithm if the documentDr+1, the first out of the
setR is not expected to give a similarity better than the documentDr , the last in the set
R.

Procedure Search;
sort QueryTerms in decreasing order of weight;
repeat (* for each query term qj *)

Read InvertedList; (* composed of couples (Di , wi) *)
for each Document Di in the list do

if RelSetNotFull then
Compute C(Di);
Enter Di into the RelSet;

else
Compute U (Di);
if U (Di) � C(LastDocIn) then

DoNotAllocate/Remove Di
else

Compute C(Di);
if C(Di) > C(LastDocIn) then Enter Di into RelSet endif ;

endif ;
endif ;

endloop ;
Compute U (FirstDocOut);

until LastQueryTerm or U (FirstDocOut) � C(LastDocIn)
Present the RelSet sorted in decreasing order;

end Search.

A modification of the previous algorithm to include these improvements is reported.
It is assumed that the weights reported in the lists are normalized and that the locations
FirstDocOut andLastDocIn are maintained and updated properly when documents
are entered respectively in the document table and in the setR.

As in the basic algorithm, the procedureCompute C(D i) allocates the counter when
the document is a new one and then computes the partial similarity asC(Di) := C(Di) +
(qj � wi).

Let us now examine the way to evaluate an upperboundU (Di) for the total query-
document similarity, given a queryQ consisting of (q1, . . .qj . . .qk) terms and given the
documentDi .

After having processed the firstm query lists, letsi be the current score for the
documentDi . At this point, we can compute an upperbound forS(Q,Di) as:

U (Di) = si +
kX

j=m+1

wij . qj (3)

assuming the worst case that all the remaining un-inspected (k�m) terms are in common
between the document and the query.

The summation appearing inequation (3)
Pk

j=m+1 wij . qj corresponds to the maximum

A SEARCH STRATEGY FOR LARGE DOCUMENT BASES 113

possible remaining similarity. It can be easily determined if we consider that the weighting
scheme in effect computes the document term weight as the intra-document normalized
frequency, seeequation (1). So the document term weightwij is bounded by 1.0.Equation
(3) can be transformed in the following one that still gives an upperbound:

U (Di) = si +
kX

j=m+1

qj (4)

The result being that we can compute an upperbound, usingequation (4), taking into
account only the weights of the remaining query terms which are already known.

EVALUATION

With reference to the presented algorithm, a worst case analysis is not meaningful con-
sidering that the complexity is linear with the length of the inverted lists. So the worst
condition means scanning the entire lists when the stopping comparison is not satisfied
and the computing cycle is not terminated before completion. However, it must be re-
called that the initial sorting on the query terms moves the longer inverted lists to the
bottom. This means that even if the condition applies nearly at the end, the lists that will
not be inspected for the stopping condition will be the most expensive.

Better results in terms of optimization can be obtained if we accept that only the top
r 0(r 0

< r) best matching documents are returned while the remaining (r � r 0) are simply
good matches. This heuristic implies changing, in the previous algorithm, the stopping
condition toU (FirstDocOut) � C(Dr 0). Clearly, asC(Dr 0) > C(Dr), the stopping con-
dition works better dropping a higher number of query lists. It has been shown under
several test conditions that recall values do not degrade significantly as the number of
guaranteed top documentsr 0 decreases[14].

Table 1. Experimental Results

Number of documents 1500
Number of terms 2137
Number of queries 50
Average terms per document 14.8
Average terms per query 7.2

Average docs.referencedper query 354.5
Average docs.processedper query 78.3
Average dropped lists per query 0.27

Recall 0.39
Precision 0.82

For our purposes, it is interesting to compare, on average, the total number of docu-
ments which would have been processed without any optimization, with the number of

114 DARIO LUCARELLA

documents really maintained in the table as a combined effect of the two introduced
optimizations. Furthermore, it is interesting to take note of the mean number of dropped
query lists considering that documents in such lists are not examined at all.

In order to make experiments and test the effectiveness of the algorithm, a document
collection in the area of Applied Mathematics and Computer Science has been used. The
collection was supplied in machine readable form by the Enel, Italian Electricity Board,
and relevant characteristics are reported in the first part of the table.

A set of fifty queries in natural language has been used. The set has been indexed
with query terms weighted by theIDF function. Each query was processed twice, first
with the basic algorithm and afterward with the improved version. The returned relevant
set consisted of ten good documents (r = 10) while only five documents (r 0 = 5) were
guaranteed to be the best ones.

Results are reported on average in the second part of the table. The entry “documents
referenced per query” gives the total number of distinct documents indexed by the query
terms. The entry “documents processed per query” gives the actual number of documents
placed into the table for which partial similarities are evaluated. The last row gives the
percentage of inverted lists which are dropped as a consequence of the stopping condition.
A value of 0.27 means that, on avarage, 27% of the inverted lists are not processed. Note
that the dropped lists are the longest ones since the query terms are sorted in order of
decreasing weight and the weighting scheme in effect assigns the lowest weights to terms
which occur in many documents.

The conclusion was of a meaningful decrease in the number of documents to be
processed as well as in the number of query lists to be examined.

Although the main goal of the reported experiment was to evaluate theefficiencyof
the search algorithm, a figure of the systemeffectivenessis reported in the third part of
the table. The effectiveness represents the ability of the system to retrieve the relevant
documents. It is usually expressed in terms of two standard performance measuresrecall
andprecision[4]. Recall gives the proportion of relevant items actually retrieved whereas
precision gives the proportion of retrieved items actually relevant. GivenA the set of
relevant documents,B the set of retrieved documents andj . j the counting measure
giving the size of the set:

Recall :
jA\ Bj
jAj

Precision:
jA\ Bj
jBj

Average values for such measures at the 10 documents cut-off level are reported in the
last two rows. The apparently poor recall level must be related to the low exhaustivity of
the sample query set (7.2 terms per query) and, essentially, to the cut-off level applied.
Conversely the system precision is very high as a consequence of the weighting and
ranking mechanism. In this respect, the effect of the introduced optimization is a possible
decrease in the ordering precision among the retrieved documents since they are ranked
in order of their partial similarity instead of the total similarity to the query.

CONCLUSION

In the previous pages, we have discussed the need of modelling uncertainty in the design
of document retrieval systems. Consequent enhancements in terms of system capabilities

A SEARCH STRATEGY FOR LARGE DOCUMENT BASES 115

and user interface have been underlined with reference to a prototype implementation.
The system has been developed in Modula-2 on a personal workstation AT-386 under
MS-DOS operating system[11].

It is based on the vector space model. An automatic indexing procedure with a weight-
ing scheme to reflect term importance is applied to both document excerpts and natural
language queries.

Documents are stored using an inverted file scheme and an efficient search strategy
has been presented. The algorithm returns the relevant document set computing an up-
perbound on closeness thus obviating the need for an exact computation of closeness in
many instances. The result is a strong improvement in both the number of documents to
be evaluated and the number of inverted index entries to be inspected.

In a different setting, comparable results have been obtained with a slight modification
of the same bounded strategy applied to the retrieval of mathematical formulae[20]. Ad-
ditional experiments are planned to face other document collections available on optical
disks[21].

As already remarked, some of the reported improvements assume a particular meaning
in connection with large document databases and slow access optical storage. We can
expect an increasing importance of such retrieval strategies in the future with the wide
circulation of optical disks and the consequent availability to end users of large machine
readable document collections.

ACKNOWLEDGEMENTS

This research activity has been partially supported by the Enel, Italian Electricity Board,
and is also related to the larger research projectScientific Communication Systemsspon-
sored by the Mathematical Committee of the Public Education Ministry.

REFERENCES

1. E. A. Fox, ‘Information retrieval: research into new capabilities’ in S. Lambert, S. Ropiequet,
eds.,CD-ROM: the New Papyrus, Microsoft Press, Redmond, 1986 pp.143–174.

2. D. Lucarella, ‘Design issues for an integrated documentation system’ in J. J. Miller, ed.,Text
Processing Systems II, Boole Press, Dublin, 1985 pp.34–46.

3. D. C. Blair, ‘The data-document distinction in information retrieval’Communications ACM
27 369–374 (1984).

4. G. Salton and M. J. McGill,Introduction to Modern Information Retrieval, McGraw-Hill, New
York, 1983.

5. P. Willet, ‘Ranked output searching in textual and structural databases’Proc. Ninth Online
Information Meeting, London, UK, 3–5 December 1985 pp.343–353.

6. C. J. VanRijsbergen, ‘A non-classical logic for information retrieval’,Computer Journal29,
481–485 (1986).

7. A. Bookstein, ‘Probability and fuzzy sets applications to information retrieval’ in M. E. William,
ed.,Annual Review of Information Science and Technology, 20, Knowledge Industry Publica-
tions Inc., White Plans, 117–151 (1985).

8. B. P. Buckles and F. E. Perry, ‘Uncertainty models in information and data base systems’
Journal of Information Science11, 77–87 (1985).

9. W. B. Croft, ‘Approaches to intelligent information retrieval’,Information Processing and
Management23 (4), 249–254 (1987).

10. S. K. M. Wonget al., ‘On modeling of information retrieval concepts in vector spaces’,ACM
Trans. on Database Systems12, 299–321 (1987).

116 DARIO LUCARELLA

11. D. Lucarella, ‘A document retrieval system based on nearest neighbour searching’,Journal of
Information Science14, 25–33 (1988).

12. G. Salton, ‘Another look at automatic text retrieval systems’,Communications ACM29,
648–656 (1986).

13. G. Salton, ‘A blueprint for automatic indexing’,ACM SIGIR Forum16, 22–38 (1981).
14. C. Buckley and A. F. Lewit, ‘Optimization of inverted vector searches’,Proc. Eighth Inter-

national ACM Conference on Research and Development in Information Retrieval, Montreal,
Québec, 5–7 June, 1985 pp.97–110.

15. S. A. Perry and P. Willet, ‘A review of the use of inverted files for best match searching in
information retrieval systems’,Journal of Information Science6, 59–66 (1983).

16. A. F. Smeaton and C. J. vanRijsbergen, ‘The nearest neighbour problem in information re-
trieval’, Proc. Fourth International Conference on Information Storage and Retrieval, Oak-
land, CA, 31 May–2 June, 1981 pp.83–87.

17. E. Voorhees, ‘The efficiency of inverted index and cluster search’,Proc. ACM Conference
on Research and Development in Information Retrieval, Pisa, Italy, 8–10 September, 1986
pp.164–174.

18. T. Noreault, M. Koll and M. J. McGill, ‘Automatic ranked output from Boolean searches in
SIRE’, Journal Amer. Soc. Information Science28, 294–304 (1977).

19. D. J. Harper, ‘Relevance Feedback in Document Retrieval Systems: An Evaluation of Proba-
bilistic Strategies’Phd. ThesisThe University of Cambridge (1980).

20. D. Lucarella, ‘Retrieving mathematical formulae’ in J. Désarḿenien, ed.,TEX for Scientific
Documentation120–130 Springer-Verlag, Berlin, (1986).

21. F. Compagnoni and D. Lucarella, ‘Design of an automated dictionary on CD-ROM: internal
structure and retrieval facilities’ in J. J. Miller, ed.,Text Processing Systems III111–118 Boole
Press, Dublin, (1986).

	SUMMARY
	INTRODUCTION
	UNCERTAINTY MODELS
	SYSTEM FEATURES
	THE SEARCH PROCEDURE
	A BOUNDED STRATEGY
	EVALUATION
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

